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Collective ferromagnetism in two-component Fermi-degenerate gas trapped in a finite potential

T. Sogo and H. Yabu
Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

~Received 30 May 2002; published 21 October 2002!

Spin asymmetry of ground states is studied in trapped spin-degenerate~two-component! gases of fermionic
atoms with repulsive interaction between different components; and, for a large particle number, the asymmet-
ric ~collective ferromagnetic! states are shown to be stable because it can be energetically favorable to increase
the Fermi energy of one component rather than increase the interaction energy between up-down components.
We formulate the Thomas-Fermi equations and give algebraic methods to solve them. From the Thomas-Fermi
solutions, we find three kinds of ground states in the finite system:~1! paramagnetic~spin-symmetric!, ~2!
ferromagnetic~equilibrium!, and~3! ferromagnetic~nonequilibrium! states. We present the density profiles and
the critical atom numbers for these states obtained analytically, and, in ferromagnetic states, the spin asymme-
tries are shown to occur in the central region of the trapped gas, and increase with increasing particle number.
Based on the obtained results, we discuss the experimental conditions and current difficulties in realizing the
ferromagnetic states of the trapped atom gas, which should be overcome.

DOI: 10.1103/PhysRevA.66.043611 PACS number~s!: 03.75.Fi, 05.30.Fk
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I. INTRODUCTION

Recent developments of laser trapping and cooling
atomic gases, which realized the Bose-Einstein condens
~BEC! for alkali-metal atoms@1#, have opened up new inte
est in condensed atomic gases with multiple compone
multicomponent BEC @2,3#, Fermi-degenerate~FD! gas
@4–6#, and also Bose-Fermi mixed gas in trapped potent
@7–10#.

One of the interesting physical aspects of such system
the phase structure in the ground states. In general, mult
component systems show a variety of phase structures
phase transitions between them. A typical example is see
superfluid 3He ~a system with 232 components of orbita
and spin angular momenta!, where more than two condense
phases resulting from different combinations of conden
components exist@11#.

In the condensed system of trapped atomic gases
multiple components, several studies have been done a
new phases and phase transitions: the BCS states in attra
two-component Fermi gas@12,13#, a transition to the super
fluid states in the crossover region between the BCS
BEC theories@14–16#, phase separations of different com
ponents in the BEC@17–19#, Fermi gas@20–22# and Bose-
Fermi mixed system@23,24#.

In this paper, we discuss the trapped Fermi-degene
atomic gas with two components:m561/2 ~magnetic
quantum number! states of spin-1/2 atoms, or two of th
hyperfine states of fermionic atoms with larger total sp
(F.1/2). Thus, we refer to these components as spin
grees of freedom~up and down components, or up and dow
atoms! in this paper.

When the interaction between different spin compone
is weak, the stable ground state of the system has a sym
ric state in spin-component distributions atT50 where equal
numbers of up and down atoms make similar Ferm
degenerate distributions so that the total spin of the wh
system vanishes~paramagnetic state!. However, for suffi-
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ciently strong interactions between components, an as
metric state with unequal numbers of up and down atoms
be stable because it can be energetically favorable to incr
the Fermi energy of one component rather than increas
the interaction energy between up and down compone
~The interaction energy between up-up and down-down co
ponents can be neglected due to the Pauli blocking effec!
We call it ‘‘collective ferromagnetic state’’ of the two
component Fermi gas.

As the terms ‘‘paramagnetic’’ and ‘‘ferromagnetic’’ sug
gest, this theory is related to a mechanism of the meta
magnetism, originally proposed by Bloch and developed
White and Geballe@25#, where Fermi particles are the ele
trons in conductive bands. It should be noted that, in
theory of metallic magnetism, the Hartree-Fock exchan
energy plays the role ofEint . Studies of collective ferromag
netic states of atom gas are also interesting as experime
testing grounds for theoretical ideas in magnetism. Recen
such ferromagnetism aroused new interests in neutron
physics, as a mechanism of the magnetar~neutron stars with
strong magnetic fields! @26#.

In the uniform system, such ferromagnetic states h
been discussed for the atom gas of6Li in relation to the
stability of the BCS states@12#. The ferromagnetic state
have also been discussed on the trapped BEC where th
teractions between different spin components are the or
of the asymmetry@27#. In this paper, we study the ferromag
netic states in the trapped and finite fermion system.

In the following section, we formulate a set of equatio
for the two-component Fermi gas atT50 and the stability
condition of its solutions in the Thomas-Fermi~TF! approxi-
mations. In Sec. III, solutions of the TF equations are a
lyzed algebraically, and a critical condition for the collectiv
ferromagnetic states is obtained. In Sec. IV, we show
density distributions of the two-component Fermi gas a
discuss paramagnetic-ferromagnetic transitions therein
Sec. V, we summarize the results and discuss the experim
tal conditions to obtain the ferromagnetic states.
©2002 The American Physical Society11-1
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II. THOMAS-FERMI EQUATIONS FOR THE TWO-
COMPONENT FERMI GAS

We consider aT50 system of two-component Fermi ga
trapped in an isotropic harmonic-oscillator potential; den
ties of spin-up and spin-down components are denoted
r1(r ) and r2(r ). To describe the ground-state behaviors
the system, we use the Thomas-Fermi approxima
@12,28#, where the total energy of the system is a functio
of the densities:

E5E d3r F (
s51,2

H \2

2m

3

5
~6p2!2/3rs

5/31
1

2
mv2r 2rsJ

1gr1r2G . ~1!

The m andv in Eq. ~1! are the fermion mass and the osc
lator frequency of the trapping potential. The last term in E
~1! corresponds to the interaction energy between differ
components of fermion, and the strength of the coupling c
stant is given byg54p\2a/m wherea is the s-wave scat-
tering length. The interactions between the same compon
are neglected; the elastics-wave scattering is absent becau
of the Pauli blocking effects and thep-wave scattering is
suppressed below;100 mK. In the present paper, we dis
cuss a system of repulsive interaction, so that the parameg
should be positive (g.0).

As we show later, the collective ferromagnetic states
the two-component Fermi gas show up in the case of la
particle number (106–1013), which validates the use of th
Thomas-Fermi approximation. Also the validity of the a
proximation can be estimated from the smoothness of
mean-field potential:Veff5

1
2 mv2r 21gr1,2. As a parameter

that represents its smoothness, we can take a local de Br
wavelengthl(r )5\/p(r ), wherep(r ) is a TF local momen-
tum defined byp(r )5A2m(eF2Veff) (eF : Fermi energy!.
As presented in Ref.@29#, a validity condition withl(r ) is
given by f (r )[udl/dru!1. Evaluating f (r ) with the pa-
rameters given in the preceding section~for 40K), we obtain
f (r )&1023 except the classical turning points. It also su
ports the validity of the TF approximations in the prese
case.

To simplify Eq. ~1!, we introduce the scaled dimensio
less variables,

ns5
128

9p
rsa3, x5

4

3p

ar

j2
, Ẽ5

218

37p6 S a

j D 8 E

\v
, ~2!

wherej5A\/mv is the oscillator length. Using these var
ables, Eq.~1! becomes

Ẽ5E d3xF (
s51,2

S 3

5
ns

5/31x2nsD1n1n2G . ~3!

The Thomas-Fermi equations for the densitiesn1,2 are de-
rived from the variations of the total EnergyẼ on n1,2 with a
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constraint on the total particle numberÑ: d/dns(Ẽ2lÑ)
50, whereÑ is the scaled total particle number defined b

Ñ5Ñ11Ñ25(
s

E d3xns5
213

35p4 S a

j D 6

N;0.346S a

j D 6

N.

~4!

The Lagrange multiplierl in the variational equation is fo
the fermion-number constraint, and is related to the sca
chemical potentialm̃ through the relationm̃N5lÑ; using
Eq. ~4!, we obtain

m̃;0.346S a

j D 6

l. ~5!

It should be noted that, in Eq.~3!, parameters (m,v,g)
have been scaled out and no parameters are included e
l. The Lagrange multiplierl is determined by the total fer
mion numberÑ, so thatÑ is the only parameter that dete
mines the ground-state properties of the system.

Using Eqs.~3! and ~4! for the variational equation, we
obtain the TF equations

n1
2/31n25l2x2[M ~x!, n2

2/31n15M ~x!. ~6!

The stability condition for solutions of Eq.~6! can be
derived from the second-order variations of the energy fu
tional:

U d2Ẽ

dn1
2

d2Ẽ

dn1dn2

d2Ẽ

dn2dn1

d2Ẽ

dn2
2

U>0. ~7!

Using Eq. ~3!, we obtain the stability condition for the
present case:

n1n2<S 2

3D 6

. ~8!

III. SOLUTIONS OF THOMAS-FERMI EQUATIONS

In this section, we show solutions of coupled TF equ
tions ~6! in an algebraic form and discuss their stabili
based on the stability condition~8!.

Let us introduce variabless and t as n15s3 and n25t3,
then Eq.~6! becomes

s31t25M , t31s25M . ~9!

Taking sum and difference of them, we obtain two equatio
equivalent to Eq.~9!:

s31t31s21t252M , s32t32~s22t2!5~s2t !

3~s21st1t22s2t !50. ~10!

The factorized form of the second equation gives two alt
natives:~1! s5t or ~2! s21st1t22s2t50.
1-2
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COLLECTIVE FERROMAGNETISM IN TWO-COMPONENT . . . PHYSICAL REVIEW A 66, 043611 ~2002!
In case~1!, s5t, the first equation in Eq.~10! becomes
s31s25M , which can be solved algebraically with th
Caldano formula. It includes only one positive root wh
M>0:

s5
f ~M !

6
1

2

3 f ~M !
2

1

3
, f ~M !5@281108M

112A81M2212M #1/3. ~11!

For this solution, the stability condition~8! gives s<2/3,
which leads to the constraint forM,

M5s31s2<S 2

3D 2

1S 2

3D 3

5
20

27
. ~12!

Thus, the stable symmetric solutions exist when 0<M
<20/27.

Next, we take case~2!: s21st1t22s2t50. Now, this
and the another equation in Eq.~10! are symmetric under the
exchange betweens andt, so that they can be represented
elementary symmetric polynomials,A[s1t andB[st:

A32A22A1M50, A22A2B50. ~13!

The first equation has a real positive solution:

A5
g~M !

6
1

8

3g~M !
1

1

3
, g~M !5@2108M144

112A81M2266M215#1/3. ~14!

Substituting it in Eq.~13!, we obtain the solution forB,

B5
@g~M !#2

36
2

g~M !

18
1

4

9
2

8

9g~M !
1

64

9@g~M !#2
.

~15!

The s and t can be recovered as two solutions of the eq
tion: x22Ax1B50. These solutions are generally asym
metric (sÞt).

We can check the stability of the asymmetric solutio
with Eq. ~8!, which gives a constraint forB: B5st
5(n1n1)1/3<4/9. Then, from the second equation in E
~13!, we obtain that forA: 1<A<4/3. Differentiating the
first equation in Eq.~13! by A, we find thatM is a monotoni-
cally decreasing function ofA within the interval 1<A
<4/3. Combining these results, we obtain the stability ran
of M for the asymmetric solutions: 20/27,M<1.

In summary, the stable solutions of Eq.~10! are

0<M<
20

27
~symmetric!, ~16a!

20

27
,M<1 ~asymmetric!, ~16b!

1,M ~no stable solutions!. ~16c!
04361
-
-

s

.

e

In the case where 1,M , Eq. ~10! has no stable solution
In the TF variational equationd/dns(Ẽ2lÑ)50, we as-
sumed the chemical equilibrium between fermion 1 and
and put their chemical potentials~Lagrange multipliers!
equal:l5l15l2. Accordingly, if 1,M , we should say that
the system has no stable solutions in ‘‘equilibrium.’’ Thu
for 1,M , we should take the nonequilibrium states whe
all fermions occupy one component~complete asymmetry!.
If we assumes50, t is obtained by solving the equation

t25M . ~17!

IV. DENSITY PROFILES OF THE TWO-COMPONENT
FERMI GAS

Using the results of the preceding section, we can ca
late the density profiles of the two-component Fermi gas
any value ofl. Corresponding to the classification byM
5l2x2 in Eq. ~16!, we should dividel into three regions:

~ i! 0<l<
20

27
, ~ ii !

20

27
,l<1, ~ iii ! 1,l,

~18!

and discuss qualitative profiles of the density distributio
n1,2.

~i! Paramagnetic ground states.In these cases,M (x) sat-
isfies M (x)5l2x2<20/27 for any value ofx. Thus, from
Eq. ~16!, the density distributions are composed of the sy
metric solution~11! in all spatial regions. Consequently, th
ground states are paramagnetic in regions~i!: n1(x)
5n2(x). In Fig. 1~a!, the density profiles are shown whe
l51/2. They decrease monotonically with the scaled rad
distancex, and vanish at the TF cutoff:xTF[Al51/A2 in
this case. These states occur in the case of small ferm
number.

~ii ! Ferromagnetic ground states in equilibrium.In these
cases, we obtainM (x)<20/27 in the outside region (x
>Al220/27), but 20/27,M (x)<1 in the inside region
(x,Al220/27). Correspondingly, the density distributio
become symmetric in the outside region and asymmetric
the inside region, so that the ground states become ferrom
netic in region~ii !. Because the conditionM (x)<1 is satis-
fied, solutions are in equilibrium in all spatial regions, a
densities are partially asymmetric in the inside region. In F
1~b!, the density profiles are shown whenl54/5 for n1
~solid line! and n2 ~dotted line!. The border between sym
metric and asymmetric regions is given byxAS

[Al220/275A8/135 in this case. In the outside~symmet-
ric! region, both the lines overlap and vanish atxTF52/A5.

~iii ! Ferromagnetic ground states in nonequilibrium.In
these cases, density profiles are also asymmetric in the in
region (x,xAS) as in the above region. However, in the mo
inside region (x,Al21), M (x).1 is satisfied and, accord
ing to ~16c! the density profiles become nonequilibrium a
are given by complete asymmetric solutions in Eq.~17!. In
Fig. 1~c!, we show the density profiles whenl53/2 for n1
~solid line! and n2 ~dotted line!. In the most inside region
(x,xEQ5Al2151/A2), the density profiles are com
1-3
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pletely asymmetric (n250), and, inxEQ<x,xAS5A41/54,
they are partially asymmetric. In the outside~symmetric! re-
gion (x.xAS), two lines overlap and vanish atx5xTF

5A3/2. Thus, the ground states are ferromagnetic and
nonequilibrium in region~iii !, which corresponds to the cas
of large fermion number.

In Fig. 2, we show the dependence ofl on the fermion

FIG. 1. Density profiles of fermions,n1 ~solid line! andn2 ~dot-
ted line! for ~a! l50.5, ~b! 0.8, and~c! 1.5. The scaled densitie
n1,2 and the scaled radial distancex are dimensionless and define
by Eq. ~2!. l is a ~dimensionless! Lagrange multiplier.~a!–~c! cor-
respond to a paramagnetic state~i!, a ferromagnetic state in equ
librium ~ii !, and a ferromagnetic state in nonequilibrium~iii !, re-

spectively. The scaled fermion numbersÑ1,2 areÑ15Ñ250.089 for

~a!, (Ñ1 ,Ñ2)5(0.33,0.31) for~b!, and (3.50,0.68) for~c!.

FIG. 2. Lagrange multiplierl against the scaled fermion num

ber Ñ. The solid and dotted lines are for the ground and param
netic states.l is introduced as a Lagrange multiplier for fermio

number constraint, andÑ is defined by Eq.~4!. Both quantities are
dimensionless.
04361
in

numberÑ, which is calculated by Eq.~4! using the fermion
densitiesn1,2(x) obtained above; for the ground states~solid
line! and the paramagnetic states~dotted line!. From the
above discussion, forl<20/27, the ground states are par
magnetic, so that both the lines overlap. As can be see
this figure, the critical valuel520/27 corresponds toÑC
50.53, which is the critical fermion number for the trans
tion between paramagnetic and ferromagnetic states.

In Fig. 3~a!, variations of scaled total energiesẼ are
shown againstÑ, for the ground~solid line! and paramag-
netic ~dotted! states.Ẽ can be obtained by Eq.~3! as a func-
tion of l using the fermion densitiesn1,2(x); combined with
theÑ dependence ofl ~shown in Fig. 2!, we can obtain itsÑ
dependence. InÑ<ÑC50.53, both lines overlap completel
because the ground states become paramagnetic. In Fig.~b!,
we plot the energy difference between the ground and p
magnetic states. In this figure, we can find that, ifÑ.ÑC ,
the ground-state energy~solid line! shifts lower than that of
the paramagnetic states~dotted line!; it shows that the ferro-
magnetic ground states become more stable in this regio

As can be seen in Fig. 3~a! when Ñ.0.53, the energy
difference between the ferromagnetic and paramagn
statesuẼ2Ẽparau is very small in comparison with the tota
energyẼ: e.g.,uẼ2Ẽparau/Ẽ;0.01 atÑ52.0. A large part of

g-

FIG. 3. ~a! The scaled total energyẼ against the scaled tota

fermion numberÑ5Ñ11Ñ2: the solid line is for the ground state
and the dotted one is for the paramagnetic states. The dash-d
line is for the total energy of the noninteracting fermionic syste

Ẽnon5
3

16p2@(4/p2)Ñ#4/3. ~b! The energy differences from that o

the paramagnetic states,Ẽ2Ẽpara. The solid and dotted lines are fo
the ground and paramagnetic states.
1-4
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Ẽ consists of the stacked kinetic energy due to the Fe
degeneracy of fermions. Roughly speaking, its size can
estimated from the total energy of the noninteracting Fe
gas (g50) trapped in the same harmonic-oscillator pote
tial; Ẽnon5

3
16 p2@(4/p2)Ñ#4/3, which increases rapidly with

increasingÑ. The Ẽnon is plotted also in Fig. 3~a! ~dot-
dashed line!, the amounts of which are almost;75% of Ẽ.

However, to evaluate the scale of the energy differen
we should compare it with an one-particle excitation ene
at the Fermi surface, which can be estimated from the sc
chemical potentialm̃ defined in Eq.~5!. In the case of40K
with the harmonic-oscillator frequencyv51000 Hz ~for
other parameters, see the following section!, Eq.~5! becomes
m̃;10213l. WhenÑ;2 (l;1 from Fig. 2!, the ratioDẼ/m̃
becomes 1013. Thus, we should say that the energy diffe
ence between the ferromagnetic and paramagnetic stat
fairly large.

In Fig. 4, we show the fermion-number asymmetry (Ñ1

2N2̃)/Ñ5(N12N2)/(N11N2) against the total fermion num
ber Ñ.

V. SUMMARY AND DISCUSSIONS

We discussed the possibility of transition to ferromagne
states in the two-component Fermi gas using the Thom
Fermi approximation from theoretical points of view. Bas
on the results that we obtained, let us discuss experime
conditions and also difficulties to observe ferromagne
ground states in the trapped atomic gas. We hope that t
difficulties are overcome in future developments in expe
mental technics.

As shown in the preceding section, the ferromagne
ground states become stable whenÑ*0.53; using Eq.~4!,
the unscaled critical numberNC becomes

NC;
0.53

0.346S j

aD 6

51.5S j

aD 6

. ~19!

As an example, we take the40K atoms ~massm50.649
310225 kg) trapped in the harmonic oscillator potential wi
v51000 Hz. For the scattering length, we take the valua
5169aB (aB : Bohr radius! given in Ref.@30#. Using these

FIG. 4. Variation of the fermion-number asymmetry (Ñ1

2Ñ2)/Ñ against the scaled total fermion numberÑ. The solid and
dotted lines are for the ground and paramagnetic states, res
tively.
04361
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parameters, we obtainNC;1013. In recent experiments, th
trapped Fermi-degenerate gas has been observed up to;106

atoms, so that a larger trapping potential is necessary for
realization of the ferromagnetic ground state than the c
rently used one. In addition, because of the high central d
sity (;1017 cm-3) for ;1013 atoms, the inelastic/multiple
body scattering processes in them become important, w
might destroy the trapped atoms before they reach the
quired density.

There can be several possibilities for the reduction ofNC .
For example, if the scattering length can be increased by
Feshbach resonance for40K, which has been observed ex
perimentally@6#, the value ofNC decreases and the ferro
magnetic ground states can be obtained in small ferm
number: simple estimation gives,a5820aB for NC;109 and
a52600aB for NC;106. However, in current experiments
the tuning into Feshbach resonances is done by applying
magnetic field, which should lead to the energy differen
between the up and down states and makes the ferromag
transition into a crossover in the spin asymmetry. Tun
Feshbach resonances by nonmagnetic external forces~e.g.,
electric fields! is preferred for the present purpose.

The use of heavier elements, e.g., Sr or Yb, is also eff
tive for the ferromagnetic states. We hope that the comb
tion of these methods may lead to the experimental achie
ments.

We also comment on the process to observe the ferrom
netic states. There exist two possibilities.

~a! The experiment starts with the magnetic field in som
direction that results in the spin asymmetry~e.g.,N1.N2).
Then, the magnetic field is switched off adiabatically in t
cooling process. When the number of the remaining atom
large enough, it shows the ferromagnetic states.

~b! The experiment starts with the symmetric trap (N1
5N2), and, after some relaxation time elapses, the ato
release their spin angular momenta and become the fe
magnetic state.

Case~a! is similar to a standard process for observing t
phase transition in the ferromagnetic materials. In case~b!,
the spin-relaxation time is considered to be of the same o
as that of clusterization, so that it might be difficult to o
serve the ferromagnetic transition within the lifetime of t
atomic gas.

Finally, we comment on the spatially phase-separa
states in the trapped fermionic gas in the case of the la
particle number and interaction strength@20–22#. They cor-
respond to the phase separation in the uniform system~two-
phase coexistent region!, discussed in Ref.@12#. The naive
TF calculations give smaller energy for the ferromagne
states, but the energy difference is very small. The comp
tion ~or coexistence! of these states should be an interesti
problem for future studies.
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