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Quantum theory of resonantly enhanced four-wave mixing:
Mean-field and exact numerical solutions

Mattias T. Johnsson and Michael Fleischhauer
Fachbereich Physik, Universita¨t Kaiserslautern, D-67663 Kaiserslautern, Germany

~Received 19 June 2002; published 17 October 2002!

We present a full quantum analysis of resonant forward four-wave mixing based on electromagnetically
induced transparency~EIT!. In particular, we study the regime of efficient nonlinear conversion with low-
intensity fields that has been predicted from a semiclassical analysis. We derive an effective nonlinear inter-
action Hamiltonian in the adiabatic limit. In contrast to conventional nonlinear optics, this Hamiltonian does
not have a power expansion in the fields and the conversion length decreases with decreasing input power. We
analyze the stationary wave-mixing process in the forward scattering configuration using an exact numerical
analysis for up to 103 input photons and compare the results with a mean-field approach. Due to quantum
effects, complete conversion from the two pump fields into the signal and idler modes is achieved only
asymptotically for large coherent pump intensities or for pump fields in few-photon Fock states. The signal and
idler fields are perfectly quantum correlated which has potential applications in quantum communication
schemes. We also discuss the implementation of a single-photon phase gate for continuous quantum compu-
tation.

DOI: 10.1103/PhysRevA.66.043808 PACS number~s!: 42.50.Gy, 32.80.Qk, 42.50.Hz
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I. INTRODUCTION

The cancellation of linear absorption and refraction
resonant atomic systems by means of electromagneticall
duced transparency~EIT! @1–3# has led over the past 1
years to fascinating developments in nonlinear optics@4,5#.
For example, coherently driven, resonant atomic vapors
der conditions of EIT allow for complete frequency conve
sion in distances so short that phase matching requirem
become irrelevant@6#. It has been predicted that resonan
enhanced nonlinear interactions of light and atoms base
EIT will lead to a new regime of efficient nonlinear optics o
the level of a few photons@7–9#. Besides being of interest in
its own right, such a regime would be very important f
applications in quantum communication and informati
processing. It is clear that quantum effects will play an
sential role in this regime and the quantum dynamics m
substantially deviate from semiclassical predictions. With
exception of a few exactly solvable problems, for exam
the resonantly enhanced Kerr effect@9,10#, quantum treat-
ments of EIT-based nonlinear optics have so far been
stricted to small-fluctuation approximations. In this paper
present a full quantum analysis of a particular EIT-bas
nonlinear system, namely resonantly enhanced four-w
mixing in a double-L system with copropagating pum
modes@11–15#.

Within a semiclassical analysis it has been shown t
resonantly enhanced four-wave mixing can lead to comp
conversion of the pump-field energy into the signal and id
modes even for very weak pump fields. If the atomic degr
of freedom can be eliminated adiabatically and losses ca
ignored, the semiclassical nonlinear problem is exactly in
grable@16,17#. For counterpropagating pump modes a ph
transition to mirrorless oscillations has been predicted@18–
20# and experimentally verified@21#. A linear fluctuation
analysis has shown that close to the threshold of oscilla
1050-2947/2002/66~4!/043808~10!/$20.00 66 0438
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an almost perfect suppression of quantum noise of
quadrature amplitude of a combination mode of the gen
ated fields occurs@22,25#. In addition, sufficiently above
threshold, light fields with beat frequencies tightly locked
the atomic Raman transition and extremely low relat
bandwidth are generated@26#.

Assuming conditions of adiabatic following and conside
ing the limit of an infinitely long lived ground state cohe
ence, we derive here a classical effective nonlinear Ham
tonian which only contains field degrees of freedom.
contrast to conventional four-wave mixing@22–24#, this
Hamiltonian is a ratio of polynomial expressions and has
power expansion in the fields. As a consequence the con
sion length increases rather than decreases with growing
put power. The evolution corresponding to this classi
Hamiltonian can be mapped to a single nonlinear pendu
and can be solved exactly. However, the initial state of
pendulum corresponding to vacuum in signal and id
modes is an unstable equilibrium point. Thus the initial ev
lution is entirely governed by quantum fluctuations. Repla
ing the classical field variables in the effective Hamiltoni
by operators in normal ordered expressions, we obtai
quantized Hamiltonian. Due to its nonpolynomial characte
is not possible to apply phase space techniques to study
quantum evolution of the fields. Instead, making use of c
stants of motion, the stationary four-mode interaction is
duced to a single-mode problem, which can be solved
merically for up to 103 input photons.

We find the quantum dynamics to be significantly diffe
ent from the semiclassical prediction. In particular, compl
conversion is achieved only for input fields in a few-phot
Fock state or asymptotically for a very large coherent pum
The main features of the dynamics, such as conversion
ciency and the dominant oscillation frequency, are rep
duced by an appropriate mean-field theory which takes
account anomalous correlations. Finally the quantum sta
tics and correlations of the fields are analyzed and poten
©2002 The American Physical Society08-1
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applications for quantum communication and informati
processing discussed. For example, we show that the r
nant four-wave mixing process is an excellent source
quantum correlated photon pairs and can be used as a si
photon phase gate for continuous quantum computation.

II. ELIMINATION OF ac-STARK INDUCED NONLINEAR
REFRACTION AND DERIVATION OF AN EFFECTIVE

HAMILTONIAN

The standard resonant four-wave mixing scheme in
double-L system is shown in Fig. 1.

The interacting beams consist of two pump fields w
frequenciesnd1 and nd2 and Rabi frequenciesV1 and V2,
and two generated fields~signal and idler! described by the
complex Rabi frequenciesE1 and E2, with carrier frequen-
cies n15nd11v0 and n25nd22v0, wherev05v22v1 is
the ground-state frequency splitting. It is assumed here
the pump and generated fields are pairwise in two-pho
resonance and thus in four-photon resonance. The latter
consequence of energy conservation. The two-photon r
nance is a consequence of phase matching and semicla
treatments show that signal and idler fields are gener
precisely at those frequencies. The fields interact via
long-lived coherence on the dipole-forbidden transition
tween the metastable ground statesu1& and u2&.

The problem with this model is that associated with t
finite detuningD, which is necessary to minimize linear a
sorption, are ac-Stark induced nonlinear phase shifts. Th
phase shifts reduce the conversion efficiency from the pu
to the generated modes, and at the same time increas
distance required for conversion to take place@27#. As was
shown in@27# these problems can be overcome by modifyi
the system slightly. Instead of the original four-level sche
a five-level setup depicted in Fig. 2 is used. This symme
configuration cancels ac-Stark shifts. In order to maintain
nonlinear interaction, which is also an odd function of t
detuning, it is however necessary to choose atomic st
such that the coupling constant for one of the four transiti
u1&→u3&, u1&→u4&, u2&→u3&, andu2&→u4& has a different
sign to the other three. This can easily be accomplished
using different hyperfine levels@27#.

Choosing the driving fieldV1 to be in resonance with th
u2&→u5& transition while the second driving fieldV2 has a
detuning6D with uDu@uV2u ensures that the linear losse
due to single-photon absorption are minimized.

FIG. 1. Atoms in a double-L configuration interacting with two
driving fields (V1,2) and two generated fields (E1,2).
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The interaction of the fields with an ensemble of fiv
level atoms is described by Maxwell’s equations for t
fields and a set of density matrix equations for the ato
which determine the atomic polarizations. Under conditio
of adiabatic following and for the case ofclassicalfields the
latter are ususally solved in steady state and substituted
into the first, yielding nonlinear field equations of motio
This procedure is rather involved, particularly if sever
atomic levels need to be taken into account, and is co
pletely inadequate for quantized electromagnetic fields. C
sequently in this paper we adopt a different procedure.
first derive an effectiveclassical interaction Hamiltonian in
the adiabatic limit and then quantize the effective theory
replacing the field amplitudes by properly ordered opera
expressions.

In order to rigorously calculate the medium response
classical fields, one would have to solve the atomic den
matrix equations to all orders in all fields taking into accou
all relaxation mechanisms. Instead we use a simplified op
system model which allows to derive rather compact expr
sions for the atomic susceptibilities. In this model the int
action of an individual atom with four classical modes
described by a complex Hamiltonian, which, in a rotatin
wave approximation corresponding to slowly varying amp
tudes of the basis (u1&u2&u3&u4&u5&)T, can be written as

H int52\F 0 0 V2* V2* E1*

0 0 E2* 2E2* V1*

V2 E2 2D1 ig2 0 0

V2 2E2 0 D1 ig2 0

E1 V1 0 0 1 ig1

G .

~1!

At the input the signal and idler modesE1 and E2 are as-
sumed to have zero amplitude and all atoms are in stateu1&.
Taking into account that optical pumping out ofu1& is neg-
ligible since D@uV2u, this is a stable configuration corre
sponding to an approximate adiabatic eigenstate~to lowest
order in D21) of H. We now assume that the interactio
takes place over sufficiently long time scales, ensuring t
the atoms always stay in this approximate adiabatic eig
state. Under these conditions the Hamiltonian can be
placed by the corresponding eigenvaluel0. Solving the 4th

FIG. 2. Modified double-L system. Addition of a fifth level
allows the cancellation of destructive phase shifts.
8-2
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QUANTUM THEORY OF RESONANTLY ENHANCED FOUR- . . . PHYSICAL REVIEW A 66, 043808 ~2002!
order characteristic equations for the eigenvalues of Eq.~1!
and expanding the solutions in a power series of (V/D),
with V being a characteristic value of the Rabi frequenci
one finds to lowest order

H int→l05
\

D FV1* V2* E1E21V1V2E1* E2*

uV1u21uE1u2
G . ~2!

One recognizes two interesting and unusual features. F
the eigenvalue and correspondingly the medium polariza
cannot be expressed as a polynomial in the field amplitu
Thus the resonant interaction corresponds to an all-o
nonlinear process. Secondly, despite the resonant interac
l0 has no imaginary component and hence there are no
ear losses. This is due to quantum interference assoc
with EIT. It allows for efficient nonlinear interactions clos
to resonance without suffering from linear absorption.

To quantize the interaction problem we replace the co
plex amplitudes of the Rabi frequencies in Eq.~2! by posi-
tive and negative frequency components of correspond
operators, choosing normal order in the numerator and
denominator, multiply by the density of atoms and integr
over the interaction volume. We thus arrive at the effect
interaction Hamiltonian for the quantized electromagne
fields

Ĥ int5
\NA

D E dzF Ê1
†Ê2

†V̂1V̂21V̂1
†V̂2

†Ê1Ê2

V̂1
†V̂11Ê1

†Ê1
G , ~3!

whereN is the number density of atoms,A the effective cross
section of the beams, and

Ê1~z,t !5d51(kAn1/2\«0V â1k~ t !e1 i (nk2n1)z/c

is the slowly varying positive frequency operator of the s
nal Rabi frequency. Correspondingly,

V̂1~z,t !5d52(kAnd1/2\«0V b̂1k~ t !e1 i (nk2nd1)z/c

denotes the slowly varying positive frequency operator of
first pump Rabi frequency. The operatorsâm and b̂m obey
harmonic oscillator commutation relations.V is the quantiza-
tion volume, which is identified with the interaction volum
and di j is the dipole matrix element of theu i &→u j & transi-
tion. It should be noted that numerator and denominato
Eq. ~3! commute and thus there is no ambiguity with resp
to the ordering of the two terms.

One can easily verify that there are four independ
quantities that commute withĤ int and are therefore constan
of motion:

V̂1
†V̂11Ê1

†Ê15const, ~4!

V̂2
†V̂21Ê2

†Ê25const, ~5!

V̂1
†V̂12V̂2

†V̂25const, ~6!

V̂1
†V̂2

†Ê1Ê21V̂1V̂2Ê1
†Ê2

†5const. ~7!
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These are the quantum analogs of the classical Manley-R
relations which express energy conservation in the sys
plus an equation expressing the conservation of the rela
phase between the fields@23#. The existence of these con
stants of motion will considerably simplify the analysis.

It should be noted that the existence of these constant
motion are not artifacts caused by using an effective rat
than the full Hamiltonian. We have also pursued a more r
orous derivation, which involved writing the Heisenbe
equations of motion for the atomic and field subsystems s
erately and including decay terms. In the limitg!D and
negligible decay from the two ground states this appro
also yields Eqs.~4!–~6!. Unfortunately the equations of mo
tion obtained in this way have a number of unpleasant f
tures and are not ameanable to analytic solution, which
why we have chosen to use the effective Hamiltonian~3! as
the starting point of our discussion.

III. CLASSICAL SOLUTIONS FOR FORWARD
FOUR-WAVE MIXING

To obtain classical solutions we use Eq.~3!, and note that
the polarizationP of the medium for the probe transition
can be expressed as a partial derivative of the average sin
atom interaction energy with respect to the electric field
equivalently, the Rabi frequenciesEi ,

Pi52
Ndi

\ K ]H int

]Ei*
L e2 in i (t2z/c)1c.c., i 51,2. ~8!

A similar expression holds for the drive field polarization
Here ^•••& denotes quantum-mechanical averaging,di the
dipole matrix elements of the corresponding transition anN
is the atom density. Hence one can directly obtain the
tionary field equations in slowly-varying amplitude an
phase approximation:

dEi

dz
52 i

h i

\ K ]H int

]Ei*
L , ~9!

whereh i5Ndi
2v i /(2\ce0). This approach allows us to ob

tain the polarizations and equations of motion for the fie
without calculating the density matrix@28#.

Using Eq.~9!, going to a comoving frame via the trans
formation (z,t)→(z5z,t5t2z/c), assuming that all dipole
moments~averaged over orientations of the atoms! are ap-
proximately the same and introducing the common coupl
coefficientk5N di

2 v i /(2\ce0)53Nl2g/8p, gives the fol-
lowing equations of motion for the fields:

]

]z
E152 ik

V1* V1
2V2E2* 2E1

2E2V1* V2*

D~ uV1u21uE1u2!2
, ~10!

]

]z
E252 ik

V1V2E1*

D~ uV1u21uE1u2!
, ~11!
8-3
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MATTIAS T. JOHNSSON AND MICHAEL FLEISCHHAUER PHYSICAL REVIEW A66, 043808 ~2002!
]

]z
V15 ik

V1
2V2E1* E2* 2uE1u2E1E2V2*

D~ uV1u21uE1u2!2
, ~12!

]

]z
V252 ik

E1E2V1*

D~ uV1u21uE1u2!
. ~13!

Without sacrificing the underlying physics we can assu
that the intial intensities of the pump fields and the init
intensities of the generated fields are equal:

uV1u25uV2u2, uE1u25uE2u2. ~14!

As can easily be seen, the constants of motion imply t
asymmetric initial conditions lead to exactly the same d
namics with the intensities merely shifted up or down by
constant.

Introducing a normalized intensityy(t) with the identifi-
cationz→t,

y~ t !5
uV1~ t !u2

uV1u21uE1u2
, ~15!

ẏ~ t !522
k

D

Im~V1V2E1* E2* !

~ uV1u21uE1u2!2
, ~16!

and making use of the constants of motion~4!–~6! to reduce
the problem to one variable, we obtain the differential eq
tion

~D/k!2

2

d2y

dt2
5

d

dy
„4y2~y21!2

…. ~17!

In this form it is clear that the normalized intensity of th
drive field can be identified with a particle of massm
5D/k moving in the potentialV(y)524y2(y21)2, de-
picted in Fig. 3. Conservation of energy requires that
particle be trapped between 0<y<1. If E1(0)5E2(0)50,
i.e., there is no seeding of the generated fields, then we h
the case wherey(0)51. As is clear from the potential dia

FIG. 3. Nonlinear pendulum potential experienced by a ‘‘p
ticle’’ corresponding to the exchange energy between the pump
generated fields.k/D taken to be unity.
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gram, this corresponds to a point of unstable equilibriu
and indicates that no dynamics can take place.

Choosing to seed the generated fields with a specific
plitude and phase corresponds to moving the particle off
critical point in the potential diagram. The drive field inte
sity will then oscillate, transferring energy back and for
between the drive and generated fields according to the
stants of motion. The dynamics is however sensitive to b
the strength of the seed fields and the initial relative ph
between all four fields. The exact analytical solution sho
that the oscillation period of the energy transfer as well
the maximum conversion efficiency depend on the seed-fi
intensity and phase@16,27#.

IV. QUANTUM THEORY OF STATIONARY FORWARD
FOUR-WAVE MIXING

A. Exact numerical solution to the stationary
quantum problem

While forward four-wave mixing is relatively well under
stood in the semiclassical case, very little work has be
done on the fully quantum case, that is, where both
atomic subsystem and the interacting electromagnetic fi
are quantized. There are at least three reasons for consid
such a formulation.

First, from Eqs.~10!–~13! we see that the nonlinear inte
action of the system actually increases as the strength o
pump fields is reduced. However, when the strength is
duced to a level corresponding to only a few photons,
semiclassical approximations must fail. Nonetheless, the
treme nonlinearities experienced in conditions of very we
fields opens the intriguing possibility of nonlinear effects
the few-photon level.

Second, a semiclassical analysis is not able to cope w
the physically realistic situation where initially only tw
fields are present. Vacuum seeding through quantum fluc
tions cannot be described in the semiclassical framew
and one must always introduce at least a third field into
analysis so that conversion can take place.

Third, the behavior of the system, at least in a semicl
sical analysis, is extremely sensitive to variations in init
phase and amplitude of the pump and seed fields. When
fields are treated quantum mechanically, these parame
will often be indeterminate, particularly when starting from
vacuum field.

While an analytic solution of the fully quantum case a
pears intractable, it is nevertheless possible to obtain e
solutions numerically under stationary conditions. The s
tionary spatial evolution of the fields can be described
considering the time evolution of four harmonic oscillato
â1 ,â2 and b̂1 ,b̂2 corresponding to the generated and pum
fields, respectively, interacting via the nonlinear Hamiltoni

Ĥ int5
\kc

D F b̂1
†b̂2

†â1â21â1
†â2

†b̂1b̂2

b̂1
†b̂11â1

†â1
G , ~18!

with the following identification:Êi→âi , V̂ i→b̂i and k
53Nl2g/8p.

-
nd
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QUANTUM THEORY OF RESONANTLY ENHANCED FOUR- . . . PHYSICAL REVIEW A 66, 043808 ~2002!
The technique we use is to describe the possible state
the system in a number state basis of the fields, use
effective Hamiltonian~18! and solve the resulting Schro¨-
dinger equation numerically. We will use the notatio
unV1

nV1
nE1

nE2
& for our basis vectors, wherenV1

is the

number of photons in theV1 mode,nV2
is the number of

photons in theV2 mode and so on.
The difficulty with this technique is that even though w

have eliminated the atomic degrees of freedom by using
effective Hamiltonian, because we are considering a fo
wave mixing process the size of the Hilbert space will sc
asn4, wheren is a characteristic number of photons in ea
of the fields. Consequently, if we wished to consider, s
100 photons in each of the beams, our Hilbert space wo
be 108 dimensional, and the problem would involve diag
nalizing matrices with 1016 elements. Thus, as it stands, th
approach is not computationally feasible.

The scaling problem can be avoided by using the c
stants of motion~4!–~6!. Taken together, these relations a
low us to reduce a problem with four degrees of freedom
just one, which is essentially the energy transfer from o
field to another. For example, Eq.~5! states that when a
photon is annihilated in theV1 mode, another must be cre
ated in theE1 mode. Reduction of the problem to one with
single degree of freedom allows us to choose the basis

Cn5un12n n22n n31n n41n&, ~19!

where n1 , n2 , n3 and n4 denote the number of photon
initially in each of the four modes, andn is the single degree
of freedom denoting how many photons have been tra
ferred out of the pump mode.

B. Intensity evolution and quantum limitation
of conversion efficiency

We first consider the evolution of the fields when the i
tial states of the pump fields are given by number states. T
situation is computationally easy, and we have calcula
results for initial states consisting of up to several thous
photons. A number state consisting of several thousand p
tons, however, is not particularly experimentally realist
and thus here we consider only low photon numbers. T
results are shown in Fig. 4.

We note that the solutions are oscillatory, in qualitati
analogy to the semiclassical predictions. In the fully quant
case, however, we see that only when the initial pump fie
contain one or two photons are the oscillations comprised
just one frequency. If the initial fields contain three or mo
photons several oscillation frequencies are present, lea
to a reduced conversion efficiency. Provided long enou
interaction distances are considered, however, the diffe
oscillation frequencies come back into phase and reinfo
each other, leading to the conclusion that complete con
sion can always be obtained at some point.

Another point to note is that as the intensity of the init
pump fields is increased, the oscillation period increas
This is in agreement with the form of the Hamiltonians~3!
and ~18!. The denominator is a constant of motion and
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related to the intensity of the pump fieldV1. Thus a more
intense pump field gives a smaller interaction energy a
consequently a longer conversion distance.

Next we consider the case where the pump fields are
tially described by coherent states. This situation is cons
erably more computationally intensive, but calculations w
an average photon number of up to 1000 in each pump m

FIG. 4. Evolution of average pump photon number from init
number states. From top to bottom the initial photon number in
pump modes is 1, 2, 3, 5, and 15.

FIG. 5. Evolution of average pump photon number for coher
initial states. From top to bottom: an average photon number o
10, 100, 500, and 1000.
8-5
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FIG. 6. MandelQ parameter for initial Fock states withn52 ~left! andn510 ~right! in both pump modes. The dashed line shows
Q parameter for generated fields, and the full line for pump fields.
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have been carried out. The results are shown in Fig. 5. Th
are several overall qualitative features.

We see oscillations on a short distance scale damping
over a longer distance scale to a conversion efficiency
approximately one third. The damping at longer distan
can be explained by considering a coherent state to be su
position of number states. Each number state has a diffe
oscillation period, and consequently interfere with each ot
and get out of phase. As would be expected, on still lon
distance scales fractional revivals are seen. As the in
power is increased, the conversion distance~distance to the
first mininum in pump field intensity! increases logarithmi-
cally while the conversion efficiency asymptotically a
proaches unity. The scaling of the conversion distance w
input power in the resonantly enhanced four-wave mix
scheme is exactly opposite to the case of ordinary
resonant four-wave mixing. There the conversion dista
decreases with increasing input power.

C. Quantum correlations and fluctuations
of the generated fields

We now discuss the quantum fluctuations and correlati
of the generated fields. It is immediately evident from t
interaction Hamiltonian that when the two generated fie
start in the vacuum state, they will at all times be perfec
photon-number correlated. Only states with equal pho
number in both modes can be generated. Consequently
intensity difference between the two fields is perfec
squeezed:

^D~ â1
†â12â2

†â2!2&[0. ~20!

To characterize the statistics of photon pairs in the two g
erated modes we have calculated theQ parameter for differ-
ent input states and intensities. As can be seen from Fi
the pair statistics remain sub-Possonian (Q<0) for a Fock-
state input withn<2. For a Fock-state input withn.2 the
pair statistics have a sub-Poissonian character only for v
small interaction distances and around the revival of the
put intensity~see Fig. 4!.
04380
re

ut
f
s
er-
nt
r
r

ut

th
g
f-
e

s

s
y
n
the

-

6

ry
-

For an initial coherent state the pair statistics rem
super-Poissonian at all times. This is illustrated in Fig. 7.

D. Realization of phase gate for continuous-variable
quantum computation

The field evolution from an initial Fock state withn51
photons in each of the pump modes, discussed in Sec. IV
exhibits an interesting feature. After a single complete cy
of energy conversion to the generated fields and back,
quantum state of the system undergoes a phase chang
exactly p. This can be used to implement a phase gate
continuous quantum computation. Noting that no convers
occurs unless both input modes are excited and fixing
medium length at a value corresponding to twice the conv
sion length for a single photon input of both pump mod
one has the following evolution of states

u0,0,0,0&→u0,0,0,0&,

u1,0,0,0&→u1,0,0,0&,

FIG. 7. MandelQ parameter for initial coherent states wit
^n&510 in both pump modes. Dashed line showsQ parameter for
generated fields, and full line for pump fields.
8-6
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u0,1,0,0&→u0,1,0,0&, ~21!

u1,1,0,0&→2u1,1,0,0&.

This is a perfect realization of a phase gate.

V. MEAN-FIELD THEORY OF RESONANT FORWARD
FOUR-WAVE MIXING

In order to obtain a better understanding of the quant
dynamics of resonant four-wave mixing, in particular t
limitations and scaling of conversion efficiency as well as
conversion distance, we now derive approximate analyt
solutions within an appropriate mean-field theory. Our sta
ing point is again the effective Hamiltonian~18!, along with
the assumption that we can replace the denominator, a
stant of motion, with its expectation value. In this case
equations of motion for the fields in the Heisenberg pict
are

d

dt
b̂152

ikc

Dd
b̂2

†â1â2 , ~22!

d

dt
â152

ikc

Dd
â2

†b̂1b̂2 , ~23!

d

dt
b̂252

ikc

Dd
b̂1

†â1â2 , ~24!

d

dt
â252

ikc

Dd
â1

†b̂1b̂2 , ~25!

whered5^b̂1
†b̂11â1

†â1&.
The equations of motion for the average field intensit

^b̂1
†b̂1& and so on will contain four-field correlation func

tions, for example,

d

dz
^b̂1

†b̂1&5
ik

Dd
@^b̂1b̂2â1

†â2
†&2^â1â2b̂1

†b̂2
†&#, ~26!

where we have once again switched to a comoving fram
To proceed further we assume that all fields are Gaus

and that correlations between pump and generated fields
be neglected. This assumption is reasonable as long a
pump fields are initially in coherent states with sufficien
large amplitude. With this decorrelation approximation, t
fourth order expectation values can be expressed as se
bilinear terms of the form̂b̂i

†b̂ j& and^âi
†â j&. It is important

that we also keep anomalous correlations, such as^âi â j&, as
both pairs of fields are strongly correlated. In addition,
can use the constants of motion~4!–~6! to relate the expec
tation values of the number operators^b̂1

†b̂1&, ^b̂2
†b̂2&,

^â1
†â1& and ^â2

†â2&.
If we define ^b̂1b̂2&5b12e

iwb, ^â1â2&5a12e
iwa, and

^b̂1
†b̂1&5b, then we obtain the following set of couple

complex-valued nonlinear differential equations:
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d

dz
b125

k

Dd
~2b11!a12sin~wa2wb!, ~27!

d

dz
a125

k

Dd
~2b22d21!b12sin~wa2wb!, ~28!

d

dz
b5

2k

Dd
b12E12sin~wa2wb!, ~29!

d

dz
wb52

k

Dd
~2b11!

a12

b12
cos~wa2wb!, ~30!

d

dz
wa5

k

Dd
~2b22d21!

b12

a12
cos~wa2wb!. ~31!

To simplify this system we note that if we take expectati
values of both sides of Eq.~7! we find b12a12cos(wa2wb) is
a constant of motion. If we assume that both generated fi
start from vacuum this constant is equal to zero, and si
b12 and a12 are not always zero we see that cos(wa2wb)5
61, with the sign flip coming at the end of each conversi
cycle. This observation, in conjunction with two more co
stants of motion that can be extracted from Eqs.~27!–~31!,
enable us to reduce the set of five coupled equations to
one:

db

dz
5

2k

Db0
A~b21b2b0!~b2b0!~b2b021!, ~32!

whereb05^b̂1
†(0)b̂1(0)&5^b̂2

†(0)b̂2(0)&. This is the equa-
tion governing the evolution of the expectation value of t
number of photons in each of the pump modes, under
assumption that both pump fields have the same intensity
the two generated fields start from vacuum.

As a fourth order polynomial is involved, this differentia
equation can be~implicitly ! solved analytically in terms of
elliptic integrals, but the specific form of the solution is in
volved and not particularly illuminating. Numerical solution
to Eq.~32! are plotted in Fig. 8 for a number of initial pum
field intensities. One recognizes an oscillatory exchange
energy with a nonperfect conversion efficiency. Comparis
of the mean-field results with the fully quantum calculati
for the case of a coherent pump input shows good agreem
over the first period of energy exchange between pump
generated fields~Fig. 9!. In particular the maximum conver
sion efficiency and the conversion distance are well rep
duced. As in the quantum solutions, the conversion per
increases logarithmically with the input intensity. For larg
distances the mean-field solution remains periodic, while
oscillations in the true quantum case decay. As the inte
tion distance increases, higher order correlations build
and thus the Gaussian factorization approximation used
the mean-field theory breaks down.

Analogous to the semiclassical case, Eq.~32! can be
mapped to a nonlinear pendulum problem, withb corre-
sponding to the position of a particle with massD2/k2 mov-
ing in a potential
8-7
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V~b!52
2

b0
2 ~b21b2b0!~b2b0!~b2b021!, ~33!

whereb plays the role of the particle position and the ide
tification z→t is used.

The potential~33! is plotted in Fig. 10 for the caseb0
510, k/D51. From the shape of the potential one can s
that different dynamics is expected compared with the se
classical case, where the potential is described by Fig. 3
the semiclassical analysis, choosing the initial intensity ofa1
anda2 to be zero corresponds to starting exactly on the rig
hand peak of the potential in Fig. 3, and consequently
dynamical evolution can occur.

FIG. 8. Pump field intensity in the mean-field approximatio
From top to bottom: 10, 50, 100, 500, and 1000 photons.k/D
51; b0510.

FIG. 9. Comparison between the exact numerical soluti
~dashed line! and the mean-field theory~solid line! for a coherent
state with an average photon number of 1000.
04380
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In the mean-field theory, however, the starting positi
(b0) is always slightly to the left of the right summit~peak
position is;b01 1

2 for largeb0), and consequently oscilla
tion will always take place. As the input power is increas
the starting position asymptotically approaches the ri
hand peak, but never reaches it. From the potential~33! one
can easily obtain the conversion distance or oscillation
riod:

zconv5E
b0

b1 db

A2
2D

k
V~b!

, ~34!

whereb1 is the inner turning point. As the input power
increased, it takes longer for the oscillation to begin due
the flatter gradient of the potential, leading to the logarithm
increase in conversion period. This is in sharp contras
ordinary off-resonance four-wave mixing, where the conv
sion length decreases with input power. The effective Ham
tonian discussed in the present paper can be converted
an ordinary off-resonant four-wave mixing Hamiltonian b
replacing the intensity dependent denominatord by a con-
stant. Figure 11 gives a comparison of the conversion

.

s

FIG. 10. Nonlinear pendulum potential experienced by a ‘‘p
ticle’’ whose position corresponds to the number of photons in
pump modes.k/D51; b0510.

FIG. 11. Scaling of conversion distance as a function of
input intensity of coherent pump for ordinary off-resonance fo
wave mixing~dashed line,d5const) and resonant four-wave mix
ing ~solid line!.
8-8



h
ul

th

a
cy

(1

tu
rd
o

le
m
r

t f
se
es

at
on
to
o

th
ns
ce
bi
iv
th
th
a
a
th
m

uc
a

di

by
tor
the
ng
nu-
e
es
ex-
itial
,
cy
ton
ver-
the
rgy
plete
in-

tes
des
pli-
s of
er-

ve
a

cle
ins a
n
uta-

m
m-

s but
an-
onal
for
co-

ar
on-
ith

an
or-
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tance as a function of input power for the two cases. T
periods were found from numerical solutions to the f
quantum problem using the Hamiltonian~3! with and with-
out the resonant denominator. The peculiar feature of
resonant process working better for smaller intensities
clearly visible.

From the roots of Eq.~33! one can immediately obtain
result connecting input intensity and conversion efficien
Defining the conversion efficiencye5bmin /b0 we find

e512
1

2b0
~A4b01121!;12

1

Ab0

. ~35!

Thus in the mean-field model the conversion efficiency
2e) scales with the input pump field asb0

21/2.

VI. SUMMARY

In the present paper we have discussed the quan
theory of stationary resonant four-wave mixing in a forwa
scattering configuration. We considered the interaction
four electromagnetic fields with atoms in a modified doub
L configuration. The modified five-state coupling sche
was used instead of the standard four-level one in orde
eliminate ac-Stark induced nonlinear phase shifts@27#. This
is necessary, because a full quantum analysis shows tha
conversion cannot be obtained when these terms are pre
even in the asymptotic limit—50% conversion is the b
that can be achieved using coherent states.

To eliminate the atomic variables we assumed adiab
following and derived a classical nonlinear interacti
Hamiltonian of the four electromagnetic fields. In contrast
ordinary off-resonant four-wave mixing, the denominator
this Hamiltonian contains the sum of the intensities of
resonant pair of pump and generated fields. This is a co
quence of the infinitely long-lived two-photon resonan
which is entirely determined by power-broadening for ar
trarily small field intensities. As a consequence the effect
Hamiltonian cannot be expanded in a power series in
fields and the nonlinear interaction becomes stronger
smaller the pump field intensity. The classical evolution c
be mapped onto a one-dimensional nonlinear pendulum
solved exactly, provided small seed fields are included in
analysis. The initial evolution of the generated fields fro
vacuum, however, is entirely determined by quantum fl
tuations and thus cannot be described within a classical
proach.

To obtain a full quantum solution under stationary con
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tions we quantized the effective interaction Hamiltonian
replacingc-number expressions by properly ordered opera
products. We showed that the constants of motion of
Hamiltonian allow us to reduce the stationary wave mixi
process to a single-mode problem, which can be solved
merically for up to 103 input photons. We have analyzed th
field evolution starting from initial Fock and coherent stat
in the pump modes. In both cases an oscillatory energy
change between the modes was found. For the case of in
Fock states with up ton52 photons in both pump modes
the oscillation is purely sinusoidal with a single frequen
and complete conversion is possible. For higher input pho
numbers multiple frequencies appear and complete con
sion is only possible after several oscillation periods. In
case of coherent input fields the oscillations in the ene
exchange are damped on longer distance scales and com
conversion can be achieved only asymptotically for large
put intensities.

As the four-wave mixing process simultaneously crea
photons in two modes, the photon numbers in those mo
are perfectly quantum correlated, which has potential ap
cations in quantum communication systems. The statistic
the photon pair production is, however, mostly sup
Poissonian.

We observed an interesting property of the four-wa
mixing process when the two input fields are both in
single-photon Fock state. After a complete conversion cy
into the generated fields and back the quantum state atta
phase shift of exactlyp. This allows one to construct a
ideal phase gate for continuous variable quantum comp
tion.

In order to gain more physical insight in the quantu
four-wave mixing we developed a mean-field theory assu
ing Gaussian and independent pump and generated field
taking into account anomalous field correlations. The me
field equations can again be mapped to a one-dimensi
anharmonic pendulum and solved exactly. The solutions
the average intensities reproduce the quantum results for
herent input over the first oscillation period. In particul
analytic expressions for the conversion length and the c
version efficiency can be derived which agree very well w
the exact results.
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