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Input-output theory for fermions in an atom cavity

C. P. Search, S. Po¨tting, W. Zhang, and P. Meystre
Optical Sciences Center, The University of Arizona, Tucson, Arizona 85721

~Received 16 May 2002; published 25 October 2002!

We generalize the quantum optical input-output theory developed for optical cavities to ultracold fermionic
atoms confined in a trapping potential, which forms an ‘‘atom cavity.’’ In order to account for the Pauli
exclusion principle, quantum Langevin equations for all cavity modes are derived. The dissipative part of these
multimode Langevin equations includes a coupling between cavity modes. We also derive a set of boundary
conditions for the Fermi field that relate the output fields to the input fields and the field radiated by the cavity.
Starting from a constant uniform current of fermions incident on one side of the cavity, we use the boundary
conditions to calculate the occupation numbers and current density for the fermions that are reflected and
transmitted by the cavity.
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I. INTRODUCTION

In light of the remarkable achievement of Bose-Einst
condensation in 1995@1#, there has been a growing applic
tion of ideas from quantum optics to matter waves. This n
field of atom optics@2# has included both theoretical an
experimental investigations of matter wave coherence@3–7#,
atom lasers@8,9#, nonlinear effects in matter waves includin
matter wave mixing@10,11#, parametric amplification, and
squeezing in coupled optical and matter waves@12#. How-
ever, the extension of these ideas to degenerate Fermi g
has proven difficult because of the Pauli exclusion princi
that prohibits one from developing simple theoretical mod
based on only a few normal modes of the Schro¨dinger field.
In addition to this, Fermi fields do not possess a class
limit analogous to the coherent state for Bose fields ther
making it impossible to develop semiclassical mean-fi
theories such as the Gross-Pitaevskii equation for B
fields.

All in all, the physical intuition obtained from quantum
optics cannot be directly applied to the theoretical investi
tions of fermions. Things which we take for granted in o
tics, such as what is meant by a beam of light or opti
coherence, cannot be generalized in a straightforward m
ner to degenerate Fermi systems. It therefore seems ne
sary that in order to make progress in the theory of fermio
atom optics, fundamental model systems in quantum op
need to be reanalyzed from first principles. Recent work
this direction indicates that four-wave mixing and coher
amplification of matter waves can occur in fermionic sy
tems as a result of cooperative many-particle quantum in
ference analogous to Dicke super-radiance@13–15#. How-
ever, a full treatment of nonlinear wave mixing amo
fermions that goes beyond lowest-order perturbation the
and a handful of fermions is still lacking due to the lar
number of modes needed.

The purpose of this paper is to consider another mo
system, the atomic analog of an optical cavity with two p
tially transmittive mirrors. A schematic of our system is
lustrated in Fig. 1. It consists of an atom cavity formed
two potential barriers with a finite number of bound stat
The cavity states are coupled to a continuum of free part
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states on either side of the cavity via tunneling through
barriers. Our goal is to develop an input-output theory
fermions in the atom cavity that allows one to calculate
field radiated out of the cavity in terms of the field incide
on the cavity. While we only treat the linear problem in th
paper, we intend our model to serve as the basis for
treatment of nonlinear wave mixing processes among fer
ons. The intracavity nonlinear wave mixing among fermio
should be significantly simpler than wave mixing in the co
tinuum since in the continuum the number of modes nee
is always greater than the number of fermions, but in
cavity the number of modes required is limited to the num
of cavity bound states.

The input-output theory for a single mode of a lossy o
tical cavity was developed by Collett and Gardiner in t
form of quantum Langevin equations for the cavity mo
@16#. The great utility of this theory is that it allows one t
incorporate the effects of quantum noise on the output fi
transmitted by the cavity as well as in the intracavity dyna
ics. Collett and Gardiner’s formalism has been extended
bosonic matter fields in order to model the output coupl
of atoms from a Bose-Einstein condensate in a single m
of an atom trap@17#. As we will show below, the necessity o
treating all modes of the atom cavity for fermions leads
novel features not present in the single mode bosonic th
ries. Most significantly, the eigenstates of the cavity beco
coupled due to their mutual interaction with the same ex
nal continuum states. Second, the coupling of the reser
modes to all cavity modes leads to the creation of coheren
between fermions occupying the different single-parti

FIG. 1. Schematic diagram of the 1D atom cavity system.
©2002 The American Physical Society16-1
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modes in the radiated field even if the incident field is co
pletely incoherent.

The outline of the paper is as follows: In Sec. II, w
present our physical model for an atom cavity coupled t
continuum of reservoir states. In Sec. III, we derive a se
quantum Langevin equations for the fermionic annihilati
and creation operators of the eigenstates of the cavity
terms of both the input and the output fields. These res
are generalized to a two-sided cavity in Sec. IV. In Sec.
we consider a constant current of fermions incident on
side of the atom cavity, and calculate the steady-state st
tics of the fermions transmitted through the other side of
cavity. In Appendix A, we show that in a manner similar
the bosonic case, the presence of noise operators in
Langevin equations is necessary to preserve the anticom
tation relations for the fermion operators. In Appendix B, w
derive explicit forms for the coupling constants, which co
nect the intracavity modes to external continuum modes v
tunneling Hamiltonian.

II. PHYSICAL MODEL

A physical schematic of our system is illustrated in Fig.
For simplicity, we restrict ourselves to one spatial dimens
that allows space to be divided into five distinct regions. T
region 2a<x<a between the two potential barriers o
heightV0 represents the atom cavity. For thick barriers,
number of bound states of the cavity,N11, is given by
Np/2,b5A2mV0a2/\2<(N11)p/2, wherem is the mass
of the atoms@19#. We will focus on the case whereN@1.
The regions2L2a2d,x,2a2d and a1d,x,L1a
1d represent the left and right reservoirs, respectively.L is
the length of the reservoir region. We let it go to infinity s
that the fermions are described in terms of a continuum
free particle plane-wave states. The atoms located in the
ervoir regions with energies less theV0 couple to the cavity
states by tunneling through the potential barriers located
2a2d<x,2a anda,x<a1d.

Since the wave functions for atoms with energies grea
thanV0 are not spatially localized in either the cavity or th
reservoir regions, we restrict ourselves to single-part
states with energies less thanV0. In this case, we can mean
ingfully speak of left/right reservoir states and cavity sta
since the single-particle wave functions decay exponenti
inside the potential barriers. Such a restriction is valid p
vided the initial state does not contain any occupied sta
with energies greater thanV0 and two-body collisional inter-
actions between atoms, which can cause atoms to be
tered into higher-energy states, are negligible. The latter c
dition will indeed be satisfied for ultracold spin-polarize
fermions sinces-wave collisions are forbidden andp-wave
collisions are negligible at these temperatures. Under th
conditions, the states with energies larger thanV0 are not
coupled to states with energies less thanV0.

The second quantized Hamiltonian for the cavi
reservoir system in the subspace of states with energies
low the barrier is

H5HS1HL1HR1HSR1HSL , ~1!
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where HS , HL , and HR are the free Hamiltonians for th
system~i.e., the atom cavity! and the left and right reservoi
states, respectively,

HS5 (
n50

N

\Vncn
†cn , ~2!

HL5(
k

\vkak
†ak , ~3!

HR5(
k

\vkbk
†bk . ~4!

Here,cn is a fermionic annihilation operator that destroys
atom in the cavity with wave functionfn

(s)(x) and energy
\Vn5\2Kn

2/2m. Similarly, ak andbk are fermionic annihi-
lation operators that destroy an atom in the left and ri
reservoirs, respectively, with the wave function

fk
( l ,r )~x!5exp@ ik~x6~a1d!#/L1/2

and energy\vk5\2k2/2m in the regions outside the barrie
The coupling between the system and the reservoirs,HSR

andHSL , is given by effective tunneling Hamiltonians@20–
23#

HSL5 i\(
n,k

@kn,kcn
†ak2kn,k* ak

†cn#, ~5!

HSR5 i\(
n,k

@ k̃n,kcn
†bk2k̃n,k* bk

†cn#. ~6!

In all cases the summation is restricted to those states
energies below the barrier. Explicit expressions for the t
neling matrix elementskn,k and k̃n,k are given in Appendix
B. We note here that in one dimension~1D! the coupling
constants depend only on the magnitude ofk and not on its
sign.

In contrast to quantum optical systems, which are of
approximated as a single cavity mode with a large occu
tion number, a full multimode treatment is required for fe
mions even if the number of fermions in the cavity is sm
(;1). This is because of the Pauli principle that forbi
more than one atom from occupying the same cavity st
and thereby prevents one from singling out a particular s
as being more important than the rest.

We conclude this section by noting that the general res
presented below do not depend on the precise nature of
physical model. We use a stepwise constant potential bec
it leads to simple analytic results for the coupling betwe
the reservoirs and cavity states. Our model system in Eq.~1!
could be applied to any fermion system in which a fin
number of discrete states are linearly coupled to a de
continuum of states via tunneling through a potential barr
An atom cavity of this type could be created experimenta
using a blue detuned optical dipole trap formed from hollo
core Bessel beams@18#.
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III. SINGLE-SIDED CAVITY

We now derive a set of integro-differential equations
motion for the cavity operators that only involve the initial
final state of the reservoir operators. We proceed by form
integrating the equations of motion for the reservoir ope
tors and substituting these back into the equations for
cavity operators. In this section, we setHR5HSR50 so that
the atom cavity is coupled to a single reservoir. This is ana
gous to an optical cavity with a single partially transmitti
mirror. The inclusion of the right reservoir is summarized
the following section.

It is convenient to work with slowly varying operators
the interaction representation,

cn~ t !5e2 iVntĉn~ t !, ak~ t !5e2 ivktâk~ t !. ~7!

By formally integrating the Heisenberg equations of moti
for âk(t) from the initial timet0 to t,

âk~ t !5âk~ t0!2(
m

km,k* E
t0

t

dt8ei (vk2Vm)t8ĉm~ t8!, ~8!

whereâk(t0) are the operators for the input field incident o
the cavity barrier, and substituting this solution into the eq
tions of motion forĉn(t), we obtain

d

dt
ĉn~ t !5(

k
kn,ke

2 i (vk2Vn)tâk~ t0!

2(
m

ei (Vn2Vm)tE
0

t2t0
dtan,m~t!ĉm~ t2t!.

~9!

Here, the reservoir correlation function is given by

an,m~t!5(
k

kn,kkm,k* ei (Vm2vk)t, ~10!

which decays to zero in a characteristic timetc due to the
destructive interference between the different oscillatio
Note thattc depends, in general, on the cavity statesn andm
that are coupled byan,m(t), andtc

21 is of the order of the
bandwidth of the reservoir,V0 /\. Furthermore, if we assum
that ĉm(t) only changes significantly over a time scaleTm
@tc , then we can make the Markov approximation by s
ting ĉm(t2t)5 ĉm(t) in Eq. ~9!. For time intervalst2t0
@tc , we can then make the replacement

E
0

t2t0
dtan,m~t!'E

0

`

dtan,m~t!, ~11!

where the latter expression is given by

E
0

`

dtan,m~t!5gn,m1 iDn,m , ~12!

with
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gn,m5p(
k

kn,kkm,k* d~Vm2vk! ~13!

and

Dn,m5P(
k

kn,kkm,k*
1

Vm2vk
. ~14!

These expressions are defined in the continuum limit s
that (k→(L/2p)*dk.

The Markov approximation assumes that the correlat
function decays very rapidly, which requires thatkn,k vary
slowly with k. Figure 2, shows the correlation functio
uan,n(t)u for the highest energy bound state in the poten
well. This state has the longest correlation time since
ukn,ku2 are the largest for this state and because the sum
tion over reservoir states is restricted to states with ener
less thanV0. For the three cases plotted in Fig. 2, the sma
est value ofgn,n

21 among all the cavity states is 0.55V0
21

(d/a50.0001), 0.62V0
21 (d/a50.001), and 1.36V0

21 (d/a
50.01). In each case, we see that the correlation func
goes to zero in a time much shorter thanTn'gn,n

21 . This
shows that the Markov approximation is a very good a
proximation for our system withTn /tC.102. By combining
the above results, we obtain a quantum Langevin equa
for each of the cavity modes,

ċn~ t !52 iVncn~ t !2(
m

~gn,m1 iDn,m!cm~ t !1Fn
( in)~ t !.

~15!

In Eq. ~15!, we have defined theinput noise operator
Fn

( in)(t) as

Fn
( in)~ t !5(

k
kn,ke

2 ivk(t2t0)ak~ t0![(
k

kn,kak
( in)~ t !,

~16!

where

FIG. 2. Plot ofan,n(t) for n549 andd/a50.0001~solid line!,
0.001~dotted line!, and 0.01~dashed line!. Times are measured in
units of V0

21. V0 anda were chosen so that the cavity contains
bound states.
6-3
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ak
( in)~ t !5ak~ t0!exp@2 ivk~ t2t0!#

is the annihilation operator for modefk
( l )(x) of the input

Fermi field at timet, and the total input field operator i
therefore

C ( in)~x,t !5(
k

ak
( in)~ t !fk

( l )~x!.

That is, C ( in)(x,t) is the free Fermi field that propagate
from the initial timet0 to t in the Heisenberg picture.

Since the initial reservoir operators obey the anticomm
tation relations$ak(t0),ak8

† (t0)%5dk,k8 and $ak(t0),ak8(t0)%
50, it is easy to show that the noise operators obey
anticommutation relations

$Fn
( in)~ t !,Fm

( in)†~ t2t!%5e2 iVmtan,m~t!, ~17!

$Fn
( in)~ t !,Fm

( in)~ t2t!%50. ~18!

Furthermore, if we restrict ourselves to time scales mu
longer than the correlation timetc , then we can approximat
the correlation function in Eq.~17! by ad function times the
area underan,m(t), so that

$Fn
( in)~ t !,Fm

( in)†~ t2t!%'2gn,md~t!. ~19!

Before proceeding, there are several features of Eq.~15!
that are worth mentioning. First, the dissipative te
(m(gn,m1 iDn,m)cm(t) gives a damping term plus an energ
shift for n5m, while for nÞm there is a nonzero couplin
between cavity states. The coupling between cavity state
a result of all states coupling to the same reservoir, wh
leads to an indirect coupling between cavity states. Sec
the noise operators couple all of the reservoir states to e
of the cavity states. Moreover, the noise operators are di
ent for each cavity state due to then dependence of the
coupling constants.

Instead of solving for the reservoir operators in terms
the initial timet0, one can instead solve forâk(t) in terms of
a final timet1.t,

âk~ t !5âk~ t1!1(
m

km,k* E
t

t1
dt8ei (vk2Vm)t8ĉm~ t8!.

~20!

The operatorsâk(t1) represent the modes of the output fie
that contain the field radiated by the cavity at earlier tim
By substituting this expression into the equations of mot
for ĉn(t), making the Markov approximation in the inte
grand, and transforming back to the Heisenberg represe
tion, one obtains

ċn~ t !52 iVncn~ t !1(
m

~gn,m2 iDn,m!cm~ t !1Fn
(out)~ t !.

~21!

Here,Fn
(out)(t) is theoutput field noise operatorfor staten,
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Fn
(out)~ t !5(

k
kn,ke

2 ivk(t2t1)ak~ t1![(
k

kn,kak
(out)~ t !,

~22!

where we have defined the output field annihilation opera
ak

(out)(t) for the modefk
( l )(x). The ak

(out)(t) are related to
the output field of the reservoir by

C (out)~x,t !5(
k

ak
(out)~ t !fk

( l )~x!.

It is clear thatC (out)(x,t) represents the free Fermi field fo
the reservoir that propagates fromt to the final timet1. It is
easy to see that if theak(t1) obey normal fermionic anticom
mutation relations, then the anticommutators for the out
noise operators are the same as Eqs.~17! and ~18!.

The boundary condition for the barrier separating the c
ity from the reservoir is obtained by subtracting Eq.~15!
from Eq. ~21!,

Fn
( in)~ t !2Fn

(out)~ t !52(
m

gn,mcm~ t !. ~23!

Equation~23! relates the noise operator for the output field
the input noise operator reflected by the barrier and the fi
radiated by the cavity. It is of the same form as the bound
condition for an optical cavity@16# except that in our case
there are separate noise operators for each cavity m
since we cannot, in general, assume that the coupling c
stants are independent of the cavity state. In Appendix A,
use Eqs.~23! and ~15! to derive the anticommutation rela
tions between the cavity operators and the noise operato
arbitrary times.

Equation~23! is not very useful since it is the mode op
erators of the output field,ak

(out)(t), which are needed to
calculate properties of the output field such as mode occu
tion statistics, current density, etc. Therefore, we must ext
from Eq. ~23! a boundary condition for the annihilation op
erators of the modes of the input and output fields.

First, we note that in the limit of an infinite potentia
barrier the system-reservoir coupling vanishes,kn,k[0. In
this limit, a fermion incident from the left is perfectly re
flected by the barrier. SinceC ( in)(x,t) and C (out)(x,t) are
the free Schro¨dinger fields that propagate forward in tim
from t0→2` to t and fromt to t1→`, respectively, it fol-
lows that

ak~ t0!eivkt052a2k~ t1!eivkt1. ~24!

The total field is the sum of incident and reflected fields,

C~x,t !5C ( in)~x,t !1C (out)~x,t !. ~25!

It follows from Eqs.~24! and~25! thatC(2a2d,t)50 and
that the eigenmodes of the reservoir are standing waves
V0→`. Note that Eqs.~24! and ~25! are second quantize
versions of the relations for the incident and reflected wa
functions from an infinite potential barrier@19#.

For the reservoir, the displacement operator is given b
6-4
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D~x!5e2 iPx/\,

whereP5(k\kak
†ak is the momentum operator for the re

ervoir @24#. Multiplying Eq. ~23! by D(x) on the left and
D†(x) on the right gives after some manipulation@25#,

(
k

kn,k~ak
( in)~ t !2a2k

(out)~ t !!eikx52p(
m,k

kn,kkm,k*

3d~Vm2vk!cm~ t !eikx. ~26!

Multiplying Eq. ~26! by *2L2a2d
2a2d dxe2 ik8x and taking the

limit L→` gives the boundary condition for the modes
the input and output fields,

ak
( in)~ t !2a2k

(out)~ t !52p(
m

km,k* d~Vm2vk!cm~ t !.

~27!

Physically, Eq.~27! says that the difference between t
mode of the output field propagating away from the barr
with momentum2\k is the input field with momentum\k
reflected by the barrier plus the field radiated by the cav
Furthermore, only those states of the cavity that have
same energy as the reservoir mode can radiate into
mode. For a one-dimensional system, there will only b
single cavity mode that contributes to the right-hand s
~rhs! of Eq. ~27!. The d(Vm2vk) comes from Eq.~11!
where we assumed times much longer than width of the
ervoir correlation function. Hence, it follows from the unce
tainty relationDEDt;\ that the range of reservoir energie
that couple to each cavity mode goes to zero ast2t0→`.

IV. TWO-SIDED CAVITY

The generalization of the preceding to a two-sided cav
HSR,HRÞ0, is straightforward since the reservoirs coup
independently to the cavity. For the right reservoir, we defi
the input and output noise operators

Gn
( in)~ t !5(

k
k̃n,kbk

( in)~ t !, ~28!

Gn
(out)~ t !5(

k
k̃n,kbk

(out)~ t !, ~29!

where

bk
( in)~ t !5bk~ t0!e2 ivk(t2t0), ~30!

bk
(out)~ t !5bk~ t1!e2 ivk(t2t1) ~31!

represent the input and output annihilation operators for
free field modes of the right reservoir at timet. Associated
with the right reservoir noise operators are damping c
stants,

g̃n,m5p(
k

k̃n,kk̃m,k* d~Vm2vk!, ~32!
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and radiative energy shifts

D̃n,m5P(
k

k̃n,kk̃m,k*
1

Vm2vk
. ~33!

The quantum Langevin equations for the cavity mode ope
tors expressed in terms of the input fields from the left a
right are then

ċn~ t !52 iVncn~ t !2(
m

@~gn,m1 iDn,m!cm~ t !1~ g̃n,m

1 i D̃n,m!cm~ t !#1Fn
( in)~ t !1Gn

( in)~ t !. ~34!

One may also derive Langevin equations analogous to
~21! involving the output noise operators for the two res
voirs, which can be used along with Eq.~34! to derive the
boundary conditions for the noise operators in the left a
right reservoirs,

Gn
( in)~ t !2Gn

(out)~ t !52(
m

g̃n,mcm~ t !, ~35!

Fn
( in)~ t !2Fn

(out)~ t !52(
m

gn,mcm~ t !. ~36!

Using the boundary conditionbk(t0)eivkt052b2k(t1)eivkt1

that corresponds to Eq.~24! for the free fields in the right
reservoir, the boundary condition forbk

( in)(t) and bk
(out)(t)

can be derived in the same manner as Eq.~27!. One finds

bk
( in)~ t !2b2k

(out)~ t !52p(
m

k̃m,k* d~Vm2vk!cm~ t !,

~37!

ak
( in)~ t !2a2k

(out)~ t !52p(
m

km,k* d~Vm2vk!cm~ t !.

~38!

Equations~34!, ~37!, and~38! are the central result of this
section. Given an initial state for the two reservoirs att0, Eq.
~34! can be used to calculate the state of the cavity at so
later time. The mode operators for the output field of the l
and right reservoirs can then be determined from the bou
ary conditions~37! and ~38!.

V. OUTPUT FIELD STATISTICS

We illustrate how to utilize these results for a particu
initial state of the cavity plus reservoirs. Specifically, we a
sume that the atom cavity initially contains no atoms and t
the right reservoir is likewise in the vacuum state. Furth
more, the left reservoir contains a ‘‘beam’’ of fermions inc
dent on the barrier atx52a2d with a spatially uniform
current density equal tor\q/m, wherer5N/L is the linear
atomic density andN is the total number of fermions. Thi
physical configuration is represented by the initial state v
tor
6-5
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uC~ t0!&5 )
uk2qu<kF

ak
†~ t0!u0&, ~39!

wherekF52pr is the Fermi momentum.uC(t0)& represents
a zero-temperature Fermi distribution that has been give
Galilean boost that displaces the gas byq in k space. This is
analogous to the optical case where an incoherent white
source is used to drive an optical cavity.

Even thoughuC(t0)& is a state with a fixed number o
atoms, it acts like a constant input flux of fermions on t
cavity. This is because of the implicit use of the Born a
proximation in the derivation of the Langevin equations, i.
the reservoir is assumed to be so large that the backactio
the system is negligible.

Using the results of the preceding section, we can ca
late how the state of the left and right reservoirs are modi
due to their coupling to the cavity. In particular, we focus
the occupation numbers

nk
(L)~ t !5ak

(out)†~ t !ak
(out)~ t !, ~40!

nk
(R)~ t !5bk

(out)†~ t !bk
(out)~ t ! ~41!

as well as on the current density operators for the reserv

J(L,R)~x,t !5(
q̄

j q̄
(L,R)

~ t !eiq̄x,

where

j q̄
(L)

~ t !5
\

2mL (
k

~2k1q̄!ak
(out)†~ t !ak1q̄

(out)
~ t !, ~42!

j q̄
(R)

~ t !5
\

2mL (
k

~2k1q̄!bk
(out)†~ t !bk1q̄

(out)
~ t ! ~43!

are the spatial Fourier components of the current. Note
mL^ j 0

(L,R)(t)& is the average momentum in the output field
Equation~34! for cn(t) can be numerically integrated bu

we note that because of the exponential dependence o
reservoir-cavity coupling constants on the barrier height
thickness, the off-diagonal coupling is much smaller than
energy difference between the cavity modes,
a
th

ie
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uVn2Vmu@ugn,m1g̃n,mu,uDn,m1D̃n,mu

for nÞm. In fact, a numerical evaluation ofugn,m1g̃n,mu
and uDn,m1D̃n,mu using the coupling constants of Append
B indicates that these terms are at least two orders of m
nitude smaller than the energies of the cavity modes. I
therefore an excellent approximation to neglect all o
diagonal terms in the equations of motion. Furthermore,
can perform a renormalization of the cavity mode energ
by absorbing the radiative energy shifts into them,Vm

1Dm,m1D̃m,m→Vm .
For times much longer than the lifetimes of the cav

modes, (t2t0)(gn,n1g̃n,n)@1, the system reaches a stea
state with the solution

cm~ t !5(
k

km,kak
( in)~ t !1k̃m,kbk

( in)~ t !

i ~Vm2vk!1Gm
, ~44!

whereGm5gm,m1g̃m,m . It is easy to see from Eq.~44! that
the occupation numbers for the cavity modes have a Lor
zian profiles,

^cm
† cm&5(

k

ukm,ku2^nk~ t0!&

~Vm2vk!
21Gm

2
, ~45!

where

^nk~ t0!&5Q~kF2uk2qu!

are the occupation numbers for the input field. Due to
broadband nature of the input field all cavity modes w
energies in the rangevkF1q2vkF2q will have a significant
population with higher-energy cavity states having larg
populations due to theukm,ku ’s exponential dependence o
energy.

Using Eq.~44! and the boundary conditions~37! and~38!,
we obtain steady-state expectation values of the occupa
of the output field modes,
^n2k
(L)&5S 124p(

m

Gmd~Vm2vk!ukm,ku2

~Vm2vk!
21Gm

2 D ^nk~ t0!&14p2 (
m,n,k8

ukm,ku2ukm,k8u
2d~Vm2Vn!d~Vm2vk!

~Vm2vk8!
21Gm

2 ^nk8~ t0!&,

~46!

^nk
(R)&54p2 (

m,n,k8

uk̃m,ku2ukm,k8u
2d~Vm2Vn!d~Vm2vk!

~Vm2vk8!
21Gm

2 ^nk8~ t0!&. ~47!
is
d
ions
led
Equations~46! and~47! represent the changes in occup
tion numbers due to reflection and transmission through
cavity. The most significant feature of Eq.~46! is that fermi-
ons in the input beam are perfectly reflected by the barr
-
e

r,

^n2k
(L)&5^nk(t0)&, unless there exists a cavity mode that

degenerate in energy with statek of the reservoir. The secon
term represents the interference term between the ferm
reflected by the barrier and the fermions that have tunne
6-6
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into the barrier and subsequently tunneled back out into
left reservoir. The last term in Eq.~46! represents the tunne
ing of atoms into mode2k as a result of atoms from mod
k8 that have tunneled into the cavity and then tunneled ou
the cavity.

In order to gain additional physical insight, we simpli
these expressions by noting that the denominator in Eq.~47!
as well as the last term in Eq.~46! are sharply peaked aroun
vk85Vm5vk . Therefore we can replacek8 with k in this
term and drop the summation overk8. Using Gm52gm,m
'2pukm,ku2d(Vm2vk), we have

^n2k
(L)&'^nk~ t0!&2L~vk!~^nk~ t0!&2^n2k~ t0!&!, ~48!

^nk
(R)&'L~vk!~^nk~ t0!&1^n2k~ t0!&!, ~49!

where

L~vk!5(
m

Gm
2

~Vm2vk!
21Gm

2
. ~50!

When^n2k(t0)&50, Eq.~48! indicates that̂ n2k
(L)&'0, a re-

sult of the complete destructive interference between the
mions that are directly reflected by the barrier and the fer
ons that tunnel out of the cavity into the left reservoir. At t
same time, Eq.~49! indicates that fermions resonant with
cavity mode tunnel through the right side with unit probab
ity, ^n6k

(R)&'^nk(t0)&. These transmission resonances
similar to the situation in an optical Fabry-Perot cavity.

Figure 3 shows a plot of̂nk
(L)& and^nk

(R)& using Eqs.~46!
and ~47! for an incident beam with fermions occupying th
statesk52p/L, . . . ,(2p/L)7501. Note that we have take
the reservoir to consist of discretek states,k52pn/L with
n50,61, . . . ,6nmax and nmax5LA2mV0/2p\5104. V0
and a were chosen so that the cavity contained 50 bou
tp
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states. Each line in Fig. 3 corresponds to asinglereservoirk
state and as such the width of the lines are greatly exag
ated. The plots give good qualitative agreement with
above discussion with each line located at thek state that is
closest in energy to a particular cavity state. The amplitu
of the transmission resonances is close to 1 for the hig
energyk states, while for the lowest-energy resonances,
amplitudes are about 0.25. The reduction in the amplitude
the low-energy states in comparison to Eqs.~48! and ~49!
comes from Gm[2pukm,ku2h(Vm)*2pukm,ku2d(Vm

2vk), where h(v);v21/2 is the continuum density o
states in the reservoir@see Eq.~13!#.

The steady-state current density in the output field of
left and right reservoirs are given by

FIG. 3. Plot of~a! ^nk
(L)(t)& and~b! ^nk

(R)(t)& for d/a51024 and
a/L51.231025. k is in units of 2p/L.
^ j
2q̄
(L)

&52
r\q

m
d q̄,02

\

2mL (
k

~2k1q̄!F22p(
m

km,k1q̄
* km,kS d~Vm2vk!^nk1q̄~ t0!&

2 i ~Vm2vk1q̄!1Gm

1
d~Vm2vk1q̄!^nk~ t0!&

i ~Vm2vk!1Gm
D

14p2 (
m,n,k8

km,kkn,k1q̄
* km,k8

* kn,k8d~Vm2vk!d~Vn2vk1q̄!

@2 i ~Vm2vk8!1Gm#@ i ~Vn2vk8!1Gn#
^nk8~ t0!&G ~51!

and

^ j q̄
(R)

&5
\

2mL (
k

~2k1q̄!S 4p2 (
m,n,k8

k̃m,kk̃n,k1q̄
* km,k8

* kn,k8d~Vm2vk!d~Vn2vk1q̄!

@2 i ~Vm2vk8!1Gm#@ i ~Vn2vk8!1Gn#
^nk8~ t0!& D , ~52!
by
nt
the
s
el
respectively.
The first term on the rhs of Eq.~51! is the incident current

reflected by the barrier. The average momenta in the ou
fields are proportional tô j 0

(L)&52\/mL(kk^n2k
(L)& and

^ j 0
(R)&5\/mL(kk^nk

(R)&. In the left reservoir, ^ j 0
(L)&'
ut

2r\q/m since most of the fermions are perfectly reflected
the barrier. In the right reservoir, the transmitted curre
^ j 0

(R)&'0 since for those states that are resonant with
cavity ^nk

(R)&5^n2k
(R)&, while for nonresonant reservoir state

^nk
(R)&'0. Physically, this is due to the fact that atoms tunn
6-7
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into the right reservoir from a standing-wave cavity mod
and therefore they have equal probability to tunnel into sta
with positive and negative momentum.

The q̄Þ0 terms are the spatial modulations in the curr
density that build up in the reservoirs as a result of
reservoir-cavity mode coupling. This can generate a co
ence between thek and k1q̄ modes when there is a finit
amplitude for an atom initially in statek to tunnel into the
cavity and then tunnel back out of the cavity into statek

1q̄. The change in̂ j q̄
(L)

& is of orderk2 rather thank4 as
was the case for Eq.~46! since the current only involve
generating a coherence betweenk and k1q̄ rather than the
transfer of population. Furthermore, thek2 terms in Eq.~51!
are only finite foruvk1q̄2vku,Gm , which implies that the
coherence is only generated between reservoir states w
energies lie within the linewidth of a particular cavity mod
Consequently, decreasing the thickness and the height o
barriers will make the linewidths of the cavity states larg
and thereby increase the magnitude ofq̄Þ0 components of
the current.

Figure 4 shows a plot of̂ j q̄
(L)

& for several values ofq̄.

The q̄Þ0 components of the current are about two orders
magnitude smaller than̂j 0

(L)& and they decay away with in

creasingq̄. We do not plot̂ j q̄
(R)

& since the current is equal t
0 to within our numerical accuracy. This is because the c
ity linewidths are so narrow that it becomes nearly imp
sible to satisfy both thed functions in the numerator and th
Lorentzian denominators of Eq.~52! for q̄Þ0 .

VI. CONCLUSION

In this paper, we have extended the quantum opt
input-output theory to atom cavities containing fermion
This formalism can easily be applied to intracavity nonline
atom optical processes, such as four-wave mixing betw

FIG. 4. Plot of^ j q̄
(L)

& for the same parameters as Fig. 3.q̄ are in
units of 2p/L and the current is in units of\/2ma2. r\q/m
55.27 in these units.
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fermions@13# or coherent photoassociation of fermions in
molecular bosons@27#.

In our work, we have dealt with a system-reservoir co
pling that results from tunneling of atoms through a poten
barrier, in which case the Markov approximation was sho
to be justified. However, of equal importance to possi
experiments is the situation in which atoms may be coup
into or out of the trap via induced Raman transitions
trapped states. In this case the Markov may break down@28#.
In a future work, we plan to extend the treatment given h
to broadband coupling in which the system may beco
non-Markovian.
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APPENDIX A: ANTICOMMUTATION RELATIONS
BETWEEN CAVITY AND NOISE OPERATORS

In this appendix, we examine some of the consequen
of Eqs.~15! and~23!. The correlations between the input an
output fields and the cavity modes may be expressed in te
of the anticommutators for the cavity and noise operato
i.e., nonvanishing equal-time anticommutators imply that
operators are not independent. From Eq.~15!, one sees tha
the solution forcn(t) can be expressed in terms of the initi
conditions for the cavity operators,cn(t0) and theak(t0). It
follows immediately that$cn(t),Fm

( in)(t8)%50 for all t andt8
since the only nonvanishing anticommutators att0 are be-
tween creation and annihilation operators. In a similar m
ner, it immediately follows from Eq. ~21! that
$cn(t),Fm

(out)(t8)%50. Formally integrating Eq.~15! from t0

to t shows thatcn(t) depends onFm
( in)(t8) for t8,t @note that

cn(t) will, in general, depend on all of the noise operato
Fm

( in)(t8), not just n5m, due to the intracavity mode cou
pling#. Using Eq.~19! it then follows that

$cn~ t2t!,Fm
( in)†~ t !%50 ~A1!

for t.0. This is nothing more than a statement of causal
the system can only depend on the past input. In a sim
manner, formal integration of Eq.~21! from t1t to t1 im-
plies that

$cn~ t1t!,Fm
(out)†~ t !%50 ~A2!

for t.0. Again, this is nothing more than the statement t
the output of the system can only depend on the state of
system in the past. Using Eqs.~A2! and ~23!, one obtains

$cn~ t1t!,Fm
( in)†~ t !%52(

p
gm,p* $cn~ t1t!,cp

†~ t !%,
6-8
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while using Eq.~A1! along with Eq.~23! gives

$cn~ t2t!,Fm
(out)†~ t !%522(

p
gm,p* $cn~ t2t!,cp

†~ t !%

for t.0. It follows from Eq.~23! that the equal-time anti
commutators can be written as$cn(t),Fm

( in/out)†(t)%5

6(pgm,p* $cn(t),cp
†(t)%1An,m . The operatorAn,m is deter-

mined from the equations of motion~15! and ~21! to be
2 i (pDm,p* $cn(t),cp

†(t)%. If we define the step functionu(t)
as

u~t!5H 1, t.0,

1/2, t50,

0, t,0,

then the anticommutators for arbitraryt are given by

$cn~ t1t!,Fm
( in)†~ t !%

52u~t!(
p

~gm,p* 2 iDm,p* dt,0!$cn~ t1t!,cp
†~ t !%, ~A3!

$cn~ t1t!,Fm
(out)†~ t !%

522u~2t!(
p

~gm,p* 1 iDm,p* dt,0!$cn~ t1t!,cp
†~ t !%.

~A4!

Finally, we show that Eq.~15! preserve the equal-tim
anticommutators for the system operators. Since Eq.~15!
constitute anN3N system of equations, an explicit solutio
will be nontrivial for N.2. However, it is already apparen
that $cn(t),cm(t)%50 since, as we stated before,cn(t) can
be expressed in terms of the initial states for the operato
t0 and $cn(t0),cm(t0)%5$cn(t0),ak(t0)%50. We are there-
fore left with showing that$cn(t),cm

† (t)%5dn,m . Calculating
the derivative of the anticommutator using Eqs.~15! and
~A3!, one obtains

d

dt
$cn~ t !,cm

† ~ t !%52 i ~Vn2Vm!$cn~ t !,cm
† ~ t !%.

Integrating this expression and using the initial conditi
$cn(t0),cm

† (t0)%5dn,m , we obtain the desired result.

APPENDIX B: TUNNELING COUPLING CONSTANTS

In this appendix, we derive explicit expressions for t
tunneling coupling constantskn,k and k̃n,k . Tunneling in
many-body systems was first treated by Bardeen@22# and
later elaborated by Prange@21# and Harrison@26# in the con-
text of electron tunneling across the insulator junctio
Bardeen showed that if there exists a potential barrier se
rating two regions of space, then the tunneling matrix e
mentTa,b for the tunneling of a particle from statefb(x) on
one side of the barrier into the statefa(x) on the opposite
04361
at

.
a-
-

side of the barrier is given by the off-diagonal current dens
in the barrier,

Ta,b5
2\2

2m Ffa* ~x!
d

dx
fb~x!2fb~x!

d

dx
fa* ~x!G

x5x1

.

~B1!

Herex1 is a point inside the barrier andfa(x) andfb(x) are
the continuations of the single-particle wave functions in
the barrier where they decay exponentially.Ta,b is indepen-
dent of the choice ofx1 provided the energy difference be
tween the two statesfa andfb is much less than the heigh
of the barrier. The relationship between Eq.~B1! and the
overlap of the Hamiltonian between states localized on eit
side of the barrier is discussed in Ref.@21#.

For the system illustrated in Fig. 1, we identify2 i\kn,k*
with Ta,b when fa(x)5fk

( l )(x) and fb(x)5fn
(s)(x). Simi-

larly, 2 i\k̃n,k* is equal toTa,b when fa(x)5fk
(r )(x) and

fb(x)5fn
(s)(x).

For the purpose of calculating the coupling constants,
take thefn

(s)(x) to be the eigenstates of the finite potent
well corresponding tod→`. In the classically allowed re-
gion, 2a<x<a, fn

(s)(x) is proportional to cos(Knx) for
even n and sin(Knx) for odd n, while inside the barrier
fn

(s)(x);exp(2A2m(V02\Vn)/\2uxu). The cavity wave
numbersKn are determined by the solutions to

Kna tanKna5Ab22~Kna!2 ~B2!

for evenn, and

Kna cotKna52Ab22~Kna!2 ~B3!

for n odd @19#.
For evenn, we find

kn,k5
2 i\s

m
A 2Kn

L~11~s/k!2!~Kna1cotKna!
e2sdcosKna

~B4!

with

k̃n,k5kn,k . ~B5!

In a similar manner, we find for oddn,

kn,k5
i\s

m
A 2Kn

L~11~s/k!2!~Kna2tanKna!
e2sdsinKna

~B6!

with

k̃n,k52kn,k . ~B7!

In both cases,s5A2mV0 /\22k2 is the inverse of the
penetration depth of the reservoir state into the barrier
b252ma2V0 /\2 is the dimensionless barrier height.

An interesting consequence of Eqs.~B5! and ~B7! is that
if n is even andm is odd or vice versa, then
6-9
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~gn,m1 iDn,m!1~ g̃n,m1 i D̃n,m![0. ~B8!

On the other hand, ifn andm are both even or both odd, the

~gn,m1 iDn,m!1~ g̃n,m1 i D̃n,m!52~gn,m1 iDn,m!.
~B9!

Since fn
(s)(x) is an eigenstate of the parity operator wi

parity (21)n, it follows from Eq. ~34! that for a two-sided
cavity only states of the same parity are coupled. This i
direct consequence of the our model system in Fig. 1 be
. A

e

r-

v.
.

.

n,

04361
a
g

invariant under spatial reflections, which implies that ev
when the coupling of the cavity states to the reservoirs
taken into account, parity will still be a good quantum num
ber for the cavity states. No such result holds for the sing
sided cavity since the cavity-plus-reservoir system is
longer invariant with respect to reflections.

Finally, we note that the approximationvk'Vn used in
deriving kn,k becomes exact for the evaluation of thegn,n

and for the cavity boundary conditions~27! and~37!, since in
these expressionskn,k is always multiplied byd(Vn2vk).
-
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