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Exact calculation of the skyrmion lifetime in a ferromagnetic Bose-Einstein condensate
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The tunneling rate of a skyrmion in ferromagnetic spin-1/2 Bose-Einstein condensates through an off-
centered potential barrier is calculated exactly with the periodic instanton method. The prefactor is shown to
depend on the chemical potential of the core atoms, the level at which the atom tunnels. Our results can be
readily extended to estimate the lifetime of other topological excitations in the condensate, such as vortices and

monopoles.
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. INTRODUCTION functional regarded as some external potentM(r)

=#2|V{(r)|2/2m. In the spin-1/2 case, for example, the lat-
Macroscopic quantum tunneling, the tunneling of a mac-er takes the fornil3]

roscopic variable of a macroscopic system, has recently re-
ceived much attention in studies of Bose-Einstein condensa-
tion (BEC). The tunneling of a condensate through an optical 72 32 (rIN)2[3+2(r/N)*+3(r/\)8]
lattice potential1,2] provides an atomic physics analog of a (n= 2m )2 [1+(r/N)4]* @
Josephson-junction array, while in principle, the analog of a
single junction can be realized by two condensates confined
in a double-well potentidl3,4]. The recent experimental suc- for an Ansdz w(r)=4 cot [(r/\)?], where the variational
cess in all-optical trapping of an atomic condeng&iepens parametem corresponds physically to the size of the skyr-
the prospect of studies into the internal structure of spinomion. The lifetime of the skyrmion is estimated by employ-
BECs, including the possibility of creating some topologicaling a WKB expression for the tunneling ratd
excitations[6], such as skyrmions, monopoles, merons or=(wy/27)e %" S. being the action through the barrier
axis-symmetric or non-axis-symmetric vortices both for an-andw, the characteristic frequency of the harmonic potential
tiferromagnetic and ferromagnetic condensates. Among varihat was used to approximate the potentiét). Due to the
ous topological structures, the Mermin-Hd and Anderson- inaccuracy of the prefactor in the tunneling rate, which
Toulousel[8] coreless nonsingular vortices are demonstrategnakes it difficult to give a reliable result for the decay rate,
to be thermodynamically stable in ferromagnetic spinormore efficient methods are needed for the investigation of
Bose-Einstein condensates with the hyperfine statd [9].  this problem.
Skyrmions, which do not have an ordinary vortex core due to  The instanton method as a powerful tool for dealing with
the spin degree of freedom, are also proposed in the spin@uantum tunneling phenomena has generally been used in
BEC [10-13 and are shown to be thermodynamically un-the evaluation of the splitting of degenerate ground states or
stable objects without rotatidii3,14. Once created, the ra- the escape rate from metastable ground sfafis A method
dius of such a skyrmion shrinks to zero, so that one musgf evaluating quantum-mechanical tunneling at excited en-
detect and manipulate it in the duration of its lifetime. ergy states has been deve|0ped recenﬂy by means of periodic
The skyrmion texture in a ferromagnetic spinor conden-nstantons and bouncgs6], which are characterized by non-
sate can be described conveniently by a position-dependepéro energy and satisfy nonvacuum boundary conditions.
spinor[14], Solvable models include level splittings for the double-well
and sinh-Gordon potentials, decay rates for the inverted
, double-well and cubic potentials, and energy-band structures
_ p[_'_ﬂ ] z of the sine-Gordon and Lampotentials[16,17. The off-
(r)=ex r-S;l-. (1) . . .
S centered potential barriers serve as another class of physical
systems, which permit analytical evaluation.
In this paper, we investigate the tunneling behavior of the
The constant spinaf” is the usual basis that diagonalizes theskyrmion from the core to the outer region through an off-
S, component of the spin matrice§ and o(r) is a real  centered barrier. We first solve the equation of motion in the
function of radiusr satisfying the boundary conditions Euclidean version to find the classical configuration, which
w(0)=27 and lim __..w(r)=0. For the skyrmion with size in our case is a bounce. In Sec. Ill we present the formalism
of the order of the correlation lengtf=1/\/87ran., or less, of the periodic instanton theory for tunneling and calculate
wheren,, is the average atomic density aadthe swave the decay rate exactly. The results obtained are applied to
interatomic scattering length, the problem can be reduced testimate the rate of shrinking of the skyrmion in the two-
a nonlinear Schrdinger equation by aAnsaz for w(r) with component ferromagnetic Bose-Einstein condensate. Finally,
the gradient term{VZ(r)|? in the Gross-Pitaevskii energy we summarize the main results.
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30 A
rm=v1B, Vph=-=, wg=V2A/m. (4)
: To estimate the lifetime of the skyrmion, we calculate the
20t g tunneling rate from the core to the outer region through a

barrier, the core atoms having a chemical potentig),e
: (hereafter abbreviated as). The first step of the instanton
"""""" preoeomeneeee ¢ method is the so-called Wick rotation of a phase space cor-

101 : responding to a transformation to imaginary timeit. Af-
ter the transformation, the Lagrangian is replaced by its Eu-
: clidean counterpart,
0 . ' L
0j0! 3.0 4.0 5[0 1 2
: r =-m|—| + .
: L 2m<d7_ V(r) (5)

The classical solution; which minimizes the corresponding
Euclidean action satisfies the equation

1 [drc\? Vir—_E s
oM g, (r)=—E, (6)
< i ..q which can be viewed as the equation of motion for a particle

of massm with energy —E., in a potential —V. For the
FIG. 1. The off-centered potential and the bounce configuratiortunne“ng process in the condensate, we assume that the skyr-
in two imaginary time periods. For the spin-1#Rb condensate, mion has decreased to a size for which the barrier is so high
the potential and the radius are in unitsfdi2mé? and¢, respec-  that the overlap between the core atoms and the external
tively, and the parameters are choserasd6 andB=1, where the  41oms js exponentially small. The classical turning points on
size of the skyrmionX) used is approximately the corelation length both sides of the barrier can be determined by the relation
¢ corresponding to 20 core atoms. V(ry,)=pu, as suggested in RefL3]

IIl. INSTANTONS FOR OFF-CENTERED POTENTIAL ~m
BARRIER r12=—g (13 V1-4uB/A), 0<pu<Vy. ()

In this section we consider the instanton solution for the

tunneling in an off-centered potential barrier as depicted inThe reason why we can handle a nonlinear problem by
Fig. 1 in which the potential means of a linear equation of motion is that we discuss the
tunneling behavior in the barrier region where the nonlinear

) interaction is negligibly small. Furthermore, the condensate

V(r)= Ar 3 at the ground state can be well described by a macroscopic

(1+Br?)? wave function with unique phase just as in the single-particle
case. However, there are obvious differences between the

. ] ~BEC tunneling system and the usual one-body problem, i.e.,
takes into account all the main features of the real barriers ifhe nonlinear interaction contributes a finite chemical poten-

the skyrmion excitation in the condensate, both in spin-1/3i5 «, which replaces the integration constdgg on the
and spin-1 condensates, for any reasonabisatzs(r). We  right-hand side of Eq(6).

observe here some essential conditions for this simplified "The classical configuration is a bounce that is the solution
model. First, as a function thensatzfor » should decrease of Eq. (6) and can be expressed in an implicit form,
monotonically from 27 to 0, since this will correspond to

the smallest gradient energy for the spin deformations; cor- f(ro)=w.r. (8)
respondingly, this excludes any oscillation in the decrease of

the potentialV(r) whenr tends to+o. FurthermoreV(r)  Here we have assigned a characteristic frequency
should be an off-centered potential barrier with a maximum

heightV(r,,) atr=r,, andV(0)=V(+«)=0. Finally, the \/ﬁ
potential should be an even function ofand to avoid the W= ,
pointr =0 becoming a singularity, we ha¥'(0)>0 so that m
the harmonic-oscillation frequeney, can be well defined as
VV”(0)/m. The barrien(3) is just the simplest form fulfilling
the above requirements, with paramefedetermining the 1
barrier height and paramet& determining the position of f(ro)=—u;+Bry[E(u;)—k?snu; cduy],  (10)
the barrier: I

C)

and the functiorf takes the form
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where sn and cd are two Jacobian elliptic functiong, The effective external potentiaf(r) [14] comes from the
=F(¢,k) andE(u,) are the first and second kind of incom- gradient term of the spinde{(r)|2, and the term with cou-
plete elliptic integrals with moduluk= \/1—r12/r22, respec- pling constantg represents the strength of the interatomic

tively [19], and interactions.
The tunneling effect leads to the decay of the metastable
2,2 2 state. In the case under discussion, the nonconservation of an
., [rare—ry) : i :
p=sin"t\/ =" (11)  exponentially small probability current through the barrier
r2(ra—r? requires that the chemical potential has an imaginary part

proportional to the decay rafé&8], I'=(2/4)Im w. Consider
The solution is subject to the following boundary conditions:the transition amplitude from the stalfi,,) to itself due to
quantum tunneling in Euclidean time peridd The ampli-

=0, r=ry, tude is simply

A= e—HT/ﬁ :e—,uT/fL. 15
R 1 (e ] y,) (15

In general, the transition amplitude is calculated with the
T=%xT/2, r=r,, help of the path-integral method as

and exhibits periodic oscillation with imaginary time period
P ginary fime p A=f YA (K Tor O drdry, (1)

21
T=—| —K(k)+BrEK) |, (13)  where ry=r(T),r;=r.(0) denote the end points of the
¢z bounce motion, which tend to the turning poimts[see the
boundary condition, Eq.(12)]. The wave functions
#,(ri),¥,(r¢) in the barrier region are specified in the WKB
approximation a$21]

whereK (k) andE(k) are the first and second kind of com-
plete elliptic integrals with modululs, respectively. In Fig. 1

we depict the periodic oscillation of this pseudoparticle in
the two periods. A remarkable feature of this bounce con-

figuration is that there is no vacuum analog as in the case of W)= C exd — = ' pdr 17)
the simple cubic metastable potential, the latter describing ® NI filr, '

the tunneling behavior of a particle located at the ground

state. As the energf. (or the chemical potentiak) ap- p=\2mz—V(N)], (18)

proaches zero, the barrier will become infinitely thick and

the p.ar.t_lcle confined in the core region will be stable, with noWith C a normalization constant to be determined below. The
possibility to tunnel to the outer region.

Feynman kernel is defined as the summation over all pos-
sible classical paths(7),
Ill. EXACT CALCULATION OF THE DECAY RATE

The tunneling rate of the condensate core atoms was /c(rf,T;ri,o)zfrfp{r}exp(—s/ﬁ)_ (19

given by a simple expression of the folfe=Pe™ "W where ri

P andW are coefficients that depend on the detailed form of

the metastable potential. The quantity appearing in the We know that the classical soluti@8) that minimizes the

exponential is the Euclidean action of the bounce solutiorction S gives rise to the major contribution to the above

and gives the dominant contribution to the tunneling ratekernel integral, while the quantum fluctuation around it re-

while the prefactoiP originates from the fluctuation around sults in a prefactoP. In the periodT the bounce, Eq(8),

the classical configuration. For a rather rough estimatis, ~completes one oscillation and crosses the barrier region

often taken to be the attempt frequermy/zﬂ-' as was done tWice, back and forth. The Euclidean action is thus calculated

in Ref. [13]. However, as we will show below, this simple in this period as

evaluation is not accurate. This paper provides a powerful 5

instanton tool to obtain this prefactor. :f £eriyd :J'T m dre +uldrm W o T
We recall for the sake of convenience the main ideas of % (r,r)dr= [ mlg=] +uidr I

the periodic instanton approach. Let us first denote the wave (20)

function of the core atom condensate with chemical potential

w by Z(r)|¢,), where|y,)=n(r) originates from the den- while the so-called abbreviated Euclidean ac{iaf]

sity and satisfies the Gross-Pitaevskii equation for single

component,

W=2 f 2 dr MV = ] 1)

292 1
+V(r)+gly,l% (14

Hly)=uld,), H=-

2m can be expressed in terms of elliptic integrals,
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4 [ Ar2MI(a? k) “ The constanC can be determined from the normalization
W= — 1—’2——K(k)—,uBr2E(k) , (220  of the wave function in the classically accessible region,
Wc| ry(1+Bry) T2 which is connected with those in the barrier region through
[21]
with IT(a?,k) the complete elliptic integral with the param-
eter C[{lrd> 2CS<1rd7r)
——exp — | pdr|——=cog —+ | pdr——|.
K2 W h M W h M 4
al= 5 (23 (30)
1+Brg

We restrict the integration in the classically accessible re-

gion, i.e., in the potential well;<r,, since outside of this

<k?, the third elliptic integral is complete and belongs to therange«//_ depreases exponerjnal!y. Becguse the. argument of
the cosine in the wave function is a rapidly varying function,

case ll[19]. we can, with sufficient accuracy, replace the squared cosine
The imaginary part of the chemical potential can be de- ' y: rep q

rived by considering the amplitud& as the sum of contri- by its mean value 1/2. This gives
butions from any number of bouncgs6]. The zero-bounce Mo

It is obvious from the potential thaf,B>0, so 0<a?

contribution results in the real part of the chemical potential, CZ—Z. (31
0)— o~ uT/h
A= e~ KT, (24 Inserting this into the decay rate we have
The one-bounce contribution comes from the classical con- 1) w
figuration with periodT, and can be obtained by expanding I'=>—exp -+, (32

the kernel(19) around the bouncéB)
wherew is the frequency of the classical periodic motion,

2
A= —iT C_e—W/ﬁe—MT/h (25)
m ' 2 T
e AR — (33
1
Generalizing to the case afbounces straightforwardly, i.e., ZmJ F V2m —
assuming the pseudoparticle completingscillations in the 0 Vu—V(r)

eriod T, one has
P and can be calculated as

n 2\n
A(n):(_l)n%(%> e*nW/ﬁe*,u,T/fL' (26)

-1
i+Es|r2 K(k’)—BrzE(k’)} (34)

)

T
o(p)=wes

The total transition amplitude is given by the sum over allyjth the complementary modulus’ = y1—Kk>2. It must be
bounce contributions, recalled that the frequenay is in general different for dif-
o2 ferent levels, being a function of the chemical potential. We
_ . _ find that our expression for the decay rate equat@®) is
- (N)— a—uT/h T AW
A ; AT =e exp{ Tme ) 7 more accurate than that of Refd3,14, i.e., in the prefactor
a chemical potential dependent frequency replaces the con-

The imaginary part of the chemical potential is obtained bystant attempt frequency,. In Fig. 2 we show the depen-

comparing Eq(27) with Eq. (15), dence of this frequency on the chemical potential; it de-
creases fromwg as the chemical potential increases from 0.
KrC2 This factor suppresses the tunneling rate greatly when the
Imp= ?e_wm, (28)  chemical potential approaches the barrier top, as shown in

the figure, which would be expected to increase the lifetime

which results in the decay rate of the skyrmion.

12 c2 IV. NUMERICAL RESULTS FOR SKYRMIONS

E— — = oW
r 2 ﬁlm’u me ' (29 The skyrmions in a ferromagnetic condensate are ener-

getically unstable as shown in R¢f.4]. The time scale on
where the factor 1/2 comes from the analytical continuationwhich the skyrmion shrinks may be evaluated for two cases:
Physically, this results from the assumption in the decayror a large skyrmion, its size decreases at a Iaigye
problem (and not in the macroscopic quantum coherence=18sec &/ for 8'Rb spin-1/2 condensate of central den-
problem that the wave that has tunneled will never return.sity 10" cm™2 and realistic experimental conditions. For
Mathematically, it is due to the fact that the deformed con-skyrmions with sizes of the order or less than the correlation
tour runs from 0 tao, and not from—icw to ic [15]. length ¢, the shrinking rate is determined by the tunneling
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FIG. 2. The decay rate as a function of the chemical potential. . ) . )
Inset represents the chemical-potential-dependent frequentie FIG. 3. Ansdzefor w(p) and the corresponding potential b,f""
solid curves represent our exact result while the dotted curves cof2'SV(p). The potential and the radius are again in unité &em¢
respond to the case for constant attempt frequencyAll curves ~ andé, respectively.

are calculated for the parameter off&Rb spinor condensate, and ) .
the chemical potentigk is given in units of the barrier height,, . the effective potential holds an off-centered form. We show

in Fig. 3 theseAnsaze for w(p) and their corresponding
effective potentiald/(p).

One important parameter we should determine is the
chemical potential of the core atoms, because we should

rate from the core of the skyrmion to the outer region. In
previous studie$13,14 the authors estimated roughly the
lifetime of this small skyrmion due to the tunneling process X . L
employing a WKB expression for the tunneling rate. In thisknOW at which level the atom will tun_nel out. In prl_nC|pIe,

section we thus reconsider the lifetime using the result dedn€ should solve the two coupled nonlinear differential equa-

rived above, with the modification originating from the pref- tions.and derive the density pro_file and the spipor the
actor included. function w(p)]. As already mentioned above, we employ

With an Ansatzfor w(p), the problem is simplified to a alternatively a simple approach_, e, by_intrqduc_:ing_me
nonlinear Schirdinger equation with the external potential of S&tz for (p). From the resulting density distribution we
the off-centered form. For a different functional behavior Ofcalcul.ate the energy for a particular value)\ofthen the core
(p), it turns out that the effective potential will not be very chemical potential can be calculated numerically by differ-

different, as long as thAnsatzsatisfies the boundary condi- €ntiating the energy with respect to the number of core at-
tions w(0)=2m and lim,_..w(p)=0 and falls off mono- oms. Performing the calculation within a Thomas-Fermi ap-

tonically. Here we compute the decay rates of different Skyrprommatmn, which means .that in the expression for th_e
mion textures with the same size, by taking into account twdnergy we neglect t_he Kinetic-energy term, we finally obtain
Ansizethat were proposed in RefL4] as trial functions for the chemical potential of the core atqmfor different values

simplifying the pair of nonlinear and coupled equatipggs. ~ ©f A andAnsatz
®) gngl(g)gin Rgf. [14]], namely, P quatioBg For theAnsazew, andw, we calculate the corresponding

chemical potential foh = &. The shrinking rates of the cor-
responding skyrmions are calculated according to our decay

w1(p)=4 cot '[(p/\)?], 39 rate expression Eq32), with the action given by Eqg(21)
and the prefactor given by E¢33). Figure 4 gives the tun-
20 neling rates as a function of the number of core atoms. The
wo(p)= — (36) calculation was performed for &Rb spin-1/2 condensate
1+(p/N) with a scattering length cdi=5.4 nm.

We observe thaf22] the correction resulting from the
wherep=r/¢, and\ corresponds to the size of the skyrmion accurate prefactow(w) for w, is minor but significant for
and is also given in units @f. Considering the large-distance w,. In Fig. 2 we could generally take the range of the chemi-
behavior of the coupling equations fafp) and w(p), we  cal potential from O toV,,. Unlike the situation in a har-
see that for large skyrmions, the density fluctuations scale amonic trap where the chemical potentiaincreases with the
1/p?, and so should thansazefor w(p). This is the reason number of condensed atoms a¢%® in the Thomas-Fermi
why we would arrive at a nonphysical result for a seeminglyapproximation, in our casg decreases withl instead. This
reasonableAnsatz ws(p) =2 sechp/\). We also check is because of the fact that the trap frequeffoy wq) wg is
that the nonmonotonic behavior, i.e., oscillations in the fall-inversely proportional to the equilibrium skyrmion widk,
ing of w(p), for example,w4(p) =27 sin(/\)/p/\]?, will  which in turn increases witN (apparently faster thaN/®).
inevitably lead to singularities in the density profile, thoughHere\, is determined from minimizing the total energy, tak-
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' ' ' ' ' tions we see that the result for the decay rate depends cru-
04 - - cially on the detailed form of thé\nsatzw. It remains a

=== WKB -~ challenging task to solve the coupled nonlinear equations
Instanton PR

numerically, and to compare the results with those above.

V. CONCLUSION

We present here an accurate calculation of the tunneling
rate for a class of off-centered potentials with a periodic
instanton method. Apart from its application to the study of
the stability of the skyrmion excitation in the two-component
ferromagnetic condensate, the bounce for the off-centered
potential barrier is itself a novel configuration from the view-
point of the scalar field theory. The exact prefactor of the
8 10 12 14 16 18 20 decay rate has been calculated, and we found that it depends
on the chemical potential at the level of the atoms tunneling
to the outer region. This modifies the result for the rough

FIG. 4. The shrinking rate of skyrmions as a function of the estimate of the lifetime by a constant attempt frequedagy
number of core atoms fow; and w,. The calculation was per- QOne can easily find some similar off-centered potentials in
formed for a®’Rb spin-1/2 condensate with a scattering length ofother topological excitations, such as vortices, monopoles,
a=5.4 nm. The dashed lines are the WKB calculations in R, etc. Our periodic instanton formalism can be extended to the
while the solid lines show our results from the periodic i”Sta“tO“investigation of the lifetime and tunneling behavior in these
method. systems. Further studies should include the properties of the
guantum-classical transition of the decay rate when the

ing into account the. outer feQiO” of the skyrmion. This re-cpemica potential increases and surpasses the barrier height.
stricts us to a special domain @f. For numbers of core

atoms ranging from 1 to 2Q4/V,, ranges roughly from 0.16
to 0.04. In this interval,w(u)/wy starts from 0.985 for
Ncore=1 and ends at 0.998 fd\,,.= 20, which are almost
indistinguishable in Fig. 4. However, foAnsatz w,, the We thank Usama Al Khawaja and Henk Stoof for their
chemical potentialin units of 22/2mé&?) starts at 42 for one  help in numerical simulation, especially for providing us Fig.
core atom and ends at 9.3 for 20 core atoms. The correspond- It is a great pleasure to thank J.-Q. Liang and Yaping Yang
ing correction is shown in Fig. 4. for useful discussions. This work was supported by the Al-

Till now there is still no clear experimental evidence for exander von Humboldt Foundation and by the NSF of China
the skyrmions in the condensate. From the above calculainder Grant Nos. 10175039 and 10075032.
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