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Microscopic theory of the collective atomic recoil laser in an optical resonator:
The effects of collisions
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With the help of a microscopic model we investigate the effects of collisions and atomic recoil on the
behavior of absorbing atoms placed inside a bidirectional resonator and driven by an external injected field.
This model complements and generalizes earlier studies of the collective atomic recoil laser and of optical
bistability. According to our model, even in the presence of collisions, the resonator can support bidirectional
propagation. In particular, for appropriate selection of the parameters, we predict the existence of stationary
solutions such that the cavity field that copropagates with the injected signal is locked in frequency with the
external source, while the counterpropagating field is frequency shifted from both, even in steady state. The
early stage of growth of the counterpropagating field is accompanied by a spatial modigediom structurg
in the density of the medium, but this modulation decays away in a time roughly of the order of the average
interval between collisions.
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[. INTRODUCTION ciently large to overcome the cavity losses, we argued that
the backward field can grow and eventually reach a steady
In a recent papdr] two of us developed a description of State, much as an ordinary laser field would in a ring cavity.
a driven bidirectional ring resonator containing a collectionAccording to this interpretation, the frequency shift of the
of two-level absorbing atoms. The objective of that work wasbackward field would then be the consequence of the usual
to generalize the well established plane-wave model of opticOmpetition between oscillations at the peak of the atomic
cal bistability[2] by taking into account the possible growth 9ain feature an_d at the frequency of the nearest cavity mode
of a cavity field in a direction opposite to that of the injected (i-€-, mode pulling, _ o o
signal. The growth me_chanlsm of_ the backward field is reminis-
An important step along this line had already been takerfeNt .Of the. physics of a d|fferer_|t system, the coIIgcuve
by Asquini and Casagrandid] under resonance conditions, a atomic reco_|l Iaser(CARIT) [5]. In its .orlglnal conception
setting where the frequency of the driving field matches on nd according to the simplest version of the model, the

. : ” ARL system consists of a collection of two-level atoms
of the; cavity modes and the.atomlc transition frequerjcy. By riven by a single-mode pump field. Under appropriate con-
relaxing the resonance requirement, and for appropriate Vagitions, atomic density fluctuations, together with population

ues of the system parameters, we discoveredjrthat the 54 b5|arization fluctuations, induce a small amount of back-

ring resonator can support simultaneously both a forwarqcatering which interferes with the pump field and creates a
and a backward field in steady stq#d. This stationary so- \yeak traveling modulation wave. This, in turn, generates a
lution may in turn become unstable and give way to self\yeak reverse polarization wave which, for appropriate values
pulsing and other instabilities. of the parameters, radiates and strengthens the backward
A surprising feature of the stationary solutions is that,scattered field in an avalanche process. An essential feature
while the forward field is locked to the frequency of the of the CARL model is the dynamical role played by the
injected signal, as one would expect, the backward field osatomic center of mass degrees of freedom. These must be
cillates, instead, at a different frequency. With the help ofincluded in the theoretical description to give proper account
numerical calculations we found that this frequency is typi-of recoil effects, which eventually are responsible for pro-
cally comparable to what one can estimate on the basis of th#ucing an organized atomic density modulation, or density
usual mode-pulling formula of ordinary laser theory. At first grating, which is at the heart of the CARL procéksnce the
sight, this is surprising on two accounts: one would not exterms “collective atomic recoil” in the descriptprAttempts
pect that a resonator could support a stationary state in whicto demonstrate the CARL action experimentgby have led
two fields have different carrier frequencies and, furtherto the identification of a strong backward field with some of
more, the medium in the cavity is not active in the conven-the expected characteristics. However, it is fair to say that a
tional sense, i.e., prepared in a state of population inversiortlear link between the observed backward field and the ex-
We interpreted this behavior by attributing the initial pected density grating has not yet been established, as ar-
growth of the backward field to spontaneous emission noisgued, convincingly in our opinion, in further theoretical and
in the presence of a gain feature impressed upon the atoméxperimental contributions by Gauthier and collaboralt@ts
absorption profile by the forward field, perhaps something In this paper we generalize the bidirectional ring cavity
akin to the gain that emerges when a passive two-level atommodel of Ref[1] to include consideration of the atomic cen-
is driven by a strong field. When the backward gain is suffi-ter of mass degrees of freedom, with the eventual aim of
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formulating the theory of the CARL in a resonator from first 0 L
principles, with full account of the cavity geometry and : —= Z
boundary condition§8]. This generalization, simple enough
in principle, is confronted at once with a basic difficulty. The YI
CARL equations developed ifb] include the well known A \
phenomenological relaxation terms for the atomic populationygjeced ield
and polarization variables, which are essential for the estab
lishment of a steady state in ordinary laser theories. How-
ever, they do not include a mechanism by which the atomic
center of mass momenta can approach a thermal equilibriun
state if the cavity field should be turned off. This difficulty of
the CARL model was made clear by the earliest numerical
simulationg 5] which never gave any indication that the sys-
tem would approach a steady state for long times. Thus, the FIG. 1. Schematic representation of the bidirectional ring cavity;
appearance of a backward pulse of light could be traced tbandb denote the forward and backward cavity fields, respectively,
the initial creation of a density grating, as evidenced by theandY, is the scaled amplitude of the injected field.
large values taken by the bunching parameter, but the subse-
quent evolution of the system was highly irregular, and itssible emergence of a density grating, or a spatial modulation
physical significance questionable in the absence of a theef the atomic density, which is usually regarded as the main
malization mechanism for the atomic momenta. An appealsignature of the CARL process. We found that, during the
ing attempt to resolve this problem was made in B6].  early phase of growth of the backward field, a grating struc-
with the inclusion of a phenomenological relaxation term inture indeed appears, but that it then decays in a time of the
the momentum equation. In this work we have made an atorder of the average interval between collisions.
tempt to compare our findings with those of RE3]. We We have also explored the momentum distribution of the
discuss our available results, but we feel that they are ncatoms under the driving action of the cavity fieldsd the
sufficient to reach an informed conclusion. Further studiesollisions, and tried to correlate our findings with simula-
would be desirable for the purpose of confirming the reliabil-tions based on the proposal of R¢8]. As already men-
ity of the phenomenological approach. tioned, we have had only limited success in assessing the
An alternative solution to this problem was advanced inpossible connection between these approaches: for some pa-
Ref.[10] where the authors generalized the two-mode modefameter values we found acceptable qualitative agreement
of the CARL[5] with explicit consideration of the collisions between the dynamical evolution of the cavity fields while,
undergone by the optically active atoms with a buffer gas afor others, the solutions differed drasticallytime-
thermal equilibrium. The collisions were included following independent versus self-pulsing behavior, for exam3er-
a procedure inspired by molecular dynamical simulationsprisingly, when the long time momentum distributions pre-
This is an important improvement over the traditional CARL dicted by the two procedures agreed well with each other, the
model not only on theoretical grounds, but also because eespective field evolutions showed little or no resemblance,
buffer gas was actually used in some of the experiments, an@nd vice versa. Nevertheless, we have tried to come up with
indeed it played a crucial role for the purpose of establishing possible interpretation for the appearance of these features.
an eventual steady state, as showflif. The paper is organized as follows. In Sec. Il we outline
Following this lead, our present generalization of thethe derivation of the deterministic equations forming the
driven bidirectional ring cavity modéll] includes the center backbone of the numerical simulations. Section Il contains a
of mass degrees of freedom among the dynamical variablegeneral outline of the approach for handling the collisions of
and it also simulates the collisional interactions between théhe optically active atoms with the buffer gas. In Sec. IV we
atoms and the buffer gas. Collisions among the optically acsummarize the most relevant results of our simulations in-
tive atoms are, instead, ignored, under the assumption thatuding a comparison between our approach and the one in-
these are far more rare in a typical experimental settingiroduced in Ref[9]. We complete the paper with some con-
where the density of these atoms is several orders of magnéluding remarks and an Appendix where we summarize
tude smaller than that of the buffer gas. qualitatively the essential steps of the collisional simulation.
Our numerical investigations of this model have shown
that, even in the presence of collisions and for appropriate |, peRVATION OF THE EQUATIONS OF MOTION
values of the parameters, the resonator can support the
growth of a backward field. Forward and backward fields Our goal is to study the behavior of a collection of two-
may approach a stationary state for sufficiently long times oftevel absorbing atoms placed within a ring resonator and
self-pulsing states, although sometimes only the forwardiriven by an external coherent field as shown schematically
field survives in a pulsing mode. in Fig. 1. In general, one expects the cavity field to propagate
These features are qualitatively similar to those reportedboth in the forward and in the backward directions. Our ap-
in [1]. However, the microscopic nature of our model allowsproach draws from techniques developed in Reffand[5]
us to raise more detailed questions than could be addressbdt it also departs from these previous works in several sig-
in our earlier contribution. Thus, we have explored the posnificant aspects. Thus, as in REf], we are especially inter-

Atomic vapor and buffer gas
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ested in the growth and characterization of the backwardhe cavity field obeys the wave equation
field, and this requires appropriate modifications of the reso-
nator boundary conditions relative to the traditional setting P?E(z,t) 2(926’(z,t) 1 #*P(z,t)
of optical bistability. However, unlike these older studies, our >~ C > 2

. . g . . ot 0z €0 ot
present investigations include the center of mass motion of

the optically active_ atoms. As_it turns out, this preclud_es they here P(z,t) is the macroscopic dipole moment per unit
use of the collective population and polarization vanablesvmume_ We assume the cavity field to have the form
which are very convenient and quite common in ordinary

laser theory. The price one has to pay for this generalization Ez,)=E(z,1) + E(z,1), (5)
is that each atom must be described by its own set of dy-
namical variables, including the center of mass position angvhere

, 4

momentum. _

This latter feature is common to the CARL thedi], Er(z,t)=Er(z,t)e'ke Y1 cc,, (6a)
which, as originally designed, does not describe from first A
principles the role of the resonator, its role in creating a Ea(z,t)=Eg(z,t)e k& Dy cc, (6b)

feedback mechanism, and the effects of possible detunings. o

In addition, as already mentioned, the emergence of an evedNdF andB label the forward and the backward directions of
tual steady state requires the existence of a process by whid§opagation, respectively. The injected field is given by
the optically active atoms can reach thermal equilibrium, and e i(kz-ot)

such a mechanism is also absent from the original CARL &(z)=E T U+cc, @

model. whereE, is a real constant amplitude. Its carrier frequency

A feature common 1o the theory of the CARL and the and wave numbek= w/c are selected as the reference fre-

present work is the adoption of the semiclassical approxima—uenc and wave number. respectivel
tion and the replacement of the atomic operators with corred y , fespe y. .
In light of the near resonant interaction between the in-

sponding ordinarg-number functions. In view of these simi- jected field and the atoms, the amplitudEg(zt) and

larities and differences, and for the purpose of making thi (zt) are slowly varying with respect to both and t
work reasonably self-contained, we begin with a detailed de_—rﬁ ' th it f'yIdE‘ yt 9 P i b t .
scription of the model and a derivation of the relevant equa; us, the cavity fie (z ) IS a superposition of two contri-
tions of motion. butions that propagate in opposite directions with slowly

: o . I varying amplitudes.
Our starting point is provided by the Hamiltonian For the macroscopic polarization that appears on the right
N N 2 N hand side of Eq(4) we assume the representation

Pj b
H=%o it ——— S +S )&z ,t), (1 . :
Ajzl St 2 am B MS TS EED, P(z,t)=u[PM(zt)e '+ POz e, (8)
where the population difference operator for ith atom,  where P(*)(z,t) are slowly varying functions of time, but
S,;, and the polarization operatﬁ:q-+ are defined by rapidly varying functions of space. Moreover, we have

PO (z,t) =[P (z,1)]*.

1 10 Sto 01 5 Following the procedure adopted in Ref$1] and[1], the
SZJ'_2 o -1/ 1 \o o) @) field equations for the slowly varying amplitudes are
andS =(S")". The operatorp; andz; are the canonically J d oy 1JZ” k!
] ] J ] _ _ — ’ ikz'p(+) (57
conjugate momentum and position of tfth atom, u is the ot +Caz Er(z1) 2€g N J; dz'e PT(ZLY),

modulus of the transition dipole moment, afig; ,t) is the (9a)
classical cavity field at the location of théh atom.

The atomic Heisenberg equations, after carrying out the [ ¢ d wow 1 [fz+r .
= ying (——c—)EB(z,t)s—“—f dz e Pz’ 1).

semiclassical approximation, are Jt 9z 2€o N )7
9
dt™ m’ The cavity field is further constrained by the boundary
conditions which, for the empty resonator, have the form
d _ 4
qiPi=H(S +S V32,530, (3D) E(0D)=TEOD +RE(ALY), (109
M gB(A!t) = RgB(Olt)! (1Ob)
asj’: —iwpS] —2i ze(z,- DS, (30

whereA is the round-trip length of the ring cavity, aftdand

q T are, respectively, the power reflection and transmission co-
e _ B +_ o efficients. In terms of the slowly varying amplitudes, Egs.
dtSZJ ! ﬁg(ZJ DS =5)). 3d (10) become
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EF(0)=VTE+RE:(A,)e '?, (113 9 i O R [ g
4 oz 2e9 AN J,
Es(A,t)=REg(0t)e™", (11b)
N
where 6= (wc—w)Alc, and wc is one of the cavity reso- X > 5(2’—zj)~Sj. (15f)
=1

nances. Specifically, we seleel: as the frequency of the
cavity mode that is nearest to the atomic transition frequency.

The atomic equationg3) and the field equationt®) are  These equations are to be solved with the additional con-
coupled to each other by virtue of the following link between straints provided by the boundary conditioiid). Note that,
the macroscopic polarization and the microscopic internain taking the spatial derivatives of the field on the right hand
variablessji: side of Eq.(3b), we have explicitly accounted for the slow
N spatial variation of the amplitudds: andEg . Moreover, in

) P arriving at Eqgs.(15b), (150, and (150 we have omitted

PzH=% ,2’1 8(z=z (XS +5)), (12 factors that vary rapidly in time at frequenciew.

where A is the cross sectional area of the atomic sample.
Upon introducing the slowly varying variablé'ﬁ andé}*
according to the relations

Scaled variables and the uniform field limit

Our next objective is to derive the final form of the equa-
tions in the so-called uniform-field limi{tl2]. For this pur-

S =e ot gF_Trgiot (13) pose it would be especially convenient if the boundary con-

! o e ditions were of the standard periodicity type. This can be

the macroscopic polarization takes the form given by @y. arranged by introducing a new set of cavity field amplitudes

with Ye(z,t) and Yg(z,t), and the injected field amplitud¥, ,
which, in scaled dimensionless form, are defined by the re-
1 N 5 lations
PH)(z,t)= x _Zl 8(z—1z(1))S;, (143
i=

h 1/2] Z
Er(z,t)= ﬂ“’n’l) (YF(Z,t)— Klln RlYI)

1 N
PO)(z,t)= KZ 8(z—z(1)S' .

z .
X _ — i
(14b) exp{ A In(Re™'9)], (163
Finally, we only need to write the atomic and field equations
. ~ . . h z—A .
in terms of S}, Eg, andEg and their complex conjugate Eg(z,t)=—(vy,y )1’2YB(z,t)exp{ In(Re" 19|,
variables, with the result I A
E_ E; (153)
dp E= 2 (yy )1’2“nR|Y (160
j L —ikz: ikz: =5 —= "
d—t':—lk,qu[E’;(zj e KE—EE(z;,t)e'*4] 2p I JT
+c.c., (15b) It is a simple matter to verify that, indeed, in terms of the
B transformed field variables, the boundary conditiqi$)
g . - M Ko take the form
W=I(w—wA)S]—2lgSZ][EF(ZJ ,t)e J
) Ye(0)=Ye(A 1), 17
Sy—— 150 F(O0)=Yr(AD) (173
ds,. ~ . . Yg(A,1)=Yg(0}). (170
—dSt”:i %S}*[Ep(zj e+ Es(z ;e k]
It is also convenient to introduce the scaled atomic variables
+c.c., (150 4, ando,; according to the definitions
d ﬁ) op 1 f A i
—+Cc—|Er=i— — dz’'e 'kz - Y
(&t iz 2¢0 AN ), S5=-5 y” 7, Sy= oz,, (18)
N €L
x> 8z -7)S;, 15
121 ( 2 (159 and the parameters
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No u? c|inR] unsaturated field absorption coefficient per unit length, and
=T A (19 as the damping rate of the field amplitude out of the cavity
(or the linewidth of the cavity mode
where9t=N/(AL) is the number of atoms per unit volume In terms of the new variables, the equations of motion

andL is the length of the sample. We recogniaeas the take the form

“T2n ‘}’lfoc’

dz, p;

S (203
dp; hk Zi Zi . . hk zZi— _
d—Tz—Tyoj(Y’;—XJ|InR|Y,>ex;{—K'In(Re"5) e'kZi+Tyan§ex;{'Tln(Re'§) ek%t+c.c.,

(20b)
do; j —i6\ | aikz; zj—A —i6\ | a—ikz
dt—l(w wp) oty o Y ——|InR|YI ex In(Re )|e"%+y o, Ygex n In(Re™'%) |e™ "4,

(200
do,; Y Zi Z; . Y zi—A .
dt“z—E'aj(v’;—X‘||nR|Y|)ex;{—K’|n(Reﬁ) 'kZJ—Ea,Y*ex;{ In(Re?) |e*%+c.c., (20d)

2 el = 11 et i 141 ) 2oy S ed 2 inren i fmd"”%a'

EJFCE F=kKY), +||I R £+ K2 +||I R cA Nex Kn( e'?) . Z'e & (z' —z))ay,
(208

g a 6 cla  [A-z (e S

G| Ye=x 1+I|InR| Yot <y &0 5 In(Re %) L dz'e ,Zl 8(z' —z))a;. (20f)

In spite of the significant increase in formal complexity resonance by an amount of the order of the cavity linewidth.
relative to Egs.(15), Egs. (20) are ideally suited for the The uniform field limit is a well tested approximation in
implementation of the uniform-field limit. This is a situation laser physics, and has been shown to hold accurately even
where one imagines reducing the transmittivity of the mir-for quite realistic values of the parameteris, T, and s [13].
rors in step with the absorption coefficient of the medium In the uniform-field limit the equations describing this

aL, and the cavity mistuning parametér until model take the much more manageable form
al<l, T<1, 6<1, (219
93_p (228
in such a way that dt m’
oLl o (finte rumbey,  (21b)
inite numbe
|In R| %__ @ (V* a—ikzi _ ¥ qikz;
TR y”aJ(YFe i—Yge'“i)+c.c,
i 5—0— finit b 21 (22h
|InR|~T_ = (finite numbey. (210

Physically, a lower absorption coefficient makes the cav- %=i(w—wA)0'j+ ¥ azj(YFe‘kZJ+YBe“kZi)— y i,
ity field more uniform longitudinally and, of course, it de- dt * :
creases the influence of the atoms on the field. However, (229
decreasing the transmittivity lengthens the lifetime of the
field inside the cavity, and this allows the medium to affect
the field in a nontrivial way over a sufficient number of
passes. The gradual reduction of the mistuning parameter, as  dt
the transmittivity (and hence the modal widttdecreases, eq
allows the injected field to remain detuned from the cavity ~ Y (077 0%)), (22d

do,; Y
UZI 2\\[ (Y* _'kZH—Y* 'kZJ)+CC]
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9 J Kk2CA With the help of Eqs(23), and on the basis of the uniform-
( C_)YF kY = Kk(1+160)Ye+ field limit, the only surviving modal amplitudes for the for-
ot AN . .
ward and backward fields obey the equations

Z+\ L N
xf dze %> 8z’ ~z)o;,

_ df .
z j=1 T kY, —k(1+i0)f
(22¢ e \
4 K o ikz’ o
P a v oy «2CA szJ J_E::l&(z zj)oj,
Z+\ L N
XJ dZ,elkZE 5(2’_ZJ)O']', db X
z =1 —=—k(1+i0)b
dt
(22f)
K2C )
kz' [ )
with the further constraint of the boundary conditiqds). f f e jzl 8(z' —zj)ay,
In arriving at Eqs{(220 and(22d) for the atomic internal
coordinates we have added phenomenological damping (25b)

terms, as usual; for the case of absorbing atoms, we havvshere we have dropped the subscript “0” frofg andb
o3=—1. We note that the field equatioi82¢) and (22f) 0

are driven and damped in a natural waye., without the Fm_ally,_ we can put the_rlght hand sides of E(E5) in a form .

need for including phenomenological tefmas a result of which is more convenient for the purpose of the numerical

our explicit consideration of the resonator boundary cond|c""|CUI"’ltlonS with the help of the approximate equality

tions.
A
The momentum equation, instead, is not complete for the f deZHdzfg(z/)%)\deZ/g(z/), (26)
purpose of describing the physical problem of interest. In 0 z 0

fact, if the center of mass momentum distribution happens to

be removed from thermal equilibrium, and if the fields arewhich holds ifA>\, and if the functiong(z) vanishes out-
suddenly turned off, the atomic momenta do not evolve furside the domain occupied by the medium<(8<L). After
ther. What is needed, clearly, is an additional mechanism byeplacing Eqs(23) in the atomic equation®2b—(22d) and
which the atoms can regain their thermal equilibrium state irretaining only the surviving field modal amplitudes, the final
the absence of the driving fields. Because, as already mefferm of our equations is

tioned, most CARL experiments, so far, have been carried

out in the presence of a buffer gas at a higher partial pressure dz b 27
than that of the optically active medium, the natural thermal- dt m’ (273
ization mechanism in this case is provided by the collisions
between the atoms and the buffer gas. dp; hk _ _
A theoretical framework for the description of the colli- d_t]: - Ty”oj(f*e*'kzj—b* e'*%)+c.c.,
sional effects in the context of the two-mode model of the 27b
CARL (with no cavity) was proposed and analyzed in Ref.
[10]. We will summarize in Sec. lll some relevant aspects of d
this approach, as it applies to our theoretical setting, but, ﬂ:_[?, —i(w—wp)]o;
first, we proceed to derive the final form of the equations. dt L )
We begin by observing that the boundary conditi¢éhig e ik _ikz.
are consistent with the modal expansions Ty, 0zj(fe™+be ), (279
= doy; Y , .
Ye(z,t)= E f (t)e|27-rnﬂA (233 dtzl:_EH[O.J_(f*eflkzj_,_b*elkzj)+c_c_:|
- — (07~ a3, (270
Ye(zt)= 2 by(t)e ?mA, (23 .
n=—ow 1
gi= i K(L+iof k20T 2 “kz gy,

where the modal functions obey the orthonormality relation N (279

1JAd d2mmaAg-i2mzA _ 5 o db 1 N

Ao %% ¢ = onm- 24 = x1riobrk2Cy 3 oy a7
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Note that if we ignore the center of mass motion, i.e., if theatoms. Moreover, the buffer gas is supposed to be at thermal
variablesz;(t) are constant in time, Eq$27) in the con-  equilibrium (in the experiments, this condition is primarily

tinuum limit reduce to Eqs(20) of Ref.[1]. maintained by collisions of the buffer gas atoms with the
walls of the cell. On the basis of these assumptions, we

IIl. A THERMALIZATION MECHANISM EOR THE conclude that the momentum distribution of the buffer gas is
MOMENTUM DEGREES OF FREEDOM not affected appreciably by the collisions with the active at-

oms and it always remains Gaussian. The variance of this
A major difference between the physics of most CARL distribution, o3, is an adjustable parameter, proportional to
laboratory studies and that of the existing models is the abthe temperature of the buffer gas.
sence, in the theories, of a way to account for the effects of g \a)yes ot selected in our simulations are consistent

the collisions between the optically active atoms and thg,in the typical experimental pressures. For example, a
buffer gas. This deficiency becomes critical when one has toh . f1.—30 ds t £0.06 mbar. if
decide if the observed growth of the backward field is in-choice oft.=sU corresponds 1o a pressure of U.U6 mbar, |

duced by the emergence of a density grating, as predicted tgon i?—l used as theh buﬁgr gas anbdl stodki)um a:; th? active
the CARL theory, or by a process of the type described irf 0n>- MOWEVEr, We have been unable 1o be uniformly con-
Ref. [1]. The former mechanism has been judged to be ynsistent in the selection of the values of which, in the

realistic in steady state, at least at room temperature, whilsimulations shown in this paper, are considerably smaller
the latter would seem to be possible even in the presence 8" they should be at room temperature. This selection was
perturbing collisiong 14]. motivated by our need for using the homogeneously broad-

Following the lead of Ref[10], we introduce collisions ened results of Refl] as a guide in our search for nontrivial

between optically active atoms and the buffer gas with thesolutions. A major advantage of that model is that a linear

help of a numerical simulation which aims to reflect the mainStaPility analysis makes it possible to predict in advance for
microscopic features of the process. Each optically activéV/Nich combination of parameters interesting effects are
atom evolves under the action of the deterministic equation kely to emerge. Th|s strategy is not available W!th the

(27). At some randomly selected time, one of these atomsPresent microscopic model, and a sg_arch for nontrivial solu-
chosen at random, undergoes an elastic collision, whose efons under room temperature conditions calls for the analy-

fect is to change the momentum of its center of mass and th&S Of & very large parameter space and a very substantial

phase of its polarization. We neglect the rare collisions beSomputational effort which we may undertake in future

tween pairs of optically active atoms, and collisions involy-WOrk- The study of a mildly innomogeneous system and the
ing more than two atoms at a time. guidance offered by the solutions of Ré¢fl] reduced the

For simplicity, we assume that the colliding partners havedUesswork required by the identification of appropriate pa-
the same mass and that the collision is governed by the lawW@meters. _ .
of classical mechanics. Thus, the momentum of the optically V& should mention also that our model becomes realistic

active atom, just after collision, matches that of the colliding®™!Y In the limit when the number of atoms is sufficiently
jarge. Thus, we have made special efforts to carry out each

partner just before collision; the latter, in turn is selected a i ' ) ) :
random from a thermalGaussiap distribution. At the same numerical simulation for several system sizes, until we found
onvincing evidence that no quantitative changes in the pre-

time, the phase of the polarization of this atom jumps to & ) :
new value, chosen randomly from a uniform distribution dicted results would emerge from a further increase in the

within the interval[0,277]. The evolution then proceeds de- NUMPer of atoms. As a compromise, we have attempted to
terministically until the next collision, when another ran- Meet these requirements by selecting sufficiently small val-

domly selected atom undergoes the same process describdgS for the width of the momentum distribution even though
above. This procedure is continued for as long as needed'S implies much lower temperatures than used in the ex-
usually until the average variables have completed the trar€MmMents.

sient phase of their evolution. In the course of these calcula-

tions we store, for later processing, time-dependent informa-!V. DISCUSSION OF THE RESULTS AND COMPARISON

tion on the atomic momenta and positions, the internal WITH OTHER MODELS

Qegrees of freet_dom,.and. the cavity foryvard and bac.kward As we have already mentioned, the model developed in

fields. The algorithm is briefly sketched in the Appendix. s haner is closely related to the one discussed in [R#f.
The random times b_etween CO”'S'On.S are sele_c_ted IN SUCH,t it also includes the effects of recoil, as required in the

a way as to conform with the exponential probability dens'tycontext of the theory of the CARL, and collisions with a

buffer gas, which are not included jd] and[5]. The latter
feature is necessary not only because a buffer gas was often
used in the experiments, but also because it provides the
natural mechanism for the emergence of a steady state, in the
= presence of the driving field, and for the eventual return of
Obviously the average time between collisiohs, is given  the atoms to thermal equilibrium, if the driving field is turned
by 1/A and this is adjustable in the simulation. off at some point. Collisions and recoil introduce Doppler

This model assumes that the buffer gas is optically inertand pressure broadening in the model, and this marks an-
and that its density is much larger than that of the activeother difference relative to the settings of Rdfk] and[5]

P(H)=re M, (29)

wheret denotes the time between two consecutive collisions
in units of ]ij’ and\ is the dimensionless collision rate.
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backward fields as functions of the respective real parts,
while the fields evolve in time. Starting from very small
initial values of the real and imaginary parts, the forward
field evolves into a configuration corresponding to the cluster
of open diamonds labeled Wy. Because the reference fre-
quency selected in our calculations is the carrier frequency of
the external driving field, the time-independent character of
the long-time forward field indicates that this field is locked
to the external signal. The real and imaginary parts of the
backward field, instead, oscillate harmonically at a constant
rate. This implies that the backward field has a different car-
rier frequency from that of the injected signal. In this case,
the frequency shift between backward and forward fields is
wp—w¢=—4.16, in normalized units of . Depending on

the parameters, we have observed positive or negative detun-
ing values, as one would expect if the frequency shift expe-
rienced by the backward field was a consequence of a stan-
dard mode-pulling effect[15]. The behavior of this
nonsynchronous solution is qualitatively identical to the one
discussed in Refl1].

By contrast, an example of a self-pulsing solution with
zero backward field is shown in Fig. 3, also with the help of
a complex plane portrait of the fields. The parameters are
such that the backward field, after a small initial growth,
loses its competition with the forward field and decays es-
sentially to zero, apart from fluctuations introduced by the

Real part stochastic features of the simulatiécluster of crosses la-
beledB); the real and imaginary parts of the forward field

FIG. 2. The imaginary parts dfandb are plotted as functions of vary roughly harmonically in time, and the intensity under-
their respective real .parts. Thg forward and backward fiele argoes simple self-pulsing oscillations, as shown in Fig. 4.
represented, respectively, by diamori@ and crossesH). Ini- In the presence of counterpropagating waves with slightly
tially, both fields are nearly zero and evo~lve into a nonsynchr~onou%m.ferent carrier frequencies, one expects the total field to
steady state. The parameters &fie=45, 54=—0.1, C=39.5,k  acquire a traveling modulated intensity pattern whose im-
=0.55,0=9, 0p=10,7=2,{2,=2.07x10"? t,=30.3. The value  print should appear in the spatial distribution of the popula-
chosen for), corresponds to th®, line of sodium. tion difference. This is clearly seen from the nonsynchronous

solution shown in Fig. 5, where the population difference of
which dealt, instead, with homogeneously broadened sysach atonithe probability of being in the excited state minus

Imaginary part

tems. the probability of being in the ground statis plotted as a
We recall that Ref[1] predicts the emergence of a num- function of its normalized position. A surprising feature of
ber of solutions which include the following. these results is the appearance of a substantial fraction of

(i) “Trivial” solutions matching the well known behavior atoms in an inverted state, as already noteee Fig. 7 of
of a bistable system in a unidirectional resonator. These sdzef.[1]). Unfortunately, we are still unable to offer a plau-
lutions correspond to a stationary nonzero forward field andgible physical interpretation of this interesting effect, except
zero backward field. to say that it could be evidence of underlying atomic coher-

(ii) “Self-pulsing” solutions, where both forward and ence. This grating of population is actually a traveling struc-
backward field intensities oscillate in time, and others whereaure, as slightly delayed patterns clearly show.
the backward field is absent altogether. A companion traveling wave develops also for the modu-

(i) “Nonsynchronous” solutions, where both forward lus of the atomic polarization variable, and this is illustrated
and backward field intensities are time independent, the forin Fig. 6 for the same parameters used in Fig. 5. The real and
ward field oscillates with the frequency of the injected sig-imaginary parts of the atomic polarization, instead, give in-
nal, and the backward field is frequency shifted, apparentlyricate structures which we have been unable to interpret and
as a result of a frequency pulling effect. The term “nonsyn-whose shapes change in a complex way as a function of
chronous” is meant to emphasize that the coexisting cavityime. For the sake of illustration, a plot of the polarization in
fields do not share the same carrier frequency. the complex plane shows a “dumbbell” structure that rotates

In the model described in this paper, we found the samaround the center of symmetry, preserving its shape as time
type of long time solutions, except for the one whérth  evolves(Fig. 7 shows this structure for a specific value of
backward and forward fields are self-pulsing. time).

An example of a nonsynchronous solution is shown in A special aim of our simulations was to clarify the role
Fig. 2 where we plot the imaginary parts of both forward andplayed by the atomic density grating in promoting the growth
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FIG. 4. The intensities of both field$f|2 and |b|?, labeled,
respectivelyF andB, are plotted as functions of time. The param-
eters are identical to those of Fig. 3. Note that the stationary inten-
sity of the backward field is zero.

Imaginary part

The decay time of the bunching paramei@n example is
shown in Fig. 8 is of the order of the average time between

collisions, t., and this suggests that ordered spatial struc-
tures are, at best, only transient phenomena which eventually
disappear as a result of the collisions between the optically
active atoms and the buffer gas. This feature was noted in a
number of simulations discussed in REE0], and was also
considered by others as a transient phenomeg@dn We
searched for the possible existence of a density grating under
steady state conditions by direct analysis of the spatial dis-
tribution of the atomic center of mass coordinates, but we
found no evidence for it. However, we did observe a clear
spatial structure at the time when the bunching paranteter
Real part reached its maximum value, as shown in Fig. 9.
We take this as evidence that this fragile structure may not

FIG. 3. The imaginary parts défandb are plotted as functions of be able to survive, except perhaps at much lower tempera-
their respective real parts. The forward and backward fields are
represented, respectively, by diamon@ and crossesR). Ini- 02
tially, both fields are nearly zero and evolve into a self-pulsing state.
The parameters ar&,=100, d,=—0.1, C=39.5, k=0.55, 6
=15, 0p=10, y=2, {},=2.07x 1072, t.=30.3.

ion

of the backward field and, eventually, in supporting a stable2
nontrivial steady state. For this purpose, we monitored theZ
evolution of the bunching parameter defined in RB6f.as

Population

. (29

Z|l -

N
ikz;
;1 ek

b:

Obviously, if the optically active atoms are uniformly distrib-

uted,b must be equal to zero, and its growth gives an indi- 04y 2 7 6

cation that the atomic density function has acquired a spatiai Position

structure. Indeed, the bunching parameter grows during the FiG. 5. The population inversion of each atom is plotted as a
early stage of the evolution, regardless of the subsequeminction of its position. This is done at a given time, after the fields
behavior of the system, but then it decays and becomes nefgave reached a nonsynchronous state. The thick dashed line repre-
ligibly small for long times, even in the presence of a well sents the boundary that separates groups of excited and unexcited
developed backward field. atomic states. The parameters are identical to those of Fig. 2.
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FIG. 6. The modulus of the polarization of each atom is plotted % 20 20 50 30
as a function of its position after all transients have died off. At a Time

given timet, the data are plotted with open diamonds, while at the

time t,+0.5 they are plotted with solid dots. The parameters are FIG. 8. The bunching parameter is plotted as a function of time

identical to those of Fig. 2. at the beginning of the evolution. The parameters are identical to
those of Fig. 2.

tures, where, conceivably, our semiclassical description may
no longer be applicable. Thus, on the basis of our findingswherey, is the thermalization rate due to collisions anfd‘
the mechanism of growth of the backward field appears tas the thermal equilibrium value of the momentum of flie
stem mainly from the emergence of the polarization gratingatom. At the start of the simulation, according to this scheme,
as already suggested in R¢T] on the basis of theoretical one selects a collection of random valuespgf having a
and experimental considerations. Gaussian distribution with a chosen width, and then allows
The model adopted in this work for the simulation of the atomic and field variables to evolve deterministically ac-
collisions is conceptually direct but is also computationallycording to the time-dependent equations of moti@7).
very intensive. Earlier studies of the CARf] advanced an Each atom, during the evolution, would continue to be asso-
appealing alternative scheme. In our notations, this amounisated with the initial selection of its equilibrium momentum,
to adding to Eq(27b) a phenomenological damping term of p?9. This model, to which we refer informally as the phe-
the form nomenological momentum dampirt@MD) model, has the
obvious virtue that, if one should turn off the interaction of

dp eq the atoms with the cavity field), the atomic ensemble
a0 =Y, (30
coll 0.004
0 Maximum bunching o
+ Steady state
0.003 é%
©
=
§ 2 PR
o o 0.00:
g b
£
[=2
«©
E
0.001
0
0 2 4 6
Position
Real part FIG. 9. A histogram of the atomic density in the cell is plotted

as a function of position for two different times: the open circles
FIG. 7. The imaginary part of the polarization of each atom iscorrespond to the time when the bunching parameter, shown in Fig.
plotted as a function of the corresponding real part after reachin®, acquires a maximum value; the solid diamonds correspond to the
a nonsynchronous state. The parameters are identical to those sdlution after all transients have died off. The parameters are iden-
Fig. 2. tical to those of Fig. 2.
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FIG. 11. The momentum distributions corresponding to the
Time PMD model (open circleg and to the microscopic modésolid
line). The dashed line represents a fit to a Gaussian distribution of

i i i 2 2
FIG. 10. The intensities of both field{|* and |b|", labeled, width o;;=9.47. The parameters are identical to those of Fig. 10.

respectivelyF andB, are plotted as functions of time. The results of
the PMD model are indexed with the subscript “1”; those of the the microscopic model is very significantly nonthermal, as
microscopic model are indexed by “2.” The parameters of these . . . L)
: . ~ ~ shown in Fig. 11. Intuitively, a nonthermal distribution
simulations areY|=?(2),ﬁA=2, €=50,x=0.5,0=-10,0p=10, 5|4 appear to be the more plausible of the two results.
y=2,0,=2.07x10 %, t;=30.3, for the microscopic model, and  Ager increasing the collision rate by a factor of 100, the
¥e=1/30.3 for the PMD model. two models yield identical momentum distributions having a
Gaussian profildsee Fig. 12 However, the corresponding
would relax to thermal equilibrium, by construction, in a steady state intensities are entirely different from each other:
time of the order of Iy.. We also note that the polarization the microscopic model leads to a nonsynchronous steady
relaxation process is not directly affected by the momentunstate, while the PMD calculation produces a trivial solution
relaxation, aIthougt’yL can be modified by hand to account with zero backward field, as shown in Fig. 13.
for the presence of collisiorfge., it can be made larger than  In aggregate, the solutions displayed in Figs. 11 and 12
its radiative limit to simulate collisional broadening effects suggest that, at least for the chosen parameters, the PMD
Nevertheless, it is not clear if this approach is satisfactorymodel is unable to describe possible departures from a state
nor if it has much in common with the microscopic descrip-0f thermal equilibrium. It is tempting to speculate that an
tion developed in Ref[10] and adopted in this work. We important source of disagreement between the two models is
have looked into this matter and compared the results of ouhe “noise” introduced by the microscopic simulation of the
microscopic simulations against those obtained by integrat-
ing Egs.(27) after inclusion of the phenomenological damp- %8
ing terms given by Eq(30). We have carried out this com-
parison by using the same parameters, and by selegting

=1/t.. Our results are inconclusive, but we feel that they  o.006
deserve to be reported in order to provide some guidance fo
possible future studies.

Both the microscopic and the PMD models evolve into
“plausible” long time solutions, i.e., they show no evidence
for the type of evolution displayed by the early simulations
of Ref.[5]. However, we have been unable to identify sets of
parameters for which we could find clear agreement or dis- 0002
agreement. In some instances, typically for low collision
rates, we have seen evidence of reasonable quantitativ
agreement between the stationary intensities of nonsynchra . - i ;
nous solutions(but not for their transient valugsAn ex- 48 =30 BT T (N 20 A3
ample is shown in Fig. 10.

The corresponding stationary momentum distributions, in- FIG. 12. The momentum distributions corresponding to the
stead, are very different from one another: the distributiorPMD model (open squargsand to the microscopic modésolid
associated with the PMD model is Gaussian even in the presiots. The parameters of these simulations ¥fe=90, §,=2, C
ence of forward and backward fields, and its width coincides=50, x=0.5, 9= — 10, op=10, y=2, 0,=2.07x10 2, t.=0.3
with the selected initial value, while the one resulting from for the microscopic model, angl.=1/0.3 for the PMD model.

0.004 -

Fraction
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We have carried out a comparison between the results of
our microscopic model and an earlier proposal advanced by
Bonifacio and Verkerk9]. The results do not match, but it is
probably too early to draw negative conclusions. In addition,
this earlier proposal is appealing and less computationally
intensive than ours. We feel that additional investigations are
warranted.

60
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APPENDIX

FIG. 13. The same as Fig. 10 with a 100-fold increase in the This appendix ogtlines the appro_ach used ir! thig pape_r for
collision rate. The parameters are identical to those of Fig. 12. the numerical solution of the equations of motion, including

the microscopic simulation of the collisions. As the starting
hpoint, we consider a rescaled version of E@Y), after in-

collisions. For different combinations of parameters bot . . , .
troducing the dimensionless variables

models display different kinds of solutions. As the param-
eters are varied in a fully deterministic model, one type of - P -~
long time solution gives way to a different one, beyond its pj=ﬁ—lj(, zj=kz, 7= AL (AL)
stability boundary. In the presence of noise, transitions be-

tween one domain and another, especially if the domaing,g the scaled parameters

coexist, can easily occur “spontaneously.” In the absence of

a detailed stability map of the various solutions, there seems P 0% . On—®
o . ~ ~ I ~ r ~ A
to be no easy way to resolve this interesting issue. Kk=—, y=—, Q,=—, 0Jp= , (A2)
yL ’}/L yL yi
V. SUMMARY AND CONCLUSIONS wherew,=2%k?/m is the frequency shift associated with the

) ) _ _ single-photon recoil. In terms of the new variables and pa-
In this paper we have developed a microscopic descriprameters, Eqs27) take the form

tion of the collective atomic recoil laser in an optical reso-
nator. This work complements and generalizes earlier studies d~Zj 1.
of bidirectional optical bistabilityf1] and of the CARL[5] a9 2P (A3a)
with the inclusion of the effects of collisions between the
optically active atoms and a buffer gas. The purpose of this db 1 B B
added feature is twofold: it allows the average dynamical ani_ _ “Yoi(f*e Zi—b*eZ) +c.c., (A3Db)
variables to approach physically reasonable long time behav- dr 47"
iors (steady state or self-pulsipgand it simulates an impor- q
tant aspect of the experimental settings. g -~ 7. —i7:

Our main predictions include the existence of a class of dr (L+idp) 0+ oj(Tei+be ), (A3c)
stationary solutiongnonsynchronous steady stat@swhich
the ring resonator can support both forward and backward do; 1. - ~ eq
fields oscillating with different carrier frequencies. The g, —  pYloi(f e I+b*e%)+c.cl—y(oy—07)),
growth of the backward field in the early stage of the evolu- (A3d)
tion is accompanied by the appearance of a transient struc-
ture in the atomic density profile which then disappears in a df . _ . 1 N -
time of the order of the average time between collisions. In a9 kY, —k(1+i0)f+ KZCN 2 e"ziaj ,
the presence of forward and backward cavity fields, the op- T =1
tically active atoms acquire a spatial modulation of the po-
larization and population difference which, unlike the early N
density modulation, persists fo_r ar_bitrarily. long times. Fur- _b: —7<(1+i9)b+7<20£ 2 eiEjU,' (A3f)
thermore, the momentum distribution, which we assume to dr N = !
be Gaussian at the beginning of the evolution displays sig- ~
nificant departures from the state of thermal equilibrium andvhere the range of variation of the scaled position variaple
remains in this nonequilibrium configuration for as long asis the interval 0;24]. The initial conditions correspond to a
the cavity fields are kept different from zero. state of thermal equilibrium for the optically active atoms

(A3e)
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(i.e., the spatial distribution is uniform, while the momentum consistent with the required level of accuracy. After selection
distribution is Gaussign The cavity fields are initially cho- of the time of occurrence of the first collision, we redefine
sen to be very small, for the purpose of modeling the influ-the integration step, actually used in the calculation, in such
ence of spontaneous emissi@gpical values are such that a way that the duration of the deterministic evolution is an
the initial real and imaginary parts of both fields are set equa¢xact multiple of the integration step which, in turn, we con-
to 107 19. We have verified that the chosen initial conditions strain to remain smaller than or equal to the chosen nominal
have no influence on the long time solutions, but only on thevalue. In this way, we ensure the accuracy of the numerical
details of the transient regimes. This is, typically, to be ex-integration process and, at the same time, we guard against
pected especially in the presence of the randomizing effectihe possibility that the time of the first collisidior, later in
introduced by the collisions. the evolution, the time between consecutive collisjamay

Now, we briefly consider the implementation of the colli- turn out to be smaller than the selected integration step.
sion algorithm already introduced in Sec. Ill. The main steps (d) We modify the momentum and the phase of the polar-
can be described as follows. ization of the atom that has just undergone a collision.

(a) We initialize the atomic variables, as described above. (e) We select a new collision time for this atom, while
For N atoms, this requires the selection dfi% 4 real initial ~ keeping the previously selected collision times of the other
values. atoms in the sample.

(b) For each atom we pick the random time interval be- (f) We save the relevant values of the variables for future
tween the beginning of the evolution and the first collisionanalysis.
according to the exponential distribution, E&8). (g) We go back to stefc).

(c) We integrate numerically the deterministic E¢a3) Note that this procedure does not involve the initial selec-
from 7=0 until the occurrence of the very first collision. For tion of all the collision times for all the atoms which would
this purpose, we start by selecting a nominal integration stegequire far too much computer memory.
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