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Quantum-information processing in bosonic lattices
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We consider a class of models of self-interacting bosons hopping on a lattice. We show that properly tailored
space-temporal coherent control of the single-body coupling parameters allows for the universal quantum
computation in a given sector of the global Fock space. This general strategy for encoded universality in
bosonic systems has, in principle, several candidates for physical implementation.
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The central problem in quantum-information processing The ultimate goal is to find arM qubit encoding
(QIP) [1] is the ability to control a quantum system in order e:(C?)® M, , such that control on the parametefs(t)
to achieve some predefined purpose such as quantum coim Eq. (1) would enact universal computational capabilities
putation(QC). In general, a quantum-information processoron the code. In this paper, we will propose such an encoding
is realized by assembling a large number of copies of a givethat will enable us to perform universal quantum computa-
guantum system, e.g., a qubit, and by making these copig#n on a suitable sector of the Fock space associated with
interact in a controlled coherent fashion. A crucial issue ofthe bosonic lattic€11]. It is worthwhile to keep in mind that
any proposal for a QIP implementation is its scalability, i.e.,even though we will consider only the “spatial” interpreta-
the realizability, at least in principle, of the above structuretion of the single-particle modes, i.e., spatially localized
for an arbitrary large size. An appropriate architecture towave functions, they could even be momentum modes or
achieve this last goal is naturally provided by a lattice withmodes associated to any other single-particle wave function.
sites hosting the processing quantum systems. The qubit We define the qubit usintgvo lattice sitegdual

In this paper, we shall describe a general scheme for perail encoding. We denote bya; (a') andb; (b!) the corre-
forming quantum computation with interacting bosonic par-sponding annihilation(creation operators for the two
ticles in a lattice. The system under study is very general angosonic modesi(is the qubit index The Hamiltonian of the
several existing QC proposals could fit into this framework.system has two terms$i=H,+H;,,. The first term is the
These include optical qubif2—4], Josephson junction qu- sum of all single-qubit Hamiltonians:
bits [5], and optical lattice loaded with ultracold bosonic at-
oms, e.g., Bose-Einstein condensd®&Cy [6—8]. Without

focusing on any of these particular implementations, we will  Hp= Z Hi= E 81,in§,i +82,inﬁ,i tY1iNai T ¥2iNy,i
develop a general framework for encoding qubits and for ' !
performing universal quantum gates on such encoded qubits. +ri(abi+a b)), 2)

Despite their highly practical relevance, we will not discuss

decoherence issues since they are strongly dependent on th . .
specific physical implementatiZn. oY with Mg, =a/a, Ny =b/bi; 7 is the tunneling rate be-

Let us start by casting the problem we are going to agiween thea andb modes of thesamequbit (intraqubit tun-

dress in a more precise control-theoretic fashion. The singler-]eIIng ratg. The second term represents the interaction be-

mode Fock space will be denoted by=spard|n)};_,. The tween different qubits:
Hamiltonian acting orf{, :=h® ! that we would like to ana-

lyze is given by Hint:;j pij(alay+ay ajT)+i2¢j XijNa,iNa,j - )

HV)= > (VPninj+V{Pclc+H.c), (1) o _ _
ijeA We assume that qubits interact only via thenodes(with
. . . . _ . wii the interqubit tunneling ratey;; is the Kerr coupling
where: (i) A is an index setthe lattice verticeswith L an initive picture is given in Figj. 1. Another possible ge-
elements{ii) c;, c/(j € A) are bosonic creation and annihi- 5 metry for example, is to have a common bus to which only
lation operators, and;:=c/c; are the corresponding occupa- the a mode of each qubit is coupldd?].
tion numbers; andiii) V:={V{?} x{V{"}CRXC is the set We define the logical state of the qubit by the number of
of quasiclassical “control” parameters. The Hamiltonidn  particles in thea mode. Thusn,=0 defines the logicd0),
represents a generalized Bose-Hubbard mpglelthe terms  state, andn,=1 the logical|1), state. The computational
weighted by thev{?’s account for the nonlinear two-body space is therefore restrictedige {0,1}, and we will show
interactions whereas th\éi(jl)'s are the one-body terms de- how to enforce this condition after each gate operation. It is
scribing the hopping of the bosonic particles among the latimportant to stress that the subsystems that support our qu-
tice sites. The interplay of these two terms is known to givebits are (finite-dimensional subspacdesf bosonic modes
rise to a rich quantum phase diagram with insulating andather than particles. Therefore, the paradigm we adopt here
superfluid region$6,10]. concerning quantum entanglement for systems of indistin-
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FIG. 1. An example of a qubit array. The(b) modes corre-
spond to the smallbig) disks; theb modes are situated inAagzag i
geometry in order to minimize their interaction. Interqubit coupling % 2 4 6 8
is given only via thea modes.
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. . . . FIG. 2. Amplitude and phasgn 7 units) of |11) state during
guishable particles is the one advocated in R&8]. We  the C, gate operation. The dynamical phase?* has been sub-
describe the main steps of any quantum computatiomacted.

scheme: universal set of gates, state preparation, and mea-
surement.

The following set of gates is universal for quantum com-
putation [14]: {H,P,,C,}, where H=1/\/(2) (;71) is a
Hadamard gateP,=diag (1¢'¢) is a single-qubit phase
shift, andC, is a controlled sign flip. We use the more gen-
eral controlled phase gate,=diag(1,1,1¢'¢). We enact
these gates by controlling the time dependence of the param-
eters characterizing the system. For the single-qubit gates,
we set all u;;=x;;=0 and we vary only the single-qubit FOr the Hadamard gate, we keeg(t), ¥(t) constanfand
parameters, (t), y..:(t), andr(t) (a=1,2). On the con- ;at|sfy|ng the degenera_cy condn@)]_and we allow only a
trary, for the two-qubit gate, we keep constant the singlelime-dependent tunneling ratg(t). Since the energy gap
qubit parameters and we control only the interqubit tunnelind?@tween the ground and the first excited stat&5=E,
rate uu;;(t) or the Kerr couplingy; (t). — E1.=4n8'2+2(y2— 'yl) :'2(814' g,), we can treat the sys-

Single-qubit gatesln the absence of any external cou- t€m in a first approximation as a degenerate two-level sys-
pling (ui;=xi;=0), the single-qubit Hamiltonian igfor tem, ignoring higher-level transitions. The time eYolut{up
simplicity we omit the qubit index) to a phasgis given by the operatot (t)=e~'*x/o7)dt’,

equivalent to a rotation around theaxis R,(#)=e~'%x,

Hi=eni+e,ni+ ying+ yonp+7(a’b+ab’). (4 Then we can obtain the Hadamard gate a$

=P_;, Ry (m/4) P_,,. Similarly, we have theNOT gate as
The total particle numben=n,+n, is conserved, since iR (x/2). In order to confirm this simple analysis, we have
[H,n]=0. Thus, the one-qubit Hilbert space splits into aperformed a full ime-dependent simulation in the whole Hil-
direct sumH=® |_,H,, as the Hamiltoniari4) leaves in-  bert space. We numerically integrate the Hamiltor(i&nfor
variant the subspace%(, with total particle numbern  n=30. If we adiabatically switch the tunneling ratét), we
= const and dini{,=n+ 1. In view of this decomposition of can control the population of higher leveland hence the
the Hilbert space, we can relabel the Fock stateas,)  leakage from the computational spate be negligible[in
=[n;n,). Thus, any vector can be written al}) our simulation, this is less than 18 for a Gaussian pulse
=3,3P ,c,;|n;i). Since our initial state will be a Fock shaper(t)]. The time scale required for performing single-
state and since the Hamiltonian conserves the total particl@ubit gates is about one order of magnitude smaller than the
numbern, the single-qubit wave function at any time will one necessary for the two-qubit gdtee Fig. 2

i=0---n. We also want our qubit statédefined as before
|0) =|n;0), |1),=|n;1)) to correspond to the degenerate
ground stateEy=E. This implies the following energy de-
generacy condition:

g1—=(2n—1)e,+ y1—v,=0. (6)

always remain in the subspaceM,, |#(t)) To enact the phase-shift gag , we keep theintraqubit
=3 ocni(t)|n;i)eH,. Basically, the only degree of free- tynnelmg zero(therefore we always stay in the computa-
dom left is the number of particlé§=n,) in the a mode. tional spacgand allow only a time dependence fesome of

For r=0, the Fock statel;i) are are also energy eigen- the other parameterg (t), »(t), k=1,2. Sincer=0, the
vectors, with eigenvalues given lwe omit the labeh since ~ ime-dependent Hamiltonian is diagonal and we can solve
the total number of particle is conseryed the model analytically. L&t0, T] be the time interval during

which the gate acts. The time evolution of a Fock state is

E=(n;i[H|n;i)=g1i%+e,(n—0)2+ y1i + yo(n—i), (5 (f=1): |n;i)—e TE|n;i), with E;=1T[JE(t)dt the
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average value oE;(t) during the gate operation. Then the In; nj>Hei<Pnan|ninj>_ 9)
gate action on the basis states is

- This ensures that the total particle number for each qubit is
quze—iTEodiagl,e—w), (7) conservedafter the gate operation, i.e., there is no leakage

from the computational space. Of courskjring the gate

operation this is not true, since intermediate states, such as
|02), do not correspond to any logical state, but we will
cancel these unwanted states dynamically. Again| 0¢k]
be the time interval during which the gate acts. There are
three possible cases, depending on the initial state. Since the
logical state{n;n;), is the same as the Fock staign;), we

with ¢=T(E;—Ep). In order to havee+#0, we need to
violate the energy degeneracy conditi@) by varying any
of the four parameters,(t), v (t). From an experimental
point of view, the self-interactions, might be harder to
control, since they are related to the collision rates a
BEC, for examplg On the other handy, are related to the i ) o . /
energy offset of the trapping potential and are conceivabl)fan omit the sut_)scrlpt (keeping in mind tha_t somater-
easier to control. Thus, we can keep constant any three 6ped|_atest_ates will not correspond fo any logical sbaféhe
these parameters and control only the time variation of th OSS't?'e Input statgs belong to different represgntaﬂons of
remaining ongsay vy4). This method gives us considerable " 'ii with total particle numbem=0,1,2, respectively r{
freedom in choosing the shape and duration of the puIse?niJrnJ)' ) o
y,(t) [the functiony,(t) is not even necessary to be con- (& [00). This case is trivial|00)—|00). "
tinuous, it should be only integraleBasically, the only (b) [01) and [10). For n=1, we have Hj"(t)=el
condition is y1(0)=y,(T) = y,— &1+ (2n—1)e,, such that + wij () oy [the superlscrlpt(l)lrefers to the totgl particle
the two-qubit states are again degenerate after the gate; tHismbern]. Since [H{V(ty),H{M(t;)]=0 at all times, we
ensures that the phase difference betw@®p and|1), is ~ can analytically integrate the time evolution to obtain
“frozen.” i T . )

It is important to note that both rotation anglésand ¢ U(T)=e '* (1cosw;T—ioy sinwT), (10
characterizing the single-qubit gates depend only on the av- _
erage values of(t) and y(t), respectively, and therefore with w1=,ui,-=(1/T)f$,uij(t)dt. Imposing conditior(9), we
they are relatively robust under small fluctuations of the con+equire sinf,T)=0. Thereforew,;T=m7, m; e Z. This im-
trol parametergbut they vary linearly with the gate time plies the following transformation for the basis states:

Two-qubit gate An important question is: What type of

interactions, together with the one-qubit gates discussed pre- [01)—(—1)™e"'*T|01) (11
viously, are universal? We will discuss two kind of cou-
plings, both nonlinear, which achieve this. and similarly for|10).
(i) Hf = xijNa,iNa,j - This is the well-known Kerr Hamil- (c) [11). Forn=2, the Hamiltonian is
tonian and is used for optical qubits to en&xt [2]. How-
ever, in usual materials the nonlinearithe so-calledy(®) 4e V2pii(t) 0

is a few orders of magnitudes smaller than what is needed, )+ — . .
and hence this scheme for producing the two-qubit gate is Hi (D= V2i(1) 2e V2w | (12
impractical. The Hamiltonian can be easily integrated and 0 V24i5(1) 4e

the gate action on a two-qubit state is simply given Wy

=diag(1,1,1e"'TXij), since in our dual rail encoding we al- In general, we cannot integrate this analytically.f; (t)
ways haven,;,n,;€{0,1}. We note that, by considering =const, the exact time evolution is

excitons in semiconductor quantum dots as bo$ab§ this .

nonlinearity is the one used to enact the two-qubit gate in the |1)—e™¥*Y{|11)[cosw,t + (ie/w,) Sinw,t]

QIP proposal of Biolattet al.[16]. . .

In the following, we analyze in more detail a second uni- — (imj\2lwy) sinwt(|02)+[20)}, (13
versal(along with the one-qubit gateslamiltonian.

(ii) ) Hij = e(n3; +n5 ;) + y(na; + naj) + wi(al a
+4a; a;). This is the Hamiltonian of two qubitsandj inter-
acting via thea modes. It is identical to the one-qubit Hamil-
tonian(4), with e,;=¢,j=¢& andy,;=y,;= v, but now we
also haven,;,n,;€{0,1}. Since the total number of par-
ticles is conservediH;; ,n,;+n,;]=0, we can neglect the

with w,=\e?+ 4,u2ij. Again, since we want to recover the
|11) state after the gate operation, we impose the condition
sin(w,T)=0, hencaw,T=m,, m, e Z. In this case, the evo-
lution of the state is|11)—(—1)Me 3¢T|11). Together
with the previous conditiotti.e., w,T=m, ), we obtain

constant term proportional tp and rewrite the Hamiltonian M2 _®2_ [(e2Iu?) +4. (14)
as (with the obvious notatiom;=n,;, n;=n, ) mp @ .
Hij(t)zg(ni%r an) +Mij(t)(aiT a+a, ajT)_ (8)  Modulo single-qubit phaseB;* (6= m(m;— Jm2—4am?)),

the gate operation on the basis stdtgs;) is equivalent to

Given the Hamiltonian8), we want to find the control pa-

rameteru;; (t) such that the action of the gate is U(T)=diag1,1,1¢'"1)=C, , (15
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with ¢ =7 (m,— \/m22—4m21). In Fig. 2 we present a full
time-dependent simulation for the evolution of the stat®
with m;=2 andm,=6. We choose a step function for the
tunneling ratew;;(t). The simulation is in good agreement

with the exact solution for constant tunneling presented,

above. After extracting the dynamical '*! phase foreach
qubit, the |11) state picks up a phase,,/m=6—25
~1.53, whereas th1) and|10) states remain phaseless.

There is an important point to note here: the nonlinearw

terme(n?+n?) in Eq. (8) is essential for enacting the gate.
If £=0 (or if we replace it with a linear ong; nj+ y; n;), it
can be shown that the gate would be equivalent.tdhis

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 66, 050301R) (2002

TABLE I. A minimal example of time dependence for the con-
trol parameters. The last line is the degeneracy condion

H P‘P C‘P
1j1 €2j const const const: 0
Yij const v1i(t) const
const const const
T Ti(t) 0 0
i 0 0 i (1)
Xij 0 0 Xij (1)
Eo—E; 0 #0 0

result is not surprising. The single-body operators entering

our basic Hamiltoniarg1), i.e.,{cich}iL’j:1 span, by commu-
tation, aA, =u(L) Lie algebra havind\:=="_,c/c; as cen-
tral element. The lattice Fock space splits
N*L-1y_dimensional invariant sectors of, labeled by the
eigenvalueN of N, ie., by the total number of bosons. In
order to universally manipulat®! encoded qubits by using
just the 4, elements, one has to uke-2M lattice sites. On
the other hand, our encoding scalemarly with the lattice
size, i.e.,M=L/2. Thus, the nonlinear term in the Hamil-
tonian (1) provides an exponential reduction of resources.
Preparation and measuremett is enough to prepare the

done by fluorescence: an atom present will fluoresce under
the right laser illumination. The middle row of the qubit

intoarray will be a succession of darforight) spots, i.e., the

atom is absentpresent in the a mode, corresponding to
qubit in state|0), (|1),).

In conclusion, we have provided a further example of the
paradigm of the so-called encoded universdlity]. A lim-
ited, i.e., nonuniversal set of controllable interactions can
still provide a full computational power in a suitable encod-
ing subspace. We have presented a general framework for
performing encoded universal QC on systems of self-

|00---0), state of the qubit array. We start by preparing tWointeracting bosonic particles hopping on a lattice. Our strat-

linear optical lattices in which thie-mode bosons are held in
a zigzag fashion in order to minimize their interacti@ee

Fig. 1). The next step is to create the middle row in Fig. 1,

where thea modes for all qubits will be held. This can be

egy requires the ability to control in space and time the one-
body couplings of the system. A summary of the parameter
dependence for the gate operations is shown in Tatdely
one of the two nonlinear interactions; and y;; are suffi-

done by engineering the confining potential in order to créatgjent and therefore they can be used alternatively, depending
a second minimum for the modes. At this stage there is N0 5, the systefn Possible implementations of this scheme in-

tunneling between any of these welts= u;; =0, and there-
fore all qubits are in th¢0),_ state fi,;=0). Another possi-

bility is to start from a Mott insulator phase, in which exact

clude optical qubits, Josephson junctions, and BEC in optical
lattices.

numbers of atoms are localized at individual lattice sites; this We are grateful to Mario Rasetti and Paolo Giorda for

has been recently demonstrated experimen{aly.

useful comments. Special thanks are due to Vittorio Penna

The measurement technique is conceptually simple—wéor introducing us to the problem of bosonic lattices and
have to detect, for each qubit, the presence or the absence mfoviding a constructive remark for the realization of the

one boson in the mode. For an optical lattice, this can be

one-qubit phase gate.
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