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Quantum-information processing in bosonic lattices
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We consider a class of models of self-interacting bosons hopping on a lattice. We show that properly tailored
space-temporal coherent control of the single-body coupling parameters allows for the universal quantum
computation in a given sector of the global Fock space. This general strategy for encoded universality in
bosonic systems has, in principle, several candidates for physical implementation.
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The central problem in quantum-information process
~QIP! @1# is the ability to control a quantum system in ord
to achieve some predefined purpose such as quantum
putation~QC!. In general, a quantum-information process
is realized by assembling a large number of copies of a gi
quantum system, e.g., a qubit, and by making these co
interact in a controlled coherent fashion. A crucial issue
any proposal for a QIP implementation is its scalability, i.
the realizability, at least in principle, of the above structu
for an arbitrary large size. An appropriate architecture
achieve this last goal is naturally provided by a lattice w
sites hosting the processing quantum systems.

In this paper, we shall describe a general scheme for
forming quantum computation with interacting bosonic p
ticles in a lattice. The system under study is very general
several existing QC proposals could fit into this framewo
These include optical qubits@2–4#, Josephson junction qu
bits @5#, and optical lattice loaded with ultracold bosonic a
oms, e.g., Bose-Einstein condensates~BECs! @6–8#. Without
focusing on any of these particular implementations, we w
develop a general framework for encoding qubits and
performing universal quantum gates on such encoded qu
Despite their highly practical relevance, we will not discu
decoherence issues since they are strongly dependent o
specific physical implementation.

Let us start by casting the problem we are going to
dress in a more precise control-theoretic fashion. The sin
mode Fock space will be denoted byhªspan$un&%n50

` . The
Hamiltonian acting onHLªh^ L that we would like to ana-
lyze is given by

H~V!5 (
i , j PL

~Vi j
(2)ni nj1Vi j

(1)ci
†cj1H.c.!, ~1!

where: ~i! L is an index set~the lattice vertices! with L
elements;~ii ! cj , cj

†( j PL) are bosonic creation and annih
lation operators, andniªci

†ci are the corresponding occup
tion numbers; and~iii ! Vª$Vi j

(2)%3$Vi j
(1)%,R3C is the set

of quasiclassical ‘‘control’’ parameters. The Hamiltonian~1!
represents a generalized Bose-Hubbard model@9#, the terms
weighted by theVi j

(2)’s account for the nonlinear two-bod
interactions whereas theVi j

(1)’s are the one-body terms de
scribing the hopping of the bosonic particles among the
tice sites. The interplay of these two terms is known to g
rise to a rich quantum phase diagram with insulating a
superfluid regions@6,10#.
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The ultimate goal is to find anM qubit encoding
e:(C2) ^ M°HL , such that control on the parametersVi j (t)
in Eq. ~1! would enact universal computational capabiliti
on the code. In this paper, we will propose such an encod
that will enable us to perform universal quantum compu
tion on a suitable sector of the Fock space associated
the bosonic lattice@11#. It is worthwhile to keep in mind that
even though we will consider only the ‘‘spatial’’ interpreta
tion of the single-particle modes, i.e., spatially localiz
wave functions, they could even be momentum modes
modes associated to any other single-particle wave funct

The qubit. We define the qubit usingtwo lattice sites~dual
rail encoding!. We denote byai (ai

†) andbi (bi
†) the corre-

sponding annihilation ~creation! operators for the two
bosonic modes (i is the qubit index!. The Hamiltonian of the
system has two terms:H5H01Hint . The first term is the
sum of all single-qubit Hamiltonians:

H05(
i

Hi5(
i

«1,ina,i
2 1«2,inb,i

2 1g1,ina,i1g2,inb,i

1t i~ai
†bi1ai bi

†!, ~2!

with na,i5ai
†ai , nb,i5bi

† bi ; t i is the tunneling rate be
tween thea andb modes of thesamequbit ~intraqubit tun-
neling rate!. The second term represents the interaction
tween different qubits:

Hint5(
iÞ j

m i j ~ai
†aj1ai aj

†!1(
iÞ j

x i j na,ina, j . ~3!

We assume that qubits interact only via thea modes~with
m i j the interqubit tunneling rate;x i j is the Kerr coupling!.
An intuitive picture is given in Fig. 1. Another possible g
ometry, for example, is to have a common bus to which o
the a mode of each qubit is coupled@12#.

We define the logical state of the qubit by the number
particles in thea mode. Thus,na50 defines the logicalu0&L
state, andna51 the logical u1&L state. The computationa
space is therefore restricted tonaP$0,1%, and we will show
how to enforce this condition after each gate operation. I
important to stress that the subsystems that support our
bits are ~finite-dimensional subspaces! of bosonic modes
rather than particles. Therefore, the paradigm we adopt h
concerning quantum entanglement for systems of indis
©2002 The American Physical Society01-1



tio
m

m

n-

ra
te

it

le
in

u-

a

f

tic
ll

-

-

te
-

-
ys-

ve
il-

-
the

a-

lve

is

ng

RAPID COMMUNICATIONS

R. IONICIOIU AND P. ZANARDI PHYSICAL REVIEW A 66, 050301~R! ~2002!
guishable particles is the one advocated in Ref.@13#. We
describe the main steps of any quantum computa
scheme: universal set of gates, state preparation, and
surement.

The following set of gates is universal for quantum co
putation @14#: $H,Pw ,Cp%, where H51/A(2) (1

1
1

21) is a
Hadamard gate,Pw5diag (1,eiw) is a single-qubit phase
shift, andCp is a controlled sign flip. We use the more ge
eral controlled phase gateCw5diag(1, 1, 1,eiw). We enact
these gates by controlling the time dependence of the pa
eters characterizing the system. For the single-qubit ga
we set allm i j 5x i j 50 and we vary only the single-qub
parameters«a,i(t), ga,i(t), andt i(t) (a51,2). On the con-
trary, for the two-qubit gate, we keep constant the sing
qubit parameters and we control only the interqubit tunnel
ratem i j (t) or the Kerr couplingx i j (t).

Single-qubit gates.In the absence of any external co
pling (m i j 5x i j 50), the single-qubit Hamiltonian is~for
simplicity we omit the qubit indexi )

H15«1na
21«2nb

21g1na1g2nb1t~a†b1ab†!. ~4!

The total particle numbern5na1nb is conserved, since
@H,n#50. Thus, the one-qubit Hilbert space splits into
direct sumH5 % n50

` Hn , as the Hamiltonian~4! leaves in-
variant the subspacesHn with total particle numbern
5const and dimHn5n11. In view of this decomposition o
the Hilbert space, we can relabel the Fock states asuna nb&
[un; na&. Thus, any vector can be written asuc&
5(n( i 50

n cn,i un; i &. Since our initial state will be a Fock
state and since the Hamiltonian conserves the total par
numbern, the single-qubit wave function at any time wi
always remain in the subspaceHn , uc(t)&
5( i 50

n cn,i(t)un; i &PHn . Basically, the only degree of free
dom left is the number of particlesi (5na) in the a mode.

For t50, the Fock statesun; i & are are also energy eigen
vectors, with eigenvalues given by~we omit the labeln since
the total number of particle is conserved!

Ei[^n; i uHun; i &5«1i 21«2~n2 i !21g1i 1g2~n2 i !, ~5!

FIG. 1. An example of a qubit array. Thea (b) modes corre-
spond to the small~big! disks; theb modes are situated in azigzag
geometry in order to minimize their interaction. Interqubit coupli
is given only via thea modes.
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i 50•••n. We also want our qubit states~defined as before
u0&L[un;0&, u1&L[un;1&) to correspond to the degenera
ground stateE05E1. This implies the following energy de
generacy condition:

«12~2n21!«21g12g250. ~6!

For the Hadamard gate, we keep«k(t), gk(t) constant@and
satisfying the degeneracy condition~6!# and we allow only a
time-dependent tunneling ratet(t). Since the energy gap
between the ground and the first excited state isDE[E2
2E154n«212(g22g1)52(«11«2), we can treat the sys
tem in a first approximation as a degenerate two-level s
tem, ignoring higher-level transitions. The time evolution~up

to a phase! is given by the operatorU(t)5e2 isx*0
t t(t8)dt8,

equivalent to a rotation around thex axis Rx(u)[e2 iusx.
Then we can obtain the Hadamard gate asH
5Pp/2 Rx(p/4) Pp/2 . Similarly, we have theNOT gate as
i Rx(p/2). In order to confirm this simple analysis, we ha
performed a full time-dependent simulation in the whole H
bert space. We numerically integrate the Hamiltonian~4! for
n530. If we adiabatically switch the tunneling ratet(t), we
can control the population of higher levels~and hence the
leakage from the computational space! to be negligible@in
our simulation, this is less than 1023 for a Gaussian pulse
shapet(t)]. The time scale required for performing single
qubit gates is about one order of magnitude smaller than
one necessary for the two-qubit gate~see Fig. 2!.

To enact the phase-shift gatePw , we keep the~intraqubit!
tunneling zero~therefore we always stay in the comput
tional space! and allow only a time dependence for~some of!
the other parameters«k(t), gk(t), k51,2. Sincet50, the
time-dependent Hamiltonian is diagonal and we can so
the model analytically. Let@0,T# be the time interval during
which the gate acts. The time evolution of a Fock state
(\51): un; i &→e2 iTĒi un; i &, with Ēi[1/T*0

TEi(t)dt the

FIG. 2. Amplitude and phase~in p units! of u11& state during
the Cw gate operation. The dynamical phasee22i«t has been sub-
tracted.
1-2
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average value ofEi(t) during the gate operation. Then th
gate action on the basis states is

Uw5e2 iTĒ0diag~1,e2 iw!, ~7!

with w5T(Ē12Ē0). In order to havewÞ0, we need to
violate the energy degeneracy condition~6! by varying any
of the four parameters«k(t), gk(t). From an experimenta
point of view, the self-interactions«k might be harder to
control, since they are related to the collision rates~in a
BEC, for example!. On the other hand,gk are related to the
energy offset of the trapping potential and are conceiva
easier to control. Thus, we can keep constant any thre
these parameters and control only the time variation of
remaining one~sayg1). This method gives us considerab
freedom in choosing the shape and duration of the pu
g1(t) @the functiong1(t) is not even necessary to be co
tinuous, it should be only integrable#. Basically, the only
condition isg1(0)5g1(T)5g22«11(2n21)«2, such that
the two-qubit states are again degenerate after the gate
ensures that the phase difference betweenu0&L and u1&L is
‘‘frozen.’’

It is important to note that both rotation anglesu and w
characterizing the single-qubit gates depend only on the
erage values oft(t) and g(t), respectively, and therefor
they are relatively robust under small fluctuations of the c
trol parameters~but they vary linearly with the gate time!.

Two-qubit gate.An important question is: What type o
interactions, together with the one-qubit gates discussed
viously, are universal? We will discuss two kind of co
plings, both nonlinear, which achieve this.

~i! Hi j
K5x i j na,ina, j . This is the well-known Kerr Hamil-

tonian and is used for optical qubits to enactCw @2#. How-
ever, in usual materials the nonlinearity~the so-calledx (3))
is a few orders of magnitudes smaller than what is need
and hence this scheme for producing the two-qubit gat
impractical. The Hamiltonian can be easily integrated a
the gate action on a two-qubit state is simply given byU
5diag(1,1,1,e2 iTx i j ), since in our dual rail encoding we a
ways havena,i ,na, jP$0,1%. We note that, by considerin
excitons in semiconductor quantum dots as bosons@15#, this
nonlinearity is the one used to enact the two-qubit gate in
QIP proposal of Biolattiet al. @16#.

In the following, we analyze in more detail a second u
versal~along with the one-qubit gates! Hamiltonian.

~ii ! Hi j 5 «(na,i
2 1 na, j

2 ) 1 g(na,i 1 na, j ) 1 m i j (ai
† aj

1ai aj
†). This is the Hamiltonian of two qubitsi and j inter-

acting via thea modes. It is identical to the one-qubit Hami
tonian~4!, with «1,i5«1,j5« andg1,i5g1,j5g, but now we
also havena,i ,na, jP$0,1%. Since the total number of par
ticles is conserved@Hi j ,na,i1na, j #50, we can neglect the
constant term proportional tog and rewrite the Hamiltonian
as ~with the obvious notationni[na,i , nj[na, j )

Hi j ~ t !5«~ni
21nj

2!1m i j ~ t !~ai
† aj1ai aj

†!. ~8!

Given the Hamiltonian~8!, we want to find the control pa
rameterm i j (t) such that the action of the gate is
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uni nj&→eiwninjuninj&. ~9!

This ensures that the total particle number for each qub
conservedafter the gate operation, i.e., there is no leaka
from the computational space. Of course,during the gate
operation this is not true, since intermediate states, suc
u02&, do not correspond to any logical state, but we w
cancel these unwanted states dynamically. Again, let@0,T#
be the time interval during which the gate acts. There
three possible cases, depending on the initial state. Since
logical stateuninj&L is the same as the Fock stateuninj&, we
can omit the subscriptL ~keeping in mind that someinter-
mediatestates will not correspond to any logical state!. The
possible input states belong to different representations
Hi j with total particle numbern50,1,2, respectively (n
[ni1nj ).

~a! u00&. This case is trivial,u00&→u00&.
~b! u01& and u10&. For n51, we have Hi j

(1)(t)5«1
1m i j (t)sx @the superscript~1! refers to the total particle
number n]. Since @Hi j

(1)(t1),Hi j
(1)(t2)#50 at all times, we

can analytically integrate the time evolution to obtain

U (1)~T!5e2 i«T~1 cosv1T2 isx sinv1T!, ~10!

with v15m̄ i j 5(1/T)*0
Tm i j (t)dt. Imposing condition~9!, we

require sin(v1T)50. Thereforev1T5m1p, m1PZ. This im-
plies the following transformation for the basis states:

u01&→~21!m1e2 i«Tu01& ~11!

and similarly foru10&.
~c! u11&. For n52, the Hamiltonian is

Hi j
(2)~ t !5S 4« A2m i j ~ t ! 0

A2m i j ~ t ! 2« A2m i j ~ t !

0 A2m i j ~ t ! 4«
D . ~12!

In general, we cannot integrate this analytically. Ifm i j (t)
5const, the exact time evolution is

u11&→e23i«t$u11&@cosv2t1 ~ i«/v2! sinv2t#

2 ~ im i jA2/v2! sinv2t~ u02&1u20&!%, ~13!

with v25A«214m i j
2 . Again, since we want to recover th

u11& state after the gate operation, we impose the condi
sin(v2T)50, hencev2T5m2p, m2PZ. In this case, the evo
lution of the state isu11&→(21)m2e23i«Tu11&. Together
with the previous condition~i.e., v1T5m1p), we obtain

m2

m1
5

v2

v1
5A~«2/m i j

2 ! 14. ~14!

Modulo single-qubit phasesPu
^ 2

„u[p(m12Am2
224m1

2)…,
the gate operation on the basis statesuninj& is equivalent to

U~T!5diag~1,1,1,eif11![Cf11
, ~15!
1-3
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with f11[p(m22Am2
224m1

2). In Fig. 2 we present a ful
time-dependent simulation for the evolution of the stateu11&
with m152 andm256. We choose a step function for th
tunneling ratem i j (t). The simulation is in good agreeme
with the exact solution for constant tunneling presen
above. After extracting the dynamicale2 i«t phase foreach
qubit, the u11& state picks up a phasef11/p5622A5
'1.53, whereas theu01& and u10& states remain phaseless

There is an important point to note here: the nonlin
term «(ni

21nj
2) in Eq. ~8! is essential for enacting the gat

If «50 ~or if we replace it with a linear oneg i ni1g j nj ), it
can be shown that the gate would be equivalent to1. This
result is not surprising. The single-body operators enter
our basic Hamiltonian~1!, i.e., $ci

†cj% i , j 51
L span, by commu-

tation, aAL>u(L) Lie algebra havingN̂ª( i 51
L ci

†ci as cen-
tral element. The lattice Fock space splits in
( L21

N1L21)-dimensional invariant sectors ofAL labeled by the

eigenvaluesN of N̂, i.e., by the total number of bosons. I
order to universally manipulateM encoded qubits by using
just theAL elements, one has to useL;2M lattice sites. On
the other hand, our encoding scaleslinearly with the lattice
size, i.e.,M5L/2. Thus, the nonlinear term in the Hami
tonian ~1! provides an exponential reduction of resources

Preparation and measurement. It is enough to prepare th
u0 0•••0&L state of the qubit array. We start by preparing tw
linear optical lattices in which theb-mode bosons are held i
a zigzag fashion in order to minimize their interaction~see
Fig. 1!. The next step is to create the middle row in Fig.
where thea modes for all qubits will be held. This can b
done by engineering the confining potential in order to cre
a second minimum for thea modes. At this stage there is n
tunneling between any of these wells,t i5m i j 50, and there-
fore all qubits are in theu0&L state (na,i50). Another possi-
bility is to start from a Mott insulator phase, in which exa
numbers of atoms are localized at individual lattice sites;
has been recently demonstrated experimentally@10#.

The measurement technique is conceptually simple—
have to detect, for each qubit, the presence or the absen
one boson in thea mode. For an optical lattice, this can b
ic
su
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done by fluorescence: an atom present will fluoresce un
the right laser illumination. The middle row of the qub
array will be a succession of dark~bright! spots, i.e., the
atom is absent~present! in the a mode, corresponding to
qubit in stateu0&L (u1&L).

In conclusion, we have provided a further example of t
paradigm of the so-called encoded universality@17#. A lim-
ited, i.e., nonuniversal set of controllable interactions c
still provide a full computational power in a suitable enco
ing subspace. We have presented a general framework
performing encoded universal QC on systems of s
interacting bosonic particles hopping on a lattice. Our str
egy requires the ability to control in space and time the o
body couplings of the system. A summary of the parame
dependence for the gate operations is shown in Table I~only
one of the two nonlinear interactionsm i j and x i j are suffi-
cient and therefore they can be used alternatively, depen
on the system!. Possible implementations of this scheme
clude optical qubits, Josephson junctions, and BEC in opt
lattices.

We are grateful to Mario Rasetti and Paolo Giorda
useful comments. Special thanks are due to Vittorio Pe
for introducing us to the problem of bosonic lattices a
providing a constructive remark for the realization of t
one-qubit phase gate.

TABLE I. A minimal example of time dependence for the co
trol parameters. The last line is the degeneracy condition~6!.

H Pw Cw

«1,i ; «2,i const const const,Þ0
g1,i const g1,i(t) const
g2,i const const const
t i t i(t) 0 0
m i j 0 0 m i j (t)
x i j 0 0 x i j (t)
E02E1 0 Þ0 0
d-

-
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