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Quantum interference and phase-dependent spectrum of resonance fluorescence
of a three-level V-type atom
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The spectrum of quantum fluctuations in phase quadratures of resonance fluorescence of a three-level V-type
atom driven by a coherent field is investigated. We find that quantum interference between two decay channels
of the atom can greatly modify the spectrum. We show that for weak excitation, quantum interference can
greatly enhance squeezing and change the phase quadrature in which the maximum squeezing occurs. We also
show that for strong and far-off-resonance excitation two deeply squeezing peaks appear at the Rabi sideband
frequencies and quantum interference broadens the squeezing peaks.
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I. INTRODUCTION noise spectra in different phase quadratures of the resonance
fluorescence of a coherently driven two-level atom with a
Resonance fluorescence of atoms illuminated by cohere#@ng lifetime and found that the maximum squeezing occurs
fields can display a number of interesting quantum featurel) the quadrature with a phase nearm/4 relative to the
of the electromagnetic field. Theoretical investigations andj][“"ng field. ;Iih's experiment E'akes th%study of t?ehspectra
experimental observations have revealed nonclassical ph8— quantum fluctuations in phase quadratures of the reso-
. . nance fluorescence of a coherently driven atom a more at-
nomena in resonance fluorescence of driven atoms such

: . . : - ctive subject.
photon antibunchinfl] and sub-Poissonian photon statistics The spectrum of quantum fluctuations in the positive fre-

[2]. Theoretical studies also showed that the quantum noisgyency part of the resonance fluorescence of a driven atom is
level in one of the phase quadratures of resonance fluoreg; general not phase dependent. Recent studies have shown
cence of a driven two-level atom can be lower than the shotthat quantum intereference between different atomic decay
noise limit for the vacuum of the electromagnetic fi¢g]. channels can lead to quenching spontaneous emission and
Squeezing of the quantum noise in phase quadratures dfien greatly modify the phase-independent spectrum such as
resonance fluorescence of a driven three-level atom withhaking ultranarrow central line®—11]. Swain, Zhou, and
various level configurations was also extensively stufidd ~ Ficek [12] also showed that under strong-field excitation,
The phenomenon of squeezing in resonance fluorescen@¥antum interference can lead to anticorrelations of photons

; ; . ; ; . mitted from excited levels of a three-level V-type atom.
may be investigated by two ways: observing variances eith ice and Carmichadil3] found that the incoherezfpart of
in total phase quadratures or in frequency components q

h d In the | h diation field of e intensity spectrum may be decomposed into the sum of
phase quadratures. In the latter one, the radiation field of 8, eezing “spectra of the in-phase and the out-of-phase

driven atom is mixed with a local oscillator field having a gyadratrues of resonance fluorescence. So, one could expect
controllable fixed phase relative to the field that drives thqhat quantum interference may also greaﬂy m0d|fy the
atom, and then quantum fluctuations in a selected phasgjueezing spectrum. On the other hand, as pointed out in
quadrature of resonance fluorescence can directly be meRef.[5], phase-dependent resonance fluorescence spectra ob-
sured[5]. Using a spectrum analyzer, this homodyne detectained by the homodyne detection of scattered radiation from
tion results in a phase-dependent spectrum of resonance fluatoms that are driven by a coherent field are much richer than
rescence, i.e., a squeezing spectféid]. Collett, Walls, and  ordinary phase-independent resonance fluorescence spectra
Zoller [6] showed that the quantum noise in the out-of-phasé@nd present many novel features. For example, Zhao and
quadrature of resonance fluorescence of a driven two-levélo-workers[14] showed that for off-resonance excitation
atom around the atomic frequency for resonance weak excRairs of phase-dependent spectra with phases of opposite
tation can be squeezed down lower than the shot-noise limiign are striking differences, which arise entirely from time
Zhou and Swair{8] calculated the normally ordered noise °rdering. To our knowledge, however, it has not been inves-
spectra of the in-phase and the out-of-phase quadratures Bgated until now h.OW quantum interference affects squeez-
resonance fluorescence of a single two-level atom strongl ph_enomena In atomic resonance f_Iuorescence and
driven by a coherent field, including either the effects of a>dU€€ziNg spectra. In this paper, employing a three-level

finite laser bandwidth due to phase diffusion or a frequency-YP€ atom that is driven by a coherent light and coupled to

tunable cavity with a low@ value. They showed that for vacuum modes of the electromagnetic field in free space, we
far-off-resonance and strong excitation the resonance flud’-"III study this open problem.

rescence can exhibit two-mode squeezing at the Rabi side-
band frequencies. In contrast to the theoretical work that paid
attention to squeezing in the in- and out-of-phase quadra- The atomic level scheme under consideration consists of
tures, the recent experimental wofk] has measured the two closely upper and one lower level$0]. The excited

Il. MODEL AND PHASE-DEPENDENT SPECTRUM
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levels |2) with energyfw, and|1) with energyfw, are  equations,y; and y, are spontaneous decay rates from the
seperated by:w,; and are coupled to a common ground two excited levels to the ground level, which are given by
level |0) with zero energy by a single-mode laser field of i =|wiol?w’3meoc®h(i=1,2). In addition, using the gen-
frequencyw, , amplitudeE, , and polarization vectog . eralized reservior theory in deriving Eqg)—(8), we have
The excited levels are also coupled .to _the ground Ievell b¥nhe crossing termEk(g(kl))*g(kz). With the Weisskopf-
vacuum modes of the electromagnetic field. Here, considefyjgner approximation, these cross terms can easily be writ-
ing that the level splitting between the excited states is very. asﬁlo-ﬁzowi’ J3meocYh. Considering that the upper
small, we assume that the vacuum mode couglgto |0) | ot : . e
evel splitting w,4 is much smaller than the optical transition

is the same as one couplifd)) to |0). The direct transition freauencies w we have relpaced these terms by
between the excited levels is electric-dipole forbidden. Using q 12 P 2

a unit such thafi =1, one can write the Hamiltonian of the — PV Y172, Wherep= o uaol| pad| 120 In Egs.(4)—(8),

system in the frame rotating with the laser frequengyas the terms related toy;,=pyy17, represent the effect of
the form guantum interference between spontaneous-emission path-

ways from|1) to |0) and from|2) to |0). It reflects the fact
H=Hc+Hg, (1) that as the atom decays from the excited sublégg| it
drives the other excited sublej@) to decay and vice versa,
because of the existence of atomic coherence betyken
A and |2). We notice that in the above equations the usual
He= (A= w20)| 11|+ A[2)(2[ +[Q1A10+ QA%+ H'C'gé) deca|y>terms proportional tg; , are always paired with the
decay interference terms proportional 4q,=p+/y1y, as
, , long asp#0. These two terms may cancel each other and
Hr=2> [ge'*a Aot gPe aAptHel. (3)  resultin the depression of spontaneous emission. This quan-
: tum destructive interference can greatly modify the intensity
Above, A= w,— w__is detuning between the transition from SPectrum of resonance fluorescefi@e 11]. Here, we are in-
the uppermost level to the ground level and the laser fieldi€rested in quantum interference how to modify the squeez-
A= w,_—w, detuning between the laser field and ks NG spectrum of resonance fluorescence, which is phase de-

vacuum mode at frequenay,, Qi=ELq~ﬁio(i=l,2) are pendent.

_ : & 0N ) Let E(Y)(r,t) andE(C)(r,t) be operators for the positive
the Rabi frequencies of the driving laser, gag is the di- 54 pegative frequency parts of the fluorescent field, respec-
pole moment of the atomic transition frofi} to |0), which

. - tively. We introduce a slowly varying electric-field operator
is assumed to be real. In Eq®) and(3), the atomic operator

N . - ) with phased,
Aii=1i)(jl(i,j=1,2,0), ai(a]) is the annihilatiofcreatior)
operator for thekth vacuum mode ang{’(i=1,2) is the
coupling constant between tHgh vacuum mode and the
atomic transition fronji) to |0).

where

Eq(r,t)=3[EC)(r, et D+ EC)(r e (9] (9)

According to the general reservoir theory with the =E4(r,t)cosf+E,(r,t)sin g, (10
Weisskopf-Wigner approximatiohl6], we can derive the
following equations of motion for the reduced atomic- where Eo(r,t)=[EM)(r,t)explwt)+EC)(r,t)exp
density-matrix elements;; =tr(pA;;) wherep is the density-  (—iwt)]/2 and E,(r,t)=i[E(T)(r,t)explwt)
matrix operator of the systepd1], —EC)(r,t)exp(iw t))/2 are the in-phase and out-of-phase
) quadratures of the fluorescent field relative to the coherent
p10=—[1(A—wy)+3v1]1P10— 3 Y120 20T 1 Q2p12 driving field, respectively. The normally ordered variance in

. E,(r,t) can be written as
1031 p2r—2p00), (@ EATY

: : 2.y - .
p20=—[IA+2¥2]p20~ 2 Y1210+ 1 Q2(p22— poo) +1Q1p21, CLABAT DI =CEAT.O.Eylr.0:)

(5) 1 2 o ©
:(E f_wdwldwzf_wdtldtz

x @ll@1(t—ty) +wa(t—ty)]

poo= Y1(1=poo) +(v,= v ) p22t ¥ (P12t p21)

—1Q5(p20= po2) —1Q1(p10= Por). (6) i

. . 1 1 ) XT<ZE9(r,t1),E0(r,t2)Z>, (11)
p21= —[iwa1t+3(y1+ ¥2)Ip21— 2 Y121~ poo) +i1Q1p20

—iQyup01, (7)  where (A,B)=(A-B)—(A)-(B). As Kndl, Vogel, and
Welsch did[15], to ensure each of correlation functions of
the positive and negative frequency parts of the electric field
in (:Ey(r,t1),E4(r,t,):) has a correct time order and is mea-
When arriving at Eqs(4)—(8), we have used the normaliza- surable, we explicitly introduce the time ordering operator
tion conditionpq1+ poo+ pgo=1 to cancelpq;. In the above in Eq. (11), which is defined as

P22=— YaPar— 3 V1A p12+ p2) — 1 Qa(poa—p2o).  (8)
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'T(:Eg(r t1),Eg(r,t5):) needs to know the atomic two-time correlation functions in
TR A Eq.(17). In the following, for simplicity, we will drop the hat
=1(E{I(r,t),EGD(r 1) )ellortit ) +20@ (¢, —t,) symbol on time variablé.

. We now introduce a column vector
+(EST(r,t,) EGO(r ty) ) ellontar 20 @ (1, — 1)

HE(), B (n)e I (- ) O =[(Aox D) (Ao ) (A0 { Ao 1)),

H(EL (1) By (rty)e et 20t —t) X (Aga(t)) (Ag ) (Ags(t)) (Agat)]T. (18

(L (1, 1), EG(r 1)) elenltz )

+(ES(r,t,),ESD(r )Y eleLti )], (120  In this way, Egs.(4)—(8) can be rewritten as the compact
matrix form
where® is a unit step function. In steady state, Efjl) can
be written as

. (e dg(t) .. .
<:[AE¢9(|')]25>:%JL d“’f, drel T(:E,(r,t),E, g - MéO+I, (19)

X(r,t+7):). (13 . _ o )
whereM is an 8x 8 matrix of coefficients of equation(d)—

According to this expression, one can introduce the squeez8) and | is a column vector whose elemeritg= — ;=

ing spectral density15] —iQq,14=7y1,l5=17,=—v1,/2, and the others are zero. Let
s Ad(t) = (t) — (), whereg(=)=—M"1 is the steady-
:S(r,w,6)==—f dTe‘wT'T'<:E9(r,t),Eg(r,t+ 7). state solution of Eq(19). Then, Eq.(19) is rewritten as
27 ) —w
(14)
- iy dAg(t) . .
In the radiation zone, the positive frequency part of the =MAy(t). (20)
fluorescent light emitted by the atom takes the fddri] dt
EG(r0) = — —— | WX (N% fiog) Aoy t— % T 2n The formal solution of Eq(20) is
cer
X (N o Aod t— g) et (15 A+ =M A, 21

wheren is a unit vector in the direction of observation. Sup-
pose thatw,~ w, andn is perpendicular to the atomic dipole

momentsuo; and uo,. Equation(15) can be rewritten as

In order to calculate two-time correlation functions

(AA(t+ 1) AA; (1))

ECO(r,8) = F(1)] rogPor(D) + frosan )], (16)
9 pohoil ) pozhoz ~ (LAt )= A TLA (0= Ay (=)])

wheref(r)=w§/czr and t=t—r/c. Substituting Eq.(16)

into Eq. (12), we obtain with 1,k,i,j=0,1,2, we define two-time column vectors

TGE(r,1),Eg(r,t+7):)
— 1 12F2(r)RE[(Agy(1+ 7). Aga()) + (Agyl 1+ 7), O (t+ 1) =[(AAgy(t+ ) AA; (1), (AAg(t+7)
X Agd D)+ P A+ 7)., A ) XA (1) (At )
X AAG (1)), (AAgg(t+ 7V AA;; (1)) (AA(t+7)
XAA;; (1)), (AA(t+ 7)AA; (1)), (AAx(t+7)
XAA; (1)) (AAt+7)AA;(1))]T. (22

+ (Al T+ 7),Agy()))]€? (PFeLrio
+(Agg(T+ 1), Agy(D)) + (Agg( T+ 7), A 1))
+P(Ar(t+7),Aga D)+ (Age( T+ 7), Aps(D)}, (17)

where 7>0, (Ajj(t))=tr[p(t)A;il=p;(t) and u=pe  According to the quantum regression theorr8], the two-
~ 2. SO, to calculate the squeezing spectritd), one time column vectors must satisfy the equation
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FIG. 1. Squeezing spectra of the out-of-phase quadraturd fo®, w,;=0, p=0.999 (dot-dashed lingsand 0.0(solid lineg. (a) O

=0.1; (b) 2=0.2; (c) 0=0.5; (d) 2=2.0.

dO(t+7) . .
————=MU(t+ 7). (23
dr
The formal solution of Eq(23) is
O (t+ ) =™ (1), (24)

From Egs.(21) and(22), we obtain the following two-time
atomic correlation functions:

(Aor(t+ 7). Aos(D)) = (™), L1 — a(t) — g(1)]

+ (&™), gy (1) + (™) o(1)
8

-3 (e™) 1) (),

(29

(Aot 1), Aga1)) = (™), gths(1) + (€™) g 1)

+(97M)2,6¢8(t)
8
2, (€™295(0u(),  (29)
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(Aoa(t+7),Aga(1)) = (™) (1) +(e™) 1 ol 1)

+(e™), et(t)

8
—le (™) ¢ (Dya(t),  (27)

(Aot 7),Ag(1)y = (™), £ 1— (1) — ihg(1)]

+(97M)2,4¢1(t)"'(eTM)z,e%(t)

8
—;(eTM)z,jwj(t)wl(t), (28)

(At +7),Ag(1)) = (™) 5 {1~ (1) — ihg(1)]

+(e™) 3 41(1) + (™) (1)

8
f;(eTM)g,jwj(t)m(t). (29)
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FIG. 2. Three-dimensional spectra of the out-of-phase quadra-
ture as a function of the Rabi frequen@yfor w,,=0, A=0.0, and

p=0.999.

(Ag(t+7),Aga(t)) = (™) ath5(t) + (e™) g 4tha(t) "
==}
Tﬂh \gi
+(e™")g etbs(t) & 3-," i
8 iy,
Y y lhy I”Il/ (i
— e™) o i (1) (1), 30 il i
]_Zl ( )6,] ‘//]( )11’2( ) ( ) il 'I‘ﬁ’IZ‘"’IZZZHI’%Mf”W/
(Agg(t+7),Ag ()= (™) 3 305(t) + (™) 3 4hp(1)
+(e™)368(t)
8 ~
=2 (™) g(D(t), (3D o .
=1 FIG. 3. Three-dimensional spectra of various phase quadratures
for w,;=0.0,Q2=0.15,A=0.5. (a) p=0.999; (b) p=0.0.

(Poo(t+ 1), Agy(t)) = (™) £ 1— ha(t) — th(1)]

HEMaaha(OF (Moghr) 149(2)=| REYZ)ps(o0) + REND) () + RELZ) ()
8
=2 (@) (Dya(t). (32 8 |
s =2 NEDZ) () gofee) €209, (39
Inserting these two-time correlation functions into Eg. I~
(14) and takingt—co [17], we obtain
1 8 ) fg“’<2>=p{N&%(Z)ws(ooHN&‘,Q(Z)«pg(oo)m&‘fgws(m)
'S(w,0)=——u*fAr)Re>, > T2)|,,,
4w =1 a=+,— 8
33 = REZ) () () 2 Fr oo (36)
where =1
[(2)={ N{UZ)[ 1= a(o0) — rg(5) 1+ NEY(Z) tha(0) 14(2) = p| NE2[1— wa(o) — ig(00) 1+ NEY(Z) iy ()
+ NS Z) (=)

+N{Y(2) o()
8 8
=2 NP@ (0 n() e, (34) -2 Nz,j<2>¢,-<oc>wl<oc>) e (0t entle), - (37)
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FIG. 4. Squeezing spectra of the in-phase quadraturanfgr=0.000=5, p=0.999 (dot-dashed lingsand 0.0(solid lines. (a) A
=0.0; (b) A=5.0; (c) A=10; (d) A=25.

roz)= ( NS Z)[ 1 gha(=) — hg(20) 1+ NENZ) g () -

8
NG Yo() — 2 Ngf;><2>¢j<oo>wl<oo>>, (39
-0.05
S
A ~ ~ ~ G
To(Z)=| NEZws(o=) + NED o) + NE2 () e @
8
=2 NED(@) () o) |, (39)
=1 0.15
[42(2)=p| N§us(o0) +NEQa(e0) + N gifg(2)
8
*jgl Ngj)(Z)wj(oo)zﬁz(oo) ) (40) FIG. 5. The maximum squeezing of the in-phase quadrature at

the Rabi sideband frequencies= = ()’ as a function ofA and ()
for w,;=0.0 andp=0.999.
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FIG. 6. Squeezing spectra of the out-of-phase quadraturefor 1,A =0, p=1.0(dot-dashed lingsand 0.0(solid lineg.(a) 1 =0.15;

+M)~L. Using Egs(33) and(34)—(41), we can numerically
calculate the squeezing spectribd).

IIl. RESULTS AND DISCUSSIONS

In the following calculations, for simplicity, we take;

In the above equations, the matrix functibh™)(Z)=(*+Z =vy,=y andQ;=Q,=Q, and scal«), w,,, andA by v.
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FIG. 8. Three-dimensional spectra of phase quadrature§)for
=0.15,w,;=1, andA=0.5. (a) p=0; (b) p=1.0.

FIG. 7. Same as Fig. 5 bub,;=1.0, and(a) p=1.0; () p  the out-of-phase quadrature can be squeezed down lower

=0.0. than the shot-noise limit for the vacuum of the electromag-
netic field. With increase in the Rabi frequency, the maxi-

We also see?“L"°=1 and scale the squeezing spectrum bymum squeezing shifts from the frequency componens at
w?t2(r)l4my. =0 to the wings of the spectrum, as shown in Fig$) And

At first, let us consider the degenerate case, g;=0. 1(c). Comparing the spectra with quantum interference to the
As the two-level casg3,6], we also find that for weak reso- ones without quantum interference, we find that quantum
nance excitation the maximum squeezing always appears interference can greatly enhance the squeezing and extend
the frequency component of the out-of-phase quadraturthe squeezing frequency region for appropriate excitation in-
around the atomic transition frequency and the in-phaséensities as shown in Figs.(ld) and Xc). When the Rabi
guadrature does not exhibit any squeezing. In Fig. 1, squeefrequency increases further, the squeezing disappears and the
ing spectra of the out-of-phase quadrature are plotted fosidebands of the Mollow fluorescent triplet develop, as
different resonance excitation intensities with and withoutshown in Fig. 1d). We notice that quantum interference
guantum interference. Singe=1.0 means that quantum in- greatly broadens the Mollow sidebands. In order to have an
terference is maximum and resonance fluorescence is coroverall view of the variation of the squeezing spectrum
pletely depressefl0,11], we takep=0.999 for nearly com- against the Rabi frequency, three-dimensional squeezing
plete quantum interference in the present calculations. Wepectra of the out-of-phase quadrature are given in Fig. 2. We
observe that for weak excitation intensities the maximumnotice that there is a larger optimal Rabi frequency for the
squeezing always occurs at=0.0, i.e., atomic transition maximum squeezing and the squeezing in the wings of the
frequency, and the squeezing can exist in all frequency comspectra exists in a wider region when quantum interference
ponents, as shown in Figs(al and 1b). It means that for takes place.
weak resonance excitation the total quantum fluctuation in In resonance fluorescence of a two-level atom driven by a
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0.2 and quantum interference obviously broadens the spectra but
does not affect the peak location and the height. We also
notice that the degree of squeezing does not increase mono-
tonically with increasing detuning. As shown in Figgcy

and 4d), in fact, the squeezing does not increase but de-
creases when the detuning is beyond a certain value. In Fig.
5, we show the maximum squeezing in the in-phase quadra-
ture at the Rabi sideband frequencies- =)’ for various
values of the detuning and the Rabi frequency. Unlike the
two-level case[8], we notice that the central frequencies

W +Q' are not equal ta/Q?+A? and the optimal squeezing
01R S does not lie on the lin€=A.

- . Now let us consider the nondegenerate case, i,
#0.0. When the interaction between the atomic transition
from |2) to |0) and the laser is resonant, as shown above for
the degenerate case, squeezing appears in the out-of-phase
guadrature, and quantum interference can greatly enhance
the squeezing when the excitation is weak as shown in Figs.
6(a) and @b), and results in an ultranarrow central peak with
increasing the Rabi frequency, see Fi¢f) 6From the defi-
nition (14), we can show the following relatiofd.3]:

01 17

:S(0,9):

0.0 1

Sl @+ @)+ Spe( @, — ©)=:S(w,0): + :s( w0+ g

:S{w,0):

(42)

where S;,.(w, £ w) is the incoherent part of the intensity
spectrum of the resonance fluorescence. In the two-level
case, Rice and Carmichddl3] showed that for weak exci-
tation, squeezing in either the in-phase quadrature
(:S(w,0):<0) or the out-of-phase quadratureS(w,7/2):

< 0] leads to the significant linewidth narrowing in the inco-
herent part of the fluorescent intensity spectrum. In the
model under consideration, Zhou and Swai®| showed
monochromatic laser field and damped by a broadbanthat the incoherent fluorescent spectrum can develop an ul-
squeezed vacuum, Zhou, and Swair®] pointed out that tranarrow central line. However, this ultranarrow line results
squeezing can occur in any phase quadrature of the resfrom quantum interference and is not relative to squeezing in
nance fluorescence, depending upon the squeezing phase aitther phase quadrature. Therefore, the ultranarrow central
the detuning. In our calculations, we notice that in either thdine in Fig. 6 is the remainder of the incoherent part of the
degenerate three-level caag,;=0.0 or the two-level case intensity fluorescent spectrum.

corresponding taw,;— the squeezing spectrum is sym-  For strong excitation intensities, the squeezing spectrum
metrical aboutd=0 when the excitation is resonant. How- of the out-of-phase quadrature develops the Mollow triplet.
ever, the squeezing spectrum becomes nonsymmetrical abods the degenerate case, however, two negative sideband
#=0 when the excitation is off-resonant. The phase regiorpeaks at the Rabi frequencies()’ appear in the squeezing

of quadratures in which squeezing appears depends on tlsgectrum of the in-phase quadrature. In Fig. 7, we show the
detuning. In Fig. 3, we present three-dimensional plots ofmaximum squeezing of the sidebands at the Rabi frequencies
spectra of various phase quadratures. Comparing Fagt@ =’ as a function of the detuniny and the Rabi frequency
Fig. 3(b), we see that quantum interference shifts the optimal). Comparing Fig. @) to Figs. 1b) and 5, we see that the
squeezing phase quadrature and greatly modifies the spectraaximum squeezing points move to smaller values of the
In Ref.[8], Zhou and Swain found that for strong and far- Rabi frequency because of the existence of the level splitting
off-resonance excitation the squeezing spectrum of the inand quantum interference.

phase quadrature of the resonance fluorescence of a driven In the nondegenerate case, we notice that squeezing spec-
two-level atom exhibits two-mode squeezing at the Rabira are symmetrical abodt=0 when the detuning parameter
sideband frequencies. In Fig. 4, we show squeezing specta= w,4/2, as shown in Fig.@). In this case, the fluorescent
of the in-phase quadrature as a function of the detuding light is swiched off if quantum interference takes place, as
We observe that the squeezing at the Rabi sideband frequeshown in Fig. 8b). We find that squeezing spectra become
cies occurs and is enhanced with increasing of the detuningaonsymmetrical whem\ departs fromw,4/2 and the maxi-

FIG. 9. Same as Fig. 8 but=0.3.
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mum squeezing occurs in the quadratures with phasesinterference. We show that quantum interference can greatly
—m/2<0<0 when A is smaller thanw,/2. In Fig. 9, enhance the squeezing for some appropriate values of the
squeezing spectra of various phase quadratures are given fieabi frequency of the driving field. For weak off-resonance
A=0.3<w,1/2=0.5. From these figures, we see that de-excitation, we find that quantum interference can change the
pending upon the detuning, quantum interference shifts theptimal squeezing phase quadrature. For strong and far-off-
optimal phase quadrature for squeezing and greatly modifie®sonance excitation, two sideband peaks of the spectra of
the spectra. the in-phase quadrature display strong squeezing, and quan-
tum interference broadens the squeezing peaks. In the non-
IV. SUMMARY degenerate case, we also find that quantum interference can
) lead to an ultranarrow line in the squeezing spectrum of the
The squeezing spectrum of resonance fluorescence of @t-of-phase quadrature, shift the optimal phase quadruture

three-level V-type atom, which is driven by a coherent ﬁeldfor Squeezing, and great'y mod|fy the Shape of the Spectra.
and coupled to vacuum modes of the electromagnetic field, is

investigated. The influence of quantum interference between
two decay pathways from the two excited levels to the com-
mon ground state on the spectra is emphasized. We find that This research was supported by the National Natural
for weak resonance excitation, squeezing always occurs iScience Foundation of China under Grant No. 19974032, the
the out-of-phase quadrature of the resonance fluorescent fielbctoral Foundation of Xian Jiaotong University, and FRG
and the maximum squeezing appears in the component of tHeom the Hong Kong Baptist University and UGC from
atomic transition frequency either with or without quantumHong Kong Government.
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