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Collective oscillations of a one-dimensional trapped Bose-Einstein gas
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Starting from the hydrodynamic equations of superfluids, we calculate the frequencies of the collective
oscillations of a harmonically trapped Bose-Einstein gas for various one-dimensional configurations at zero
temperature. These include the mean-field regime described by Gross-Pitaevskii theory and the beyond-mean-
field regime at small densities described by the Lieb-Liniger theory. The relevant combinations of the physical
parameters governing the transition between the different regimes as well as the conditions of applicability of
the hydrodynamic equations are discussed.
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I. INTRODUCTION which decribe the dynamic behavior of such systems at zero
temperature. In these equations(z,t) is the 1D density of
Recent experiments on trapped Bose-Einstein gases #ie gasy(z,t) is the velocity field, whileV,(2) is the ex-
low temperature have pointed out the occurrence of charadernal trapping potential, which in the following will be as-
teristic one-dimensiondlLD) features. These include devia- sumed to be harmonicVe,(z) =mw?z%/2. The hydrody-
tions of the aspect ratio and of the release engtg® from  namic approach has been already successfully employed to
the 3D behavior as well as the appearence of thermal flugredict the collective frequencies of 3D trapped Bose-
tuations of the phase, peculiar of 1D configuratik In-  Einstein condensatdd1]. Its applicability is not, however,
terest in 1D interacting Bose gases arises from the occuiimited to the mean-field scenario. Actually in REB] it has
rence of quantum features which are not encountered in 2Been proven that in 1D Bose gases the velocity of sound,
and 3D. For example, in 1D the fluctuations of the phase oflerived from the macroscopic compressibility, coincides
the order parameter rule out the occurrence of long-rang@ith that derived from the microscopic calculation of the
order even at zero temperatydd. Such systems cannot be, phonon excitation spectrum, confirming that E@s.and(2)
in general, described using traditional mean-field theoriesare well suited to describe the collective oscillations also in
and require the development of a more advanced many-bodjtese systems. A crucial ingredient of these equations is the
approach. In the case of 1D Bose gases interacting with rdecal equilibrium ¢e) chemical potentiak ., which should
pulsive zero-range forces, this has been implemented by Liebe evaluated for a uniform 1D ga¥{,,=0) at the density
and Liniger[5] who studied both the equation of state andn,. Their applicability requires the validity of the local-
the spectrum of elementary excitations of a uniform gas. Irdensity approximation along tredirection. This is expected
the presence of harmonic trapping, 1D Bose gases exhibib be accurate for sufficiently large systems. Furthermore,
interesting features. The corresponding equilibrium properggs. (1) and (2) should be limited to the study of macro-
ties have been already discussed in a recent series of thescopic phenomena where variations in space take place over
retical papergsee Refs[6—8] and references therginn the  distances larger than the average distance between particles.
present work we investigate the consequences of harmonig/e are also assuming that the motion in the radial direction
trapping on the collective oscillations of an interacting 1Djs “frozen.” This corresponds to investigating the low-
Bose gas at zero temperature. We will consider various corenergy motions taking place along théirection and whose
figurations, ranging from the mean-field regif®, where frequencies are much smaller than the radial trapping fre-

the healing length is larger than the average interparticle disqjuencies. From Eq2) one can easily calculate the ground-
tance, to the Tonks-Girardeau linjit0] of an impenetrable state profile through the equation

gas of bosons where the system acquires Fermi-like proper-

ties. We will show that the frequency of the lowest compres- Mee(N(2))+Verl(2) = p. 3
sion mode provides a useful indicator of the different re-
gimes. The collective oscillations are instead determined by writing
We start our discussion from the hydrodynamic equationghe density in the forrny(z,t)=n,(z) +e~'“'sny(z), with
of superfluids in 1D, the functiondny(z) obeying the linearized equation
J wony(2) =Y, m(z)vz(‘i%“anl(z)) N
Enl‘FAz(nlU):o 1 m N1

which immediately follows from Eq91) and (2).
In Sec. Il, we evaluate the equation of statg(n;) in the
@) framework of the mean-field Gross-Pitaevskii theory. One

1% 1
— 0+ + + —mv?l= ) . . . .
mapv + Vel see(N) + Vet 5 Mo 0, can explore a rich variety of situations ranging from the

ot 2
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Thomas-Fermi regime in the radial direction to that of tight e
confinement where the motion in the radial direction is fro- 7
zen[12]. In Sec. Il we use the Lieb-Liniger theory to extend

the analysis to regimes beyond mean field, including theor the chemical potential.

limit of the Tonks-Girardeau gas. In both cases, we Stl,ldy the Let us now add a harmonic confinement a|ong the axial
situation where the gas is trapped also alongzdeection.  direction. In this case one has to solve E8). by imposing
Then the density, exhibits az dependence which is worth the normalization conditiorin,(z)dz=N to the 1D density.
calculating as a function of the relevant parameters of they yseful quantity is the Thomas-Fermi radidsdefined by
problem: the scattering length the numbeN of atoms, and  the value ofz at which the equilibrium density,(z) van-
the radial and axial trapping frequencies andw,, which  ishes. According to Eq.3), one hasu— uso(an;=0)

are always assumed to satisfy the conditicrw,/w, <1.  =(1/2)mw?Z2 In terms ofZ, Eq. (3) can be rewritten as

In Sec. IV we calculate the collective frequencies pre-~ _ 252 252
dicted by the hydrodynamic theory developing a sum-rulee@Mm(2)=(Me;Z%2hw ) (1-2727),  where  we

approach and explore, in particular, the behavior of the lowhave defined the dimensionless quantify,e(@n,(z))

est compressional mode. Finally in Sec. V we summarize the"[#¢e(@N(2)) — pee(@n=0)]/hw, . This function is

main assumptions which are required in order to apply thdixed by the solution of the Gross-Pitaevskii equati@

hydrodynamic approach developed in the paper and draw oliL4]. Its inverseu - gives the value o&n, as a function of

final conclusions. z, and the normalization condition obeyed by the density can
be written as

=1+2an; 7

)

Il. FROM THE 3D CIGAR TO THE 1D MEAN-FIELD Z (1 1 Z\?2
~_1 ) a
REGIME W= sl W =] (1-t)|dt=NA—, (8)
azJ) -1 2 a a
Let us consider a uniform system of lendthin the z . _ _
direction and confined by a harmonic potenti(r,)  Wwheret=2/Z, a,=A/mw, is the oscillator length in the
=mw?r?/2 in the radial direction. By writing the order pa- axial direction anc\ =w,/w, is the aspect ratio of the trap.
rameter in the form¥ =n,f(p,)/a, , wheren,=N/L is  Equation(8) explicitly points out the relevance of the dimen-
the 1D densitya, = Vi/mw, is the oscillator length in the Sionless combination
radial direction, ang, =r, /a, is the dimensionless radial
coordinate, the 3D Gross-Pitaevskii equation takes the di- N)\i— )

mensionless form a, aZ

1 5 1 9 1 From Eg.(8) one can calculate, for a given choice Qf the
- + = p? +4man,f2 fo e o parameters, the radizand hence the 1D density profile.
2 ho, The radial Thomas-Fermi regime, hereafter called 3D ci-
(5) gar due to the elongated shape of the cloud, corresponds to
NX(a/a,;)>1. In this case one has
The function f obeys the normalization condition
27 f|f(p,)|?p. dp, =1. In EQ.(5), uee/fhw, is the chemi- s
cal potential in units of the radial quantum oscillator energy. N N
Equation(5) shows that the relevant dimensionless param-
eter of the problem isn;. It is worth considering two im- and
portant limits. If an;>1, one enters the radial Thomas-
Fermi regime, where many configurations of the harmonic- 1 a\4 2\?
oscillator Hamiltonian are excited in the radial direction and ni(z)= E( 15N)\a_ 1- o (11)
. . 1 Z
the equation of state takes the analytic form

a 1/5

15NN —

a (10

The 1D mean-field limit is instead reachedNh (a/a,)
Mee <1, where one find§7]

how,

=2(an;)'2 (6)

a, ( )1/3
Z=—| 3NN — (12

Notice that in this limit the chemical potential is not linear in I\ a

the density. This implies, in particular, that the sound veloc-

ity is related to the chemical potential by the lagf  and

= uee/2m [13] rather than by the Bogoliubov relatioc?

= uee/m. Asecond important case is the perturbative regime

wherean;<1 (hereafter called the 1D mean figldn this

case the solution of E45) approaches the Gaussian ground

state of the radial harmonic oscillator and one finds the lineaThe density profiles are different in the two regimes, reflect-

law ing the different behavior of the equation of state. The con-

2/3 2

1— —

3NN — 72

a, . (13

1
nl(z)zﬁ
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ditions of applicability of the local-density approximation 1 -1

employed above are determined by requiring thata,. In 7()\)=)\< f g“x)dx) : (18
the 1D mean-field regime this implies the nontrivial condi- -t

tion (see also Refd6,7])

y? (1
13 e(y)= _sf gr(x)x%dx, (19
N a A -1
\/—_ a— >1. (14)
A where y=2/a;pn,. The chemical potential can then calcu-
lated using the thermodynamic relation
lIl. FROM THE 1D MEAN-FIELD TO THE
TONKS-GIRARDEAU REGIME _dlnie(ny)]

Mee= (20)

Deviations from the mean-field regime become important Iy

when the healing length= (8 7an) ~ ' is comparable to the
average distancg between particles. In the presence of tight

radial confinement one can use the relations‘mmllvraf when expressed in units of the ener@f//ZmaiD, are uni-
bgtween the 3D gensny evaluatedrat=0 and the 1D den- versal functions of the dimensionless parametgm [14].

sity n;=/n(r,)dr, . Whena, becomes smaller theth one An important limit is the high-density regime,pn,;>1,

can write d=1/n;. One then obtains the resulf/d  \yhere one has(n,)=%2n,/mayp. Using Eq.(15), one

= \JaZny/8a, which becomes smaller and smaller as the 1Dfinds that this coincides with the 1D mean-field reg@jtfor
density decreases, thereby suggesting the occurrence of inthe chemical potentigla part from the constant term arising
portant deviations from the mean-field behavior for very di-from the radial external forgeNote that only ifa, >a, will

lute 1D samples. This should be contrasted with the 3D casehe conditiona;pn;>1, required to realize the mean-field
where the mean-field conditioré%d) is better and better regime in the framework of the Lieb-Liniger theory, be com-
satisfied as the density decreases. The combinafien/a  patible with the conditionan,<1 needed to rule out 3D
can then be used as an indicator of the applicability of thesffects(see Sec. )[22].

mean-field approach. When its value becomes of the order of The other important limit is the low-density Tonks-
1 or smaller, one enters a new regime characterized by imsirardeau limit a;pn;<1, where the chemical potential
portant quantum correlations. The corresponding many-bodiakes the value

problem was investigated by Lieb and Linig&i, who con-

sidered 1D repulsive zero-range potentials of the form Mee= Trzﬁznf/Zm. (21
01p9(2). The coupling constarg,p is conveniently written

in the form g,p=2%2%/(mayp), wherea,p is the relevant Here the chemical potential no longer depends on the inter-
interaction length of the problef21]. Under suitable condi- action coupling constant and reveals a typical Fermi-like be-
tions, the 1D interaction parametg|, can be related to the havior[10].

3D coupling constant characterizing the effective interaction In the presence of axial harmonic trapping, the ground
4nhi%as(r)/m of the Gross-Pitaevskii theof21]. This re-  state density profile has been evaluated in R&fusing the
lation is particularly simple if the 3D scattering lengahis  local-density approximatiofi3). In this case the normaliza-
much smaller than the radial confinement, fixed by the radiation conditionn,(z)dz=N takes the form

oscillator lengtha, . In this case, by averaging the 3D force

The above equations show that in the Lieb-Liniger scenario,
the energy per particle and the chemical potentigke,

: : . : 2 2
Za 1. Za Na

over the radial density profile, one fin{i§] ;Df ol ;D) (1—t2)1dt= 210. 22)
242 a a? % % %

ng:Wa_z and di=3 (15 Similarly to Eq. (8), we have introduced the radiu& at

* which the density vanishes and the inverse of the function

The comparison with the expression féd derived above 1ee(Niasp), Whereu . is now the chemical potential ex-
shows that the deviations from the mean field increase bpressed in units of?/2maZ, . Equation(22) shows that the

decreasin@ph;. relevant combination of parameters to describe the transition
In the Lieb-Liniger theory, the energy per particle can bebetween the mean-field and Tonks-Girardeau regime is given
written as by Najp/a2, as already pointed out in Ref$,7]. Using Eq.
(15), one finds
h? )
€(ny)= mn e(y(ny)) (16) aiD aﬁ
N—=N\—, (23

and can be obtained by solving the system of equations a; a

1 101 N which differs by the factor &, /a)® from the combination
9(X)==—+—| ————qg\(y)dy, (17) (9 characterizing the transition between the mean-field re-
2w w) 1 N2+ (y—x)? gimes discussed in Sec. II.
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10* : : the 1D mean-field, and the Tonks-Girardeau regimes belong
: to this class of solutions wity=1/2, y=1, andy=2, re-
spectively. Hence in these three relevant limits the dispersion
10° | relation for the collective frequencies can be obtained ana-
lytically. By looking for solutions of the forrm{’lﬁnl(z)
=7+az"? ..., wherek=1 and only positive powers af
> 10° 1D mean field > are included in the polynomial, E¢4) yields the result
) Lo , oK
10 °} e 1 w =w;5[2+y(k—1)]. (26)
,/" ideal gas
107 0 > ") 6 The hydrodynamic solutiongny(z) exhibit a nonanalytic
10 10 ala 10 10 behavior at the Thomas-Fermi radius. This reflects the draw-
L back of the theory near the classical boundary, which does
FIG. 1. Phase diagram in the plaNa vsa, /a; the dashed line 1Ot however, affect the correctness of the dispersion relation
indicatesNA =\32a, /a for A\=10"*. (26). The cas&k=1 corresponds to the center-of-mass mo-

tion whose frequency is given hy= w, independent of the

Analytic solutions are obtained in the two limits value ofy. The most interesting=2 caselowest compres-
NXa?/a?>1 andNNa?/a?<1. In the first case, one recov- Sional modg is instead sensitive to the regime considered.

ers the 1D mean-field resufld). In the second one, one One findsw?=(5/2)w?, w?=3w;, andw?=4w? for the 3D

finds the profile8,20] cigar, 1D mean-field, and Tonks-Girardeau regimes, respec-
tively. The resultw?= (5/2)w? was first derived in Ref.11]
J2N 22\ M2 by solving the hydrodynamic equations for a trapped 3D
ny(z)= P =y I (24 system in the limit of a highly elongated trap{<w,).

This prediction has been confirmed experimentally with high

with Z=\2Na,. In this case(Tonks-Girardeau regimghe  Précision[15]. The result;o2=3§o§ was derived in Refs.
applicability of the local-density approximation simply re- [16—18, while the resultw®= 4 for the Tonks-Girardeau
quiresN>1. gas is simply understood by recalling that, in this limit, there
The transition between the different regim@D cigar, IS an exact mapping with the 1D ideal Fermi §as] where
1D mean-field, and Tonks-Girardeau regmie schemati- the excitation spectrum, in the presence of harmonic confine-
cally illustrated in Fig. 1, where we describe the phase diaMent, iso=Kkw,. The same result has been recently derived
gram in the planeN\ vs a, /a. According to the results N Ref. [19] using the mean-field equations of Kolomeisky
presented in Secs. Il and IIl, the lilé\=a, /a separates €t al-[20]. . o _
the 3D cigar from the 1D mean-field regimes, while the line  In order to evaluate the collective frequencies in the in-
N\ =(a/a,)? separates the 1D mean-field regime from thetermediate regimes where the hydrodynamic equations are
Tonks-Girardeau regime. The 3D and the Tonks-Girardeaffot analytically soluble, we have developed a sum-rule ap-
regions move more and more far apart wkeria becomes ~ Proach[11], based on the evaluation of the ratio
larger and larger, leaving place for the 1D mean-field con-
figuration. my
In Fig. 1 we also plot the lin&\ =\%?%a, /a for the par- ﬁ2w2=m— (27)
ticular choicex=10"*. According to Eq.(14), below this -1
line the system tends to behave like an ideal gas. Notice that
the Tonks-Girardeau regime always requires that the condbetween the energy weighted and inverse energy weighted

tion sum rules. In the following we will limit the discussion to the
lowest compression mode which is naturally excited by the
a 1 ) operatorEi’\‘zlziz. The energy weighted moment is given by
FINY @9 my= (12,22 [H,2N,Z2]]) = (2N m)(2%),  where

(z%)=[n,(2)Z%dzIN is the average square radius fixed by
be satisfied. At the same time, this condition rules out théhe ground-state solutiam (z). The inverse energy weighted

reachability of the ideal gas. momentm_, is related to the static polarizability by
m_,=(1/2)a. This is evaluated by adding the pertubation
IV. COLLECTIVE OSCILLATIONS — €7 to the Hamiltonian and calculating the corresponding

changesy(z?) of the expectation value of the square radius:
Let us now discuss the behavior of the collective oscilla-a=N&(z%)/ €. Adding the perturbatior- ez is equivalent to
tions. The hydrodynamic equatio@) has simple analytic changing the frequency, of the harmonic confinement, so
solutions if the density derivative of the chemical potential isthat the result for the collective frequency takes the compact
a power-law functionaﬂge/&nlfxnf’l. The Thomas-Fermi, form
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FIG. 2. Transition between the 1D mean-field and the 3D cigar FIG. 3. Transition between the Tonks-Girardeau and the 1D
regimes:w? w? as a function of the parametdira/a, . mean-field regimes:w?/w? as a function of the parameter
NX(a, /a)?.
2 (z%)
W= _2—2d<22>/dw : (28)  Of course, the accessible states of the systems depend of the
z

chosen geometry and in particular on the value ofigure

. ) 4 shows the evolution of the collective frequency as a func-
The result(28) provides, in general, an upper bound 10 thejon of the parameteNA for two different choices of the

frequency of the lowest state excited b It is immediate 44, a, /a. The corresponding curves reveal the transition

to verify that this bound coincides with the exact frequencypanveen the 3D cigar, 1D mean-field, and Tonks-Giradeau
in the three relevant limits discussed in the pa{ cigar,  egimes. ' ’

1D mean field, and Tonks-Girardgau L _ The figure clearly shows that while for large values of
By determining numerically the density profiles in the in- | /a the three regimes are clearly visible, for /a=10 the

termediate regimes we can now calculate the frequency of mean field cannot be identified. In fact, in this case

the lowest cqmpressiqnal mode usin.g the sum-rglg form”'?dashed ling by increasingN\, the Lieb-Liniger theory pre-
(28) for any intermediate regime. It is worth noticing that gict the achievement of the 1D mean-field regime when the
result(28) for the collective frequency, being based on gen-g o5 pitaevskii theory already exhibits significant 3D ef-
eral sum-rule arguments, applies also to regimes beyond the s anq the two curves cannot be matched. We point out
mean-fleldé where the density profifg(z), and hence the ot this effect is independent of the separated valuel of
value of (z°), cannot be evaluated starting from the Gross-yq ) " provided that the condition of applicability of the
Pitaevskii equation of state. P _ local-density approximatiofiL4) is satisfied. When the tran-
We have first calculated the ratio?/ ; as a function of  gjtion cannot be accounted for using separately the Lieb-

the dimensionless parametéka/a, , thereby exploring the | jniger and the Gross-Pitaevskii theories or when the local-
transition between the 3D cigar and the 1D mean-field re-

gimes. The results are reported in Fig. 2. For the experimen-
tal conditions of Refs[1,2], whereN\a/a, =0.24 and 0.08,

we predicth/w§=2.85 and 2.91, respectively, confirming
that those experiments are actually touching the transition
between the two mean-field regimes.

For the transition from the 1D mean-field regime to the 4
Tonks-Girardeau gas, the results are reported in Fig. 3 as a “g"
function of the dimensionless paramefgi(a, /a)?. For o
example, usind\=10, \=10"3, anda, /a= 10, we predict

w?/w?=23.3. To enter more deeply into the Tonks-Girardeau 3r
regime, even more extreme experimental conditions are re-
quired. In the asymptotic Tonks-Girardeau regime, one finds
the valuew=2w,, which coincides with the oscillation fre- : 5 : 5 : 5 ;
qguency for an ideal gas. With respect to an ideal gas, the 2 2 6 .9 2 o0 2 6
system is, however, characterized by a very different density 10
profile reflecting its fermionic nature.

By fixing the ratioa, /a, both transitions can be repre-  FIG. 4. Dispersion laww?/ »? as a function of the parametisia
sented on a single plot as a functionNX. This corresponds  for two choices of the rati@, /a (full line A =500, dashed lina
to moving on a vertical path in the phase diagram of Fig. 1.=10).
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density approximation is no longer applicable, moresatisfied, the system, instead of being in the 1D mean-field

complete many-body approaches are requiggj24. Thomas-Fermi regime, will approach the ideal gas configu-
ration.
V. CONCLUSIONS (3) The scattering length has been assumed to be suffi-

ciently smaller thara, . In fact only if a, >10a, the transi-

According to the discussions presented in this paper, thon petween the regimes investigated in this paper can be
transition between the different regimg&D cigar, 1D mean yescribed using the Gross-Pitaevskii the@ipm 3D cigar
field, Tonks-Girardeauis specified once the two combina- {5 1D mean field and the Lieb-Liniger theoryfrom 1D
tions N\ anda, /a of parameters are knowsee Eqgs(9) mean field to Tonks-Girardeju
and(23)]. However, these results have been derived by mak- (4) one should finally recall that the results of this paper

ing some important assumptions that are worth recalling. haye been derived at zero temperature. They are expected to
(1) The aspect ratio=w,/w, should be significantly pe applicable at temperatures significantly smaller than the

smaller than 1 in order to ignore the dynamic coupling withqp quantum degeneracy energiin?y/2m.

the radial excitations whose motion is not taken into account |, conclusion, in this paper we have exploited the depen-

in the 1D formulation in Eqgs(1) and (2) of the hydrod;l/- dence of the frequencies of the collective oscillations of a

namic equations. In practice, values)ofmaller than 10°  harmonically trapped 1D Bose gas on the equation of state.

are small enough to neglect such a coupling. This provides an efficient tool to explore the transition be-

(2) The local-density approximation should be guaranteeqyeen the different regimes exhibited by such systems, point-
along the axial direction in order to apply the hydrodynamicing oyt the crucial interplay between the effects of quantum
approach to the collective modes. This condition, which is;qrejations and dimensionality.

equivalent to requiringZ>a,, takes a different form de-
pending on whether we are in the Tonks-Girardeau or in the
1D mean-field regime. In the first case the condition implies
N>1. In the second case the condition instead takes the This research was supported by the Ministero della
form NA>\%%a, /a [see Eq.(14)]. If this condition is not  Ricerca Scientifica e Tecnologi¢MURST).
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