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Collective ferromagnetism in two-component Fermi-degenerate gas trapped in a finite potential
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Spin asymmetry of ground states is studied in trapped spin-degefievateomponentgases of fermionic
atoms with repulsive interaction between different components; and, for a large particle number, the asymmet-
ric (collective ferromagneticstates are shown to be stable because it can be energetically favorable to increase
the Fermi energy of one component rather than increase the interaction energy between up-down components.
We formulate the Thomas-Fermi equations and give algebraic methods to solve them. From the Thomas-Fermi
solutions, we find three kinds of ground states in the finite syst@&mnparamagnetidspin-symmetrig, (2)
ferromagnetidequilibrium), and(3) ferromagnetidnonequilibrium states. We present the density profiles and
the critical atom numbers for these states obtained analytically, and, in ferromagnetic states, the spin asymme-
tries are shown to occur in the central region of the trapped gas, and increase with increasing particle number.
Based on the obtained results, we discuss the experimental conditions and current difficulties in realizing the
ferromagnetic states of the trapped atom gas, which should be overcome.
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[. INTRODUCTION ciently strong interactions between components, an asym-
metric state with unequal numbers of up and down atoms can

Recent developments of laser trapping and cooling obe stable because it can be energetically favorable to increase
atomic gases, which realized the Bose-Einstein condensatéise Fermi energy of one component rather than increasing
(BEC) for alkali-metal atom$1], have opened up new inter- the interaction energy between up and down components.
est in condensed atomic gases with multiple componentsThe interaction energy between up-up and down-down com-
multicomponent BEC[2,3], Fermi-degeneratdFD) gas ponents can be neglected due to the Pauli blocking effects.
[4—6], and also Bose-Fermi mixed gas in trapped potential§Ve call it “collective ferromagnetic state” of the two-
[7-10]. component Fermi gas.

One of the interesting physical aspects of such systems is As the terms “paramagnetic” and “ferromagnetic” sug-
the phase structure in the ground states. In general, multiplegest, this theory is related to a mechanism of the metallic
component systems show a variety of phase structures amdagnetism, originally proposed by Bloch and developed by
phase transitions between them. A typical example is seen iwhite and Geball¢25], where Fermi particles are the elec-
superfluid 3He (a system with X2 components of orbital trons in conductive bands. It should be noted that, in the
and spin angular momentavhere more than two condensed theory of metallic magnetism, the Hartree-Fock exchange
phases resulting from different combinations of condense@nergy plays the role d&;,;. Studies of collective ferromag-
components exigtl1]. netic states of atom gas are also interesting as experimental

In the condensed system of trapped atomic gases wittesting grounds for theoretical ideas in magnetism. Recently,
multiple components, several studies have been done abostich ferromagnetism aroused new interests in neutron-star
new phases and phase transitions: the BCS states in attractighysics, as a mechanism of the magnétautron stars with
two-component Fermi gdd.2,13], a transition to the super- strong magnetic fieldq26].
fluid states in the crossover region between the BCS and In the uniform system, such ferromagnetic states have
BEC theorieg14—-16, phase separations of different com- been discussed for the atom gas &fi in relation to the
ponents in the BEC17-19, Fermi gag20—22 and Bose- stability of the BCS state§12]. The ferromagnetic states
Fermi mixed systenf23,24]. have also been discussed on the trapped BEC where the in-

In this paper, we discuss the trapped Fermi-degenerat@ractions between different spin components are the origin
atomic gas with two componentsn=*1/2 (magnetic of the asymmetry27]. In this paper, we study the ferromag-
guantum numberstates of spin-1/2 atoms, or two of the netic states in the trapped and finite fermion system.
hyperfine states of fermionic atoms with larger total spin In the following section, we formulate a set of equations
(F>1/2). Thus, we refer to these components as spin defor the two-component Fermi gas @t=0 and the stability
grees of freedonfup and down components, or up and downcondition of its solutions in the Thomas-Fer(iiiF) approxi-
atoms in this paper. mations. In Sec. lll, solutions of the TF equations are ana-

When the interaction between different spin componentsyzed algebraically, and a critical condition for the collective
is weak, the stable ground state of the system has a symmderromagnetic states is obtained. In Sec. IV, we show the
ric state in spin-component distributionsTat 0 where equal  density distributions of the two-component Fermi gas and
numbers of up and down atoms make similar Fermi-discuss paramagnetic-ferromagnetic transitions therein. In
degenerate distributions so that the total spin of the whol&ec. V, we summarize the results and discuss the experimen-
system vanishegparamagnetic state However, for suffi- tal conditions to obtain the ferromagnetic states.
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Il. THOMAS-FERMI EQUATIONS FOR THE TWO- constraint on the total particle numbBr &/ 5n,(E—\N)
COMPONENT FERMI GAS =0, whereN is the scaled total particle number defined by
trapped in an isotropic harmonic-oscillator potential; densi- ~ 213

6 6
-~ a a
— - 3yn — 2 N~ i
ties of spin-up and spin-down components are denoted b)}\‘_Nl Nz—g fd XNe= 35,4 g) N 0'346{ g) N.
p1(r) andp,(r). To describe the ground-state behaviors of (4)
the system, we use the Thomas-Fermi approximation
[12,28, where the total energy of the system is a functionalThe Lagrange multipliek in the variational equation is for
of the densities: the fermion-number constraint, and is related to the scaled
chemical potentiaju through the relationruN=AN; using
f 3 Eq. (4), we obtain
E=| d°r
+0p1p2

We consider & =0 system of two-component Fermi gas

%2 3 1
212 [ﬁ §(67TZ)2/3P:5,/3+ Emw2r2p{r

~ a\®
,u~0.346{—) . (5)
&
It should be noted that, in Eq3), parametersri, ,q)
_ i _ have been scaled out and no parameters are included except
Themandw in Eq. (1) are the fermion mass and the oscil- \ ' The | agrange multipliex is determined by the total fer-

lator frequency of the trapping potential. The last term in Eq.mion number. so thati is the only parameter that deter-

(1) corresponds to the interaction energy between differenrnines the ground-state properties of the system
components of fermion, and the strength of the coupling con- Using Eqs.(3) and (4) for the variational equation, we

stant is given byg=4=#2a/m wherea is the swave scat- ; :

. . . btain the TF equations

tering length. The interactions between the same componen?s

are neglected; the elastiewave scattering is absent because N4 n,=A—x>=M(x), nZ+n;=M(x). (6)

of the Pauli blocking effects and thewave scattering is

suppressed below 100 uK. In the present paper, we dis-  The stability condition for solutions of Eq6) can be
cuss a system of repulsive interaction, so that the parameterderived from the second-order variations of the energy func-

: 1

should be positived>0). tional:
As we show later, the collective ferromagnetic states of 5
the two-component Fermi gas show up in the case of large 5°E 5%E
particle number (19-101%), which validates the use of the 2
i A - ong onon,
Thomas-Fermi approximation. Also the validity of the ap- >0. 7)
proximation can be estimated from the smoothness of the S2E S5%E

mean-field potentialVez=3mw?r?+gp; .. As a parameter
that represents its smoothness, we can take a local de Broglie

wavelength\(r)=7%/p(r), wherep(r) is a TF local momen-  ging Eq. (3), we obtain the stability condition for the
tum defined byp(r)=v2m(er—Ver) (ep: Fermi energy.  present case:

As presented in Ref29], a validity condition with\(r) is

given by f(r)=|d\/dr|<1. Evaluatingf(r) with the pa- 2\

rameters given in the preceding sectiéor “°K), we obtain ”1”2$(§) - ®)
f(r)=<10 ° except the classical turning points. It also sup-
ports the validity of the TF approximations in the present

on,on, 5T§

IIl. SOLUTIONS OF THOMAS-FERMI EQUATIONS

case.
To simplify Eq. (1), we introduce the scaled dimension-  |n this section, we show solutions of coupled TF equa-
less variables, tions (6) in an algebraic form and discuss their stability
based on the stability conditiof8).
128 4 ar . 218 /3\8E Let us introduce variables andt asn;=s® andn,=t3,
Ne=gPod’s X—gg. E—ﬁ ) fa (20 then Eq.(6) becomes

sS$+t?=M, t3+s’=M. 9

where ¢é= JA/mw is the oscillator length. Using these vari-
ables gEq.(l) beL?:omes g g Taking sum and difference of them, we obtain two equations

equivalent to Eq(9):
~E=f d®x

The Thomas-Fermi equations for the densitigg are de-  The factorized form of the second equation gives two alter-
rived from the variations of the total Eneryonn; ,witha  natives:(1) s=t or (2) s?+st+t?—s—t=0.

3 3 2 2_ 3_43_ (2 _t2\—(c_
+nyn, S°+t°+s°+t°=2M, s°—t°—(s°—t°)=(s—1)

. (3

3
5/3 2
-n_"+X°n
0'21,2<5 7 7

X (s%+st+t°—s—t)=0. (10
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In case(1), s=t, the first equation in Eq10) becomes
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In the case where<t M, Eq.(10) has no stable solution.

s’+s’=M, which can be solved algebraically with the |n the TF variational equatios/an,(E—AN)=0, we as-
Caldano formula. It includes Only one pOSltlve root Whensumed the chemical equ”ibrium between fermion 1 and 2,

M=0:

fm) 2
6 3f(m) 3

+12\/8IM2—12M]*3, (12)

For this solution, the stability conditiofB) gives s<2/3,
which leads to the constraint fou,

f(M)=[ — 8+ 108M

2
+

3_ 20
=5

2

M =s3+s2<
3

3 12

Thus, the stable symmetric solutions exist wherN)
=<20/27.
Next, we take cas€?): s’°+st+t?—s—t=0. Now, this

and the another equation in H4.0) are symmetric under the
exchange betweemandt, so that they can be represented by

elementary symmetric polynomiald=s+t andB=st:
A]—A’—A+M=0, A>~A—-B=0. (13
The first equation has a real positive solution:

oMy 8 1
AT76 Tagm T

+12/81M2—66M — 15]*3,

Substituting it in Eq.(13), we obtain the solution foB,

g(M)=[ —108M + 44

(14

_[g(M)]> gM) 4 8 64

B 36 18 +§_99(M)+9[9(M)]2'
(15

The s andt can be recovered as two solutions of the equa
tion: x>~ Ax+B=0. These solutions are generally asym-

metric (s#t).

We can check the stability of the asymmetric solutions

with Eg. (8), which gives a constraint foB: B=st

=(nyn;)¥*<4/9. Then, from the second equation in Eq.
(13), we obtain that forA: 1<A<4/3. Differentiating the
first equation in Eq(13) by A, we find thatM is a monotoni-

cally decreasing function oA within the interval A

=<4/3. Combining these results, we obtain the stability rang

of M for the asymmetric solutions: 20/ M <1.
In summary, the stable solutions of H40) are

20
OsMs2—7 (symmetrig, (163
20 _
2—7< M=<1 (asymmetrig, (16b)
1<M (no stable solutions (160

e

and put their chemical potentialdagrange multipliers
equal:x =X\;=\,. Accordingly, if 1<M, we should say that
the system has no stable solutions in “equilibrium.” Thus,
for 1<M, we should take the nonequilibrium states where
all fermions occupy one componef@omplete asymmetjy

If we assumes=0, t is obtained by solving the equation

t>=M. (17

IV. DENSITY PROFILES OF THE TWO-COMPONENT
FERMI GAS

Using the results of the preceding section, we can calcu-
late the density profiles of the two-component Fermi gas for
any value of\. Corresponding to the classification b
=\—x? in Eq. (16), we should dividex into three regions:

20
(i) OsA=g 5, (i)

<
27 1<,

(18

20<)\ 1
—_— $
57 , (i)

and discuss qualitative profiles of the density distributions
Nyo.

(i) Paramagnetic ground statek these casedV (x) sat-
isfies M (x) =\ —x?<20/27 for any value ok. Thus, from
Eq. (16), the density distributions are composed of the sym-
metric solution(11) in all spatial regions. Consequently, the
ground states are paramagnetic in regiofis n;(x)
=n,(x). In Fig. 1(a), the density profiles are shown when
N=1/2. They decrease monotonically with the scaled radial
distancex, and vanish at the TF cutofkye=\A=1/\/2 in
this case. These states occur in the case of small fermion
number.

(i) Ferromagnetic ground states in equilibriurim these
cases, we obtairM(x)=<20/27 in the outside regionx(
=\ —20/27), but 20/2ZM(x)<1 in the inside region

(x<\\—20/27). Correspondingly, the density distributions

become symmetric in the outside region and asymmetric in
the inside region, so that the ground states become ferromag-
netic in region(ii). Because the conditioll (x)<1 is satis-

fied, solutions are in equilibrium in all spatial regions, and
densities are partially asymmetric in the inside region. In Fig.
1(b), the density profiles are shown when=4/5 for n;
(solid line) and n, (dotted ling. The border between sym-
metric and asymmetric regions is given byag

= /A —20/27=/8/135 in this case. In the outsidsymmet-

ric) region, both the lines overlap and vanishxat=2/\/5.

(iii) Ferromagnetic ground states in nonequilibriuhm
these cases, density profiles are also asymmetric in the inside
region X<Xps) as in the above region. However, in the most
inside region x<yA—1), M(x)>1 is satisfied and, accord-
ing to (160 the density profiles become nonequilibrium and
are given by complete asymmetric solutions in EL{). In
Fig. 1(c), we show the density profiles when=3/2 for n;
(solid line) and n, (dotted ling. In the most inside region
(X<Xgg=VA—1= 1/\2), the density profiles are com-
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00 02 04 06 08 10 12 FIG. 3. (a) The scaled total energy against the scaled total
X fermion numbeN =N, +N,: the solid line is for the ground states

FIG. 1. Density profiles of fermions, (solid line) andn, (dot-

and the dotted one is for the paramagnetic states. The dash-dotted

ted ling for (a) A=0.5, (b) 0.8, and(c) 1.5. The scaled densities line is for the total energy of the noninteracting fermionic system,
n;, and the scaled radial distangeare dimensionless and defined g = — 2 72/(4/72)N]%3. (b) The energy differences from that of
by Eq.(2). \ is a(dimensionlessLagrange multiplier(a)—(c) cor-

. . . , _ the paramagnetic statés Epara. The solid and dotted lines are for
respond to a paramagnetic stéig a ferromagnetic state in equi-

librium (i), and a ferromagnetic state in nonequilibriuiin), re-
spectively. The scaled fermion numbéts, areN; =N, =0.089 for
(@, (N;,N,)=(0.33,0.31) for(b), and (3.50,0.68) fofc).

pletely asymmetricif,=0), and, inXgg<X<Xas= \41/54,
they are partially asymmetric. In the outsigymmetrig re-
gion (x>Xag), two lines overlap and vanish at=xqr

=+/3/2. Thus, the ground states are ferromagnetic and i
nonequilibrium in regioriii ), which corresponds to the case

of large fermion number.
In Fig. 2, we show the dependence ofon the fermion

—

0.0 T
0.0 0.

T T T T
1.0 15 20 25

N

n

the ground and paramagnetic states.

numberN, which is calculated by Eq4) using the fermion
densitiesn; ,(x) obtained above; for the ground stateslid

line) and the paramagnetic statédotted ling. From the
above discussion, fax=<20/27, the ground states are para-
magnetic, so that both the lines overlap. As can be seen in
this figure, the critical value\=20/27 corresponds tdlc
=0.53, which is the critical fermion number for the transi-
tion between paramagnetic and ferromagnetic states.

In Fig. 3(a), variations of scaled total energids are
shown againsN, for the ground(solid line) and paramag-
netic (dotted statesE can be obtained by Eq3) as a func-
tion of N using the fermion densitigs, ,(x); combined with
theN dependence of (shown in Fig. 2, we can obtain it&
dependence. IN<N:=0.53, both lines overlap completely
because the ground states become paramagnetic. In(Bjg. 3
we plot the energy difference between the ground and para-
magnetic states. In this figure, we can find thaiNif N,
the ground-state energgolid line) shifts lower than that of
the paramagnetic statédotted ling; it shows that the ferro-
magnetic ground states become more stable in this region.

FIG. 2. Lagrange multiplien against the scaled fermion num-

berN. The solid and dotted lines are for the ground and paramaga, As can tz)e seen InhFlg.(S) when N_>O'53('j the energy .
netic states\ is introduced as a Lagrange multiplier for fermion- dierence between the ferromagnetic and paramagnetic

number constraint, anl is defined by Eq(4). Both quantities are StateS|E_Eparel~i5 very small in comparison with the total
dimensionless. energyk: e.g.,|E—Ep,d/E~0.01 atN=2.0. A large part of
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1.0 parameters, we obtaiN:~ 10" In recent experiments, the
'Z g trapped Fermi-degenerate gas has been observed-ufdd
= atoms, so that a larger trapping potential is necessary for the
N 0.6 realization of the ferromagnetic ground state than the cur-
'~ 0.4 rently used one. In addition, because of the high central den-
'Z 5o sity (~10'" cm®) for ~10' atoms, the inelastic/multiple-
0.0 . . . bo_dy scattering processes in them become important, which
0 5 4 6 might destroy the trapped atoms before they reach the re-
~ quired density.
N There can be several possibilities for the reductioN gf

FIG. 4. Variation of the fermion-number asymmetrN,(  For example, if the scattering length can be increased by the
—N,)/N against the scaled total fermion numibér The solid and ~ Feshbach resonance f6PK, which has been observed ex-
dotted lines are for the ground and paramagnetic states, respeperimentally[6], the value ofN: decreases and the ferro-
tively. magnetic ground states can be obtained in small fermion

number: simple estimation gives=820ag for Nc~10° and
E consists of the stacked kinetic energy due to the Ferm@=2600ag for Nc~10°. However, in current experiments,
degeneracy of fermions. Roughly speaking, its size can b#he tuning into Feshbach resonances is done by applying the
estimated from the total energy of the noninteracting Fermmagnetic field, which should lead to the energy difference
gas @=0) trapped in the same harmonic-oscillator poten-between the up and down states and makes the ferromagnetic
tial; "'Enon:%ﬂ_Z[(“_/ﬂ_Z)N]MS, which increases rapldly with transition into a crossover in the Spl!’] asymmetry. Tuning
increasingN. The E,, is plotted also in Fig. @) (dot- Feshpac_h resonances by nonmagnetic external fqecgs
2 non i ) - electric fields is preferred for the present purpose.

dashed ling the amounts of which are almost75% of E. The use of heavier elements, e.g., Sr or Yb, is also effec-

However, to evaluate the scale of the energy differenceyjye for the ferromagnetic states. We hope that the combina-

we should compare it with an one-particle excitation energytion of these methods may lead to the experimental achieve-
at the Fermi surface, which can be estimated from the scaleghents.

chemical potential. defined in Eq.(5). In the case of**K We also comment on the process to observe the ferromag-
with the harmonic-oscillator frequencyw=1000 Hz (for  netic states. There exist two possibilities.
other parameters, see the following sec)jdty. (5) becomes (a) The experiment starts with the magnetic field in some

w~10"2\. WhenN~2 (A\~1 from Fig. 2, the ratioAE/x ~ direction that results in the spin asymmetgyg.,N;>N).
becomes 1. Thus, we should say that the energy differ- Then, the magnetic field is switched off adiabatically in the
ence between the ferromagnetic and paramagnetic statesGgoling process. When the number of the remaining atoms is
fairly large. large enough, it shows the ferromagnetic states.

In Fig. 4, we show the fermion-number asymmetiy; ( (b) The experiment starts W!th the symmetric trall (
=N,), and, after some relaxation time elapses, the atoms

~N/IN=(N1—N)/(N;+N,) against the total fermion num- release their spin angular momenta and become the ferro-

berN. magnetic state.
Case(a) is similar to a standard process for observing the
V. SUMMARY AND DISCUSSIONS phase transition in the ferromagnetic materials. In dage
the spin-relaxation time is considered to be of the same order

We discussed the possibility of transition to ferromagnetic,g that of clusterization, so that it might be difficult to ob-

states in the two-component Fermi gas using the Thomagseye the ferromagnetic transition within the lifetime of the
Fermi approximation from theoretical points of view. Based ;o mic gas.

on the results that we obtained, let us discuss experimenta Finally, we comment on the spatially phase-separated

conditions and also difficulties to observe ferromagneticgiatas in the trapped fermionic gas in the case of the large
ground states in the trapped atomic gas. We hope that thef)%rticle number and interaction streng@0—23. They cor-
difficulties are overcome in future developments in eXperi'respond to the phase separation in the uniform system-
mental technics. _ , _phase coexistent regipndiscussed in Ref(12]. The naive

As shown in the preceding section, the ferromagneticre c5icylations give smaller energy for the ferromagnetic
ground states become stable wher0.53; using Eq(4),  states, but the energy difference is very small. The competi-
the unscaled critical numbédc becomes tion (or coexistenceof these states should be an interesting

problem for future studies.

£\° 5(§

=15 =

a

a
As an example, we take th&’K atoms (massm=0.649 We are very grateful to T. Maruyama, T. Suzuki, and T.
X 10~ % kg) trapped in the harmonic oscillator potential with Miyakawa for fruitful discussions. Special thanks are also
»=1000 Hz. For the scattering length, we take the value due to T. Tatsumi for introducing to us the physics of collec-
=16%g (ag: Bohr radius given in Ref.[30]. Using these tive ferromagnetism.
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