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Quantum theory of resonantly enhanced four-wave mixing:
Mean-field and exact numerical solutions
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We present a full quantum analysis of resonant forward four-wave mixing based on electromagnetically
induced transparencfEIT). In particular, we study the regime of efficient nonlinear conversion with low-
intensity fields that has been predicted from a semiclassical analysis. We derive an effective nonlinear inter-
action Hamiltonian in the adiabatic limit. In contrast to conventional nonlinear optics, this Hamiltonian does
not have a power expansion in the fields and the conversion length decreases with decreasing input power. We
analyze the stationary wave-mixing process in the forward scattering configuration using an exact numerical
analysis for up to 1®input photons and compare the results with a mean-field approach. Due to quantum
effects, complete conversion from the two pump fields into the signal and idler modes is achieved only
asymptotically for large coherent pump intensities or for pump fields in few-photon Fock states. The signal and
idler fields are perfectly quantum correlated which has potential applications in quantum communication
schemes. We also discuss the implementation of a single-photon phase gate for continuous quantum compu-
tation.
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[. INTRODUCTION an almost perfect suppression of quantum noise of one
quadrature amplitude of a combination mode of the gener-
The cancellation of linear absorption and refraction inated fields occurg22,24. In addition, sufficiently above
resonant atomic systems by means of electromagnetically irthreshold, light fields with beat frequencies tightly locked to
duced transparenc{EIT) [1-3] has led over the past 10 the atomic Raman transition and extremely low relative
years to fascinating developments in nonlinear opiics].  bandwidth are generat¢@6]. _ .
For example, coherently driven, resonant atomic vapors un- Assuming conditions of adiabatic following and consider-
der conditions of EIT allow for complete frequency conver- N the limit of an infinitely long lived ground state coher-
sion in distances so short that phase matching requiremen!cé: We derive here a classical effective nonlinear Hamil-

become irrelevanf6]. It has been predicted that resonantly tonian which only contains field degrees of freedom. In
ontrast to conventional four-wave mixing@2-24, this

enhanced nonlinear interactions of light and atoms based o:f] Lo i0 of pol Al 4 dh
EIT will lead to a new regime of efficient nonlinear optics on amiltonian IS a rgno of polynomial expressions and has no
the level of a few photong7—9]. Besides being of interest in Power expansion In the fields. As a consequence the conver
) . : . sion length increases rather than decreases with growing in-
Its o_wn_rlght,_ such a regime WOUlq b_e Very m_portant forput power. The evolution corresponding to this classical
applications in quantum communication and 'nformat'onHamiItonian can be mapped to a single nonlinear pendulum
processing. It is clear that quantum effects will play an €Sy can be solved exactly. However, the initial state of the
sential role in this regime and the quantum d_ynam|c§ Ma¥endulum corresponding to vacuum in signal and idler
substantially deviate from semiclassical predictions. With thgygdes is an unstable equilibrium point. Thus the initial evo-
exception of a few exactly solvable problems, for exampleytion is entirely governed by quantum fluctuations. Replac-
the resonantly enhanced Kerr effd® 10|, quantum treat- jng the classical field variables in the effective Hamiltonian
ments of ElT-based nonlinear optics have so far been repy operators in normal ordered expressions, we obtain a
stricted to small-fluctuation approximations. In this paper wequantized Hamiltonian. Due to its nonpolynomial character it
present a full quantum analysis of a particular EIT-baseds not possible to apply phase space techniques to study the
nonlinear system, namely resonantly enhanced four-wavgquantum evolution of the fields. Instead, making use of con-
mixing in a doubleA system with copropagating pump stants of motion, the stationary four-mode interaction is re-
modes[11-15. duced to a single-mode problem, which can be solved nu-
Within a semiclassical analysis it has been shown thamerically for up to 16 input photons.
resonantly enhanced four-wave mixing can lead to complete We find the quantum dynamics to be significantly differ-
conversion of the pump-field energy into the signal and idlefent from the semiclassical prediction. In particular, complete
modes even for very weak pump fields. If the atomic degreesonversion is achieved only for input fields in a few-photon
of freedom can be eliminated adiabatically and losses can bieock state or asymptotically for a very large coherent pump.
ignored, the semiclassical nonlinear problem is exactly inteThe main features of the dynamics, such as conversion effi-
grable[16,17). For counterpropagating pump modes a phaseiency and the dominant oscillation frequency, are repro-
transition to mirrorless oscillations has been predi¢te8~  duced by an appropriate mean-field theory which takes into
20] and experimentally verifie§21]. A linear fluctuation account anomalous correlations. Finally the quantum statis-
analysis has shown that close to the threshold of oscillatioics and correlations of the fields are analyzed and potential
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FIG. 1. Atoms in a doubléx configuration interacting with two >

driving fields (2,7 and two generated field€ 5). FIG. 2. Modified doubleA system. Addition of a fifth level

allows the cancellation of destructive phase shifts.
applications for quantum communication and information
processing discussed. For example, we show that the reso- The interaction of the fields with an ensemble of five-
nant four-wave mixing process is an excellent source ofevel atoms is described by Maxwell's equations for the
quantum correlated photon pairs and can be used as a singlgelds and a set of density matrix equations for the atoms
photon phase gate for continuous quantum computation. which determine the atomic polarizations. Under conditions
of adiabatic following and for the case ofassicalfields the

II. ELIMINATION OF ac-STARK INDUCED NONLINEAR latter are ususally solved in steady state and substituted back
REFRACTION AND DERIVATION OF AN EFFECTIVE into the first, yielding nonlinear field equations of motion.
HAMILTONIAN This procedure is rather involved, particularly if several

atomic levels need to be taken into account, and is com-

The standard resonant four-wave mixing scheme in gietely inadequate for quantized electromagnetic fields. Con-
doubleA system is shown in Fig. 1. sequently in this paper we adopt a different procedure. We

The interacting beams consist of two pump fields withfirst derive an effectivelassicalinteraction Hamiltonian in
frequenciesry; and vy, and Rabi frequencie®, and(),,  the adiabatic limit and then quantize the effective theory by
and two generated fieldsignal and idler described by the replacing the field amplitudes by properly ordered operator
complex Rabi frequencieB; and E,, with carrier frequen-  expressions.
cies v1=vg+ wp and v,=vg— wg, Wherewp= wy—wy is In order to rigorously calculate the medium response to
the ground-state frequency splitting. It is assumed here thaflassical fields, one would have to solve the atomic density
the pump and generated fields are pairwise in two-photomatrix equations to all orders in all fields taking into account
resonance and thus in four-photon resonance. The latter isal relaxation mechanisms. Instead we use a simplified open-
consequence of energy conservation. The two-photon res@ystem model which allows to derive rather compact expres-
nance is a consequence of phase matching and semiclassig@ins for the atomic susceptibilities. In this model the inter-
treatments show that signal and idler fields are generategction of an individual atom with four classical modes is
precisely at those frequencies. The fields interact via thelescribed by a complex Hamiltonian, which, in a rotating-
long-lived coherence on the dipole-forbidden transition bewave approximation corresponding to slowly varying ampli-

tween the metastable ground staftes and|2). tudes of the basis|1)|2)|3)|4)|5))7, can be written as
The problem with this model is that associated with the

finite detuningA, which is necessary to minimize linear ab- -0 0 O3 % E* 1

sorption, are ac-Stark induced nonlinear phase shifts. These

phase shifts reduce the conversion efficiency from the pump 0 0 E3 —E; 07

to the generated modes, and at the same time increase they, =—7| Q, E, —A+iy, 0 0

distance required for conversion to take pl2&]. As was Q. -E 0 At 0
shown in[27] these problems can be overcome by modifying 2 2 1y
the system slightly. Instead of the original four-level scheme = 0 0 +iy; |
a five-level setup depicted in Fig. 2 is used. This symmetric @
configuration cancels ac-Stark shifts. In order to maintain the
nonlinear interaction, which is also an odd function of theAt the input the signal and idler modé&s, andE, are as-
detuning, it is however necessary to choose atomic statesimed to have zero amplitude and all atoms are in $tate
such that the coupling constant for one of the four transitiondaking into account that optical pumping out |df) is neg-
|1)—|3), |1)—14), |2)—|3), and|2)—|4) has a different ligible since A>|Q),|, this is a stable configuration corre-
sign to the other three. This can easily be accomplished bgponding to an approximate adiabatic eigenstaielowest
using different hyperfine level27]. order in A~ 1) of H. We now assume that the interaction
Choosing the driving field), to be in resonance with the takes place over sufficiently long time scales, ensuring that
|2)—|5) transition while the second driving field, has a the atoms always stay in this approximate adiabatic eigen-
detuning= A with |A|>|Q,| ensures that the linear losses state. Under these conditions the Hamiltonian can be re-
due to single-photon absorption are minimized. placed by the corresponding eigenvalug Solving the 4th

043808-2



QUANTUM THEORY OF RESONANTLY ENHANCED FOUR. .. PHYSICAL REVIEW A 66, 043808 (2002

order characteristic equations for the eigenvalues of(Eg. These are the quantum analogs of the classical Manley-Rowe

and expanding the solutions in a power series Qf X), relations which express energy conservation in the system
with Q) being a characteristic value of the Rabi frequenciesplus an equation expressing the conservation of the relative
one finds to lowest order phase between the field23]. The existence of these con-
stants of motion will considerably simplify the analysis.
| QTQ5EE,+ Q. Q.ETES It should be noted that the existence of these constants of
Hintﬂ)\ozg 10,2+ |E42 : 2 motion are not artifacts caused by using an effective rather

than the full Hamiltonian. We have also pursued a more rig-

One recognizes two interesting and unusual features. Firsprous derivation, which involved writing the Heisenberg
the eigenvalue and correspondingly the medium polarizatiofduations of motion for the atomic and field subsystems sep-
cannot be expressed as a polynomial in the field amplitude§rately and including decay terms. In the limit<A and
Thus the resonant interaction corresponds to an all-ordetedligible decay from the two ground states this approach
nonlinear process. Secondly, despite the resonant interactiodlSO Yields Eqs(4)—(6). Unfortunately the equations of mo-
\o has no imaginary component and hence there are no lirfion obtained in this way have a number of unpleasant fea-
ear losses. This is due to quantum interference associatédreés and are not ameanable to analytic solution, which is
with EIT. It allows for efficient nonlinear interactions close Why we have chosen to use the effective Hamiltor@nas

to resonance without suffering from linear absorption. the starting point of our discussion.

To quantize the interaction problem we replace the com-
plex amplitudes of the Rabi frequencies in &8} by posi- Ill. CLASSICAL SOLUTIONS FOR FORWARD
tive and negative frequency components of corresponding FOUR-WAVE MIXING

operators, choosing normal order in the numerator and the . ) )

denominator, multiply by the density of atoms and integrate  T0 obtain classical solutions we use E8), and note that
over the interaction volume. We thus arrive at the effectivet® polarizationP of the medium for the probe transitions
interaction Hamiltonian for the quantized electromagneticc@n be expressed as a partial derivative of the average single-
fields atom interaction energy with respect to the electric field or,

equivalently, the Rabi frequenciés,
N ANA
Him:Tj dz

whereN is the number density of atom& the effective cross
section of the beams, and

EIEIN.O,+QIOJEE, -
A Eta 1 Nd; [ oH; _
Ol0,+EIE, p.:_ﬂ<%> e =4y e, i=12. (8
i

: h

A similar expression holds for the drive field polarizations.

- _ s O +i(w—vy)Zlc Here (- --) denotes quantum-mechanical averagidgthe
Ei(zD)=dsi2Vvif2heoV ay(t)e dipole matrix elements of the corresponding transition lnd
is the slowly varying positive frequency operator of the sig-1S the atom density. Hence one can directly obtain the sta-

nal Rabi frequency. Correspondingly, tionary field gquqtions in slowly-varying amplitude and
phase approximation:

Q1(z,1) =ds,2\vg1/2heoV by (1) et raZe
dEi 7

IH;
denotes the slowly varying positive frequency operator of the —— =l —< 'm> ' 9)

. . ~ A dz ho\ gEF

first pump Rabi frequency. The operatag and b, obey !

harmonic oscillator commutation relationsis the quantiza- ) _

tion volume, which is identified with the interaction volume Where»;=Nd w;/(2%ceo). This approach allows us to ob-

andd;; is the dipole matrix element of thé)—|j) transi- tain the polarizations and equations of motion for the fields

tion. It should be noted that numerator and denominator oWithout calculating the density matr{28]. _

Eq. (3) commute and thus there is no ambiguity with respect Using Eq.(9), going to a comoving frame via the trans-

to the ordering of the two terms. formation (@,t)— ({=z,7=t—2z/c), assuming that all dipole
One can easily verify that there are four independenfnoments(averaged over orientations of the atgrase ap-

guantities that commute witH;, and are therefore constants prom_m_ately thes_zame and mtroducng the common coupling

of motion: coefficientk =N d w; /(2 cep) = 3NN “y/8, gives the fol-

lowing equations of motion for the fields:

Q10 +EIE,=const, (4)
o _ . Q1 QI0,E; —ESE,Q7 Q3 10
At A et —_— =—IlK ’
9292+ E2E2—Con8t, (5) aé’ 1 A(|Ql|2+|E1|2)2
Q10— 010, =const, 6
o K e —in—atheEd (11)
At AdA A A A Ara Byl K———————(—,
QIOIE,E,+0,0,E]E] = const. (7) i ? A(|Q4]2+|E,?)
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All energy in All energy in gram, this corresponds to a point of unstable equilibrium,
generated fields N /P“mp fields and indicates that no dynamics can take place.

Choosing to seed the generated fields with a specific am-

y plitude and phase corresponds to moving the particle off the
critical point in the potential diagram. The drive field inten-
sity will then oscillate, transferring energy back and forth

rY
1

02 between the drive and generated fields according to the con-

stants of motion. The dynamics is however sensitive to both
, V(y) the strength of the seed fields and the initial relative phase
-0.4

between all four fields. The exact analytical solution shows
that the oscillation period of the energy transfer as well as
the maximum conversion efficiency depend on the seed-field
-0.6 intensity and phasgl6,27).

FIG. 3. Nonlinear pendulum potential experienced by a “par-
ticle” corresponding to the exchange energy between the pump and IV. QUANTUM THEORY OF STATIONARY FORWARD

generated fields«/A taken to be unity. FOUR-WAVE MIXING
5 . 5 . A. Exact numerical solution to the stationary
g QIOETE; —|E[E1ExQ5 12 guantum problem
l— L
9¢ A Q42 +]E4]?)? While forward four-wave mixing is relatively well under-
stood in the semiclassical case, very little work has been
9 . E.E,QF done on the fully quantum case, that is, where both the

(13 atomic subsystem and the interacting electromagnetic fields
are quantized. There are at least three reasons for considering
Without sacrificing the underlying physics we can assumesuch a formulation. . .
that the intial intensities of the pump fields and the initial First, from Eqs(10)—(13) we see that the nonlinear inter-
intensities of the generated fields are equal: action c_)f the.system actually increases as the strength_of the
' pump fields is reduced. However, when the strength is re-
1042=1Q,2,  |E4|?=|E,|% (14) duce_d to a level cor_resp_onding to only a few photons, the
semiclassical approximations must fail. Nonetheless, the ex-

As can easily be seen, the constants of motion imply thaireme nonlinearit?es.experienceq .irj conditions of very weak
asymmetric initial conditions lead to exactly the same dy_ﬁelds opens the intriguing possibility of nonlinear effects at
namics with the intensities merely shifted up or down by athe few-photon level. o .
constant. Second, a semiclassical analysis is not able to cope with
Introducing a normalized intensity(t) with the identifi- the physically realistic situation_ where initially only two
cation—t, f!elds are present. Vacgum ;eedmg thrqugh quantum fluctua-
tions cannot be described in the semiclassical framework,
1Q,(1)2 and one must always int.roduce at least a third field into the
= , (15) analysis so that conversion can take place.
|Q4]2+|E,|? Third, the behavior of the system, at least in a semiclas-
sical analysis, is extremely sensitive to variations in initial
k Im(Q,Q,EFES) phase and amplitude of the pump and seed fields. When the
A (|0, [E,2)2 (16) fields are treated quantum mechanically, these parameters
1 1 will often be indeterminate, particularly when starting from a

and making use of the constants of motidi—(6) to reduce vacuum field.

. . ; . While an analytic solution of the fully quantum case ap-
:if;enproblem to one variable, we obtain the differential equa'pears intractable, it is nevertheless possible to obtain exact

solutions numerically under stationary conditions. The sta-
tionary spatial evolution of the fields can be described by
(4y2(y—1)?). (17) considering the time evolution of four harmonic oscillators

a;,a, andb,,b, corresponding to the generated and pump

) o ) ) ) fields, respectively, interacting via the nonlinear Hamiltonian
In this form it is clear that the normalized intensity of the

L Q=i
¢ A(|Q4|*+]E4|?)

y(t)

y(t)=-2

(Alk)?d? d
2 g dy

drive field can be identified with a particle of mass . hkc|blbla,a,+alalb,b,
=A/k moving in the potentiaNM(y)=—4y?(y—1)2, de- Hin="3 TR : (18
picted in Fig. 3. Conservation of energy requires that the biby+a;a,

particle be trapped betweeny<1. If E;(0)=E,(0)=0, o
i.e., there is no seeding of the generated fields, then we haweith the following identification:E;—a;, Q;—b; and «
the case wherg(0)=1. As is clear from the potential dia- =3N\?y/8r.
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The technique we use is to describe the possible states ¢ 1 T . T T T
the system in a number state basis of the fields, use the_
effective Hamiltonian(18) and solve the resulting Schro g°~5' ]
[l f [l

dinger equation numerically. We will use the notation .
|anannElnE2> for our basis vectors, whereq is the 125_ ' ' ' ' _
number of photons in thé€), mode,nQ2 is the number of ‘E1 L .
photons in thel, mode and so on. 0.

The difficulty with this technique is that even though we
have eliminated the atomic degrees of freedom by using ar
effective Hamiltonian, because we are considering a four- &
wave mixing process the size of the Hilbert space will scale
asn?®, wheren is a characteristic number of photons in each
of the fields. Consequently, if we wished to consider, say,
100 photons in each of the beams, our Hilbert space woulc =
be 1¢ dimensional, and the problem would involve diago- 1
nalizing matrices with 1% elements. Thus, as it stands, this
approach is not computationally feasible. n

The scaling problem can be avoided by using the con- & 5
stants of motion(4)—(6). Taken together, these relations al- 0
low us to reduce a problem with four degrees of freedom to 5 10 1 2 5 0 ® o
just one, which is essentially the energy transfer from one Interaction distance (A/x)
field to another. For example, E@5) states that when a
photon is annihilated in th€; mode, another must be cre-
ated in theE; mode. Reduction of the problem to one with a
single degree of freedom allows us to choose the basis

R W o
T

—_
T

DN — PO o

1

=3

FIG. 4. Evolution of average pump photon number from initial
number states. From top to bottom the initial photon number in the
pump modes is 1, 2, 3, 5, and 15.

related to the intensity of the pump field,. Thus a more
intense pump field gives a smaller interaction energy and
consequently a longer conversion distance.

whereny, n;, n3 andn, denote the number of photons — Next we consider the case where the pump fields are ini-
initially in each of the four modes, artis the single degree 51y described by coherent states. This situation is consid-
of freedom denoting how many photons have been transsyaply more computationally intensive, but calculations with

ferred out of the pump mode. an average photon number of up to 1000 in each pump mode

¥,=|n;—n nm—n ng+n ng+n), (19

B. Intensity evolution and quantum limitation 4 T T | T
of conversion efficiency N
i L
We first consider the evolution of the fields when the ini- =
tial states of the pump fields are given by number states. Thi 0 : | : : : | : | :

situation is computationally easy, and we have calculated
results for initial states consisting of up to several thousand> 51
photons. A number state consisting of several thousand pho<
tons, however, is not particularly experimentally realistic,  {()) ! ' : } : : } : :
and thus here we consider only low photon numbers. Theo
results are shown in Fig. 4. % 50

We note that the solutions are oscillatory, in qualitative <
analogy to the semiclassical predictions. In the fully quantum S0r~+—Ft—~—+—+—+—+—+—
case, however, we see that only when the initial pump field58
contain one or two photons are the oscillations comprised ot
just one frequency. If the initial fields contain three or more = N
photons several oscillation frequencies are present, leadin 1000 ' ' ' '
to a reduced conversion efficiency. Provided long enoughg 500
interaction distances are considered, however, the differenS
oscillation frequencies come back into phase and reinforce & ! ! ! .
each other, leading to the conclusion that complete conver 0 10 20 30 40 50
sion can always be obtained at some point. . .

Another point to note is that as the intensity of the initial Interaction distance (A/k)
pump fields is increased, the oscillation period increases. FIG. 5. Evolution of average pump photon number for coherent
This is in agreement with the form of the Hamiltoniaf® initial states. From top to bottom: an average photon number of 4,
and (18). The denominator is a constant of motion and is10, 100, 500, and 1000.
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—_ Qparameter forQ), |

—_ Qparameter for 2,
-0.17 _ _. Qparameter for E,

1
1
A 6l --- Q parameter for E, i

-0.2r
-0.3r
=041
=051
-0.61
-0.7
-0.8

-0.9

-1

| . NS s : . 20 Interaction distance (A/)

FIG. 6. MandelQ parameter for initial Fock states with=2 (left) andn=10 (right) in both pump modes. The dashed line shows the
Q parameter for generated fields, and the full line for pump fields.

have been carried out. The results are shown in Fig. 5. There For an initial coherent state the pair statistics remain
are several overall qualitative features. super-Poissonian at all times. This is illustrated in Fig. 7.
We see oscillations on a short distance scale damping out
over a longer distance scale to a conversion efficiency of
approximately one third. The damping at longer distances
can be explained by considering a coherent state to be super-
position of number states. Each number state has a different The field evolution from an initial Fock state with=1
oscillation period, and consequently interfere with each othephotons in each of the pump modes, discussed in Sec. IV B,
and get out of phase_ As would be expected’ on still |0ngeﬁXhibitS an interesting feature. After a single Complete Cycle
distance scales fractional revivals are seen. As the inpf energy conversion to the generated fields and back, the
power is increased, the conversion distafdistance to the quantum state of the system undergoes a phase change of
first mininum in pump field intensityincreases logarithmi- exactly 7. This can be used to implement a phase gate for
cally while the conversion efficiency asymptotically ap- continuous quantum computation. Noting that no conversion
proaches unity. The scaling of the conversion distance witfccurs unless both input modes are excited and fixing the
input power in the resonantly enhanced four-wave mixingmedium length at a value corresponding to twice the conver-
scheme is exactly opposite to the case of ordinary offsion length for a single photon input of both pump modes
resonant four-wave mixing. There the conversion distanc@ne has the following evolution of states
decreases with increasing input power.

D. Realization of phase gate for continuous-variable
guantum computation

|0101010_>|01010101

C. Quantum correlations and fluctuations
of the generated fields |1,0,0,0—/1,0,0,0,

We now discuss the quantum fluctuations and correlations

of the generated fields. It is immediately evident from the = U parameter for 3,
interaction Hamiltonian that when the two generated fields 4ff __. Qparameter for E,
start in the vacuum state, they will at all times be perfectly a5k
photon-number correlated. Only states with equal photon N ;
number in both modes can be generated. Consequently the  3f ," \‘ I,’ Y - .
intensity difference between the two fields is perfectly 25l L \\ K \\ n S
squeezed: Y N A -7
21 :I \‘ ’
(A(aja;—ajay)?)=0. (20 Y
1 | ”I
To characterize the statistics of photon pairs in the two gen- osl W
erated modes we have calculated @@arameter for differ- ’
ent input states and intensities. As can be seen from Fig. 6 0

Ut state: \ ; b 5 10 15 20 25 30 35 40
the pair statistics remain sub-Possoni&<(0) for a Fock- Interaction di (A/K)
state input withn<2. For a Fock-state input with>2 the raction distance

pair statistics have a sub-Poissonian character only for very FIG. 7. MandelQ parameter for initial coherent states with
small interaction distances and around the revival of the in¢n)=10 in both pump modes. Dashed line sha@parameter for

put intensity(see Fig. 4. generated fields, and full line for pump fields.
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|0,1,0,0—]0,1,0,0, (21 d K )
d_gblzzA_d(zb+ 1)agpsin(ea— ¢p), 27
[1,1,0,0—~—11,1,0,0.
d
This is a perfect realization of a phase gate. d—galzzé(Zb—Zd—l)blzsin(goa— ®b), (28
V. MEAN-FIELD THEORY OF RESONANT FORWARD d 24
FOUR-WAVE MIXING d_gb: KgP1ERSiNea— o), (29)
In order to obtain a better understanding of the quantum
dynamics of resonant four-wave mixing, in particular the d K a,
limitations and scaling of conversion efficiency as well as the azee= " Ag 2P+ 1)~ costea—en), (30
conversion distance, we now derive approximate analytical 12
solutions within an appropriate mean-field theory. Our start- d

ing point is again the effective Hamiltonidfg), along with d_(Pa:ﬁ(Zb_ 2d—1)—2cod @a— @) (31
the assumption that we can replace the denominator, a con- { ai

stant of motion, with its expectation value. In this case the o _ ) )
equations of motion for the fields in the Heisenberg pictureT© Simplify this system we note that if we take expectation

are values of both sides of Eq7) we find by,a,,C0Sp,— ¢p) iS
a constant of motion. If we assume that both generated fields
d. iKC o 1n start from vacuum this constant is equal to zero, and since

giP1= ~ ag P2z, (22) by, anday, are not always zero we see that eas{ ¢p)=

+1, with the sign flip coming at the end of each conversion
cycle. This observation, in conjunction with two more con-

—a;=— — asb;b,, (23)  stants of motion that can be extracted from E@)—(31),
dt Ad enable us to reduce the set of five coupled equations to just
one:
dB iKCB a,a (24)
dtP2= " ag P db  2c
ar- A—bOJ(b +b=bg)(b—bo)(b—bo—1), (32
d. B iKCATB b )
dt?2= ~ ag APz (5 \vhereby=(BI(0)by(0))=(B1(0)B,(0)). This is the equa-

tion governing the evolution of the expectation value of the
whered=(blb,+ala,). number of photons in each of the pump modes, under the

The equations of motion for the average field intensitiesassumption that both pump fields have the same intensity and

(b1b,) and so on will contain four-field correlation func- € WO generated fields start from vacuum. .
tions, for example As a fourth order polynomial is involved, this differential

equation can beéimplicitly) solved analytically in terms of

d i« elliptic integrals, but the specific form of the solution is in-

d_<6161>: m[(ﬁlﬁzéIéD_<5152616;>], (26) volved and not particu_larly_ illuminating. Numeri(_:a_l _solutions
¢ to Eq.(32) are plotted in Fig. 8 for a number of initial pump

field intensities. One recognizes an oscillatory exchange of

where we have once again switched to a comoving frame. energy with a nonperfect conversion efficiency. Comparison
To proceed further we assume that all fields are Gaussiags the mean-field results with the fully quantum calculation

and that correlatiqns betwee_n pump and generated fields ca§ the case of a coherent pump input shows good agreement
be neglected. This assumption is reasonable as long as tGer the first period of energy exchange between pump and
pump fleld_s are |n|F|aIIy in coherent _states W|th_suff_|C|entIy generated field€Fig. 9. In particular the maximum conver-
large amplitude. Wlth_ this decorrelation approximation, thegjon efficiency and the conversion distance are well repro-
fourth order expectation values can be expressed as sets @iced. As in the quantum solutions, the conversion period
bilinear terms of the forngb/b;) and(aa;). It is important  increases logarithmically with the input intensity. For larger
that we also keep anomalous correlations, suc{égﬁq% as distances the mean-field solution remains periodic, while the
both pairs of fields are strongly correlated. In addition, weoscillations in the true quantum case decay. As the interac-
can use the constants of moti¢H—(6) to relate the expec- tion distance increases, higher order correlations build up
tation values of the number operatotdib,), (bib,), and thus the Gaussian factorization approximation used in
<afa ) and@fé ) the mean-field theory brea_ks do_wn.

1%1 292/ ) A . Analogous to the semiclassical case, E§2) can be
It we define (b;by)=b£'*, (a;a;)=a;2'¥?, and  mapped to a nonlinear pendulum problem, withcorre-
(blb;)=b, then we obtain the following set of coupled, sponding to the position of a particle with mas#& «2 mov-
complex-valued nonlinear differential equations: ing in a potential
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10
° V(y)
'; 5L 1000 P
c
50 500
(=]
0
[} -
c B 5 10 y
8 100 -500
"o osol
€ ~1000
o 500
3 FIG. 10. Nonlinear pendulum potential experienced by a “par-
n 250r ticle” whose position corresponds to the number of photons in the
[=
pump modesx/A=1; by=10.
= 1000
=] In the mean-field theory, however, the starting position
w007 (bo) is always slightly to the left of the right summipeak
c position is~bgy+ 3 for largebg), and consequently oscilla-
0 , : > : e
0 10 20 50 40 50 tion will always take place. As the input power is increased
Interaction distance (A/K) the starting position asymptotically approaches the right

hand peak, but never reaches it. From the pote(@@l one
can easily obtain the conversion distance or oscillation pe-

riod:
by db
2 ) Zeonv— Jb oA ) (34)
- _ _ _h.— 0
V(b) bg b +b—bg)(b—bg)(b—by—1), (33 /_TV(b)

where b, is the inner turning point. As the input power is
tification {—t is used. increased, it ta_lkes longer for the oscillgtion to begin (_Jlue to
The potential(33) is plotted in Fig. 10 for the casb, Fhe flatter_gradlent Of the pofcentlal, !ea_dmg to the logarithmic
dncrease in conversion period. This is in sharp contrast to

=10, k/A=1. From the shape of the potential one can se di ff ¢ . here th
that different dynamics is expected compared with the semjordinary ofi-resonance four-wave mixing, where the conver-

classical case, where the potential is described by Fig. 3. | lon Iength decrea_lses with input power. The effective Ham_il-
the semiclassical analysis, choosing the initial intensitg,of onian discussed in the present paper can be converted into

anda, to be zero corresponds to starting exactly on the right—an ordinary off-resonant four-wave mixing Hamiltonian by

ran pak of e potentaln i3, and consequenty ndCERES e DI Sepenient ey 0 b
dynamical evolution can occur. - 19 9 P

FIG. 8. Pump field intensity in the mean-field approximation.
From top to bottom: 10, 50, 100, 500, and 1000 photatis\
=1; by=10.

whereb plays the role of the particle position and the iden-

8 r T
1000 —a— Resonant 4WM
7H{ —= - Off-resonant 4WM
¥ 4l
soof 3 s
= '%, 5r
2 S
g eoof 2 4
c
= k=]
§ g 3l
g 400 2
0-4 o -
8 2
2001 1t
G I I I I I I
. ) . 0 5 10 15 20 25 30
% 5 10 15 20 Input power (arbitrary units)

Interaction distance (A/K) _ _ _ .
FIG. 11. Scaling of conversion distance as a function of the

FIG. 9. Comparison between the exact numerical solutionsnput intensity of coherent pump for ordinary off-resonance four-
(dashed ling and the mean-field theor§solid line) for a coherent  wave mixing(dashed lined=const) and resonant four-wave mix-
state with an average photon number of 1000. ing (solid line).
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tance as a function of input power for the two cases. Thdions we quantized the effective interaction Hamiltonian by
periods were found from numerical solutions to the full replacingc-number expressions by properly ordered operator
guantum problem using the Hamiltoni&B) with and with-  products. We showed that the constants of motion of the

out the resonant denominator. The peculiar feature of thélamiltonian allow us to reduce the stationary wave mixing
resonant process working better for smaller intensities iprocess to a single-mode problem, which can be solved nu-

clearly visible. merically for up to 18 input photons. We have analyzed the
From the roots of Eq(33) one can immediately obtain a field evolution starting from initial Fock and coherent states
result connecting input intensity and conversion efficiencyin the pump modes. In both cases an oscillatory energy ex-
Defining the conversion efficienag= b,,/by we find change between the modes was found. For the case of initial

Fock states with up tm=2 photons in both pump modes,

1 1 the oscillation is purely sinusoidal with a single frequency
e=1———(4by+1-1)~1— —. (35  and complete conversion is possible. For higher input photon
2bg \/—o numbers multiple frequencies appear and complete conver-

) ] ) o sion is only possible after several oscillation periods. In the
Thus in the mean-field model the conversion efficiency (1case of coherent input fields the oscillations in the energy

; ; : ~1/2 )
—e) scales with the input pump field dg =< exchange are damped on longer distance scales and complete
conversion can be achieved only asymptotically for large in-
VI. SUMMARY put intensities.

As the four-wave mixing process simultaneously creates
ramtons in two modes, the photon numbers in those modes
are perfectly quantum correlated, which has potential appli-
cations in quantum communication systems. The statistics of

In the present paper we have discussed the quantu
theory of stationary resonant four-wave mixing in a forward
scattering configuration. We considered the interaction o
four electromagnetic fields with atoms in a modified double-, photon pair production is, however, mostly super-

A configuration. The modified five-state coupling SChemePoissonian.

g?r‘?]irl:;feda:g-s‘é?:i ?;JSSeztigdrﬁi;de;?ur::\s/gls?ﬁl?z%mT?]riger " We observed an interesting property of the four-wave
P ' ixing process when the two input fields are both in a

s hecessary, because a fu.II guantum analysis shows that f% ngle-photon Fock state. After a complete conversion cycle
conversion cannot be obtained when these terms are Presels the generated fields and back the quantum state attains a

. e E o R
even in the asymptotic limit—50% conversion is the beStphase shift of exactlyr. This allows one to construct an

that can b? achieved using coherent states. . .ideal phase gate for continuous variable quantum computa-
To eliminate the atomic variables we assumed adiabati on

following and derived a classical nonlinear interaction In order to gain more physical insight in the quantum

Hamiltonian of the four electromagnetic fields. In contrast toc) o mixing we developed a mean-field theory assum-

ordinary off-resonant four-wave mixing, the denominator of; : . .
this Hamiltonian contains the sum of the intensities of theIng Gaussian and independent pump and generated fields but

. . o taking into account anomalous field correlations. The mean-
resonant pair of pump and generated fields. This is a conse- 4 equations can again be mapped to a one-dimensional

\?vﬁcnr? ?S C:mti?; 'rgg;g?ginlgggt;I'Vegwgrzggﬁgginreigpz?gf anharmonic pendulum and solved exactly. The solutions for
y yp 9 the average intensities reproduce the quantum results for co-

trarily small field intensities. As a consequence the ef'fectivenerent input over the first oscillation period. In particular

Hamlltoman cannot_be ex_panded_ N a power Series in th%malytic expressions for the conversion length and the con-
fields and the nonlinear interaction becomes stronger the

S X : . version efficien n rived which agree very well with
smaller the pump field intensity. The classical evolution cal ersion efficiency can be derived which agree very well wit

X ; . Nhe exact results.
be mapped onto a one-dimensional nonlinear pendulum and

solved exactly, provided small seed fields are included in the

analysis. The initial evolution of the generated fields from

vacuum, however, is entirely determined by quantum fluc-

tuations and thus cannot be described within a classical ap- M.J. acknowledges financial support by the European

proach. Union research network COCOMO and the Deutsche For-
To obtain a full guantum solution under stationary condi-schungsgemeinschaft, Grant No. FL 210/11.
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