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Microscopic theory of the collective atomic recoil laser in an optical resonator:
The effects of collisions
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With the help of a microscopic model we investigate the effects of collisions and atomic recoil on the
behavior of absorbing atoms placed inside a bidirectional resonator and driven by an external injected field.
This model complements and generalizes earlier studies of the collective atomic recoil laser and of optical
bistability. According to our model, even in the presence of collisions, the resonator can support bidirectional
propagation. In particular, for appropriate selection of the parameters, we predict the existence of stationary
solutions such that the cavity field that copropagates with the injected signal is locked in frequency with the
external source, while the counterpropagating field is frequency shifted from both, even in steady state. The
early stage of growth of the counterpropagating field is accompanied by a spatial modulation~grating structure!
in the density of the medium, but this modulation decays away in a time roughly of the order of the average
interval between collisions.
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I. INTRODUCTION

In a recent paper@1# two of us developed a description o
a driven bidirectional ring resonator containing a collecti
of two-level absorbing atoms. The objective of that work w
to generalize the well established plane-wave model of o
cal bistability@2# by taking into account the possible grow
of a cavity field in a direction opposite to that of the inject
signal.

An important step along this line had already been ta
by Asquini and Casagrande@3# under resonance conditions,
setting where the frequency of the driving field matches o
of the cavity modes and the atomic transition frequency.
relaxing the resonance requirement, and for appropriate
ues of the system parameters, we discovered in@1# that the
ring resonator can support simultaneously both a forw
and a backward field in steady state@4#. This stationary so-
lution may in turn become unstable and give way to se
pulsing and other instabilities.

A surprising feature of the stationary solutions is th
while the forward field is locked to the frequency of th
injected signal, as one would expect, the backward field
cillates, instead, at a different frequency. With the help
numerical calculations we found that this frequency is ty
cally comparable to what one can estimate on the basis o
usual mode-pulling formula of ordinary laser theory. At fir
sight, this is surprising on two accounts: one would not
pect that a resonator could support a stationary state in w
two fields have different carrier frequencies and, furth
more, the medium in the cavity is not active in the conve
tional sense, i.e., prepared in a state of population invers

We interpreted this behavior by attributing the initi
growth of the backward field to spontaneous emission no
in the presence of a gain feature impressed upon the ato
absorption profile by the forward field, perhaps someth
akin to the gain that emerges when a passive two-level a
is driven by a strong field. When the backward gain is su
1050-2947/2002/66~4!/043809~13!/$20.00 66 0438
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ciently large to overcome the cavity losses, we argued
the backward field can grow and eventually reach a ste
state, much as an ordinary laser field would in a ring cav
According to this interpretation, the frequency shift of th
backward field would then be the consequence of the u
competition between oscillations at the peak of the atom
gain feature and at the frequency of the nearest cavity m
~i.e., mode pulling!.

The growth mechanism of the backward field is remin
cent of the physics of a different system, the collecti
atomic recoil laser~CARL! @5#. In its original conception
and according to the simplest version of the model,
CARL system consists of a collection of two-level atom
driven by a single-mode pump field. Under appropriate c
ditions, atomic density fluctuations, together with populati
and polarization fluctuations, induce a small amount of ba
scattering which interferes with the pump field and create
weak traveling modulation wave. This, in turn, generate
weak reverse polarization wave which, for appropriate val
of the parameters, radiates and strengthens the back
scattered field in an avalanche process. An essential fea
of the CARL model is the dynamical role played by th
atomic center of mass degrees of freedom. These mus
included in the theoretical description to give proper acco
of recoil effects, which eventually are responsible for pr
ducing an organized atomic density modulation, or dens
grating, which is at the heart of the CARL process~hence the
terms ‘‘collective atomic recoil’’ in the descriptor!. Attempts
to demonstrate the CARL action experimentally@6# have led
to the identification of a strong backward field with some
the expected characteristics. However, it is fair to say tha
clear link between the observed backward field and the
pected density grating has not yet been established, a
gued, convincingly in our opinion, in further theoretical an
experimental contributions by Gauthier and collaborators@7#.

In this paper we generalize the bidirectional ring cav
model of Ref.@1# to include consideration of the atomic ce
ter of mass degrees of freedom, with the eventual aim
©2002 The American Physical Society09-1
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formulating the theory of the CARL in a resonator from fir
principles, with full account of the cavity geometry an
boundary conditions@8#. This generalization, simple enoug
in principle, is confronted at once with a basic difficulty. Th
CARL equations developed in@5# include the well known
phenomenological relaxation terms for the atomic populat
and polarization variables, which are essential for the es
lishment of a steady state in ordinary laser theories. Ho
ever, they do not include a mechanism by which the ato
center of mass momenta can approach a thermal equilib
state if the cavity field should be turned off. This difficulty o
the CARL model was made clear by the earliest numer
simulations@5# which never gave any indication that the sy
tem would approach a steady state for long times. Thus,
appearance of a backward pulse of light could be trace
the initial creation of a density grating, as evidenced by
large values taken by the bunching parameter, but the su
quent evolution of the system was highly irregular, and
physical significance questionable in the absence of a t
malization mechanism for the atomic momenta. An appe
ing attempt to resolve this problem was made in Ref.@9#
with the inclusion of a phenomenological relaxation term
the momentum equation. In this work we have made an
tempt to compare our findings with those of Ref.@9#. We
discuss our available results, but we feel that they are
sufficient to reach an informed conclusion. Further stud
would be desirable for the purpose of confirming the reliab
ity of the phenomenological approach.

An alternative solution to this problem was advanced
Ref. @10# where the authors generalized the two-mode mo
of the CARL@5# with explicit consideration of the collision
undergone by the optically active atoms with a buffer gas
thermal equilibrium. The collisions were included followin
a procedure inspired by molecular dynamical simulatio
This is an important improvement over the traditional CAR
model not only on theoretical grounds, but also becaus
buffer gas was actually used in some of the experiments,
indeed it played a crucial role for the purpose of establish
an eventual steady state, as shown in@10#.

Following this lead, our present generalization of t
driven bidirectional ring cavity model@1# includes the cente
of mass degrees of freedom among the dynamical variab
and it also simulates the collisional interactions between
atoms and the buffer gas. Collisions among the optically
tive atoms are, instead, ignored, under the assumption
these are far more rare in a typical experimental sett
where the density of these atoms is several orders of ma
tude smaller than that of the buffer gas.

Our numerical investigations of this model have sho
that, even in the presence of collisions and for appropr
values of the parameters, the resonator can support
growth of a backward field. Forward and backward fie
may approach a stationary state for sufficiently long times
self-pulsing states, although sometimes only the forw
field survives in a pulsing mode.

These features are qualitatively similar to those repor
in @1#. However, the microscopic nature of our model allo
us to raise more detailed questions than could be addre
in our earlier contribution. Thus, we have explored the p
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sible emergence of a density grating, or a spatial modula
of the atomic density, which is usually regarded as the m
signature of the CARL process. We found that, during
early phase of growth of the backward field, a grating str
ture indeed appears, but that it then decays in a time of
order of the average interval between collisions.

We have also explored the momentum distribution of
atoms under the driving action of the cavity fields~and the
collisions!, and tried to correlate our findings with simula
tions based on the proposal of Ref.@9#. As already men-
tioned, we have had only limited success in assessing
possible connection between these approaches: for som
rameter values we found acceptable qualitative agreem
between the dynamical evolution of the cavity fields whi
for others, the solutions differed drastically~time-
independent versus self-pulsing behavior, for example!. Sur-
prisingly, when the long time momentum distributions pr
dicted by the two procedures agreed well with each other,
respective field evolutions showed little or no resemblan
and vice versa. Nevertheless, we have tried to come up
a possible interpretation for the appearance of these featu

The paper is organized as follows. In Sec. II we outli
the derivation of the deterministic equations forming t
backbone of the numerical simulations. Section III contain
general outline of the approach for handling the collisions
the optically active atoms with the buffer gas. In Sec. IV w
summarize the most relevant results of our simulations
cluding a comparison between our approach and the one
troduced in Ref.@9#. We complete the paper with some co
cluding remarks and an Appendix where we summar
qualitatively the essential steps of the collisional simulatio

II. DERIVATION OF THE EQUATIONS OF MOTION

Our goal is to study the behavior of a collection of tw
level absorbing atoms placed within a ring resonator a
driven by an external coherent field as shown schematic
in Fig. 1. In general, one expects the cavity field to propag
both in the forward and in the backward directions. Our a
proach draws from techniques developed in Refs.@1# and@5#
but it also departs from these previous works in several
nificant aspects. Thus, as in Ref.@1#, we are especially inter-

FIG. 1. Schematic representation of the bidirectional ring cav
f andb denote the forward and backward cavity fields, respectiv
andYI is the scaled amplitude of the injected field.
9-2
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ested in the growth and characterization of the backw
field, and this requires appropriate modifications of the re
nator boundary conditions relative to the traditional sett
of optical bistability. However, unlike these older studies, o
present investigations include the center of mass motion
the optically active atoms. As it turns out, this precludes
use of the collective population and polarization variab
which are very convenient and quite common in ordina
laser theory. The price one has to pay for this generaliza
is that each atom must be described by its own set of
namical variables, including the center of mass position
momentum.

This latter feature is common to the CARL theory@5#,
which, as originally designed, does not describe from fi
principles the role of the resonator, its role in creating
feedback mechanism, and the effects of possible detuni
In addition, as already mentioned, the emergence of an e
tual steady state requires the existence of a process by w
the optically active atoms can reach thermal equilibrium, a
such a mechanism is also absent from the original CA
model.

A feature common to the theory of the CARL and t
present work is the adoption of the semiclassical approxi
tion and the replacement of the atomic operators with co
sponding ordinaryc-number functions. In view of these sim
larities and differences, and for the purpose of making t
work reasonably self-contained, we begin with a detailed
scription of the model and a derivation of the relevant eq
tions of motion.

Our starting point is provided by the Hamiltonian

H5\vA(
j 51

N

Sz j1(
j 51

N pj
2

2m
2(

j 51

N

m~Sj
11Sj

2!E~zj ,t !, ~1!

where the population difference operator for thej th atom,
Sz j , and the polarization operatorSj

1 are defined by

Sz j5
1

2 S 1 0

0 21D , Sj
15S 0 1

0 0D , ~2!

andSj
25(Sj

1)†. The operatorspj andzj are the canonically
conjugate momentum and position of thej th atom,m is the
modulus of the transition dipole moment, andE(zj ,t) is the
classical cavity field at the location of thej th atom.

The atomic Heisenberg equations, after carrying out
semiclassical approximation, are

d

dt
zj5

pj

m
, ~3a!

d

dt
pj5m~Sj

11Sj
2!

]

]zj
E~zj ,t !, ~3b!

d

dt
Sj

252 ivASj
222i

m

\
E~zj ,t !Sz j , ~3c!

d

dt
Sz j5 i

m

\
E~zj ,t !~Sj

12Sj
2!. ~3d!
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The cavity field obeys the wave equation

]2E~z,t !

]t2
2c2

]2E~z,t !

]z2
52

1

e0

]2P~z,t !

]t2
, ~4!

where P(z,t) is the macroscopic dipole moment per un
volume. We assume the cavity field to have the form

E~z,t !5EF~z,t !1EB~z,t !, ~5!

where

EF~z,t !5EF~z,t !ei (kz2vt)1c.c., ~6a!

EB~z,t !5EB~z,t !e2 i (kz1vt)1c.c., ~6b!

andF andB label the forward and the backward directions
propagation, respectively. The injected field is given by

EI~z,t !5EIe
i (kz2vt)1c.c., ~7!

whereEI is a real constant amplitude. Its carrier frequencyv
and wave numberk5v/c are selected as the reference fr
quency and wave number, respectively.

In light of the near resonant interaction between the
jected field and the atoms, the amplitudesEF(z,t) and
EB(z,t) are slowly varying with respect to bothz and t.
Thus, the cavity fieldE(z,t) is a superposition of two contri
butions that propagate in opposite directions with slow
varying amplitudes.

For the macroscopic polarization that appears on the r
hand side of Eq.~4! we assume the representation

P~z,t !5m@P(1)~z,t !e2 ivt1P(2)~z,t !eivt#, ~8!

where P(6)(z,t) are slowly varying functions of time, bu
rapidly varying functions of space. Moreover, we ha
P(2)(z,t)5@P(1)(z,t)#* .

Following the procedure adopted in Refs.@11# and@1#, the
field equations for the slowly varying amplitudes are

S ]

]t
1c

]

]zDEF~z,t !5 i
vm

2e0

1

lEz

z1l

dz8e2 ikz8P(1)~z8,t !,

~9a!

S ]

]t
2c

]

]zDEB~z,t !5 i
vm

2e0

1

lEz

z1l

dz8eikz8P(1)~z8,t !.

~9b!

The cavity field is further constrained by the bounda
conditions which, for the empty resonator, have the form

EF~0,t !5ATEI~0,t !1REF~L,t !, ~10a!

EB~L,t !5REB~0,t !, ~10b!

whereL is the round-trip length of the ring cavity, andR and
T are, respectively, the power reflection and transmission
efficients. In terms of the slowly varying amplitudes, Eq
~10! become
9-3
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EF~0,t !5ATEI1REF~L,t !e2 id, ~11a!

EB~L,t !5REB~0,t !e2 id, ~11b!

whered5(vC2v)L/c, and vC is one of the cavity reso
nances. Specifically, we selectvC as the frequency of the
cavity mode that is nearest to the atomic transition freque

The atomic equations~3! and the field equations~9! are
coupled to each other by virtue of the following link betwe
the macroscopic polarization and the microscopic inter
variablesSj

6 :

P~z,t !5
m

A (
j 51

N

d„z2zj~ t !…~Sj
11Sj

2!, ~12!

where A is the cross sectional area of the atomic samp
Upon introducing the slowly varying variablesS̃j and S̃j*
according to the relations

Sj
25S̃je

2 ivt, Sj
15S̃j* eivt, ~13!

the macroscopic polarization takes the form given by Eq.~8!
with

P(1)~z,t !5
1

A (
j 51

N

d„z2zj~ t !…S̃j , ~14a!

P(2)~z,t !5
1

A (
j 51

N

d„z2zj~ t !…S̃j* .

~14b!

Finally, we only need to write the atomic and field equatio
in terms of S̃j , EF , and EB and their complex conjugat
variables, with the result

dzj

dt
5

pj

m
, ~15a!

dpj

dt
52 ikmS̃j@EF* ~zj ,t !e2 ikzj2EB* ~zj ,t !eikzj #

1c.c., ~15b!

dS̃j

dt
5 i ~v2vA!S̃j22i

m

\
Sz j@EF~zj ,t !eikzj

1EB~zj ,t !e2 ikzj #, ~15c!

dSz j

dt
5 i

m

\
S̃j* @EF~zj ,t !eikzj1EB~zj ,t !e2 ikzj #

1c.c., ~15d!

S ]

]t
1c

]

]zDEF5 i
vm

2e0

1

AlEz

z1l

dz8e2 ikz8

3(
j 51

N

d~z82zj !S̃j , ~15e!
04380
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S ]

]t
2c

]

]zDEB5 i
vm

2e0

1

AlEz

z1l

dz8eikz8

3(
j 51

N

d~z82zj !S̃j . ~15f!

These equations are to be solved with the additional c
straints provided by the boundary conditions~11!. Note that,
in taking the spatial derivatives of the field on the right ha
side of Eq.~3b!, we have explicitly accounted for the slow
spatial variation of the amplitudesEF andEB . Moreover, in
arriving at Eqs.~15b!, ~15c!, and ~15d! we have omitted
factors that vary rapidly in time at frequencies62v.

Scaled variables and the uniform field limit

Our next objective is to derive the final form of the equ
tions in the so-called uniform-field limit@12#. For this pur-
pose it would be especially convenient if the boundary c
ditions were of the standard periodicity type. This can
arranged by introducing a new set of cavity field amplitud
YF(z,t) and YB(z,t), and the injected field amplitudeYI ,
which, in scaled dimensionless form, are defined by the
lations

EF~z,t !5
\

2m
~g

i
g

'
!1/2S YF~z,t !2

z

L
u ln RuYI D

3expF2
z

L
ln~Re2 id!G , ~16a!

EB~z,t !5
\

2m
~g

i
g

'
!1/2YB~z,t !expFz2L

L
ln~Re2 id!G ,

~16b!

EI5
\

2m
~g

i
g

'
!1/2

u ln Ru

AT
YI . ~16c!

It is a simple matter to verify that, indeed, in terms of t
transformed field variables, the boundary conditions~11!
take the form

YF~0,t !5YF~L,t !, ~17a!

YB~L,t !5YB~0,t !. ~17b!

It is also convenient to introduce the scaled atomic variab
s j andsz j according to the definitions

S̃j52
i

2 S g
i

g
'

D 1/2

s j , Sz j5
1

2
sz j , ~18!

and the parameters
9-4
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a5
Nvm2

2\g
'
e0c

, k5
cu ln Ru

L
, ~19!

whereN5N/(AL) is the number of atoms per unit volum
and L is the length of the sample. We recognizea as the
ity

n
ir
m

av
-

ve
he
c

of
r,

,
ity

04380
unsaturated field absorption coefficient per unit length, ank
as the damping rate of the field amplitude out of the cav
~or the linewidth of the cavity mode!.

In terms of the new variables, the equations of moti
take the form
dzj

dt
5

pj

m
, ~20a!

dpj

dt
52

\k

4
g

i
s j S YF* 2

zj

L
u ln RuYI DexpF2

zj

L
ln~Reid!Ge2 ikzj1

\k

4
g

i
s jYB* expFzj2L

L
ln~Reid!Geikzj1c.c.,

~20b!

ds j

dt
5 i ~v2vA!s j1g

'
sz jS YF2

zj

L
u ln RuYI DexpF2

zj

L
ln~Re2 id!Geikzj1g

'
sz jYB expFzj2L

L
ln~Re2 id!Ge2 ikzj ,

~20c!

dsz j

dt
52

g
i

2
s j S YF* 2

zj

L
u ln RuYI DexpF2

zj

L
ln~Reid!Ge2 ikzj2

g
i

2
s jYB* expFzj2L

L
ln~Reid!Geikzj1c.c., ~20d!

S ]

]t
1c

]

]zDYF5kYI2kS 11 i
d

u ln Ru DYF1k2S 11 i
d

u ln Ru D z

cL
YI1

cLa

lN
expF z

L
ln~Re2 id!G E

z

z1l

dz8e2 ikz8(
j 51

N

d~z82zj !s j ,

~20e!

S ]

]t
2c

]

]zDYB52kS 11 i
d

u ln Ru DYB1
cLa

lN
expFL2z

L
ln~Re2 id!G E

z

z1l

dz8eikz8(
j 51

N

d~z82zj !s j . ~20f!
th.
n
ven

is
In spite of the significant increase in formal complex
relative to Eqs.~15!, Eqs. ~20! are ideally suited for the
implementation of the uniform-field limit. This is a situatio
where one imagines reducing the transmittivity of the m
rors in step with the absorption coefficient of the mediu
aL, and the cavity mistuning parameterd, until

aL!1, T!1, d!1, ~21a!

in such a way that

aL

u ln Ru
'

aL

T
[2C5~finite number!, ~21b!

d

u ln Ru
'

d

T
[u5~finite number!. ~21c!

Physically, a lower absorption coefficient makes the c
ity field more uniform longitudinally and, of course, it de
creases the influence of the atoms on the field. Howe
decreasing the transmittivity lengthens the lifetime of t
field inside the cavity, and this allows the medium to affe
the field in a nontrivial way over a sufficient number
passes. The gradual reduction of the mistuning paramete
the transmittivity ~and hence the modal width! decreases
allows the injected field to remain detuned from the cav
-

-

r,

t

as

resonance by an amount of the order of the cavity linewid
The uniform field limit is a well tested approximation i
laser physics, and has been shown to hold accurately e
for quite realistic values of the parametersaL, T, andd @13#.

In the uniform-field limit the equations describing th
model take the much more manageable form

dzj

dt
5

pj

m
, ~22a!

dpj

dt
52

\k

4
g

i
s j~YF* e2 ikzj2YB* eikzj !1c.c.,

~22b!

ds j

dt
5 i ~v2vA!s j1g

'
sz j~YFeikzj1YBe2 ikzj !2g

'
s j ,

~22c!

dsz j

dt
52

g
i

2
@s j~YF* e2 ikzj1YB* eikzj !1c.c.#

2g
i
~sz j2sz j

eq!, ~22d!
9-5
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S ]

]t
1c

]

]zDYF5kYI2k~11 iu!YF1
k2CL

lN

3E
z

z1l

dz8e2 ikz8(
j 51

N

d~z82zj !s j ,

~22e!

S ]

]t
2c

]

]zDYB52k~11 iu!YB1
k2CL

lN

3E
z

z1l

dz8eikz8(
j 51

N

d~z82zj !s j ,

~22f!

with the further constraint of the boundary conditions~17!.
In arriving at Eqs.~22c! and~22d! for the atomic internal

coordinates we have added phenomenological dam
terms, as usual; for the case of absorbing atoms, we h
sz j

eq521. We note that the field equations~22e! and ~22f!
are driven and damped in a natural way~i.e., without the
need for including phenomenological terms!, as a result of
our explicit consideration of the resonator boundary con
tions.

The momentum equation, instead, is not complete for
purpose of describing the physical problem of interest.
fact, if the center of mass momentum distribution happen
be removed from thermal equilibrium, and if the fields a
suddenly turned off, the atomic momenta do not evolve f
ther. What is needed, clearly, is an additional mechanism
which the atoms can regain their thermal equilibrium state
the absence of the driving fields. Because, as already m
tioned, most CARL experiments, so far, have been car
out in the presence of a buffer gas at a higher partial pres
than that of the optically active medium, the natural therm
ization mechanism in this case is provided by the collisio
between the atoms and the buffer gas.

A theoretical framework for the description of the col
sional effects in the context of the two-mode model of t
CARL ~with no cavity! was proposed and analyzed in Re
@10#. We will summarize in Sec. III some relevant aspects
this approach, as it applies to our theoretical setting, b
first, we proceed to derive the final form of the equations

We begin by observing that the boundary conditions~17!
are consistent with the modal expansions

YF~z,t !5 (
n52`

1`

f n~ t !ei2pnz/L, ~23a!

YB~z,t !5 (
n52`

1`

bn~ t !e2 i2pnz/L, ~23b!

where the modal functions obey the orthonormality relati

1

LE
0

L

dzei2pmz/Le2 i2pnz/L5dn,m . ~24!
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With the help of Eqs.~23!, and on the basis of the uniform
field limit, the only surviving modal amplitudes for the fo
ward and backward fields obey the equations

d f

dt
5kYI2k~11 iu! f

1
k2C

lN E
0

L

dzE
z

z1l

dz8e2 ikz8(
j 51

N

d~z82zj !s j ,

~25a!

db

dt
52k~11 iu!b

1
k2C

lN E
0

L

dzE
z

z1l

dz8eikz8(
j 51

N

d~z82zj !s j ,

~25b!

where we have dropped the subscript ‘‘0’’ fromf 0 and b0.
Finally, we can put the right hand sides of Eqs.~25! in a form
which is more convenient for the purpose of the numeri
calculations with the help of the approximate equality

E
0

L

dzE
z

z1l

dz8g~z8!'lE
0

L

dz8g~z8!, ~26!

which holds ifL@l, and if the functiong(z) vanishes out-
side the domain occupied by the medium (0<z<L). After
replacing Eqs.~23! in the atomic equations~22b!–~22d! and
retaining only the surviving field modal amplitudes, the fin
form of our equations is

dzj

dt
5

pj

m
, ~27a!

dpj

dt
52

\k

4
g

i
s j~ f * e2 ikzj2b* eikzj !1c.c.,

~27b!

ds j

dt
52@g

'
2 i ~v2vA!#s j

1g
'
sz j~ f eikzj1be2 ikzj !, ~27c!

dsz j

dt
52

g
i

2
@s j~ f * e2 ikzj1b* eikzj !1c.c.#

2g
i
~sz j2sz j

eq!, ~27d!

d f

dt
5kYI2k~11 iu! f 1k2C

1

N (
j 51

N

e2 ikzjs j ,

~27e!

db

dt
52k~11 iu!b1k2C

1

N (
N

eikzjs j . ~27f!

j 51
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Note that if we ignore the center of mass motion, i.e., if t
variableszj (t) are constant in time, Eqs.~27! in the con-
tinuum limit reduce to Eqs.~20! of Ref. @1#.

III. A THERMALIZATION MECHANISM FOR THE
MOMENTUM DEGREES OF FREEDOM

A major difference between the physics of most CAR
laboratory studies and that of the existing models is the
sence, in the theories, of a way to account for the effect
the collisions between the optically active atoms and
buffer gas. This deficiency becomes critical when one ha
decide if the observed growth of the backward field is
duced by the emergence of a density grating, as predicte
the CARL theory, or by a process of the type described
Ref. @1#. The former mechanism has been judged to be
realistic in steady state, at least at room temperature, w
the latter would seem to be possible even in the presenc
perturbing collisions@14#.

Following the lead of Ref.@10#, we introduce collisions
between optically active atoms and the buffer gas with
help of a numerical simulation which aims to reflect the m
microscopic features of the process. Each optically ac
atom evolves under the action of the deterministic equati
~27!. At some randomly selected time, one of these ato
chosen at random, undergoes an elastic collision, whose
fect is to change the momentum of its center of mass and
phase of its polarization. We neglect the rare collisions
tween pairs of optically active atoms, and collisions invo
ing more than two atoms at a time.

For simplicity, we assume that the colliding partners ha
the same mass and that the collision is governed by the
of classical mechanics. Thus, the momentum of the optic
active atom, just after collision, matches that of the collidi
partner just before collision; the latter, in turn is selected
random from a thermal~Gaussian! distribution. At the same
time, the phase of the polarization of this atom jumps to
new value, chosen randomly from a uniform distributi
within the interval@0,2p#. The evolution then proceeds de
terministically until the next collision, when another ra
domly selected atom undergoes the same process desc
above. This procedure is continued for as long as nee
usually until the average variables have completed the t
sient phase of their evolution. In the course of these calc
tions we store, for later processing, time-dependent infor
tion on the atomic momenta and positions, the inter
degrees of freedom, and the cavity forward and backw
fields. The algorithm is briefly sketched in the Appendix.

The random times between collisions are selected in s
a way as to conform with the exponential probability dens

P~ t !5le2lt, ~28!

wheret denotes the time between two consecutive collisio
in units of 1/g

'
, and l is the dimensionless collision rate

Obviously the average time between collisions,t̄ c , is given
by 1/l and this is adjustable in the simulation.

This model assumes that the buffer gas is optically in
and that its density is much larger than that of the act
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atoms. Moreover, the buffer gas is supposed to be at the
equilibrium ~in the experiments, this condition is primaril
maintained by collisions of the buffer gas atoms with t
walls of the cell!. On the basis of these assumptions,
conclude that the momentum distribution of the buffer gas
not affected appreciably by the collisions with the active
oms and it always remains Gaussian. The variance of
distribution,sP

2 , is an adjustable parameter, proportional
the temperature of the buffer gas.

The values oft̄ c selected in our simulations are consiste
with the typical experimental pressures. For example
choice of t̄ c530 corresponds to a pressure of 0.06 mbar
argon is used as the buffer gas and sodium as the ac
atoms. However, we have been unable to be uniformly c
sistent in the selection of the values ofsP

2 which, in the
simulations shown in this paper, are considerably sma
than they should be at room temperature. This selection
motivated by our need for using the homogeneously bro
ened results of Ref.@1# as a guide in our search for nontrivia
solutions. A major advantage of that model is that a line
stability analysis makes it possible to predict in advance
which combination of parameters interesting effects
likely to emerge. This strategy is not available with th
present microscopic model, and a search for nontrivial so
tions under room temperature conditions calls for the ana
sis of a very large parameter space and a very substa
computational effort which we may undertake in futu
work. The study of a mildly inhomogeneous system and
guidance offered by the solutions of Ref.@1# reduced the
guesswork required by the identification of appropriate
rameters.

We should mention also that our model becomes reali
only in the limit when the number of atoms is sufficient
large. Thus, we have made special efforts to carry out e
numerical simulation for several system sizes, until we fou
convincing evidence that no quantitative changes in the p
dicted results would emerge from a further increase in
number of atoms. As a compromise, we have attempte
meet these requirements by selecting sufficiently small v
ues for the width of the momentum distribution even thou
this implies much lower temperatures than used in the
periments.

IV. DISCUSSION OF THE RESULTS AND COMPARISON
WITH OTHER MODELS

As we have already mentioned, the model developed
this paper is closely related to the one discussed in Ref.@1#,
but it also includes the effects of recoil, as required in t
context of the theory of the CARL, and collisions with
buffer gas, which are not included in@1# and @5#. The latter
feature is necessary not only because a buffer gas was o
used in the experiments, but also because it provides
natural mechanism for the emergence of a steady state, in
presence of the driving field, and for the eventual return
the atoms to thermal equilibrium, if the driving field is turne
off at some point. Collisions and recoil introduce Doppl
and pressure broadening in the model, and this marks
other difference relative to the settings of Refs.@1# and @5#
9-7
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MATHIAS PERRIN, ZONGXIONG YE, AND LORENZO M. NARDUCCI PHYSICAL REVIEW A66, 043809 ~2002!
which dealt, instead, with homogeneously broadened
tems.

We recall that Ref.@1# predicts the emergence of a num
ber of solutions which include the following.

~i! ‘‘Trivial’’ solutions matching the well known behavio
of a bistable system in a unidirectional resonator. These
lutions correspond to a stationary nonzero forward field a
zero backward field.

~ii ! ‘‘Self-pulsing’’ solutions, where both forward an
backward field intensities oscillate in time, and others wh
the backward field is absent altogether.

~iii ! ‘‘Nonsynchronous’’ solutions, where both forwar
and backward field intensities are time independent, the
ward field oscillates with the frequency of the injected s
nal, and the backward field is frequency shifted, appare
as a result of a frequency pulling effect. The term ‘‘nonsy
chronous’’ is meant to emphasize that the coexisting ca
fields do not share the same carrier frequency.

In the model described in this paper, we found the sa
type of long time solutions, except for the one whereboth
backward and forward fields are self-pulsing.

An example of a nonsynchronous solution is shown
Fig. 2 where we plot the imaginary parts of both forward a

FIG. 2. The imaginary parts off andb are plotted as functions o
their respective real parts. The forward and backward fields
represented, respectively, by diamonds~F! and crosses (B). Ini-
tially, both fields are nearly zero and evolve into a nonsynchron

steady state. The parameters areYI545, d̃A520.1, C539.5, k̃

50.55,u59, sP510, g̃52, Ṽ r52.0731022, t̄ c530.3. The value

chosen forṼ r corresponds to theD2 line of sodium.
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backward fields as functions of the respective real pa
while the fields evolve in time. Starting from very sma
initial values of the real and imaginary parts, the forwa
field evolves into a configuration corresponding to the clus
of open diamonds labeled byF. Because the reference fre
quency selected in our calculations is the carrier frequenc
the external driving field, the time-independent character
the long-time forward field indicates that this field is locke
to the external signal. The real and imaginary parts of
backward field, instead, oscillate harmonically at a const
rate. This implies that the backward field has a different c
rier frequency from that of the injected signal. In this ca
the frequency shift between backward and forward fields
vb2v f524.16, in normalized units ofg

'
. Depending on

the parameters, we have observed positive or negative de
ing values, as one would expect if the frequency shift ex
rienced by the backward field was a consequence of a s
dard mode-pulling effect @15#. The behavior of this
nonsynchronous solution is qualitatively identical to the o
discussed in Ref.@1#.

By contrast, an example of a self-pulsing solution w
zero backward field is shown in Fig. 3, also with the help
a complex plane portrait of the fields. The parameters
such that the backward field, after a small initial grow
loses its competition with the forward field and decays
sentially to zero, apart from fluctuations introduced by t
stochastic features of the simulation~cluster of crosses la
beledB); the real and imaginary parts of the forward fie
vary roughly harmonically in time, and the intensity unde
goes simple self-pulsing oscillations, as shown in Fig. 4.

In the presence of counterpropagating waves with sligh
different carrier frequencies, one expects the total field
acquire a traveling modulated intensity pattern whose
print should appear in the spatial distribution of the popu
tion difference. This is clearly seen from the nonsynchrono
solution shown in Fig. 5, where the population difference
each atom~the probability of being in the excited state minu
the probability of being in the ground state! is plotted as a
function of its normalized position. A surprising feature
these results is the appearance of a substantial fractio
atoms in an inverted state, as already noted~see Fig. 7 of
Ref. @1#!. Unfortunately, we are still unable to offer a plau
sible physical interpretation of this interesting effect, exce
to say that it could be evidence of underlying atomic coh
ence. This grating of population is actually a traveling stru
ture, as slightly delayed patterns clearly show.

A companion traveling wave develops also for the mod
lus of the atomic polarization variable, and this is illustrat
in Fig. 6 for the same parameters used in Fig. 5. The real
imaginary parts of the atomic polarization, instead, give
tricate structures which we have been unable to interpret
whose shapes change in a complex way as a function
time. For the sake of illustration, a plot of the polarization
the complex plane shows a ‘‘dumbbell’’ structure that rota
around the center of symmetry, preserving its shape as
evolves~Fig. 7 shows this structure for a specific value
time!.

A special aim of our simulations was to clarify the ro
played by the atomic density grating in promoting the grow

re

s
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MICROSCOPIC THEORY OF THE COLLECTIVE ATOMIC . . . PHYSICAL REVIEW A 66, 043809 ~2002!
of the backward field and, eventually, in supporting a sta
nontrivial steady state. For this purpose, we monitored
evolution of the bunching parameter defined in Ref.@5# as

b5U1

N (
j 51

N

eikzjU. ~29!

Obviously, if the optically active atoms are uniformly distrib
uted,b must be equal to zero, and its growth gives an in
cation that the atomic density function has acquired a spa
structure. Indeed, the bunching parameter grows during
early stage of the evolution, regardless of the subseq
behavior of the system, but then it decays and becomes
ligibly small for long times, even in the presence of a w
developed backward field.

FIG. 3. The imaginary parts off andb are plotted as functions o
their respective real parts. The forward and backward fields
represented, respectively, by diamonds~F! and crosses (B). Ini-
tially, both fields are nearly zero and evolve into a self-pulsing st

The parameters areYI5100, d̃A520.1, C539.5, k̃50.55, u

515, sP510, g̃52, Ṽ r52.0731022, t̄ c530.3.
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The decay time of the bunching parameter~an example is
shown in Fig. 8! is of the order of the average time betwe
collisions, t̄ c , and this suggests that ordered spatial str
tures are, at best, only transient phenomena which eventu
disappear as a result of the collisions between the optic
active atoms and the buffer gas. This feature was noted
number of simulations discussed in Ref.@10#, and was also
considered by others as a transient phenomenon@9#. We
searched for the possible existence of a density grating u
steady state conditions by direct analysis of the spatial
tribution of the atomic center of mass coordinates, but
found no evidence for it. However, we did observe a cle
spatial structure at the time when the bunching parametb
reached its maximum value, as shown in Fig. 9.

We take this as evidence that this fragile structure may
be able to survive, except perhaps at much lower temp

re

e.

FIG. 4. The intensities of both fields,u f u2 and ubu2, labeled,
respectively,F andB, are plotted as functions of time. The param
eters are identical to those of Fig. 3. Note that the stationary in
sity of the backward field is zero.

FIG. 5. The population inversion of each atom is plotted a
function of its position. This is done at a given time, after the fie
have reached a nonsynchronous state. The thick dashed line r
sents the boundary that separates groups of excited and unex
atomic states. The parameters are identical to those of Fig. 2.
9-9
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MATHIAS PERRIN, ZONGXIONG YE, AND LORENZO M. NARDUCCI PHYSICAL REVIEW A66, 043809 ~2002!
tures, where, conceivably, our semiclassical description m
no longer be applicable. Thus, on the basis of our findin
the mechanism of growth of the backward field appears
stem mainly from the emergence of the polarization grati
as already suggested in Ref.@7# on the basis of theoretica
and experimental considerations.

The model adopted in this work for the simulation
collisions is conceptually direct but is also computationa
very intensive. Earlier studies of the CARL@9# advanced an
appealing alternative scheme. In our notations, this amo
to adding to Eq.~27b! a phenomenological damping term
the form

S dpj

dt D
coll

52gc~pj2pj
eq!, ~30!

FIG. 6. The modulus of the polarization of each atom is plot
as a function of its position after all transients have died off. A
given timet0 the data are plotted with open diamonds, while at
time t010.5 they are plotted with solid dots. The parameters
identical to those of Fig. 2.

FIG. 7. The imaginary part of the polarization of each atom
plotted as a function of the corresponding real part after reach
a nonsynchronous state. The parameters are identical to tho
Fig. 2.
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wheregc is the thermalization rate due to collisions andpj
eq

is the thermal equilibrium value of the momentum of thej th
atom. At the start of the simulation, according to this schem
one selects a collection of random values ofpj , having a
Gaussian distribution with a chosen width, and then allo
the atomic and field variables to evolve deterministically a
cording to the time-dependent equations of motion~27!.
Each atom, during the evolution, would continue to be as
ciated with the initial selection of its equilibrium momentum
pj

eq . This model, to which we refer informally as the ph
nomenological momentum damping~PMD! model, has the
obvious virtue that, if one should turn off the interaction
the atoms with the cavity field~s!, the atomic ensemble

d

e

g
of

FIG. 8. The bunching parameter is plotted as a function of ti
at the beginning of the evolution. The parameters are identica
those of Fig. 2.

FIG. 9. A histogram of the atomic density in the cell is plotte
as a function of position for two different times: the open circl
correspond to the time when the bunching parameter, shown in
8, acquires a maximum value; the solid diamonds correspond to
solution after all transients have died off. The parameters are id
tical to those of Fig. 2.
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would relax to thermal equilibrium, by construction, in
time of the order of 1/gc . We also note that the polarizatio
relaxation process is not directly affected by the moment
relaxation, althoughg

'
can be modified by hand to accou

for the presence of collisions~i.e., it can be made larger tha
its radiative limit to simulate collisional broadening effects!.

Nevertheless, it is not clear if this approach is satisfacto
nor if it has much in common with the microscopic descr
tion developed in Ref.@10# and adopted in this work. We
have looked into this matter and compared the results of
microscopic simulations against those obtained by integ
ing Eqs.~27! after inclusion of the phenomenological dam
ing terms given by Eq.~30!. We have carried out this com
parison by using the same parameters, and by selectingc

51/t̄ c . Our results are inconclusive, but we feel that th
deserve to be reported in order to provide some guidance
possible future studies.

Both the microscopic and the PMD models evolve in
‘‘plausible’’ long time solutions, i.e., they show no eviden
for the type of evolution displayed by the early simulatio
of Ref. @5#. However, we have been unable to identify sets
parameters for which we could find clear agreement or
agreement. In some instances, typically for low collisi
rates, we have seen evidence of reasonable quantit
agreement between the stationary intensities of nonsync
nous solutions~but not for their transient values!. An ex-
ample is shown in Fig. 10.

The corresponding stationary momentum distributions,
stead, are very different from one another: the distribut
associated with the PMD model is Gaussian even in the p
ence of forward and backward fields, and its width coincid
with the selected initial value, while the one resulting fro

FIG. 10. The intensities of both fields,u f u2 and ubu2, labeled,
respectively,F andB, are plotted as functions of time. The results
the PMD model are indexed with the subscript ‘‘1’’; those of t
microscopic model are indexed by ‘‘2.’’ The parameters of the

simulations areYI590, d̃A52, C550, k̃50.5, u5210, sP510,

g̃52, Ṽ r52.0731022, t̄ c530.3, for the microscopic model, an
gc51/30.3 for the PMD model.
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the microscopic model is very significantly nonthermal,
shown in Fig. 11. Intuitively, a nonthermal distributio
would appear to be the more plausible of the two results

After increasing the collision rate by a factor of 100, th
two models yield identical momentum distributions having
Gaussian profile~see Fig. 12!. However, the correspondin
steady state intensities are entirely different from each ot
the microscopic model leads to a nonsynchronous ste
state, while the PMD calculation produces a trivial soluti
with zero backward field, as shown in Fig. 13.

In aggregate, the solutions displayed in Figs. 11 and
suggest that, at least for the chosen parameters, the P
model is unable to describe possible departures from a s
of thermal equilibrium. It is tempting to speculate that
important source of disagreement between the two mode
the ‘‘noise’’ introduced by the microscopic simulation of th

e

FIG. 11. The momentum distributions corresponding to
PMD model ~open circles! and to the microscopic model~solid
line!. The dashed line represents a fit to a Gaussian distributio
width s f i t59.47. The parameters are identical to those of Fig.

FIG. 12. The momentum distributions corresponding to
PMD model ~open squares! and to the microscopic model~solid

dots!. The parameters of these simulations areYI590, d̃A52, C

550, k̃50.5, u5210, sP510, g̃52, Ṽ r52.0731022, t̄ c50.3
for the microscopic model, andgc51/0.3 for the PMD model.
9-11
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collisions. For different combinations of parameters bo
models display different kinds of solutions. As the para
eters are varied in a fully deterministic model, one type
long time solution gives way to a different one, beyond
stability boundary. In the presence of noise, transitions
tween one domain and another, especially if the doma
coexist, can easily occur ‘‘spontaneously.’’ In the absence
a detailed stability map of the various solutions, there see
to be no easy way to resolve this interesting issue.

V. SUMMARY AND CONCLUSIONS

In this paper we have developed a microscopic desc
tion of the collective atomic recoil laser in an optical res
nator. This work complements and generalizes earlier stu
of bidirectional optical bistability@1# and of the CARL@5#
with the inclusion of the effects of collisions between t
optically active atoms and a buffer gas. The purpose of
added feature is twofold: it allows the average dynami
variables to approach physically reasonable long time beh
iors ~steady state or self-pulsing!, and it simulates an impor
tant aspect of the experimental settings.

Our main predictions include the existence of a class
stationary solutions~nonsynchronous steady states! in which
the ring resonator can support both forward and backw
fields oscillating with different carrier frequencies. Th
growth of the backward field in the early stage of the evo
tion is accompanied by the appearance of a transient s
ture in the atomic density profile which then disappears i
time of the order of the average time between collisions
the presence of forward and backward cavity fields, the
tically active atoms acquire a spatial modulation of the p
larization and population difference which, unlike the ea
density modulation, persists for arbitrarily long times. Fu
thermore, the momentum distribution, which we assume
be Gaussian at the beginning of the evolution displays
nificant departures from the state of thermal equilibrium a
remains in this nonequilibrium configuration for as long
the cavity fields are kept different from zero.

FIG. 13. The same as Fig. 10 with a 100-fold increase in
collision rate. The parameters are identical to those of Fig. 12.
04380
h
-
f

-
s
f
s

-
-
es

is
l
v-

f

rd

-
c-
a
n
-
-

-
o
-

d

We have carried out a comparison between the result
our microscopic model and an earlier proposal advanced
Bonifacio and Verkerk@9#. The results do not match, but it i
probably too early to draw negative conclusions. In additi
this earlier proposal is appealing and less computation
intensive than ours. We feel that additional investigations
warranted.
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APPENDIX

This appendix outlines the approach used in this paper
the numerical solution of the equations of motion, includi
the microscopic simulation of the collisions. As the starti
point, we consider a rescaled version of Eqs.~27!, after in-
troducing the dimensionless variables

p̃ j5
pj

\k
, z̃j5kzj , t5g

'
t, ~A1!

and the scaled parameters

k̃5
k

g
'

, g̃5
g

i

g
'

, Ṽ r5
v r

g
'

, d̃A5
vA2v

g
'

, ~A2!

wherev r[2\k2/m is the frequency shift associated with th
single-photon recoil. In terms of the new variables and
rameters, Eqs.~27! take the form

dz̃j

dt
5

1

2
Ṽ r p̃ j , ~A3a!

dp̃j

dt
52

1

4
g̃s j~ f * e2 i z̃ j2b* eiz̃j !1c.c., ~A3b!

ds j

dt
52~11 i d̃A!s j1sz j~ f eiz̃j1be2 i z̃ j !, ~A3c!

dsz j

dt
52

1

2
g̃@s j~ f * e2 i z̃ j1b* eiz̃j !1c.c.#2g̃~sz j2sz j

eq!,

~A3d!

d f

dt
5k̃YI2k̃~11 iu! f 1k̃2C

1

N (
j 51

N

e2 i z̃ js j ,

~A3e!

db

dt
52k̃~11 iu!b1k̃2C

1

N (
j 51

N

eiz̃js j , ~A3f!

where the range of variation of the scaled position variablez̃j
is the interval@0;2p#. The initial conditions correspond to
state of thermal equilibrium for the optically active atom

e
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~i.e., the spatial distribution is uniform, while the momentu
distribution is Gaussian!. The cavity fields are initially cho-
sen to be very small, for the purpose of modeling the infl
ence of spontaneous emission~typical values are such tha
the initial real and imaginary parts of both fields are set eq
to 10210). We have verified that the chosen initial conditio
have no influence on the long time solutions, but only on
details of the transient regimes. This is, typically, to be e
pected especially in the presence of the randomizing eff
introduced by the collisions.

Now, we briefly consider the implementation of the col
sion algorithm already introduced in Sec. III. The main ste
can be described as follows.

~a! We initialize the atomic variables, as described abo
For N atoms, this requires the selection of 5N14 real initial
values.

~b! For each atom we pick the random time interval b
tween the beginning of the evolution and the first collisi
according to the exponential distribution, Eq.~28!.

~c! We integrate numerically the deterministic Eqs.~A3!
from t50 until the occurrence of the very first collision. Fo
this purpose, we start by selecting a nominal integration s
tte

.
s

ys
.

ca

gi
W

04380
-

al

e
-
ts

s

.

-

p,

consistent with the required level of accuracy. After select
of the time of occurrence of the first collision, we redefi
the integration step, actually used in the calculation, in s
a way that the duration of the deterministic evolution is
exact multiple of the integration step which, in turn, we co
strain to remain smaller than or equal to the chosen nom
value. In this way, we ensure the accuracy of the numer
integration process and, at the same time, we guard ag
the possibility that the time of the first collision~or, later in
the evolution, the time between consecutive collisions! may
turn out to be smaller than the selected integration step.

~d! We modify the momentum and the phase of the pol
ization of the atom that has just undergone a collision.

~e! We select a new collision time for this atom, whi
keeping the previously selected collision times of the ot
atoms in the sample.

~f! We save the relevant values of the variables for fut
analysis.

~g! We go back to step~c!.
Note that this procedure does not involve the initial sel

tion of all the collision times for all the atoms which woul
require far too much computer memory.
t-
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