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Planck-scale dissipative effects in atom interferometry
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Atom interferometers can be used to study phenomena leading to irreversibility and dissipation, induced by
the dynamics of fundamental objects~strings and branes! at a large mass scale. Using an effective, but
physically consistent description in terms of a master equation of Lindblad form, the modifications of the
interferometric pattern induced by the new phenomena are analyzed in detail. We find that present experimental
devices can, in principle, provide stringent bounds on the new effects.
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I. INTRODUCTION

The evolution in time of a systemS immersed in a large
environmentE can be obtained from the dynamics of th
total systemS1E by eliminating~i.e., integrating over! the
degrees of freedom ofE. SinceS1E is closed, the total dy-
namics is unitary; this is no longer true for the evolution
the subsystemS alone, which, in general, turns out to be ve
involved, developing nonlinearities and memory effec
However, when the interaction between subsystem and e
ronment is weak and there are no initial correlations betw
S andE, the time evolution ofS can still be realized through
linear maps on the states ofS, satisfying basic physical re
quirements, such as forward in time composition law~semi-
group property!, entropy increase~irreversibility! and com-
plete positivity ~that guarantees the physical consistency
the evolution in all situations!. These one-parameter~5time!
family of maps form a so-called quantum dynamical sem
group@1–4#, and are generated by a master equation of Li
blad form @5#.

This description of the time evolution of open systems
very general; it was originally developed in the framework
quantum optics@6–8#, and subsequently used to model ve
different physical situations, from the study of various sta
tical systems@1–3#, to the analysis of the interaction of
microsystem with a macroscopic measuring appara
@9–11#, to the description of the emergence of the class
world @12,13#, and of the so-called dynamical reduction@14#.

Master equation of Lindblad form can also be used
describe phenomena leading to irreversibility and dissipa
at low-energy generated by the dynamics of fundamental
jects at a large scale, typically the Planck mass@15#. Indeed,
the dynamics of extended objects, strings and branes, g
rise at low energies to a weakly coupled heat bath, and
consequence to decoherence phenomena@16#. From a more
phenomenological point of view, similar effects have a
been described in the framework of quantum gravity@17#:
due to the quantum fluctuations of the gravitational field a
the possible generation of virtual black holes, spacet
1050-2947/2002/66~4!/043617~6!/$20.00 66 0436
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should become ‘‘foamy’’ at scales comparable to the Plan
length, leading to loss of quantum coherence@18–23#. Fur-
thermore, dissipation and decoherence are also the na
outcome of the general dynamics in theories with large ex
dimensions@24#: indeed, the possible energy leakage fro
the boundary of spacetime~our four-dimensional brane uni
verse! into the bulk due to gravity effects would inevitabl
inject noise into the boundary, thus inducing irreversibil
and dissipation at low energy.

Our present knowledge of string theory does not all
precise estimates of the magnitude of these nonstandar
fects. Nevertheless, dimensional arguments suggest that
must be very small, being suppressed by at least one inv
power of a large fundamental mass. Despite of this, they
be in the reach of various interferometric devices. Inde
detailed investigations involving different elementar
particle systems~neutral mesons@25,26#, neutrons@27#, pho-
tons @28#, and neutrinos@29#! have shown that present an
future experiments might soon reach the sensitivity requi
to detect the new, nonstandard phenomena.

Another physical situation in which phenomena leading
irreversibility and dissipation can be studied is provided
atom interferometers, where a beam of nearly monoenerg
atoms is coherently split into two components that are
combined at the exit of the apparatus@30–33#. The interfero-
metric pattern observed at the end of the devise is influen
by the action of external phenomena, produced, e.g., by
external electric or magnetic field, or by earth gravity. T
sophistication of present interferometric apparata is so h
that the theoretically predicted changements in the interfe
metric figure for some of these phenomena have been
firmed with high accuracy@30–32#.

Irreversibility and dissipation also affect the propagati
of the atoms in the interferometer; this leads to a deforma
of the corresponding interferometric pattern at the exit of
apparatus. It turns out that these modifications are very
tinctive of the dissipative phenomena, and cannot be m
icked by other physical effects, as the ones mentioned
fore.
©2002 The American Physical Society17-1
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In the following, we shall analyze in detail these modi
cations under the hypothesis that the generalized dyna
of the atoms inside the interferometer be generated by a m
ter equation of Lindblad form. For sake of definiteness,
shall limit our discussion to three-grating atom interfero
eters in the Bragg regime, where the split and the recom
nation of the incident beam is realized by material gratin
or laser standing waves. The approach has points in com
with the one adopted in Ref.@27# to study similar effects in
neutron interferometry@34#. The perturbative treatmen
adopted there is, however, inapplicable in the present c
this fact, together with the operational differences in the
tual functioning of an atom interferometer require a co
pletely different and independent analysis. As discusse
the final section, the outcome of our investigations is t
atom interferometry experiments could provide the most
curate estimate of the nonstandard, dissipative effects
can be induced by a fundamental dynamics at Planck’s sc

II. MASTER EQUATION

The evolution of the atoms inside the interferometer c
be analyzed using an abstract, two-dimensional Hilb
space. The states corresponding to the two-split beams in
apparatus can be taken to be the basis states in this s
More in general, the quantum state of an atom traveling
side the interferometer will be a statistical mixture of t
basis states, and therefore described by a density matrr,
i.e., by a Hermitian, positive defined operator with u
trace.1 With respect to the chosen basis, one can then w

r5S r1 r3

r4 r2
D , r45r3* , r11r251, ~2.1!

where* signifies complex conjugation.
As explained in the introductory remarks, the starti

point of our analysis is the assumption that the dynamics
the atoms inside the interferometer be generated by a m
equation of Lindblad form2 @1–5#,

]

]t
r~ t !52 i @H,r~ t !#1D@r~ t !#. ~2.2!

The first term in the right-hand side represents the stand
Hamiltonian contribution. In the chosen basis, the effect
Hamiltonian can be written as

H5S E1v 0

0 E2v
D , ~2.3!

1For earlier works on the use of the formalism of density matri
in atom interferometry, see@35–37,33#, and references therein.

2An equation of this type has also been used to study decoher
effects in position space induced by the scattering of photons on
atoms inside the interferometer@37#. Instead, the evolution equatio
~2.2! is written in ‘‘polarization’’ space, and, as explained belo
represents the most general master equation compatible with
physical requirements.
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whereE is the energy of the atoms in the incident beam.
the other hand the splitting in energy 2v among the two
internal beams is usually induced by the action of laborat
controlled effects, typically the presence of external fiel
For open system though, even in absence of external fie
the quantityv is in general nonvanishing. Indeed, one c
show that the weak interaction of the system with the ex
nal environment induces in general a Hamiltonian contrib
tion, giving rise to the ‘‘Lamb shift’’ termv in Eq. ~2.3!
@1–3,16,29#.

Nevertheless, it is the additional pieceD@r# in Eq. ~2.2!
that describes true mixing enhancing phenomena: in abs
of it, the evolution ofr would be unitary and reversible. I
can be represented by a trace-preserving linear map actin
the three independent components of the density matrix
Eq. ~2.1!. Decomposing for conveniencer3 in its real and
imaginary parts,

r35r12 ir2, ~2.4a!

and introducing the combination

r12r252r3, ~2.4b!

one can then writeD@r# as a 333 real, symmetric matrixD,
acting on the real vectorur& of components (r1,r2,r3):

D522F a b c

b a b

c b g
G . ~2.5!

The six parametersa,b,c, a, b andg, with a, a, andg non-
negative, are not all independent; physical consistency of
full time evolution ~i.e., the request of complete positivity
see Refs.@38,39# for details! further imposes the following
inequalities:

2R[a1g2a>0, RS>b2,

2S[a1g2a>0, RT>c2,

2T[a1a2g>0, ST>b2, ~2.6!

RST>2bcb1Rb21Sc21Tb2.

If one includes also the Hamiltonian contribution and fu
ther recalls that Tr@r(t)#51, the evolution equation~2.2! can
be rewritten as a diffusion equation for the 3-vectorur(t)&,

]

]t
ur~ t !&522Hur~ t !&, H5F a b1v c

b2v a b

c b g
G .

~2.7!

Its solution involves the exponentiation of the matrixH,

ur~ t !&5M~ t !ur~0!&, M~ t !5e22Ht, ~2.8!
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PLANCK-SCALE DISSIPATIVE EFFECTS IN ATOM . . . PHYSICAL REVIEW A66, 043617 ~2002!
whereur~0!& represents the initial state of the atoms enter
the interferometer. It coincides with one of the followin
density matrices

r~1!5
1

2 S 1 1

1 1D , r~2!5
1

2 S 1 21

21 1 D , ~2.9!

corresponding to the possible choices of orientation of
incident atomic beam with respect to the first diffracti
grating. Both choices lead to the same final results; for d
niteness, in the following we shall work withr (1), so that
ur(0)&5(1/2,0,0).

III. OBSERVABLES

In the language of density matrices, physical observab
are represented by suitable Hermitian operators, whose m
values can be obtained by taking their trace withr(t). In
particular, the intensity pattern observed at the end of
interferometer is given by the mean value of the followi
projector operators@18,27#:

O15
1

2 S 1 e2 iu

eiu 1 D , O25
1

2 S 1 e2 i ~u1p!

ei ~u1p! 1 D ,

~3.1!

that correspond to the two possible exit beams in which
atom can be found while exiting the apparatus. In the st
dard situation, it is the phaseu that gives the modulation o
the interferometric pattern. This is usually obtained by mo
ing the transverse position of one of the gratings~or laser
standing waves! responsible for the diffraction of the atom
beam. Indeed, in an idealized situation one finds@30–32#

u5k~x122x21x3!, ~3.2!

wherexi , i 51,2,3, represents the position, transverse w
respect to the incident beam, of thei th grating, whilek is the
wave vector of the diffracting lattice.

The intensityI6 of the interference figure detected at t
two possible exits is then given by

I6~ t !5^O6&[Tr@O6r~ t !#5
1

2
1O6

1 r1~ t !1O6
2 r2~ t !

1O6
3 r3~ t !, ~3.3!

where definitions similar to the ones in Eq.~2.4! have been
introduced also for the entries of the two matricesO6 . Us-
ing Eq. ~3.1!, one finds

I6~ t !5
1

2
@162@cosur1~ t !1sinur2~ t !##. ~3.4!
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Since an atom exiting the interferometer can only be fou
in one of the two exit beams, particle conservation requi
I1(t)1I2(t)51, which is clearly satisfied by Eq.~3.4!.

The intensity curves in Eq.~3.4! can be compared with
the experiment, provided explicit expressions for the entr
of the matrixM(t) in Eq. ~2.8! are given. Formally, this can
be obtained by studying the eigenvalue problem for the
33 matrix H in Eq. ~2.7!

Huvk&5lkuvk&, k51,2,3. ~3.5!

The three eigenvaluesl1 , l2 , l3 satisfy a cubic equation,

l31rl21sl1w50, ~3.6!

with real coefficients:r 52(a1a1g), s5aa1ag1ag
2b22c22b21v2, w52detH. It then follows thatlk are
either all real, or one is real and the remaining two are co
plex conjugate; further, in both situations, one can show t
in presence of dissipation the three eigenvalues have alw
positive real parts@40#.

Using the fact that the matrixH itself obeys Eq.~3.6!, one
finds

I6~ t !5
1

2 H 16 (
k51

3
e22lkt

3lk
212rlk1s

@~lk
22~a1g!lk1ag

2b2!cosu1~~v2b!~lk2g!2bc!sinu#J .

~3.7!

From this general expression, one sees that in the presen
complex eigenvalues, a further harmonic modulation in ti
of the interference figures occurs, while exponential damp
terms always prevail for long enough times. Further, n
that in the absence of dissipation,a5b5c5a5b5g5v
50, and thuslk50, the expressions ofI6 in Eq. ~3.7! re-
duce to their standard, time-independent ones@30–32#

I65
1

2
$16cosu%, ~3.8!

any deviation from this formula as described by Eq.~3.7!
clearly signals the presence of dissipative phenomena
atom interferometry.

Although explicit expressions for the eigenvalueslk can
always be found via Cardano’s formula@41#, the form~3.7!
of the intensitiesI6 is rather involved, and of limited use in
practice. Having in mind possible comparison with expe
mental data, the study of suitable approximations of Eq.~3.7!
might result appropriate.

In this respect, a useful working assumption is to takeg
50;3 in this case, the inequalities~2.6! further imposeb

3There are essentially two known ways of implementing the c
dition of weak interaction between subsystem and environm
@1–3#: the singular-coupling limit~in which the time correlations in
7-3
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F. BENATTI AND R. FLOREANINI PHYSICAL REVIEW A 66, 043617 ~2002!
5c5b50 anda5a. In this simplified situation, the formula
in Eq. ~3.7! reduces to

I6~ t !5
1

2
$16e22at cos~u22vt !%. ~3.9!

This is surely the most simple expression that the inten
probabilitiesI6(t) take in presence of dissipative effects.
differs from the standard expression in Eq.~3.8! by the pres-
ence of an exponential damping factor and of an additio
harmonic phase that accumulates in time.

A different approximation of the general formula~3.7! can
be obtained when the parametersa, b, c, a, b, and g are
small with respect ofv. This could happen when the inte
ferometer is immersed in a strong external field, so that
contribution to the energy shiftv due to its interaction with
the atom beams largely overrides the one coming from
effects of a weakly coupled environment.4 In this case, the
additional pieceD@r# in the evolution equation~2.2! can be
treated as a perturbation. Using the solution of this equa
expanded up to second order in the small parameters, f
Eq. ~3.4! one obtains

I6~ t !5
1

2 H 16e2~a1a!tF S cos 2Vt1
a2a

2V
sin 2Vt

2
2b2

V2 sin2 Vt D cosu1S b2v

V
sin 2Vt

2
cb

V2 cos 2Vt D sinuG J , ~3.10!

whereV5@v22b22c22b22(a2a)2/4#1/2. In writing Eq.
~3.10!, we have reconstructed the exponential factor by p
ting together the terms linear and quadratic int; a similar
treatment has allowed writing all harmonic pieces in terms
the frequencyV. It is worth noting that forc5b50, the
formula ~3.10! gives the exact expression for the intensit
I6 : no approximation is involved. This is a consequence
the fact that forc5b50 the matrixH in Eq. ~2.7! becomes
block diagonal, so that explicit, manageable expressions
its exponentialM(t), and therefore forI6 , can be given.
From this point of view, the validity of Eq.~3.10! goes be-
yond the second-order approximation in which it has be

the environment are assumed to be much smaller than the ty
time scale of the subsystem! and the weak-coupling limit~in which
it is the subsystem characteristic time scale that becomes la!.
One can check that the second situation leads precisely to the
dition g50 @29#.

4In this respect, it should be noted that even in absence of
external field, a hierarchy betweenv and the other dissipative pa
rametersa, b, c, a, b, andg could be nevertheless generated by t
interaction with the environment. For details, see Ref.@16# and the
Appendix in Ref.@29#.
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derived: it can be considered as the expansion of the
expression~3.7! for I6 up to second order inc andb.

IV. INTERFERENCE PATTERN

The behavior of the general expression~3.7! for I6 , and
of its special cases~3.9! and ~3.10! crucially depend on the
dissipative parameters: at least in principle, they can be u
to obtain informations on their values from fits with the e
perimental data. The magnitude ofa, b, c, a, b, g, andv are
nevertheless expected to be very small. In fact, for s
systems in interactions with large environments, the effe
leading to dissipation and decoherence can be roughly
mated to be proportional to the typical energy of the syste
while suppressed by inverse powers of the characteristic
ergy scale of the environment@1–3#. In the case of nonstand
ard phenomena induced by the dynamics of fundamental
jects~strings, branes! at Planck’s massM P , an upper bound
on the magnitude of the dissipative parameters can
roughly evaluated to be of orderMA

2/M P , whereMA is the
mass of the atoms used in the interferometer@16,29#; in typi-
cal real situations, this ratio takes values between 10218 and
10215 GeV ~or equivalently, between 103 and 106 KHz).

A further difficulty in comparing the theoretically pre
dicted interference figures with the experimental data ar
from the fact that the previously derived expressions forI6

hold in the case of an idealized interferometer, with perfec
monoenergetic atomic incident beams. In practice, the va
of the atom momenta spread over a finite distribution. T
fact, together with the inevitable imperfections in the co
struction of the actual interferometric apparatus, produce
tenuation in the intensity of the signal.

One can take into account these spurious effects by m
fying the previously derived intensity spectra with the intr
duction of suitable unknown parameters. To keep the disc
sion as simple as possible, we shall concentrate on
expression~3.9! for I6 ; similar arguments apply to the othe
formulas. By denoting withN6 the atom countings at the
two exit beams of the interferometer, one generalizes
spectra in Eq.~3.9! as

N6~ t !5N6
~0!$16C6e22at cos~u22vt !%. ~4.1!

The constantsC6 are the fringe contrast and parametrize t
intensity attenuation, whileN6

(0) are suitable normalization
factors;5 note that particle conservation now require
N1

(0)C15N2
(0)C2 . Clearly, the higher the fringe contrast, th

more accurate the determination of the dissipative par
etersa andv from the experiment will be.

In order to fit actual experimental data with the express
~4.1!, further elaborations are, however, needed. As m
tioned before, the intensity spectra are reconstructed
counting the atoms at one of the exit beams as a functio
the transverse positionx of the final grating~or standing laser

al

e
n-

y

5In absence of dissipative effects, a theoretical estimate ofC6 has
been obtained using atom optics@42,43#.
7-4
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PLANCK-SCALE DISSIPATIVE EFFECTS IN ATOM . . . PHYSICAL REVIEW A66, 043617 ~2002!
wave!, with respect to a reference, initial situation. Th
means that the geometry of the two paths followed by th
toms inside the interferometer slightly changes asx varies;6

as a consequence, also the total evolution timet, the time
spent by the atoms inside the interferometer, changes wix.
Since the two path inside the apparatus are very close to
other~their actual separation is at most 100mm!, for smallx
one finds

t5t01
q1

v
x, ~4.2!

wherev is the average velocity of the atoms in the incide
beam, whileq1 is the first-order Bragg diffraction angl
~typically of order 1024 rad). On the other handt0 is the
fixed time of flight of the atoms inside the interferomet
when it is in its initial, reference status; it can be determin
with high accuracy from the geometric specifications of
actual apparatus and can be modified only by changing
energy of the primary atom beam, or by modifying the lo
gitudinal dimension of the interferometer.

The outcome of this discussion is that it should be p
sible to estimate the values ofa andv from the behavior in
x of the expression in Eq.~4.1!, and therefore from a fit with
experimental data. Unfortunately, in the experimental set-
so far constructed the dependence oft on x can hardly be
seen: one finds that whilet0 is at most 1023 sec, the quantity
q1x/v results at least ten orders of magnitude smaller, e
for maximal values of the displacementx ~a few hundreds
nanometer!.

Therefore, as a good approximation one can safely t
t.t0 , and rewrite the interference pattern~4.1! as

N6~x!5N6
~0!$16@P6 cos~u01kx!1Q6 sin~u01kx!#%,

~4.3!

where

P65C6e22at0 cos 2vt0 , Q65C6e22at0 sin 2vt0 ,
~4.4!

while u0 is a fixed phase that is characteristic of each int
ferometer. A fit of Eq.~4.3! with experimental data will allow
to determine the parametersN6

(0) , P6 , Q6 , and u0 , and
therefore to obtain informations on the dissipative para
eters.

V. DISCUSSION

We shall now briefly report on the results of ax2 fit of the
formula ~4.3! with recently published data from two exper

6The situation is completely different in a neutron interferome
@34#: made of a silicon crystal, its geometry cannot be varied. In
case, the interferometric spectra are obtained through a thin sla
material inserted transversally to the two beams inside the inte
ometer; a slight rotation of it produces a phase differencev between
the two ‘‘optical’’ paths.
04361
-

ch

t

d
e
e

-

-

s

n

e

r-

-

ments@44,45#. The analysis that follows is of limited quan
titative meaning: direct access to the data and a careful s
of systematic errors are needed in order to obtain pre
determination of the dissipative effects; nevertheless, it w
provide a rough estimate about the sensitivity of pres
atom interferometers to the parametersa andv.

The atom interferometers used in the two experiments
particularly sensitive devices, reaching a very high frin
contrast; this is obtained by using neon, respectively, lithiu
atoms as ‘‘matter waves’’ and laser standing light as diffra
ing device. Both in Refs.@44,45#, only data from one of the
two exit beams are reported, the ones corresponding to
lower sign in Eq.~4.3!. Since as mentioned beforet0 is
known with high precision, from the ratioP2 /Q2 one can
immediately obtain an estimate for the parameterv. Using
the data from the first experiment, from our fit we findv
5(0.760.2)310221 GeV, where the quoted error is onl
statistical.

On the other hand, the determination ofa is subordinated
to the estimate of the fringe contrastC2 . This would not be
necessary if the parametersP2 andQ2 can be measured fo
two different values of the flight timet0 . As mentioned be-
fore, this can be obtained either by changing the aver
velocity of the incoming atoms, or by varying the dime
sions of the interferometer. In lacking of this extra inform
tion, we shall obtain an estimate forC2 using directly the
data.

In absence of dissipative effects,a5v50, the constant
C2 can be obtained from the maximumN(max) and the mini-
mumN(min) atom counts in the experimental interference fi
ure: C25(N(max)2N(min))/(N(max)1N(min)). Although this
formula is only approximately valid for nonvanishinga and
v, in practice the systematic error that one makes in adop
it can be estimated to be at the end much smaller than
pure experimental uncertainty. Using the rough experime
data, one then deduces:C2.62%. With this value, one fi-
nally gets:a5(0.160.1)310222 GeV, which is compatible
with zero.

The accuracy in the determination ofa and v improves
using the data from the most recent experiment, thanks to
higher fringe contrast~of about 74%! and the increase in the
number of experimental points. In fact, the same proced
adopted before now gives the following estimates:a5(0.3
60.1)310223 GeV and v5(0.2060.01)310221 GeV.7

Note that these values are perfectly compatible with the o
previously determined in the case of the neon interferome
As explained before, the values of the dissipative parame
should be proportional to the square of the mass of the at
in the incident beams. Therefore, the values ofa andv de-
termined with the data from the lithium beam should res
smaller than those obtained from the first experiment.

In conclusion, the results of our discussion show th
atom interferometers are potentially very sensitive to

r
s
of
r-

7We remark that as before the quoted errors are purely statist
a thorough analysis of the full experimental data, that takes
account also the systematics, would likely worsen the estima
errors, in particular that onv.
7-5
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presence of phenomena leading to dissipation and deco
ence. Although the performed error analysis has been lim
to statistical uncertainties, the derived estimates seem to
dicate nonvanishing values fora andv, of magnitude com-
patible with an origin from a fundamental dynamics at a ve
d

.

n

. B

n
ca

tt

ki
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large mass scale. As already remarked, direct access to
rough experimental data and more completex2 fits are
needed in order to claim the presence of dissipative effe
We nevertheless hope that our preliminary analysis w
stimulate further, more accurate investigations.
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