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Input-output theory for fermions in an atom cavity

C. P. Search, S. ®ing, W. Zhang, and P. Meystre
Optical Sciences Center, The University of Arizona, Tucson, Arizona 85721
(Received 16 May 2002; published 25 October 2002

We generalize the quantum optical input-output theory developed for optical cavities to ultracold fermionic
atoms confined in a trapping potential, which forms an “atom cavity.” In order to account for the Pauli
exclusion principle, quantum Langevin equations for all cavity modes are derived. The dissipative part of these
multimode Langevin equations includes a coupling between cavity modes. We also derive a set of boundary
conditions for the Fermi field that relate the output fields to the input fields and the field radiated by the cavity.
Starting from a constant uniform current of fermions incident on one side of the cavity, we use the boundary
conditions to calculate the occupation numbers and current density for the fermions that are reflected and
transmitted by the cavity.
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[. INTRODUCTION states on either side of the cavity via tunneling through the
barriers. Our goal is to develop an input-output theory for
In light of the remarkable achievement of Bose-Einsteinfermions in the atom cavity that allows one to calculate the
condensation in 199[1], there has been a growing applica- field radiated out of the cavity in terms of the field incident
tion of ideas from quantum optics to matter waves. This newon the cavity. While we only treat the linear problem in this
field of atom optics[2] has included both theoretical and paper, we intend our model to serve as the basis for the
experimental investigations of matter wave coherdBe€e/],  treatment of nonlinear wave mixing processes among fermi-
atom laser$8,9], nonlinear effects in matter waves including ons. The intracavity nonlinear wave mixing among fermions
matter wave mixing[10,11], parametric amplification, and should be significantly simpler than wave mixing in the con-
squeezing in coupled optical and matter wal8]. How-  tinuum since in the continuum the number of modes needed
ever, the extension of these ideas to degenerate Fermi gasgsalways greater than the number of fermions, but in the
has proven difficult because of the Pauli exclusion principlecavity the number of modes required is limited to the number
that prohibits one from developing simple theoretical modelsf cavity bound states.
based on only a few normal modes of the S'climger field. The input-output theory for a Sing|e mode of a |Ossy op-
In addition to thiS, Fermi fields do not possess a C|aSSicaﬂica| Cavity was de\/e|0ped by Collett and Gardiner in the
limit analogous to the coherent state for Bose fields therebyorm of quantum Langevin equations for the cavity mode
making it impossible to develop semiclassical mean-field16). The great utility of this theory is that it allows one to
theories such as the Gross-Pitaevskii equation for Bosgcorporate the effects of quantum noise on the output field
fields. transmitted by the cavity as well as in the intracavity dynam-
All'in all, the physical intuition obtained from quantum jcs. Collett and Gardiner’s formalism has been extended to
optics cannot be directly applied to the theoretical investigahosonic matter fields in order to model the output coupling
tions of fermions. Things which we take for granted in op- of atoms from a Bose-Einstein condensate in a single mode
tics, such as what is meant by a beam of light or opticabf an atom trafj17]. As we will show below, the necessity of
coherence, cannot be generalized in a straightforward marreating all modes of the atom cavity for fermions leads to
ner to degenerate Fermi systems. It therefore seems necefpvel features not present in the single mode bosonic theo-
sary that in order to make progress in the theory of fermionigies. Most significantly, the eigenstates of the cavity become
atom optics, fundamental model systems in quantum opticgoupled due to their mutual interaction with the same exter-
need to be reanalyzed from first principles. Recent work imal continuum states. Second, the coupling of the reservoir
this direction indicates that four-wave mixing and coherentmodes to all cavity modes leads to the creation of coherences

amplification of matter waves can occur in fermionic sys-petween fermions occupying the different single-particle
tems as a result of cooperative many-particle quantum inter-

ference analogous to Dicke super-radiafit8—15. How-
ever, a full treatment of nonlinear wave mixing among Alom Cavily
fermions that goes beyond lowest-order perturbation theory | .qreserorr Right Reservoir
and a handful of fermions is still lacking due to the large
number of modes needed. LN — (— L
The purpose of this paper is to consider another model
system, the atomic analog of an optical cavity with two par- F(°""(l)<:| <::Ga..)(,,
tially transmittive mirrors. A schematic of our system is il-
lustrated in Fig. 1. It consists of an atom cavity formed by
two potential barriers with a finite number of bound states.
The cavity states are coupled to a continuum of free particle FIG. 1. Schematic diagram of the 1D atom cavity system.
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modes in the radiated field even if the incident field is com-whereHg, H, , andHg are the free Hamiltonians for the

pletely incoherent. system(i.e., the atom cavityand the left and right reservoir
The outline of the paper is as follows: In Sec. Il, we states, respectively,

present our physical model for an atom cavity coupled to a

continuum of reservoir states. In Sec. Ill, we derive a set of N

quantum Langevin equations for the fermionic annihilation Hs= Z AQChCy, 2

and creation operators of the eigenstates of the cavity in n=0

terms of both the input and the output fields. These results

are generalized to a two-sided cavity in Sec. IV. In Sec. V, H =2 fioalay, 3)

we consider a constant current of fermions incident on one k

side of the atom cavity, and calculate the steady-state statis-

tics of the fermions transmitted through the other side of the T

cavity. In Appendix A, we show that in a manner similar to HR:; hwby by (4)

the bosonic case, the presence of noise operators in the

Langevin equations is necessary to preserve the anticommuere ¢, is a fermionic annihilation operator that destroys an
tation relations for the fermion operators. In Appendix B, We 5t5m in the cavity with wave functiomb(s)(x) and energy
derive explicit forms for the coupling constants, which CON-2 () — %2K2/29m Similarly, a, andb arenfermionic annihi-
nect the intracavity modes to external continuum modes via ?aticr;n opepator.s that des’tr(;(y an all(tom in the left and right

tnneling Hamiltonian. reservoirs, respectively, with the wave function

IIl. PHYSICAL MODEL o (x)=exdik(x+ (a+d)]/LY?

A physical schematic of our system is illustrated in Fig. 1.and energyi . =#2k2/2m in the regions outside the barrier.

For simplicity, we restrict ourselves to one spatial dimension . :
that allows space to be divided into five distinct regions. The The coupling between the system and the reservblicg,

region —a<x=a between the two potential barriers of andHs,, is given by effective tunneling Hamiltonia80-

heightV, represents the atom cavity. For thick barriers, the

number of bound states of the cavity,+ 1, is given by

N7/2< B=\2mVyaZ/h?<(N+1)w/2, wheremis the mass Ho =i, [kniChac— k¥ akcal, (5)

of the atomg19]. We will focus on the case whefg>1. nk

The regions—L—a—-d<x<-a—d and a+d<x<L+a

+d represent the left and right reservoirs, respectivielis _ ~  tn Tk

the length of the reservoir region. We let it go to infinity so Hsr Iﬁnz,k [ Cabic K DIl ©

that the fermions are described in terms of a continuum of

free particle plane-wave states. The atoms located in the re#a all cases the summation is restricted to those states with

ervoir regions with energies less thg couple to the cavity energies below the barrier. Explicit expressions for the tun-

states by tunneling through the potential barriers located aieling matrix elements, and?‘n,k are given in Appendix

—a—dsx<-aanda<xsa+d. B. We note here that in one dimensi¢hD) the coupling
Since the wave functions for atoms with energies greategonstants depend only on the magnitudek@id not on its

thanV, are not spatially localized in either the cavity or the sign.

reservoir regions, we restrict ourselves to single-particle |n contrast to quantum optical systems, which are often

states with energies less th&g. In this case, we can mean- approximated as a single cavity mode with a large occupa-

ingfully speak of left/right reservoir states and cavity statesion number, a full multimode treatment is required for fer-

since the single-particle wave functions decay exponentiallynions even if the number of fermions in the cavity is small

inside the potential barriers. Such a restriction is valid pro{~1). This is because of the Pauli principle that forbids

vided the initial state does not contain any occupied statefore than one atom from occupying the same cavity state,

with energies greater thar, and two-body collisional inter-  and thereby prevents one from singling out a particular state

actions between atoms, which can cause atoms to be scais being more important than the rest.

tered into higher-energy states, are negligible. The latter con- We conclude this section by noting that the general results

dition will indeed be satisfied for ultracold spin-polarized presented below do not depend on the precise nature of our

fermions sinces-wave collisions are forbidden an@#twave  physical model. We use a stepwise constant potential because

collisions are negligible at these temperatures. Under thesgleads to simple analytic results for the coupling between

conditions, the states with energies larger thgnare not  the reservoirs and cavity states. Our model system in(Hg.

coupled to states with energies less than could be applied to any fermion system in which a finite
The second quantized Hamiltonian for the cavity-number of discrete states are linearly coupled to a dense

reservoir system in the subspace of states with energies bgentinuum of states via tunneling through a potential barrier.

low the barrier is An atom cavity of this type could be created experimentally
using a blue detuned optical dipole trap formed from hollow
H=Hg+H +Hgr+HggtHg, (1)  core Bessel bean48].
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lll. SINGLE-SIDED CAVITY 1.0 T T T T T T T

We now derive a set of integro-differential equations of =, 0.8 .
motion for the cavity operators that only involve the initial or 5 .
final state of the reservoir operators. We proceed by formally= 0.6 .
integrating the equations of motion for the reservoir opera-E
tors and substituting these back into the equations for theg 04|
cavity operators. In this section, we $¢k=Hsg=0 so that g L A ]
the atom cavity is coupled to a single reservoir. This is analo- ¢ 3
gous to an optical cavity with a single partially transmittive L )

mirror. The inclusion of the right reservoir is summarized in 0 R i, N
the following section. 0 0.002 0.004 0.006 0.008
It is convenient to work with slowly varying operators in t

the interaction representation, FIG. 2. Plot ofa, »(7) for n=49 andd/a=0.0001(solid line),

0.001 (dotted ling, and 0.01(dashed ling Times are measured in
units of Q4 *. Vo anda were chosen so that the cavity contains 50
bound states.

ca()=e 1hlc (1), a(t)=e '“a(t). )

By formally integrating the Heisenberg equations of motion
for a,(t) from the initial timet, to t,

o C ) Vam =72 Kk Q= @) (13
at) =agt)— 2 k& | drelemtc (1), (8)
m t
° and
whereék(to) are the operators for the input field incident on 1
the cavity barrier, and substituting this solution into the equa-
. y . ~ g q An,m: PE Kn,kKa,kr- (14
tions of motion forc,(t), we obtain K m— Wk
d. ; - These expressions are defined in the continuum limit such
— = —i(wg—Qp)t
gicn(D=20 rene” MGy 1) that = — (L/27) [ dk.
The Markov approximation assumes that the correlation
. t=tg N i i i i
—E a2t dray o 7)6m(t— 7). function c_iecays very rapidly, which requires tmk vary
= 0 ' slowly with k. Figure 2, shows the correlation function

|a, n(7)| for the highest energy bound state in the potential
©) well. This state has the longest correlation time since the
g
2 .
Here, the reservoir correlation function is given by |.K”'k| are the Iargest for t.h'S state and because Fhe summa-
tion over reservoir states is restricted to states with energies
less tharV. For the three cases plotted in Fig. 2, the small-

an,m(T)Izk K kK € (™R, (100 est value ofy, = among all the cavity states is 085"
(d/a=0.0001), 0.62,* (d/a=0.001), and 1.38,* (d/a
which decays to zero in a characteristic timedue to the ~=0.01). In each case, we see that the correlation function

destructive interference between the different oscillationsgoes to zero in a time much shorter th@ig~y, 1. This
Note thatr, depends, in general, on the cavity statemdm  shows that the Markov approximation is a very good ap-
that are coupled byr, (), and; * is of the order of the ~proximation for our system witfi,/7c>10?. By combining
bandwidth of the reservoi¥/,/%. Furthermore, if we assume the above results, we obtain a quantum Langevin equation

that ¢,.(t) only changes significantly over a time scalg (o €ach of the cavity modes,
> 7., then we can make the Markov approximation by set-

ting Cm(t—7)=Cp(t) in Eq. (9). For time intervalst—t, Ca(D)=—1Q0Cn(1) = 2 (YnmTiAnmCm(t) +FIM(t).
> 7., we can then make the replacement m 15

t—tg ©
f dTan,m(T)"N‘J dranm(7), (11) In Eq. (15), we have defined thénput noise operator
° ° FiM(t) as
n
where the latter expression is given by
FAN(0) =2 ko K 0ay(to) =2 kniaf™(t),
k k

J;) dTan,m(T):')’n,m'HAn,mv (12 (16)

with where
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al™(t) =a(to)exrd —iwy(t—to)] FOO =S e Wat) =D K@l (1)
n , > , ,
X X

is the annihilation operator for modg{’(x) of the input 22)
Fermi field at timet, and the total input field operator is
therefore where we have defined the output field annihilation operator

al®"%(t) for the modeg()(x). The al°"V(t) are related to
the output field of the reservoir by

w0 =20 al™ (1) ¢ ().

‘ ©OU (1= S g0 4) 50
That is, WM (x,t) is the free Fermi field that propagates VD=2 a0 ¢ ().

from the initial timet, to t in the Heisenberg picture.

Since the initial reservow operators obey the anticommuit is clear that® (°“9(x,t) represents the free Fermi field for
tation relations{a,(to), ak (to)}= bk and{ay(to),ax(tg)}  the reservoir that propagates frdrto the final timet;. It is
=0, it is easy to show that the noise operators obey th€asy to see that if th@(t;) obey normal fermionic anticom-

anticommutation relations mutation relations, then the anticommutators for the output
noise operators are the same as E#g) and(18).
{FUM (), FUMT (¢~ i=e I (1), 17 The boundary condition for the barrier separating the cav-
ity from the reservoir is obtained by subtracting EG5)
{FUM(t),FiN(t—7)}=0. (18  from Eq.(21),
Furthermore, if we restrict ourselves to time scales much (i) 4\ _ e (out) 4y —
longer than the correlation time., then we can approximate Fa (O —Fy (t)_Z% ¥nmCm(t) 23
the correlation function in Eq17) by a é function times the
area undek, n(7), so that Equation(23) relates the noise operator for the output field to
. . the input noise operator reflected by the barrier and the field
{FIM(), FIMT(t— 7)}~2y, n6(7). (19 radiated by the cavity. It is of the same form as the boundary

condition for an optical cavity16] except that in our case

Before proceeding, there are several features of(E§).  there are separate noise operators for each cavity modes
that are worth mentioning. First, the dissipative termsince we cannot, in general, assume that the coupling con-
Z(YnmtiAn m)Cm(t) gives a damping term plus an energy stants are independent of the cavity state. In Appendix A, we
shift for n=m, while for n#m there is a nonzero coupling use Egs.(23) and (15) to derive the anticommutation rela-
between cavity states. The coupling between cavity states tfons between the cavity operators and the noise operators at
a result of all states coupling to the same reservoir, whiclarbitrary times.
leads to an indirect coupling between cavity states. Second, Equation(23) is not very useful since it is the mode op-
the noise operators couple all of the reservoir states to eaddrators of the output fielda(ko“t)(t), which are needed to
of the cavity states. Moreover, the noise operators are differcalculate properties of the output field such as mode occupa-
ent for each cavity state due to tmedependence of the tion statistics, current density, etc. Therefore, we must extract

coupling constants. from Eg. (23) a boundary condition for the annihilation op-
Instead of solving for the reservoir operators in terms oferators of the modes of the input and output fields.

the initial timet,, one can instead solve fag(t) in terms of First, we note that in the limit of an infinite potential

a final timet,>t, barrier the system-reservoir coupling vanisheg,=0. In

this limit, a fermion incident from the left is perfectly re-
~ - Lo a flected by the barrier. Sinc® (M (x,t) and ¥©'9(x,t) are
— * 1 Al (= Ot ' o ' ' 1 -
ak(t)_ak(tl)JF% Km,kft dt’eft Cr(t"). the free Schrdinger fields that propagate forward in time
(20) from t;— —<0 to t and fromt to t;—o0, respectively, it fol-
lows that

The operators%k(tl) represent the modes of the output field oo ok,
that contain the field radiated by the cavity at earlier times. a(to)e“Ko=—a_(ty)e (24)

By subshtutmg this expression into the equations of mOtlonThe total field is the sum of incident and reflected fields,
for cn(t) making the Markov approximation in the inte-
grand, and transforming back to the Heisenberg representa- W (x,t)=TM(x,t)+ PO (x t). (25)
tion, one obtains
It follows from Egs.(24) and(25) that¥(—a—d,t)=0 and
- _ . (out) that the eigenmodes of the reservoir are standing waves for
Ca(t)= IQ“C“(tH% (Ynm=1Anm)Cr(D) +Fr (D). Vo—. Note that Eqs(24) and (25) are second quantized
(21)  versions of the relations for the incident and reflected wave
functions from an infinite potential barri¢t9].
Here,Fff’“t)(t) is the output field noise operatdior staten, For the reservoir, the displacement operator is given by
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D(x)=e P¥*%, and radiative energy shifts
whereP=3,#kala, is the momentum operator for the res- ~ ~ o~ 1
. kK Apm=P> Kn ikt (. (33)
ervoir [24]. Multiplying Eq. (23) by D(x) on the left and ' R HEMEQ oy

D(x) on the right gives after some manipulatif2s],
The quantum Langevin equations for the cavity mode opera-
(i) 4\ _ ~(out) ikx _ * tors expressed in terms of the input fields from the left and
EK Kn,k(ak (1) aly (t)e ZWmE,k Kn, kKm,k right are then
X 8(Qm— wi) (1) e, (26) . _ _ ~
Cn(t):_w)ncn(t)_% [(7n,m+|An,m)Cm(t)+(7n,m
Multiplying Eq. (26) by [-3-9_dxe ¥ and taking the
limit L—co gives the boundary condition for the modes of +iA, wem(O1+FIM ) +GIM (). (34)
the input and output fields, '
One may also derive Langevin equations analogous to Eq.
(i) /4y _ a(out) gy * _ (21) involving the output noise operators for the two reser-
a, /(t)y—at, ’(t1)=2 8(Q Cm(t). ) . : .
(0 (v W% im0 L= @) Crn(1) voirs, which can be used along with E@Q4) to derive the
(27) boundary conditions for the noise operators in the left and

_ _ right reservoirs,
Physically, Eq.(27) says that the difference between the

mode of the output field propagating away from the barrier _ -

with momentum~— 7k is the input field with momentunik GIM(1) =GP (1) =22 Yo mCm(), (39
reflected by the barrier plus the field radiated by the cavity. "

Furthermore, only those states of the cavity that have the

same energy as the reservoir mode can radiate into that FUM (1) —FLO(1) =22 ynmCm(t). (36)
mode. For a one-dimensional system, there will only be a m

single cavity mode that contributes to the right-hand side , ,
(rh9 of Eq. (27). The 8(Q,,—w,) comes from Eq.11)  Using the boundary conditiohy(to)e'“ko=—b_(t;)e' ks
where we assumed times much longer than width of the reghat corresponds to Eq24) for the free fields in the right
ervoir correlation function. Hence, it follows from the uncer- reservoir, the boundary condition fa{™(t) and b{®"%(t)
tainty relationAEAt~# that the range of reservoir energies can be derived in the same manner as @@). One finds
that couple to each cavity mode goes to zerd-at,—«.

IV. TWO-SIDED CAVITY b0 = DGO =22, K A o) (V).

3
The generalization of the preceding to a two-sided cavity, S
Hsr,Hgr#0, is straightforward since the reservoirs couple _
independently to the cavity. For the right reservoir, we define  al™(t)—a®(t)=2m>, K kO(Qm— ©)Cry(1).
the input and output noise operators m (38)
GIM(t)=2> knkb{™(t), (28 Equations(34), (37), and(38) are the central result of this
k

section. Given an initial state for the two reservoirseateq.
(34) can be used to calculate the state of the cavity at some
Ggout)(t) =3 . kb(kOUt)(t)v (29) later time. The mode operators for the output field of the left
kKo and right reservoirs can then be determined from the bound-
ary conditions(37) and (38).
where

, We illustrate how to utilize these results for a particular
b0 (t) =by(ty)e et~ t) (31  initial state of the cavity plus reservoirs. Specifically, we as-
sume that the atom cavity initially contains no atoms and that
represent the input and output annihilation operators for théhe right reservoir is likewise in the vacuum state. Further-
free field modes of the right reservoir at timeAssociated more, the left reservoir contains a “beam” of fermions inci-
with the right reservoir noise operators are damping condent on the barrier at=—a—d with a spatially uniform
stants, current density equal tp7.g/m, wherep=N/L is the linear
atomic density andV is the total number of fermions. This
;n'm: 772;‘ ';(n’k';(*m Q= o), (32) {Jor:ysical configuration is represented by the initial state vec-
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|Qn_ Qm| > | 7n,m+’;’n,m

An,m"'zn.m|

3

- T
wit)= 11, aito)l0), (39

whereke=2mp is the Fermi momentum¥ (t,)) represents for n#m. In fact, a numerical ejvaluatlon An,m+ Ynml .

a zero-temperature Fermi distribution that has been given @nd|Aqm+ A, x| using the coupling constants of Appendix

Galilean boost that displaces the gasdoyn k space. This is B indicates that these terms are at least two orders of mag-

analogous to the optical case where an incoherent white lightitude smaller than the energies of the cavity modes. It is

source is used to drive an optical cavity. therefore an excellent approximation to neglect all off-
Even though|W(to)) is a state with a fixed number of diagonal terms in the equations of motion. Furthermore, we

atoms, it acts like a constant input flux of fermions on thecan perform a renormalization of the cavity mode energies

cavity. This is because of the implicit use of the Born ap-Py absorbing the radiative energy shifts into thefdy,

proximation in the derivation of the Langevin equations, i.e.,+Ap n+ Ay n— Q.

the reservoir is assumed to be so large that the backaction of For times much longer than the lifetimes of the cavity

the system is negligible. modes, {—to)(¥nnt ¥nn)>1, the system reaches a steady
Using the results of the preceding section, we can calcustate with the solution

late how the state of the left and right reservoirs are modified

due to their coupling to the cavity. In particular, we focus on Kmk@™ (1) + Km b{™M (1)
the occupation numbers Crlt) = —— ' : (44)
K H(Qn—o)+1T'y
() =a"" (Hal™ (), (40)
nf(R)(t): b(kout)‘r(t)b(kout)(t) (41) wherel' ,= ymmT Ymm- It iS easy to see from Eq44) that

the occupation numbers for the cavity modes have a Lorent-
as well as on the current density operators for the reservoirdan profiles,

LRy =S LR 1) eiax | kil 2(Ni(to))
IJER(x,1) %]q (e, (chem=> M C0r (45)
(Qm=w)+T
where
N PR > ) 40Ut ey o (0ut) where
Jq (=307 & kFaa™(ha (), (42

(Ni(to))=0(ke—|k—ql)

h —
J:TR)('[): >mL ; (2k+‘1)b(koum(t)b(kiuqi)(t) 43 are the occupation numbers for the input field. Due to the
broadband nature of the input field all cavity modes with
are the spatial Fourier components of the current. Note the&nergies in the rangey_. q— wi_-q Will have a significant
mL(jg"'R)(t)> is the average momentum in the output fields.population with higher-energy cavity states having larger
Equation(34) for c,(t) can be numerically integrated but populations due to théx,|'s exponential dependence on

we note that because of the exponential dependence of tlemergy.
reservoir-cavity coupling constants on the barrier height and Using Eq.(44) and the boundary conditiori87) and(38),
thickness, the off-diagonal coupling is much smaller than theve obtain steady-state expectation values of the occupation
energy difference between the cavity modes, of the output field modes,

Fno(Qp— wk)| Km,k|2 |Km,k|2| Km,k’|25(ﬂm_ﬂn)5(ﬂm_ wy)

(n%0= 1_4772"‘: (U= w)?+TZ <nk(t0)>+4ﬂ2m§n:k’ (Qm— )2+ (M (o)),
) . : (46)
Kol 2l ket |20(Qm— Q) 8(Q 1 —
(nf(R))=4772 E |Km,k| |Km,k| (0 n) 0(Qy wk)<nk,(t0)>. 47

m,n,k’ (Qm_wk’)2+rr2n

Equations(46) and(47) represent the changes in occupa—(nEL,Z}:(nk(to)), unless there exists a cavity mode that is
tion numbers due to reflection and transmission through thelegenerate in energy with staef the reservoir. The second
cavity. The most significant feature of E@®6) is that fermi-  term represents the interference term between the fermions
ons in the input beam are perfectly reflected by the barriereflected by the barrier and the fermions that have tunneled
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In order to gain additional physical insight, we simplify ~ °2f HHH’HHHH 1
these expressions by noting that the denominator in(4£q. 28000 4000 0 4000 3000
as well as the last term in E¢46) are sharply peaked around k
o =0 n=wy. Therefore we can replad€ with k in this

into the barrier and subsequently tunneled back out into the 1F@
left reservoir. The last term in E¢46) represents the tunnel-
ing of atoms into mode-k as a result of atoms from mode ~

. . = . 0.6
k’ that have tunneled into the cavity and then tunneled out of £
the cavity. 04

0.8

term and drop the summation ovkf. Using I',=2vymm 1o | | i
~ 27| k| 28(Q— wy), we have ~ 0.8r T
(Y~ (Nt~ L) (M) (N (1)), @8 ool -
()= Lo+t @y | HHHHHHHH.HH\HHHHH | ]

here 8000 —-4000 0 4000 8000

2 FIG. 3. Plot of(a) (n{"(t)) and(b) (n{P(t)) for d/a=10"* and
/L=1.2x1075. kis in units of 27/L.
L(wy)= —r (50 @
(o % (Qpm— )2+ T
_ . Ly _states. Each line in Fig. 3 corresponds tsirgglereservoirk
When(n_(to))=0, Eq.(48) |_nd|gates thatn=)~0, are state and as such the width of the lines are greatly exagger-
sult of the complete destructive interference between the fer- . - ;
ated. The plots give good qualitative agreement with the

mions that are directly reflected by the barrier and the fermi- . . . ; .
ons that tunnel out of the cavity into the left reservoir. At theabove discussion with each line located at knsiate that is

same time, Eq(49) indicates that fermions resonant with a closest in energy to a particular F:avity state. The ampl_itude
cavity mode tunnel through the right side with unit probabil- ©f the transmission resonances is close to 1 for the higher-
ity, <n(:RI2 ~(n(ty)). These transmission resonances areenergyk states, while for the Iowest-epergy resonances, the
similar to the situation in an optical Fabry-Perot cavity. amplitudes are about 0._25. The re_ductlon in the amplitude for
Figure 3 shows a plot gfn(") and(n{(?} using Eqs(46) the low-energy states in comparison to E¢8) and (49

— 2 2
and (47) for an incident beam with fermions occupying the €0Mes  from  I'y=2| x| *7( Q) = 27| k1 “5( L

statesk=2m/L, . ..,(2m/L)7501. Note that we have taken — @K, Where n(w)~w~ Y% is the continuum density of
the reservoir to consist of discrekestatesk=2mn/L with  States in the reservoisee Eq(13)]. _
N=0,%1,... *Nnax and Npa=L2MVy/27h=10% V, The steady-state current density in the output field of the

and a were chosen so that the cavity contained 50 boundeft and right reservoirs are given by

wy__Pha. A 5
(%)== %0~ 3mr & (2k+)

8(Q = )N g(to)) 6<9m—wk+a><nk<to>>>

—277'2 K:(n K gKmk - -
m M i Q= o)+ T H( Q=+

* * J
Km kK- oK o Knk 0080 m— w) (0 — oy )
+ag2 Y, —nkeaTmic e T L e (to) (50)
m,n,k’ [—1(Qnm— o) + T ][1(Qn—wy) + 1]
and
~ ~ % * J
. h — KmkKy ki g® ,ern,k’é(Qm_wk)é(Qn_warq)
(4= 2me <2k+q>(4w2 > T : (M (to) | (52
k m,n,k’ [—1(Qm— o)+ T ][1[(Qn— o)+ 1]
|
respectively. —phg/msince most of the fermions are perfectly reflected by

The first term on the rhs of E451) is the incident current the barrier. In the right reservoir, the transmitted current
reflected by the barrier. The average momenta in the outpy( E,R)>%0 since for those states that are resonant with the
fields are proportional to(j{-y=—#/mLSk(n")) and cavity (n{P)=(nR)), while for nonresonant reservoir states
(GFY=n/mLSk(n(). In the left reservoir, (i)~  (n{P)~0. Physically, this is due to the fact that atoms tunnel
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0.03 T - - T T T - - fermions[13] or coherent photoassociation of fermions into
molecular boson§27].

In our work, we have dealt with a system-reservoir cou-
pling that results from tunneling of atoms through a potential

=3 barrier, in which case the Markov approximation was shown
< ooz to be justified. However, of equal import t ibl
c ] . , q portance to possible
'z\g experiments is the situation in which atoms may be coupled
T into or out of the trap via induced Raman transitions to
e trapped states. In this case the Markov may break d@8h
~ oot In a future work, we plan to extend the treatment given here

to broadband coupling in which the system may become
non-Markovian.
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into the right reservoir from a standing-wave cavity mode,Program.

and therefore they have equal probability to tunnel into states
with positive and negative momentum. APPENDIX A: ANTICOMMUTATION RELATIONS

Theq+#0 terms are the spatial modulations in the current BETWEEN CAVITY AND NOISE OPERATORS

density that build up in the reservoirs as a result of the |n this appendix, we examine some of the consequences
reservoir-cavity mode coupling. This can generate a cohelpf Egs.(15) and(23). The correlations between the input and
ence between thk andk+q modes when there is a finite output fields and the cavity modes may be expressed in terms
amplitude for an atom initially in statk to tunnel into the of the anticommutators for the cavity and noise operators,
cavity and then tunnel back out of the cavity into state i.e., nonvanishing equal-time anticommutators imply that the
+q. The change ir(j%’) is of order 2 rather thank® as ~ OPerators are not independent. From EXp), one sees that
was the case for Eq46) since the current only involves the solution forc,(t) can be expressed in terms of the initial

. — conditions for the cavity operators,(ty) and theay(ty). It
generating a coherence betwdeandk+q rather than the y op n(to) (to)

: : (in) 41\ — ’
transfer of population. Furthermore, tké terms in Eq.(51) g?ggévsﬂ:remgﬁld Ia;ggvjﬁgms) 'Zg]tic((;r%%u?azg:s?”;?dete-
are only finite for|wy;q— oy <T'y, which implies that the y 9 &

coherence is only generated between reservoir states th)tween creation and annihilation operators. In a similar man-
y9 ﬁgr, it immediately follows from Eq. (21) that

energies lie within the linewidth of a particular cavity mode. (Out) /g7y ; :

Consequently, decreasing the thickness and the height of tﬁgn(t)’Fm (')} =0. Formally |r(1itne)gr/at|ng E,q(.15) from o

barriers will make the linewidths of the cavity states largert© t SNOWs thaty(t) depends offr " (t") for t' <t [note that
cy(t) will, in general, depend on all of the noise operators,

and thereby increase the magnitudeqef O components of Fﬂ]”)(t’), not justn=m, due to the intracavity mode cou-

the current. _ ! r
— ling]. Using Eq.(19) it then follows that
Figure 4 shows a plot ofj’”) for several values of. pling]. Using Eq.(19)

Theaio components of the current are about two orders of {cn(t— r),FEL””(t)}=O (A1)
magnitude smaller thafyj 8‘)> and they decay away with in-
- for 7>0. This is nothing more than a statement of causality,

. (R .
creasingy. We do not plot j-~7) since the current is equal to
A P qu ) a the system can only depend on the past input. In a similar

0 to within our numerical accuracy. This is because the Cavo nner. formal intearation of Eq21) from t+ 7 to t, im-
ity linewidths are so narrow that it becomes nearly impos- ' 9 T 1

sible to satisfy both thé functions in thgnumerator and the plies that
Lorentzian denominators of E¢52) for q#0 . {cn(t+ ), FeT =0 (A2)

for >0. Again, this is nothing more than the statement that
VI. CONCLUSION the output of the system can only depend on the state of the
In this paper, we have extended the quantum opticapystem in the past. Using Eq#2) and(23), one obtains
input-output theory to atom cavities containing fermions.
This form_ahsm can easily be applied to intracavity nonlinear {c(t+ r),FE,'{‘”(t)}zZZ 'y:'],p{cn(t_'— r),cg(t)},
atom optical processes, such as four-wave mixing between P
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while using Eq.(Al) along with Eq.(23) gives

{calt—7), FQUT ()} =—22 ¥ fea(t—7),cl(b)}
p

for 7>0. It follows from Eq.(23) that the equal-time anti-
commutators can be written agc,(t),F{"ou0T(t)}=
iEpy’r;’p{cn(t),c;(t)}+Anym. The operatorA, , is deter-
mined from the equations of motiofl5) and (21) to be
—iEpA;'p{cn(t),cg(t)}. If we define the step function(7)
as

1, 0,
u(r)=4 12, r=0,
0, 7<0,

then the anticommutators for arbitraryare given by

{ca(t+7),FIMT (1)}
=2u<¢>§(y:;,p—iA:n,péf,o>{cn<t+T>,c,t<t>}, (A3)
{ca(t+7),FOUT (1)}

=—2u<—7>§ (Y pt AR 8- 0{Ca(t+7),ch(D)}.

PHYSICAL REVIEW A 66, 043616 (2002

side of the barrier is given by the off-diagonal current density
in the barrier,

__hz * d d *
Ta,b_m ¢35 (%) ax Dp(X) — dp(X) d—x¢a (x)

X=X

‘8D

Herex; is a point inside the barrier angl,(x) and ¢,(x) are

the continuations of the single-particle wave functions into
the barrier where they decay exponentially,;, is indepen-
dent of the choice ok, provided the energy difference be-
tween the two stateg, and ¢, is much less than the height
of the barrier. The relationship between H&1) and the
overlap of the Hamiltonian between states localized on either
side of the barrier is discussed in RE21].

For the system illustrated in Fig. 1, we identifyifi «;
with T, , when ¢,(x) = ¢’ (x) and ¢p(x) = (x). Simi-
larly, —iZix%, is equal t0T,;, when ¢,(x)=¢{(x) and
Bo(X) = B ().

For the purpose of calculating the coupling constants, we
take the</>$15)(x) to be the eigenstates of the finite potential
well corresponding tal—oe. In the classically allowed re-
gion, —a<x=a, ¢!¥(x) is proportional to cod{x) for
evenn and sinKx) for odd n, while inside the barrier
dO(x)~exp(—2m(Vo— % Q,)/%?|x|). The cavity wave
numbersk , are determined by the solutions to

K,atanK,a=B°—(K,a)? (B2)
(Ad)
for evenn, and
Finally, we show that Eq(15) preserve the equal-time
anticommutators for the system operators. Since #§) KnacotKna=—B°—(Kqa) (B3)

constitute arNX N system of equations, an explicit solution
will be nontrivial for N>2. However, it is already apparent
that{c,(t),cm(t)} =0 since, as we stated beforg,(t) can

be expressed in terms of the initial states for the operators at
to and {c,(to),Cm(to) }={cn(to),ax(to)}=0. We are there-

for n odd[19].
For evenn, we find

—ifm\/ 2K, o
= e %“cosK,a
m L(1+ (o/k)?)(K,a+cotK,a)

Kn,k
fore left with showing thafc,(t),cl (t)}= én,m- Calculating )
the derivative of the anticommutator using Eq$5) and (B4)
(A3), one obtains .
with
d ] ~
§{cn(t),ch(t)}= —i(Qp—Qmica(t),cl(t)}. Knk= Knk- (B5)
In a similar manner, we find for odd,
Integrating this expression and using the initial condition
{cn(to),cl(to)} = dn.m,» We obtain the desired result. itho 2K,
Kn k= e “IsinK,a
Toom L(1+(o/k)?)(K,a—tanK,a)
APPENDIX B: TUNNELING COUPLING CONSTANTS (B6)
In this appendix, we derive explicit expressions for the,,;in
tunneling coupling constants, , and 7<n’k. Tunneling in
many-body systems was first treated by Bardg2® and 7<n,k= — Knk- (B7)

later elaborated by Prandi21] and Harrisor{26] in the con-

text of electron tunneling across the insulator junctions. In both casesg= \/vaoliiz—k2 is the inverse of the
Bardeen showed that if there exists a potential barrier sepgenetration depth of the reservoir state into the barrier and
rating two regions of space, then the tunneling matrix eles3%2=2ma?V,/#4? is the dimensionless barrier height.

mentT, , for the tunneling of a particle from stas,(x) on
one side of the barrier into the stafg(x) on the opposite

An interesting consequence of E¢B5) and(B7) is that
if nis even andnis odd or vice versa, then
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(Ynm+ 1 8nm) + (Ynm+ 18, m)=0. (8g)  invariant under spatial reflections, which implies that even

' ' ' ’ when the coupling of the cavity states to the reservoirs is

On the other hand, ifi andm are both even or both odd, then taken into account, parity will still be a good quantum num-

_ _ ber for the cavity states. No such result holds for the single-

(Ynamt1Anm) T (YamT1Anm) =2(ynmti1Anm). sided cavity since the cavity-plus-reservoir system is no

(B9 longer invariant with respect to reflections.
Finally, we note that the approximatiam .~ , used in
deriving «,, x becomes exact for the evaluation of thg,
nd for the cavity boundary conditiof7) and(37), since in
§wese expressions,  is always multiplied byd(Q,— wy).

Since ¢®(x) is an eigenstate of the parity operator with
parity (—1)", it follows from Eq. (34) that for a two-sided

cavity only states of the same parity are coupled. This is
direct consequence of the our model system in Fig. 1 bein
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