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Quantum interference and phase-dependent spectrum of resonance fluorescence
of a three-level V-type atom
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The spectrum of quantum fluctuations in phase quadratures of resonance fluorescence of a three-level V-type
atom driven by a coherent field is investigated. We find that quantum interference between two decay channels
of the atom can greatly modify the spectrum. We show that for weak excitation, quantum interference can
greatly enhance squeezing and change the phase quadrature in which the maximum squeezing occurs. We also
show that for strong and far-off-resonance excitation two deeply squeezing peaks appear at the Rabi sideband
frequencies and quantum interference broadens the squeezing peaks.
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I. INTRODUCTION

Resonance fluorescence of atoms illuminated by cohe
fields can display a number of interesting quantum featu
of the electromagnetic field. Theoretical investigations a
experimental observations have revealed nonclassical
nomena in resonance fluorescence of driven atoms suc
photon antibunching@1# and sub-Poissonian photon statisti
@2#. Theoretical studies also showed that the quantum n
level in one of the phase quadratures of resonance fluo
cence of a driven two-level atom can be lower than the sh
noise limit for the vacuum of the electromagnetic field@3#.
Squeezing of the quantum noise in phase quadrature
resonance fluorescence of a driven three-level atom w
various level configurations was also extensively studied@4#.
The phenomenon of squeezing in resonance fluoresc
may be investigated by two ways: observing variances ei
in total phase quadratures or in frequency components
phase quadratures. In the latter one, the radiation field
driven atom is mixed with a local oscillator field having
controllable fixed phase relative to the field that drives
atom, and then quantum fluctuations in a selected ph
quadrature of resonance fluorescence can directly be m
sured@5#. Using a spectrum analyzer, this homodyne det
tion results in a phase-dependent spectrum of resonance
rescence, i.e., a squeezing spectrum@6,7#. Collett, Walls, and
Zoller @6# showed that the quantum noise in the out-of-ph
quadrature of resonance fluorescence of a driven two-l
atom around the atomic frequency for resonance weak e
tation can be squeezed down lower than the shot-noise li
Zhou and Swain@8# calculated the normally ordered nois
spectra of the in-phase and the out-of-phase quadrature
resonance fluorescence of a single two-level atom stron
driven by a coherent field, including either the effects o
finite laser bandwidth due to phase diffusion or a frequen
tunable cavity with a low-Q value. They showed that fo
far-off-resonance and strong excitation the resonance fl
rescence can exhibit two-mode squeezing at the Rabi s
band frequencies. In contrast to the theoretical work that p
attention to squeezing in the in- and out-of-phase qua
tures, the recent experimental work@5# has measured th
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noise spectra in different phase quadratures of the reson
fluorescence of a coherently driven two-level atom with
long lifetime and found that the maximum squeezing occ
in the quadrature with a phase near6p/4 relative to the
driving field. This experiment makes the study of the spec
of quantum fluctuations in phase quadratures of the re
nance fluorescence of a coherently driven atom a more
tractive subject.

The spectrum of quantum fluctuations in the positive f
quency part of the resonance fluorescence of a driven ato
in general not phase dependent. Recent studies have sh
that quantum intereference between different atomic de
channels can lead to quenching spontaneous emission
then greatly modify the phase-independent spectrum suc
making ultranarrow central lines@9–11#. Swain, Zhou, and
Ficek @12# also showed that under strong-field excitatio
quantum interference can lead to anticorrelations of phot
emitted from excited levels of a three-level V-type ato
Rice and Carmichael@13# found that the incoherent part o
the intensity spectrum may be decomposed into the sum
squeezing spectra of the in-phase and the out-of-ph
quadratrues of resonance fluorescence. So, one could e
that quantum interference may also greatly modify t
squeezing spectrum. On the other hand, as pointed ou
Ref. @5#, phase-dependent resonance fluorescence spectr
tained by the homodyne detection of scattered radiation fr
atoms that are driven by a coherent field are much richer t
ordinary phase-independent resonance fluorescence sp
and present many novel features. For example, Zhao
co-workers @14# showed that for off-resonance excitatio
pairs of phase-dependent spectra with phases of opp
sign are striking differences, which arise entirely from tim
ordering. To our knowledge, however, it has not been inv
tigated until now how quantum interference affects sque
ing phenomena in atomic resonance fluorescence
squeezing spectra. In this paper, employing a three-le
V-type atom that is driven by a coherent light and coupled
vacuum modes of the electromagnetic field in free space,
will study this open problem.

II. MODEL AND PHASE-DEPENDENT SPECTRUM

The atomic level scheme under consideration consist
two closely upper and one lower levels@10#. The excited
©2002 The American Physical Society06-1
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levels u2& with energy\v2 and u1& with energy\v1 are
seperated by\v21 and are coupled to a common groun
level u0& with zero energy by a single-mode laser field
frequencyvL , amplitudeEL , and polarization vectoreL .
The excited levels are also coupled to the ground level
vacuum modes of the electromagnetic field. Here, consi
ing that the level splitting between the excited states is v
small, we assume that the vacuum mode couplingu2& to u0&
is the same as one couplingu1& to u0&. The direct transition
between the excited levels is electric-dipole forbidden. Us
a unit such that\51, one can write the Hamiltonian of th
system in the frame rotating with the laser frequencyvL as
the form

H5HC1HR , ~1!

where

HC5~D2v21!u1&^1u1Du2&^2u1@V1A101V2A201H.c.#,
~2!

HR5(
k

@gk
(1)eiDktakA101gk

(2)eiDktakA201H.c.#. ~3!

Above,D5v22vL is detuning between the transition fro
the uppermost level to the ground level and the laser fi
Dk5vL2vk detuning between the laser field and thekth
vacuum mode at frequencyvk , V i5ELeL•mW i0( i 51,2) are
the Rabi frequencies of the driving laser, andmW i0 is the di-
pole moment of the atomic transition fromu i & to u0&, which
is assumed to be real. In Eqs.~2! and~3!, the atomic operator
Ai j 5u i &^ j u( i , j 51,2,0), ak(ak

†) is the annihilation~creation!
operator for thekth vacuum mode andgk

( i )( i 51,2) is the
coupling constant between thekth vacuum mode and th
atomic transition fromu i & to u0&.

According to the general reservoir theory with th
Weisskopf-Wigner approximation@16#, we can derive the
following equations of motion for the reduced atomi
density-matrix elementsr i j 5tr(rAji ) wherer is the density-
matrix operator of the system@11#,

ṙ1052@ i ~D2v21!1 1
2 g1#r102

1
2 g12r201 iV2r12

1 iV1~12r2222r00!, ~4!

ṙ2052@ iD1 1
2 g2#r202

1
2 g12r101 iV2~r222r00!1 iV1r21,

~5!

ṙ005g1~12r00!1~g
2
2g

1
!r221g

12
~r121r21!

2 iV2~r202r02!2 iV1~r102r01!, ~6!

ṙ2152@ iv211
1
2 ~g11g2!#r212

1
2 g12~12r00!1 iV1r20

2 iV2r01, ~7!

ṙ2252g2r222
1
2 g12~r121r21!2 iV2~r022r20!. ~8!

When arriving at Eqs.~4!–~8!, we have used the normaliza
tion conditionr111r221r0051 to cancelr11. In the above
04380
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equations,g1 and g2 are spontaneous decay rates from t
two excited levels to the ground level, which are given
g i5umW i0u2v i

3/3p«0c3\( i 51,2). In addition, using the gen
eralized reservior theory in deriving Eqs.~4!–~8!, we have
the crossing term(k(gk

(1))* gk
(2) . With the Weisskopf-

Wigner approximation, these cross terms can easily be w
ten as mW 10•mW 20v1,2

3 /3p«0c3\. Considering that the uppe
level splittingv21 is much smaller than the optical transitio
frequenciesv1,2, we have relpaced these terms byg12

5pAg1g2, wherep5mW 10•mW 20/umW 10uumW 20u. In Eqs. ~4!–~8!,
the terms related tog125pAg1g2 represent the effect o
quantum interference between spontaneous-emission p
ways fromu1& to u0& and fromu2& to u0&. It reflects the fact
that as the atom decays from the excited sublevelu1&, it
drives the other excited sublevelu2& to decay and vice versa
because of the existence of atomic coherence betweenu1&
and u2&. We notice that in the above equations the us
decay terms proportional tog1,2 are always paired with the
decay interference terms proportional tog125pAg1g2 as
long aspÞ0. These two terms may cancel each other a
result in the depression of spontaneous emission. This q
tum destructive interference can greatly modify the intens
spectrum of resonance fluorescence@9–11#. Here, we are in-
terested in quantum interference how to modify the sque
ing spectrum of resonance fluorescence, which is phase
pendent.

Let E(1)(r ,t) andE(2)(r ,t) be operators for the positive
and negative frequency parts of the fluorescent field, resp
tively. We introduce a slowly varying electric-field operat
with phaseu,

Eu~r ,t !5 1
2 @E(1)~r ,t !ei (vLt1u)1E(2)~r ,t !e2 i (vLt1u)# ~9!

5E1~r ,t !cosu1E2~r ,t !sinu, ~10!

where E1(r ,t)5@E(1)(r ,t)exp(ivLt)1E(2)(r ,t)exp
(2ivLt)#/2 and E2(r ,t)5 i @E(1)(r ,t)exp(ivLt)
2E(2)(r ,t)exp(2ivLt)#/2 are the in-phase and out-of-pha
quadratures of the fluorescent field relative to the cohe
driving field, respectively. The normally ordered variance
Eu(r ,t) can be written as

^:@DEu~r ,t !#2:&5^:Eu~r ,t !,Eu~r ,t !:&

5S 1

2p D 2E
2`

`

dv1dv2E
2`

`

dt1dt2

3ei [v1(t2t1)1v2(t2t2)]

3T̂^:Eu~r ,t1!,Eu~r ,t2!:&, ~11!

where ^A,B&5^A•B&2^A&•^B&. As Knöll, Vogel, and
Welsch did@15#, to ensure each of correlation functions
the positive and negative frequency parts of the electric fi
in ^:Eu(r ,t1),Eu(r ,t2):& has a correct time order and is me
surable, we explicitly introduce the time ordering operatorT̂
in Eq. ~11!, which is defined as
6-2
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T̂^:Eu~r ,t1!,Eu~r ,t2!:&

5 1
4 @^Eu

(1)~r ,t1!,Eu
(1)~r ,t2!&ei [vL(t11t2)12u]Q~ t12t2!

1^Eu
(1)~r ,t2!,Eu

(1)~r ,t1!&ei [vL(t11t2)12u]Q~ t22t1!

1^Eu
(2)~r ,t1!,Eu

(2)~r ,t2!&e2 i [vL(t11t2)12u]Q~ t22t1!

1^Eu
(2)~r ,t2!,Eu

(2)~r ,t1!&e2 i [vL(t11t2)12u]Q~ t12t2!

1^Eu
(2)~r ,t1!,Eu

(1)~r ,t2!&eivL(t22t1)

1^Eu
(2)~r ,t2!,Eu

(1)~r ,t1!&eivL(t12t2)#, ~12!

whereQ is a unit step function. In steady state, Eq.~11! can
be written as

^:@DEu~r !#2:&5
1

2pE2`

`

dvE
2`

`

dteivtT̂^:Eu~r ,t !,Eu

3~r ,t1t!:&. ~13!

According to this expression, one can introduce the sque
ing spectral density@15#

:S~r ,v,u!ª
1

2pE2`

`

dteivtT̂^:Eu~r ,t !,Eu~r ,t1t!:&.

~14!

In the radiation zone, the positive frequency part of t
fluorescent light emitted by the atom takes the form@17#

Eu
(1)~r ,t !52

1

c2r
Fv1

2n3~n3mW 01!A01S t2
r

cD1v2
2n

3~n3mW 02!A02S t2
r

cD Ge2 ivL(t2r /c), ~15!

wheren is a unit vector in the direction of observation. Su
pose thatv1'v2 andn is perpendicular to the atomic dipol
momentsmW 01 andmW 02. Equation~15! can be rewritten as

Eu
(1)~r ,t !5 f ~r !@mW 01A01~ t̂ !1mW 02A02~ t̂ !#e2 ivL t̂, ~16!

where f (r )5v1
2/c2r and t̂5t2r /c. Substituting Eq.~16!

into Eq. ~12!, we obtain

T̂^:Eu~r ,t !,Eu~r ,t1t!:&

5 1
2 m2f 2~r !Re$@^A01~ t̂1t!,A01~ t !&1^A02~ t̂1t!,

3A02~ t̂ !&1p„^A01~ t̂1t!,A02~ t̂ !&

1^A02~ t̂1t!,A01~ t̂ !&…#e2i (u1vLr /c)

1^A10~ t̂1t!,A01~ t̂ !&1^A20~ t̂1t!,A02~ t̂ !&

1p„^A10~ t̂1t!,A02~ t̂ !&1^A20~ t̂1t!,A01~ t̂ !&…%, ~17!

where t.0, ^Ai j (t)&5tr @r(t)Aji #5r j i (t) and m5m01
'm02. So, to calculate the squeezing spectrum~14!, one
04380
z-

e

needs to know the atomic two-time correlation functions
Eq. ~17!. In the following, for simplicity, we will drop the hat
symbol on time variablet.

We now introduce a column vector

ĉ~ t !5@^A01~ t !&,^A02~ t !&,^A10~ t !&,^A00~ t !&,

3^A12~ t !&,^A20~ t !&,^A21~ t !&,^A22~ t !&#T. ~18!

In this way, Eqs.~4!–~8! can be rewritten as the compa
matrix form

dĉ~ t !

dt
5M̂ ĉ~ t !1 Î , ~19!

whereM̂ is an 838 matrix of coefficients of equations~4!–
~8! and Î is a column vector whose elementsI 152I 35
2 iV1 ,I 45g1 ,I 55I 752g12/2, and the others are zero. Le
Dĉ(t)5ĉ(t)2ĉ(`), whereĉ(`)52M̂ 21Î is the steady-
state solution of Eq.~19!. Then, Eq.~19! is rewritten as

dDĉ~ t !

dt
5M̂Dĉ~ t !. ~20!

The formal solution of Eq.~20! is

Dĉ~ t1t!5etM̂Dĉ~ t !. ~21!

In order to calculate two-time correlation functions

^DAlk~ t1t!DAi j ~ t !&

5^@Alk~ t1t!2Alk~`!#@Ai j ~ t !2Ai j ~`!#&

with l ,k,i , j 50,1,2, we define two-time column vectors

Û ( i j )~ t1t!5@^DA01~ t1t!DAi j ~ t !&,^DA02~ t1t!

3DAi j ~ t !&,^DA10~ t1t!

3DAi j ~ t !&,^DA00~ t1t!DAi j ~ t !&,^DA12~ t1t!

3DAi j ~ t !&,^DA20~ t1t!DAi j ~ t !&,^DA21~ t1t!

3DAi j ~ t !&,^DA22~ t1t!DAi j ~ t !&#T. ~22!

According to the quantum regression theorem@18#, the two-
time column vectors must satisfy the equation
6-3
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FIG. 1. Squeezing spectra of the out-of-phase quadrature forD50, v2150, p50.999 ~dot-dashed lines! and 0.0~solid lines!. ~a! V
50.1; ~b! V50.2; ~c! V50.5; ~d! V52.0.
dÛ( i j )~ t1t!

dt
5M̂Û ( i j )~ t1t!. ~23!

The formal solution of Eq.~23! is

Û ( i j )~ t1t!5etM̂Û ( i j )~ t !. ~24!

From Eqs.~21! and ~22!, we obtain the following two-time
atomic correlation functions:

^A01~ t1t!,A01~ t !&5~etM̂ !1,3@12c4~ t !2c8~ t !#

1~etM̂ !1,4c1~ t !1~etM̂ !1,6c7~ t !

2(
j 51

8

~etM̂ !1,jc j~ t !c1~ t !, ~25!

^A02~ t1t!,A02~ t !&5~etM̂ !2,3c5~ t !1~etM̂ !2,4c2~ t !

1~etM̂ !2,6c8~ t !

2(
j 51

8

~etM̂ !2,jc j~ t !c2~ t !, ~26!
04380
^A01~ t1t!,A02~ t !&5~etM̂ !1,3c5~ t !1~etM !1,4c2~ t !

1~etM !1,6c8~ t !

2(
j 51

8

~etM̂ !1,jc j~ t !c2~ t !, ~27!

^A02~ t1t!,A01~ t !&5~etM̂ !2,3@12c4~ t !2c8~ t !#

1~etM̂ !2,4c1~ t !1~etM̂ !2,6c7~ t !

2(
j 51

8

~etM̂ !2,jc j~ t !c1~ t !, ~28!

^A10~ t1t!,A01~ t !&5~etM̂ !3,3@12c4~ t !2c8~ t !#

1~etM̂ !3,4c1~ t !1~etM̂ !3,6c7~ t !

2(
j 51

8

~etM̂ !3,jc j~ t !c1~ t !, ~29!
6-4
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^A20~ t1t!,A02~ t !&5~etM̂ !6,3c5~ t !1~etM̂ !6,4c2~ t !

1~etM̂ !6,6c8~ t !

2(
j 51

8

~etM̂ !6,jc j~ t !c2~ t !, ~30!

^A10~ t1t!,A02~ t !&5~etM̂ !3,3c5~ t !1~etM̂ !3,4c2~ t !

1~etM̂ !3,6c8~ t !

2(
j 51

8

~etM̂ !3,jc j~ t !c2~ t !, ~31!

^A20~ t1t!,A01~ t !&5~etM̂ !6,3@12c4~ t !2c8~ t !#

1~etM̂ !6,4c1~ t !1~etM̂ !6,6c7~ t !

2(
j 51

8

~etM̂ !6,jc j~ t !c1~ t !. ~32!

Inserting these two-time correlation functions into E
~14! and takingt→` @17#, we obtain

:S~v,u!ª2
1

4p
m2f 2~r !Re(

i 51

8

(
a51,2

Ĝ i
(a)~Z!uZ5 iv ,

~33!

where

Ĝ1
(a)~Z!5S N̂1,3

(a)~Z!@12c4~`!2c8~`!#1N̂1,4
(a)~Z!c1~`!

1N̂1,6
(a)~Z!c7~`!

2(
j 51

8

N̂1,j
(a)~Z!c j~`!c1~`!D e2i (u1vLr /c), ~34!

FIG. 2. Three-dimensional spectra of the out-of-phase qua
ture as a function of the Rabi frequencyV for v2150, D50.0, and
p50.999.
04380
.

Ĝ2
(a)~Z!5F N̂2,3

(a)~Z!c5~`!1N̂2,4
(a)~Z!c2~`!1N̂2,6

(a)~Z!c8~`!

2(
j 51

8

N̂2,j
(a)~Z!c j~`!c2~`!Ge2i (u1vLr /c), ~35!

Ĝ3
(a)~Z!5pF N̂1,3

(a)~Z!c5~`!1N̂1,4
(a)~Z!c2~`!1N̂1,6

(a)c8~`!

2(
j 51

8

N̂1,j
(a)~Z!c j~`!c2~`!Ge2i (u1vLr /c), ~36!

Ĝ4
(a)~Z!5pS N̂2,3

(a)@12c4~`!2c8~`!#1N̂2,4
(a)~Z!c1~`!

1N̂2,6
(a)~Z!c7~`!

2(
j 51

8

N̂2,j~Z!c j~`!c1~`!D e2i (u1vLr /c), ~37!

a-

FIG. 3. Three-dimensional spectra of various phase quadrat
for v2150.0, V50.15,D50.5. ~a! p50.999; ~b! p50.0.
6-5
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FIG. 4. Squeezing spectra of the in-phase quadrature forv2150.0,V55, p50.999 ~dot-dashed lines! and 0.0 ~solid lines!. ~a! D
50.0; ~b! D55.0; ~c! D510; ~d! D525.
e at
Ĝ5
(a)~Z!5S N̂3,3

(a)~Z!@12c4~`!2c8~`!#1N̂3,4
(a)~Z!c1~`!

1N̂3,6
(a)c7~`!2(

j 51

8

N̂3,j
(a)~Z!c j~`!c1~`!D , ~38!

Ĝ6~Z!5F N̂6,3
(a)c5~`!1N̂6,4

(a)c2~`!1N̂6,6
(a)c8~`!

2(
j 51

8

N̂6,j
(a)~Z!c j~`!c2~`!G , ~39!

Ĝ7
(a)~Z!5pF N̂3,3

(a)c5~`!1N̂3,4
(a)c2~`!1N̂3,6c8~`!

2(
j 51

8

N̂3,j
(a)~Z!c j~`!c2~`!G , ~40!
04380
FIG. 5. The maximum squeezing of the in-phase quadratur
the Rabi sideband frequenciesv56V8 as a function ofD andV
for v2150.0 andp50.999.
6-6
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FIG. 6. Squeezing spectra of the out-of-phase quadrature forv2151,D50, p51.0~dot-dashed lines! and 0.0~solid lines!.~a! V50.15;
~b! V50.25; ~c! V50.5; ~d! V51.0; ~e! V52.0; ~f! V510.
Ĝ8~Z!5pS N̂6,3
(a)~Z!@12c4~`!2c8~`!#1N̂6,4

(a)c1~`!

1N̂6,6
(a)c7~`!2(

j 51

8

N̂6,j
(a)~Z!c j~`!c1~`!D . ~41!

In the above equations, the matrix functionN̂(6)(Z)5(6Z
04380
1M̂)21. Using Eqs.~33! and~34!–~41!, we can numerically
calculate the squeezing spectrum~14!.

III. RESULTS AND DISCUSSIONS

In the following calculations, for simplicity, we takeg1
5g25g andV15V25V, and scaleV, v21, andD by g.
6-7
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We also sete2ivLr /c51 and scale the squeezing spectrum
m2f 2(r )/4pg.

At first, let us consider the degenerate case, i.e.,v2150.
As the two-level case@3,6#, we also find that for weak reso
nance excitation the maximum squeezing always appea
the frequency component of the out-of-phase quadra
around the atomic transition frequency and the in-ph
quadrature does not exhibit any squeezing. In Fig. 1, squ
ing spectra of the out-of-phase quadrature are plotted
different resonance excitation intensities with and witho
quantum interference. Sincep51.0 means that quantum in
terference is maximum and resonance fluorescence is c
pletely depressed@10,11#, we takep50.999 for nearly com-
plete quantum interference in the present calculations.
observe that for weak excitation intensities the maxim
squeezing always occurs atv50.0, i.e., atomic transition
frequency, and the squeezing can exist in all frequency c
ponents, as shown in Figs. 1~a! and 1~b!. It means that for
weak resonance excitation the total quantum fluctuation

FIG. 7. Same as Fig. 5 butv2151.0, and~a! p51.0; ~b! p
50.0.
04380
y

in
re
e
z-

or
t

m-

e

-

in

the out-of-phase quadrature can be squeezed down lo
than the shot-noise limit for the vacuum of the electroma
netic field. With increase in the Rabi frequency, the ma
mum squeezing shifts from the frequency component av
50 to the wings of the spectrum, as shown in Figs. 1~b! and
1~c!. Comparing the spectra with quantum interference to
ones without quantum interference, we find that quant
interference can greatly enhance the squeezing and ex
the squeezing frequency region for appropriate excitation
tensities as shown in Figs. 1~b! and 1~c!. When the Rabi
frequency increases further, the squeezing disappears an
sidebands of the Mollow fluorescent triplet develop,
shown in Fig. 1~d!. We notice that quantum interferenc
greatly broadens the Mollow sidebands. In order to have
overall view of the variation of the squeezing spectru
against the Rabi frequency, three-dimensional squee
spectra of the out-of-phase quadrature are given in Fig. 2.
notice that there is a larger optimal Rabi frequency for
maximum squeezing and the squeezing in the wings of
spectra exists in a wider region when quantum interfere
takes place.

In resonance fluorescence of a two-level atom driven b

FIG. 8. Three-dimensional spectra of phase quadratures foV
50.15,v2151, andD50.5. ~a! p50; ~b! p51.0.
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QUANTUM INTERFERENCE AND PHASE-DEPENDENT . . . PHYSICAL REVIEW A 66, 043806 ~2002!
monochromatic laser field and damped by a broadb
squeezed vacuum, Zhou, and Swain@19# pointed out that
squeezing can occur in any phase quadrature of the r
nance fluorescence, depending upon the squeezing phas
the detuning. In our calculations, we notice that in either
degenerate three-level casev2150.0 or the two-level case
corresponding tov21→` the squeezing spectrum is sym
metrical aboutu50 when the excitation is resonant. How
ever, the squeezing spectrum becomes nonsymmetrical a
u50 when the excitation is off-resonant. The phase reg
of quadratures in which squeezing appears depends on
detuning. In Fig. 3, we present three-dimensional plots
spectra of various phase quadratures. Comparing Fig. 3~a! to
Fig. 3~b!, we see that quantum interference shifts the optim
squeezing phase quadrature and greatly modifies the spe
In Ref. @8#, Zhou and Swain found that for strong and fa
off-resonance excitation the squeezing spectrum of the
phase quadrature of the resonance fluorescence of a d
two-level atom exhibits two-mode squeezing at the R
sideband frequencies. In Fig. 4, we show squeezing spe
of the in-phase quadrature as a function of the detuningD.
We observe that the squeezing at the Rabi sideband freq
cies occurs and is enhanced with increasing of the detun

FIG. 9. Same as Fig. 8 butD50.3.
04380
d

o-
and
e

out
n
the
f

l
tra.

n-
en
i

tra

en-
g,

and quantum interference obviously broadens the spectra
does not affect the peak location and the height. We a
notice that the degree of squeezing does not increase m
tonically with increasing detuning. As shown in Figs. 4~c!
and 4~d!, in fact, the squeezing does not increase but
creases when the detuning is beyond a certain value. In
5, we show the maximum squeezing in the in-phase qua
ture at the Rabi sideband frequenciesv56V8 for various
values of the detuning and the Rabi frequency. Unlike
two-level case@8#, we notice that the central frequencie
6V8 are not equal toAV21D2 and the optimal squeezin
does not lie on the lineV5D.

Now let us consider the nondegenerate case, i.e.,v21
Þ0.0. When the interaction between the atomic transit
from u2& to u0& and the laser is resonant, as shown above
the degenerate case, squeezing appears in the out-of-p
quadrature, and quantum interference can greatly enha
the squeezing when the excitation is weak as shown in F
6~a! and 6~b!, and results in an ultranarrow central peak w
increasing the Rabi frequency, see Fig. 6~f!. From the defi-
nition ~14!, we can show the following relation@13#:

Sinc~vL1v!1Sinc~vL2v!5:S~v,u!:1:SS v,u1
p

2 D :,

~42!

where Sinc(vL6v) is the incoherent part of the intensit
spectrum of the resonance fluorescence. In the two-le
case, Rice and Carmichael@13# showed that for weak exci
tation, squeezing in either the in-phase quadrat
(:S(v,0):,0) or the out-of-phase quadrature@ :S(v,p/2):
,0# leads to the significant linewidth narrowing in the inc
herent part of the fluorescent intensity spectrum. In
model under consideration, Zhou and Swain@10# showed
that the incoherent fluorescent spectrum can develop an
tranarrow central line. However, this ultranarrow line resu
from quantum interference and is not relative to squeezin
either phase quadrature. Therefore, the ultranarrow cen
line in Fig. 6 is the remainder of the incoherent part of t
intensity fluorescent spectrum.

For strong excitation intensities, the squeezing spectr
of the out-of-phase quadrature develops the Mollow trip
As the degenerate case, however, two negative sideb
peaks at the Rabi frequencies6V8 appear in the squeezin
spectrum of the in-phase quadrature. In Fig. 7, we show
maximum squeezing of the sidebands at the Rabi frequen
6V8 as a function of the detuningD and the Rabi frequency
V. Comparing Fig. 7~a! to Figs. 7~b! and 5, we see that the
maximum squeezing points move to smaller values of
Rabi frequency because of the existence of the level split
and quantum interference.

In the nondegenerate case, we notice that squeezing s
tra are symmetrical aboutu50 when the detuning paramete
D5v21/2, as shown in Fig. 8~a!. In this case, the fluorescen
light is swiched off if quantum interference takes place,
shown in Fig. 8~b!. We find that squeezing spectra becom
nonsymmetrical whenD departs fromv21/2 and the maxi-
6-9
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mum squeezing occurs in the quadratures with phas
2p/2<u<0 when D is smaller thanv21/2. In Fig. 9,
squeezing spectra of various phase quadratures are give
D50.3,v21/250.5. From these figures, we see that d
pending upon the detuning, quantum interference shifts
optimal phase quadrature for squeezing and greatly mod
the spectra.

IV. SUMMARY

The squeezing spectrum of resonance fluorescence
three-level V-type atom, which is driven by a coherent fie
and coupled to vacuum modes of the electromagnetic fiel
investigated. The influence of quantum interference betw
two decay pathways from the two excited levels to the co
mon ground state on the spectra is emphasized. We find
for weak resonance excitation, squeezing always occur
the out-of-phase quadrature of the resonance fluorescent
and the maximum squeezing appears in the component o
atomic transition frequency either with or without quantu
v.

.
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interference. We show that quantum interference can gre
enhance the squeezing for some appropriate values of
Rabi frequency of the driving field. For weak off-resonan
excitation, we find that quantum interference can change
optimal squeezing phase quadrature. For strong and far
resonance excitation, two sideband peaks of the spectr
the in-phase quadrature display strong squeezing, and q
tum interference broadens the squeezing peaks. In the
degenerate case, we also find that quantum interference
lead to an ultranarrow line in the squeezing spectrum of
out-of-phase quadrature, shift the optimal phase quadru
for squeezing, and greatly modify the shape of the spect
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