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Exact calculation of the skyrmion lifetime in a ferromagnetic Bose-Einstein condensate
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The tunneling rate of a skyrmion in ferromagnetic spin-1/2 Bose-Einstein condensates through an off-
centered potential barrier is calculated exactly with the periodic instanton method. The prefactor is shown to
depend on the chemical potential of the core atoms, the level at which the atom tunnels. Our results can be
readily extended to estimate the lifetime of other topological excitations in the condensate, such as vortices and
monopoles.
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I. INTRODUCTION

Macroscopic quantum tunneling, the tunneling of a m
roscopic variable of a macroscopic system, has recently
ceived much attention in studies of Bose-Einstein conden
tion ~BEC!. The tunneling of a condensate through an opti
lattice potential@1,2# provides an atomic physics analog of
Josephson-junction array, while in principle, the analog o
single junction can be realized by two condensates confi
in a double-well potential@3,4#. The recent experimental suc
cess in all-optical trapping of an atomic condensate@5# opens
the prospect of studies into the internal structure of spi
BECs, including the possibility of creating some topologic
excitations@6#, such as skyrmions, monopoles, merons
axis-symmetric or non-axis-symmetric vortices both for a
tiferromagnetic and ferromagnetic condensates. Among v
ous topological structures, the Mermin-Ho@7# and Anderson-
Toulouse@8# coreless nonsingular vortices are demonstra
to be thermodynamically stable in ferromagnetic spin
Bose-Einstein condensates with the hyperfine stateF51 @9#.
Skyrmions, which do not have an ordinary vortex core due
the spin degree of freedom, are also proposed in the sp
BEC @10–12# and are shown to be thermodynamically u
stable objects without rotation@13,14#. Once created, the ra
dius of such a skyrmion shrinks to zero, so that one m
detect and manipulate it in the duration of its lifetime.

The skyrmion texture in a ferromagnetic spinor conde
sate can be described conveniently by a position-depen
spinor @14#,

z~r !5expH 2
i

S

v~r !

r
r•SJ zZ. ~1!

The constant spinorzZ is the usual basis that diagonalizes t
Sz component of the spin matricesS, and v(r ) is a real
function of radius r satisfying the boundary condition
v(0)52p and limr→`v(r )50. For the skyrmion with size
of the order of the correlation lengthj51/A8pan` or less,
where n` is the average atomic density anda the s-wave
interatomic scattering length, the problem can be reduce
a nonlinear Schro¨dinger equation by anAnsätz for v(r ) with
the gradient termu“z(r )u2 in the Gross-Pitaevskii energ
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functional regarded as some external potentialV(r )
5\2u“z(r )u2/2m. In the spin-1/2 case, for example, the la
ter takes the form@13#

V~r !5
\2

2m

32

l2

~r /l!2@312~r /l!413~r /l!8#

@11~r /l!4#4
~2!

for an Ansätz v(r )54 cot21@(r/l)2#, where the variational
parameterl corresponds physically to the size of the sky
mion. The lifetime of the skyrmion is estimated by emplo
ing a WKB expression for the tunneling rateG
5(v0/2p)e2Sc /\, Sc being the action through the barrie
andv0 the characteristic frequency of the harmonic poten
that was used to approximate the potentialV(r ). Due to the
inaccuracy of the prefactor in the tunneling rate, whi
makes it difficult to give a reliable result for the decay ra
more efficient methods are needed for the investigation
this problem.

The instanton method as a powerful tool for dealing w
quantum tunneling phenomena has generally been use
the evaluation of the splitting of degenerate ground state
the escape rate from metastable ground states@15#. A method
of evaluating quantum-mechanical tunneling at excited
ergy states has been developed recently by means of per
instantons and bounces@16#, which are characterized by non
zero energy and satisfy nonvacuum boundary conditio
Solvable models include level splittings for the double-w
and sinh-Gordon potentials, decay rates for the inver
double-well and cubic potentials, and energy-band structu
of the sine-Gordon and Lame´ potentials@16,17#. The off-
centered potential barriers serve as another class of phy
systems, which permit analytical evaluation.

In this paper, we investigate the tunneling behavior of
skyrmion from the core to the outer region through an o
centered barrier. We first solve the equation of motion in
Euclidean version to find the classical configuration, wh
in our case is a bounce. In Sec. III we present the formal
of the periodic instanton theory for tunneling and calcula
the decay rate exactly. The results obtained are applie
estimate the rate of shrinking of the skyrmion in the tw
component ferromagnetic Bose-Einstein condensate. Fin
we summarize the main results.
©2002 The American Physical Society22-1
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II. INSTANTONS FOR OFF-CENTERED POTENTIAL
BARRIER

In this section we consider the instanton solution for
tunneling in an off-centered potential barrier as depicted
Fig. 1 in which the potential

V~r !5
Ar2

~11Br2!2
~3!

takes into account all the main features of the real barrier
the skyrmion excitation in the condensate, both in spin-
and spin-1 condensates, for any reasonableAnsatzv(r ). We
observe here some essential conditions for this simpli
model. First, as a function theAnsatzfor v should decrease
monotonically from 2p to 0, since this will correspond to
the smallest gradient energy for the spin deformations; c
respondingly, this excludes any oscillation in the decreas
the potentialV(r ) when r tends to1`. Furthermore,V(r )
should be an off-centered potential barrier with a maxim
heightV(r m) at r 5r m , andV(0)5V(1`)50. Finally, the
potential should be an even function ofr, and to avoid the
point r 50 becoming a singularity, we haveV9(0).0 so that
the harmonic-oscillation frequencyv0 can be well defined as
AV9(0)/m. The barrier~3! is just the simplest form fulfilling
the above requirements, with parameterA determining the
barrier height and parameterB determining the position o
the barrier:

FIG. 1. The off-centered potential and the bounce configura
in two imaginary time periods. For the spin-1/287Rb condensate
the potential and the radius are in units of\2/2mj2 andj, respec-
tively, and the parameters are chosen asA596 andB51, where the
size of the skyrmion (l) used is approximately the corelation leng
j corresponding to 20 core atoms.
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r m5A1/B, Vm5
A

4B
, v05A2A/m. ~4!

To estimate the lifetime of the skyrmion, we calculate t
tunneling rate from the core to the outer region through
barrier, the core atoms having a chemical potentialmcore
~hereafter abbreviated asm). The first step of the instanton
method is the so-called Wick rotation of a phase space
responding to a transformation to imaginary timet5 i t . Af-
ter the transformation, the Lagrangian is replaced by its
clidean counterpart,

L5
1

2
mS dr

dt D 2

1V~r !. ~5!

The classical solutionr c which minimizes the correspondin
Euclidean action satisfies the equation

1

2
mS drc

dt D 2

2V~r !52Ecl , ~6!

which can be viewed as the equation of motion for a parti
of massm with energy2Ecl in a potential2V. For the
tunneling process in the condensate, we assume that the
mion has decreased to a size for which the barrier is so h
that the overlap between the core atoms and the exte
atoms is exponentially small. The classical turning points
both sides of the barrier can be determined by the rela
V(r 1,2)5m, as suggested in Ref.@13#

r 1,25
AA/m

2B
~17A124mB/A!, 0,m,Vm . ~7!

The reason why we can handle a nonlinear problem
means of a linear equation of motion is that we discuss
tunneling behavior in the barrier region where the nonlin
interaction is negligibly small. Furthermore, the condens
at the ground state can be well described by a macrosc
wave function with unique phase just as in the single-part
case. However, there are obvious differences between
BEC tunneling system and the usual one-body problem,
the nonlinear interaction contributes a finite chemical pot
tial m, which replaces the integration constantEcl on the
right-hand side of Eq.~6!.

The classical configuration is a bounce that is the solut
of Eq. ~6! and can be expressed in an implicit form,

f ~r c!5vct. ~8!

Here we have assigned a characteristic frequency

vc5A2mB2

m
, ~9!

and the functionf takes the form

f ~r c!5
1

r 2
u11Br2@E~u1!2k2 snu1 cdu1#, ~10!

n

2-2
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EXACT CALCULATION OF THE SKYRMION LIFETIME . . . PHYSICAL REVIEW A 66, 043622 ~2002!
where sn and cd are two Jacobian elliptic functions,u1
5F(w,k) andE(u1) are the first and second kind of incom
plete elliptic integrals with modulusk5A12r 1

2/r 2
2, respec-

tively @19#, and

w5sin21Ar 2
2~r c

22r 1
2!

r c
2~r 2

22r 1
2!

. ~11!

The solution is subject to the following boundary condition

t50, r 5r 1 ,

t56T, r 5r 1 , ~12!

t56T/2, r 5r 2 ,

and exhibits periodic oscillation with imaginary time perio

T5
2

vc
S 1

r 2
K~k!1Br2E~k! D , ~13!

whereK(k) andE(k) are the first and second kind of com
plete elliptic integrals with modulusk, respectively. In Fig. 1
we depict the periodic oscillation of this pseudoparticle
the two periods. A remarkable feature of this bounce c
figuration is that there is no vacuum analog as in the cas
the simple cubic metastable potential, the latter describ
the tunneling behavior of a particle located at the grou
state. As the energyEcl ~or the chemical potentialm) ap-
proaches zero, the barrier will become infinitely thick a
the particle confined in the core region will be stable, with
possibility to tunnel to the outer region.

III. EXACT CALCULATION OF THE DECAY RATE

The tunneling rate of the condensate core atoms
given by a simple expression of the formG5Pe2W/\, where
P andW are coefficients that depend on the detailed form
the metastable potential. The quantityW appearing in the
exponential is the Euclidean action of the bounce solut
and gives the dominant contribution to the tunneling ra
while the prefactorP originates from the fluctuation aroun
the classical configuration. For a rather rough estimate,P is
often taken to be the attempt frequencyv0/2p, as was done
in Ref. @13#. However, as we will show below, this simpl
evaluation is not accurate. This paper provides a powe
instanton tool to obtain this prefactor.

We recall for the sake of convenience the main ideas
the periodic instanton approach. Let us first denote the w
function of the core atom condensate with chemical poten
m by z(r )ucm&, whereucm&5An(r ) originates from the den
sity and satisfies the Gross-Pitaevskii equation for sin
component,

Hucm&5mucm&, H52
\2¹2

2m
1V~r !1gucmu2. ~14!
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The effective external potentialV(r ) @14# comes from the
gradient term of the spinoru“z(r )u2, and the term with cou-
pling constantg represents the strength of the interatom
interactions.

The tunneling effect leads to the decay of the metasta
state. In the case under discussion, the nonconservation
exponentially small probability current through the barr
requires that the chemical potential has an imaginary p
proportional to the decay rate@18#, G5(2/\)Im m. Consider
the transition amplitude from the stateucm& to itself due to
quantum tunneling in Euclidean time periodT. The ampli-
tude is simply

A5^cmue2HT/\ucm&5e2mT/\. ~15!

In general, the transition amplitude is calculated with t
help of the path-integral method as

A5E cm* ~r f !cm~r i !K~r f ,T;r i ,0!dridr f , ~16!

where r f5r c(T),r i5r c(0) denote the end points of th
bounce motion, which tend to the turning pointsr 1 @see the
boundary condition, Eq. ~12!#. The wave functions
cm(r i),cm(r f) in the barrier region are specified in the WK
approximation as@21#

cm~r !5
C

Aupu
expS 2

1

\Er 1

r

pdrD , ~17!

p5A2m@m2V~r !#, ~18!

with C a normalization constant to be determined below. T
Feynman kernel is defined as the summation over all p
sible classical pathsr (t),

K~r f ,T;r i ,0!5E
r i

r fD$r %exp~2S/\!. ~19!

We know that the classical solution~8! that minimizes the
action S gives rise to the major contribution to the abo
kernel integral, while the quantum fluctuation around it r
sults in a prefactorP. In the periodT the bounce, Eq.~8!,
completes one oscillation and crosses the barrier reg
twice, back and forth. The Euclidean action is thus calcula
in this period as

SE5E L~r , ṙ !dt5E
0

TFmS drc

dt D 2

1mGdt5W1mT,

~20!

while the so-called abbreviated Euclidean action@20#

W52E
r 1

r 2
drA2m@V~r !2m# ~21!

can be expressed in terms of elliptic integrals,
2-3
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W5
4

vc
FAr1

2P~a2,k!

r 2~11Br1
2!

2
m

r 2
K~k!2mBr2E~k!G , ~22!

with P(a2,k) the complete elliptic integral with the param
eter

a25
k2

11Br1
2

. ~23!

It is obvious from the potential thatA,B.0, so 0,a2

,k2, the third elliptic integral is complete and belongs to t
case III @19#.

The imaginary part of the chemical potential can be
rived by considering the amplitudeA as the sum of contri-
butions from any number of bounces@16#. The zero-bounce
contribution results in the real part of the chemical potent

A(0)5e2mT/\. ~24!

The one-bounce contribution comes from the classical c
figuration with periodT, and can be obtained by expandin
the kernel~19! around the bounce~8!

A(1)52 iT
C2

m
e2W/\e2mT/\. ~25!

Generalizing to the case ofn bounces straightforwardly, i.e
assuming the pseudoparticle completingn oscillations in the
periodT, one has

A(n)5~2 i !n
Tn

n! S C2

m D n

e2nW/\e2mT/\. ~26!

The total transition amplitude is given by the sum over
bounce contributions,

A5(
n

A(n)5e2mT/\expS 2 iT
C2

m
e2W/\D . ~27!

The imaginary part of the chemical potential is obtained
comparing Eq.~27! with Eq. ~15!,

Im m5
\C2

m
e2W/\, ~28!

which results in the decay rate

G5
1

2

2

\
Im m5

C2

m
e2W/\, ~29!

where the factor 1/2 comes from the analytical continuati
Physically, this results from the assumption in the dec
problem ~and not in the macroscopic quantum coheren
problem! that the wave that has tunneled will never retu
Mathematically, it is due to the fact that the deformed co
tour runs from 0 toi`, and not from2 i` to i` @15#.
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The constantC can be determined from the normalizatio
of the wave function in the classically accessible regio
which is connected with those in the barrier region throu
@21#

C

Aupu
expS 2

1

\Er 1

r

pdrD→ 2C

Aupu
cosS 2

1

\Er 1

r

pdr2
p

4 D .

~30!

We restrict the integration in the classically accessible
gion, i.e., in the potential well,r ,r 1, since outside of this
rangec decreases exponentially. Because the argumen
the cosine in the wave function is a rapidly varying functio
we can, with sufficient accuracy, replace the squared co
by its mean value 1/2. This gives

C25
mv

2p
. ~31!

Inserting this into the decay rate we have

G5
v

2p
expF2

W

\ G , ~32!

wherev is the frequency of the classical periodic motion

v~m!5
2p

2mE dx

p

5
p

A2mE
0

r 1 dr

Am2V~r !

~33!

and can be calculated as

v~m!5vc

p

2 F S 1

r 2
1Br2DK~k8!2Br2E~k8!G21

~34!

with the complementary modulusk85A12k2. It must be
recalled that the frequencyv is in general different for dif-
ferent levels, being a function of the chemical potential. W
find that our expression for the decay rate equation~32! is
more accurate than that of Refs.@13,14#, i.e., in the prefactor
a chemical potential dependent frequency replaces the
stant attempt frequencyv0. In Fig. 2 we show the depen
dence of this frequency on the chemical potential; it d
creases fromv0 as the chemical potential increases from
This factor suppresses the tunneling rate greatly when
chemical potential approaches the barrier top, as show
the figure, which would be expected to increase the lifeti
of the skyrmion.

IV. NUMERICAL RESULTS FOR SKYRMIONS

The skyrmions in a ferromagnetic condensate are e
getically unstable as shown in Ref.@14#. The time scale on
which the skyrmion shrinks may be evaluated for two cas
For a large skyrmion, its size decreases at a rateG large
'18sec21j/l for 87Rb spin-1/2 condensate of central de
sity 1011 cm23 and realistic experimental conditions. Fo
skyrmions with sizes of the order or less than the correlat
length j, the shrinking rate is determined by the tunneli
2-4
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rate from the core of the skyrmion to the outer region.
previous studies@13,14# the authors estimated roughly th
lifetime of this small skyrmion due to the tunneling proce
employing a WKB expression for the tunneling rate. In th
section we thus reconsider the lifetime using the result
rived above, with the modification originating from the pre
actor included.

With an Ansatzfor v(r), the problem is simplified to a
nonlinear Schro¨dinger equation with the external potential
the off-centered form. For a different functional behavior
v(r), it turns out that the effective potential will not be ve
different, as long as theAnsatzsatisfies the boundary cond
tions v(0)52p and limr→`v(r)50 and falls off mono-
tonically. Here we compute the decay rates of different sk
mion textures with the same size, by taking into account t
Ansätzethat were proposed in Ref.@14# as trial functions for
simplifying the pair of nonlinear and coupled equations@Eqs.
~8! and ~9! in Ref. @14##, namely,

v1~r!54 cot21@~r/l!2#, ~35!

v2~r!5
2p

11~r/l!2
, ~36!

wherer5r /j, andl corresponds to the size of the skyrmio
and is also given in units ofj. Considering the large-distanc
behavior of the coupling equations forn(r) and v(r), we
see that for large skyrmions, the density fluctuations scal
1/r2, and so should theAnsätzefor v(r). This is the reason
why we would arrive at a nonphysical result for a seemin
reasonableAnsatz v3(r)52p sech(r/l). We also check
that the nonmonotonic behavior, i.e., oscillations in the fa
ing of v(r), for example,v4(r)52p@sin(r/l)/r/l#2, will
inevitably lead to singularities in the density profile, thou

FIG. 2. The decay rate as a function of the chemical poten
Inset represents the chemical-potential-dependent frequencyv. The
solid curves represent our exact result while the dotted curves
respond to the case for constant attempt frequencyv0. All curves
are calculated for the parameter of a87Rb spinor condensate, an
the chemical potentialm is given in units of the barrier heightVm .
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the effective potential holds an off-centered form. We sh
in Fig. 3 theseAnsätze for v(r) and their corresponding
effective potentialsV(r).

One important parameter we should determine is
chemical potential of the core atoms, because we sho
know at which level the atom will tunnel out. In principle
one should solve the two coupled nonlinear differential eq
tions and derive the density profile and the spinor@or the
function v(r)]. As already mentioned above, we emplo
alternatively a simple approach, i.e., by introducing theAn-
satz for v(r). From the resulting density distribution w
calculate the energy for a particular value ofl, then the core
chemical potential can be calculated numerically by diff
entiating the energy with respect to the number of core
oms. Performing the calculation within a Thomas-Fermi a
proximation, which means that in the expression for t
energy we neglect the kinetic-energy term, we finally obt
the chemical potential of the core atomm for different values
of l andAnsatz.

For theAnsätzev1 andv2 we calculate the correspondin
chemical potential forl5j. The shrinking rates of the cor
responding skyrmions are calculated according to our de
rate expression Eq.~32!, with the action given by Eq.~21!
and the prefactor given by Eq.~33!. Figure 4 gives the tun-
neling rates as a function of the number of core atoms. T
calculation was performed for a87Rb spin-1/2 condensat
with a scattering length ofa55.4 nm.

We observe that@22# the correction resulting from the
accurate prefactorv(m) for v1 is minor but significant for
v2. In Fig. 2 we could generally take the range of the chem
cal potential from 0 toVm . Unlike the situation in a har-
monic trap where the chemical potentialm increases with the
number of condensed atoms asN2/5 in the Thomas-Fermi
approximation, in our casem decreases withN instead. This
is because of the fact that the trap frequency~for v1) v0 is
inversely proportional to the equilibrium skyrmion widthl0,
which in turn increases withN ~apparently faster thanN1/5).
Herel0 is determined from minimizing the total energy, ta

l.

r-

FIG. 3. Ansätzefor v(r) and the corresponding potential barr
ersV(r). The potential and the radius are again in units of\2/2mj2

andj, respectively.
2-5
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ing into account the outer region of the skyrmion. This
stricts us to a special domain ofm. For numbers of core
atoms ranging from 1 to 20,m/Vm ranges roughly from 0.16
to 0.04. In this interval,v(m)/v0 starts from 0.985 for
Ncore51 and ends at 0.998 forNcore520, which are almost
indistinguishable in Fig. 4. However, forAnsatz v2, the
chemical potential~in units of \2/2mj2) starts at 42 for one
core atom and ends at 9.3 for 20 core atoms. The corresp
ing correction is shown in Fig. 4.

Till now there is still no clear experimental evidence f
the skyrmions in the condensate. From the above calc

FIG. 4. The shrinking rate of skyrmions as a function of t
number of core atoms forv1 and v2. The calculation was per
formed for a 87Rb spin-1/2 condensate with a scattering length
a55.4 nm. The dashed lines are the WKB calculations in Ref.@13#,
while the solid lines show our results from the periodic instan
method.
A.

e

hy

-
e
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tions we see that the result for the decay rate depends
cially on the detailed form of theAnsatzv. It remains a
challenging task to solve the coupled nonlinear equati
numerically, and to compare the results with those above

V. CONCLUSION

We present here an accurate calculation of the tunne
rate for a class of off-centered potentials with a perio
instanton method. Apart from its application to the study
the stability of the skyrmion excitation in the two-compone
ferromagnetic condensate, the bounce for the off-cente
potential barrier is itself a novel configuration from the view
point of the scalar field theory. The exact prefactor of t
decay rate has been calculated, and we found that it dep
on the chemical potential at the level of the atoms tunnel
to the outer region. This modifies the result for the rou
estimate of the lifetime by a constant attempt frequencyv0.
One can easily find some similar off-centered potentials
other topological excitations, such as vortices, monopo
etc. Our periodic instanton formalism can be extended to
investigation of the lifetime and tunneling behavior in the
systems. Further studies should include the properties of
quantum-classical transition of the decay rate when
chemical potential increases and surpasses the barrier he
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