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Collective oscillations of a one-dimensional trapped Bose-Einstein gas
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Starting from the hydrodynamic equations of superfluids, we calculate the frequencies of the collective
oscillations of a harmonically trapped Bose-Einstein gas for various one-dimensional configurations at zero
temperature. These include the mean-field regime described by Gross-Pitaevskii theory and the beyond-mean-
field regime at small densities described by the Lieb-Liniger theory. The relevant combinations of the physical
parameters governing the transition between the different regimes as well as the conditions of applicability of
the hydrodynamic equations are discussed.
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I. INTRODUCTION

Recent experiments on trapped Bose-Einstein gase
low temperature have pointed out the occurrence of cha
teristic one-dimensional~1D! features. These include devia
tions of the aspect ratio and of the release energy@1,2# from
the 3D behavior as well as the appearence of thermal fl
tuations of the phase, peculiar of 1D configurations@3#. In-
terest in 1D interacting Bose gases arises from the oc
rence of quantum features which are not encountered in
and 3D. For example, in 1D the fluctuations of the phase
the order parameter rule out the occurrence of long-ra
order even at zero temperature@4#. Such systems cannot b
in general, described using traditional mean-field theo
and require the development of a more advanced many-b
approach. In the case of 1D Bose gases interacting with
pulsive zero-range forces, this has been implemented by
and Liniger @5# who studied both the equation of state a
the spectrum of elementary excitations of a uniform gas
the presence of harmonic trapping, 1D Bose gases ex
interesting features. The corresponding equilibrium prop
ties have been already discussed in a recent series of
retical papers~see Refs.@6–8# and references therein!. In the
present work we investigate the consequences of harm
trapping on the collective oscillations of an interacting 1
Bose gas at zero temperature. We will consider various c
figurations, ranging from the mean-field regime@9#, where
the healing length is larger than the average interparticle
tance, to the Tonks-Girardeau limit@10# of an impenetrable
gas of bosons where the system acquires Fermi-like pro
ties. We will show that the frequency of the lowest compr
sion mode provides a useful indicator of the different
gimes.

We start our discussion from the hydrodynamic equati
of superfluids in 1D,

]
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which decribe the dynamic behavior of such systems at z
temperature. In these equations,n1(z,t) is the 1D density of
the gas,v(z,t) is the velocity field, whileVext(z) is the ex-
ternal trapping potential, which in the following will be as
sumed to be harmonic:Vext(z)5mvz

2z2/2. The hydrody-
namic approach has been already successfully employe
predict the collective frequencies of 3D trapped Bos
Einstein condensates@11#. Its applicability is not, however,
limited to the mean-field scenario. Actually in Ref.@5# it has
been proven that in 1D Bose gases the velocity of sou
derived from the macroscopic compressibility, coincid
with that derived from the microscopic calculation of th
phonon excitation spectrum, confirming that Eqs.~1! and~2!
are well suited to describe the collective oscillations also
these systems. A crucial ingredient of these equations is
local equilibrium (,e) chemical potentialm,e , which should
be evaluated for a uniform 1D gas (Vext50) at the density
n1. Their applicability requires the validity of the loca
density approximation along thez direction. This is expected
to be accurate for sufficiently large systems. Furthermo
Eqs. ~1! and ~2! should be limited to the study of macro
scopic phenomena where variations in space take place
distances larger than the average distance between part
We are also assuming that the motion in the radial direct
is ‘‘frozen.’’ This corresponds to investigating the low
energy motions taking place along thez direction and whose
frequencies are much smaller than the radial trapping
quencies. From Eq.~2! one can easily calculate the groun
state profile through the equation

m,e„n1~z!…1Vext~z!5m. ~3!

The collective oscillations are instead determined by writ
the density in the formn1(z,t)5n1(z)1e2 ivtdn1(z), with
the functiondn1(z) obeying the linearized equation

v2dn1~z!5
1

m
¹zFn1~z!¹zS ]m,e

]n1
dn1~z! D G , ~4!

which immediately follows from Eqs.~1! and ~2!.
In Sec. II, we evaluate the equation of statem,e(n1) in the

framework of the mean-field Gross-Pitaevskii theory. O
can explore a rich variety of situations ranging from t
©2002 The American Physical Society10-1
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Thomas-Fermi regime in the radial direction to that of tig
confinement where the motion in the radial direction is f
zen@12#. In Sec. III we use the Lieb-Liniger theory to exten
the analysis to regimes beyond mean field, including
limit of the Tonks-Girardeau gas. In both cases, we study
situation where the gas is trapped also along thez direction.
Then the densityn1 exhibits az dependence which is wort
calculating as a function of the relevant parameters of
problem: the scattering lengtha, the numberN of atoms, and
the radial and axial trapping frequenciesv' andvz , which
are always assumed to satisfy the conditionl[vz /v'!1.

In Sec. IV we calculate the collective frequencies p
dicted by the hydrodynamic theory developing a sum-r
approach and explore, in particular, the behavior of the lo
est compressional mode. Finally in Sec. V we summarize
main assumptions which are required in order to apply
hydrodynamic approach developed in the paper and draw
final conclusions.

II. FROM THE 3D CIGAR TO THE 1D MEAN-FIELD
REGIME

Let us consider a uniform system of lengthL in the z
direction and confined by a harmonic potentialV(r')
5mv'

2 r'
2 /2 in the radial direction. By writing the order pa

rameter in the formC5An1f (r')/a' , wheren15N/L is
the 1D density,a'5A\/mv' is the oscillator length in the
radial direction, andr'5r' /a' is the dimensionless radia
coordinate, the 3D Gross-Pitaevskii equation takes the
mensionless form

S 2
1

2

]2

]r'
2

2
1

2r'

]

]r'

1
1

2
r'

2 14pan1f 2D f 5
m,e

\v'

f .

~5!

The function f obeys the normalization conditio
2p* u f (r')u2r'dr'51. In Eq. ~5!, m,e /\v' is the chemi-
cal potential in units of the radial quantum oscillator ener
Equation~5! shows that the relevant dimensionless para
eter of the problem isan1. It is worth considering two im-
portant limits. If an1@1, one enters the radial Thoma
Fermi regime, where many configurations of the harmon
oscillator Hamiltonian are excited in the radial direction a
the equation of state takes the analytic form

m,e

\v'

52~an1!1/2. ~6!

Notice that in this limit the chemical potential is not linear
the density. This implies, in particular, that the sound vel
ity is related to the chemical potential by the lawc2

5m,e/2m @13# rather than by the Bogoliubov relationc2

5m,e /m. A second important case is the perturbative regi
wherean1!1 ~hereafter called the 1D mean field!. In this
case the solution of Eq.~5! approaches the Gaussian grou
state of the radial harmonic oscillator and one finds the lin
law
04361
t
-

e
e

e

-
e
-
e
e
ur

i-

.
-

-

-

e

r

m,e

\v'

5112an1 ~7!

for the chemical potential.
Let us now add a harmonic confinement along the ax

direction. In this case one has to solve Eq.~3! by imposing
the normalization condition*n1(z)dz5N to the 1D density.
A useful quantity is the Thomas-Fermi radiusZ defined by
the value ofz at which the equilibrium densityn1(z) van-
ishes. According to Eq.~3!, one has m2m,e(an150)
5(1/2)mvz

2Z2. In terms ofZ, Eq. ~3! can be rewritten as

m̃,e„an1(z)…5(mvz
2Z2/2\v')(12z2/Z2), where we

have defined the dimensionless quantitym̃,e„an1(z)…
5@m,e„an1(z)…2m,e(an150)#/\v' . This function is
fixed by the solution of the Gross-Pitaevskii equation~5!

@14#. Its inversem̃,e
21 gives the value ofan1 as a function of

z, and the normalization condition obeyed by the density c
be written as

Al
Z

az
E

21

1

m̃,e
21F1

2 SAl
Z

az
D 2

~12t2!Gdt5Nl
a

a'

, ~8!

where t5z/Z, az5A\/mvz is the oscillator length in the
axial direction andl5vz /v' is the aspect ratio of the trap
Equation~8! explicitly points out the relevance of the dimen
sionless combination

Nl
a

a'

5N
aa'

az
2

. ~9!

From Eq. ~8! one can calculate, for a given choice of th
parameters, the radiusZ and hence the 1D density profile.

The radial Thomas-Fermi regime, hereafter called 3D
gar due to the elongated shape of the cloud, correspond
Nl(a/a')@1. In this case one has

Z5
az

Al
S 15Nl

a

a'
D 1/5

~10!

and

n1~z!5
1

16a S 15Nl
a

a'
D 4/5S 12

z2

Z2D 2

. ~11!

The 1D mean-field limit is instead reached ifNl(a/a')
!1, where one finds@7#

Z5
az

Al
S 3Nl

a

a'
D 1/3

~12!

and

n1~z!5
1

4a S 3Nl
a

a'
D 2/3S 12

z2

Z2D . ~13!

The density profiles are different in the two regimes, refle
ing the different behavior of the equation of state. The co
0-2
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ditions of applicability of the local-density approximatio
employed above are determined by requiring thatZ@az . In
the 1D mean-field regime this implies the nontrivial con
tion ~see also Refs.@6,7#!

S N

Al

a

a'
D 1/3

@1. ~14!

III. FROM THE 1D MEAN-FIELD TO THE
TONKS-GIRARDEAU REGIME

Deviations from the mean-field regime become import
when the healing lengthj5(8pan)21/2 is comparable to the
average distanced between particles. In the presence of tig
radial confinement one can use the relationshipn5n1 /pa'

2

between the 3D density evaluated atr'50 and the 1D den-
sity n15*n(r')drW' . Whena' becomes smaller thand, one
can write d51/n1. One then obtains the resultj/d
5Aa'

2 n1/8a, which becomes smaller and smaller as the
density decreases, thereby suggesting the occurrence o
portant deviations from the mean-field behavior for very
lute 1D samples. This should be contrasted with the 3D c
where the mean-field condition (j.d) is better and bette
satisfied as the density decreases. The combinationa'

2 n1 /a
can then be used as an indicator of the applicability of
mean-field approach. When its value becomes of the orde
1 or smaller, one enters a new regime characterized by
portant quantum correlations. The corresponding many-b
problem was investigated by Lieb and Liniger@5#, who con-
sidered 1D repulsive zero-range potentials of the fo
g1Dd(z). The coupling constantg1D is conveniently written
in the form g1D52\2/(ma1D), where a1D is the relevant
interaction length of the problem@21#. Under suitable condi-
tions, the 1D interaction parameterg1D can be related to the
3D coupling constant characterizing the effective interact
4p\2ad(r )/m of the Gross-Pitaevskii theory@21#. This re-
lation is particularly simple if the 3D scattering lengtha is
much smaller than the radial confinement, fixed by the ra
oscillator lengtha' . In this case, by averaging the 3D forc
over the radial density profile, one finds@6#

g1D5
2\2

m

a

a'
2

and a1D5
a'

2

a
. ~15!

The comparison with the expression forj/d derived above
shows that the deviations from the mean field increase
decreasinga1Dn1.

In the Lieb-Liniger theory, the energy per particle can
written as

e~n1!5
\2

2m
n2e„g~n1!… ~16!

and can be obtained by solving the system of equations

gl~x!5
1

2p
1

1

pE21

1 l

l21~y2x!2
gl~y!dy, ~17!
04361
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g~l!5lS E
21

1

gl~x!dxD 21

, ~18!

e~g!5
g3

l3E21

1

gl~x!x2dx, ~19!

whereg52/a1Dn1. The chemical potential can then calc
lated using the thermodynamic relation

m,e5
]@n1e~n1!#

]n1
. ~20!

The above equations show that in the Lieb-Liniger scena
the energy per particlee and the chemical potentialm le ,
when expressed in units of the energy\2/2ma1D

2 , are uni-
versal functions of the dimensionless parametera1Dn1 @14#.

An important limit is the high-density regimea1Dn1@1,
where one hase(n1)5\2n1 /ma1D . Using Eq. ~15!, one
finds that this coincides with the 1D mean-field result~7! for
the chemical potential~a part from the constant term arisin
from the radial external force!. Note that only ifa'@a, will
the conditiona1Dn1@1, required to realize the mean-fiel
regime in the framework of the Lieb-Liniger theory, be com
patible with the conditionan1!1 needed to rule out 3D
effects~see Sec. II! @22#.

The other important limit is the low-density Tonks
Girardeau limit a1Dn1!1, where the chemical potentia
takes the value

m,e5p2\2n1
2/2m. ~21!

Here the chemical potential no longer depends on the in
action coupling constant and reveals a typical Fermi-like
havior @10#.

In the presence of axial harmonic trapping, the grou
state density profile has been evaluated in Ref.@7# using the
local-density approximation~3!. In this case the normaliza
tion condition*n1(z)dz5N takes the form

Za1D

az
2 E

21

1

m̃,e
21F S Za1D

az
2 D 2

~12t2!Gdt5
Na1D

2

az
2

. ~22!

Similarly to Eq. ~8!, we have introduced the radiusZ at
which the density vanishes and the inverse of the funct
m̃,e(n1a1D), where m̃,e is now the chemical potential ex
pressed in units of\2/2ma1D

2 . Equation~22! shows that the
relevant combination of parameters to describe the transi
between the mean-field and Tonks-Girardeau regime is g
by Na1D

2 /az
2 , as already pointed out in Refs.@6,7#. Using Eq.

~15!, one finds

N
a1D

2

az
2

5Nl
a'

2

a2
, ~23!

which differs by the factor (a' /a)3 from the combination
~9! characterizing the transition between the mean-field
gimes discussed in Sec. II.
0-3
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C. MENOTTI AND S. STRINGARI PHYSICAL REVIEW A66, 043610 ~2002!
Analytic solutions are obtained in the two limit
Nla'

2 /a2@1 andNla'
2 /a2!1. In the first case, one recov

ers the 1D mean-field result~13!. In the second one, on
finds the profile@8,20#

n1~z!5
A2N

paz
S 12

z2

Z2D 1/2

, ~24!

with Z5A2Naz . In this case~Tonks-Girardeau regime! the
applicability of the local-density approximation simply r
quiresN@1.

The transition between the different regimes~3D cigar,
1D mean-field, and Tonks-Girardeau regime! is schemati-
cally illustrated in Fig. 1, where we describe the phase d
gram in the planeNl vs a' /a. According to the results
presented in Secs. II and III, the lineNl5a' /a separates
the 3D cigar from the 1D mean-field regimes, while the li
Nl5(a/a')2 separates the 1D mean-field regime from t
Tonks-Girardeau regime. The 3D and the Tonks-Girard
regions move more and more far apart whena' /a becomes
larger and larger, leaving place for the 1D mean-field c
figuration.

In Fig. 1 we also plot the lineNl5l3/2a' /a for the par-
ticular choicel51024. According to Eq.~14!, below this
line the system tends to behave like an ideal gas. Notice
the Tonks-Girardeau regime always requires that the co
tion

a'

a
!

1

Al
~25!

be satisfied. At the same time, this condition rules out
reachability of the ideal gas.

IV. COLLECTIVE OSCILLATIONS

Let us now discuss the behavior of the collective osci
tions. The hydrodynamic equation~4! has simple analytic
solutions if the density derivative of the chemical potentia
a power-law function:]m,e /]n1}n1

g21. The Thomas-Fermi

FIG. 1. Phase diagram in the planeNl vs a' /a; the dashed line
indicatesNl5l3/2a' /a for l51024.
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the 1D mean-field, and the Tonks-Girardeau regimes bel
to this class of solutions withg51/2, g51, andg52, re-
spectively. Hence in these three relevant limits the dispers
relation for the collective frequencies can be obtained a
lytically. By looking for solutions of the formn1

g21dn1(z)
5zk1azk22 . . . , wherek>1 and only positive powers ofz
are included in the polynomial, Eq.~4! yields the result

v25vz
2 k

2
@21g~k21!#. ~26!

The hydrodynamic solutionsdn1(z) exhibit a nonanalytic
behavior at the Thomas-Fermi radius. This reflects the dr
back of the theory near the classical boundary, which d
not, however, affect the correctness of the dispersion rela
~26!. The casek51 corresponds to the center-of-mass m
tion whose frequency is given byv5vz independent of the
value ofg. The most interestingk52 case~lowest compres-
sional mode! is instead sensitive to the regime considere
One findsv25(5/2)vz

2 , v253vz
2 , andv254vz

2 for the 3D
cigar, 1D mean-field, and Tonks-Girardeau regimes, resp
tively. The resultv25(5/2)vz

2 was first derived in Ref.@11#
by solving the hydrodynamic equations for a trapped
system in the limit of a highly elongated trap (vz!v').
This prediction has been confirmed experimentally with h
precision @15#. The resultv253vz

2 was derived in Refs.
@16–18#, while the resultv254vz

2 for the Tonks-Girardeau
gas is simply understood by recalling that, in this limit, the
is an exact mapping with the 1D ideal Fermi gas@10# where
the excitation spectrum, in the presence of harmonic confi
ment, isv5kvz . The same result has been recently deriv
in Ref. @19# using the mean-field equations of Kolomeisk
et al. @20#.

In order to evaluate the collective frequencies in the
termediate regimes where the hydrodynamic equations
not analytically soluble, we have developed a sum-rule
proach@11#, based on the evaluation of the ratio

\2v25
m1

m21
~27!

between the energy weighted and inverse energy weig
sum rules. In the following we will limit the discussion to th
lowest compression mode which is naturally excited by
operator( i 51

N zi
2 . The energy weighted moment is given b

m15(1/2)^†( i 51
N zi

2 ,@H,( i 51
N zi

2#‡&5(2N\2/m)^z2&, where
^z2&5*n1(z)z2dz/N is the average square radius fixed
the ground-state solutionn1(z). The inverse energy weighte
moment m21 is related to the static polarizabilitya by
m215(1/2)a. This is evaluated by adding the pertubatio
2ez2 to the Hamiltonian and calculating the correspondi
changesd^z2& of the expectation value of the square radiu
a5Nd^z2&/e. Adding the perturbation2ez2 is equivalent to
changing the frequencyvz of the harmonic confinement, s
that the result for the collective frequency takes the comp
form
0-4
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v2522
^z2&

d^z2&/dvz
2 . ~28!

The result~28! provides, in general, an upper bound to t
frequency of the lowest state excited byz2. It is immediate
to verify that this bound coincides with the exact frequen
in the three relevant limits discussed in the paper~3D cigar,
1D mean field, and Tonks-Girardeau!.

By determining numerically the density profiles in the i
termediate regimes we can now calculate the frequenc
the lowest compressional mode using the sum-rule form
~28! for any intermediate regime. It is worth noticing th
result ~28! for the collective frequency, being based on ge
eral sum-rule arguments, applies also to regimes beyond
mean-field, where the density profilen1(z), and hence the
value of ^z2&, cannot be evaluated starting from the Gro
Pitaevskii equation of state.

We have first calculated the ratiov2/vz
2 as a function of

the dimensionless parameterNla/a' , thereby exploring the
transition between the 3D cigar and the 1D mean-field
gimes. The results are reported in Fig. 2. For the experim
tal conditions of Refs.@1,2#, whereNla/a'50.24 and 0.08,
we predictv2/vz

252.85 and 2.91, respectively, confirmin
that those experiments are actually touching the transi
between the two mean-field regimes.

For the transition from the 1D mean-field regime to t
Tonks-Girardeau gas, the results are reported in Fig. 3
function of the dimensionless parameterNl(a' /a)2. For
example, usingN510, l51023, anda' /a510, we predict
v2/vz

253.3. To enter more deeply into the Tonks-Girarde
regime, even more extreme experimental conditions are
quired. In the asymptotic Tonks-Girardeau regime, one fi
the valuev52vz , which coincides with the oscillation fre
quency for an ideal gas. With respect to an ideal gas,
system is, however, characterized by a very different den
profile reflecting its fermionic nature.

By fixing the ratioa' /a, both transitions can be repre
sented on a single plot as a function ofNl. This corresponds
to moving on a vertical path in the phase diagram of Fig

FIG. 2. Transition between the 1D mean-field and the 3D ci
regimes:v2/vz

2 as a function of the parameterNla/a' .
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Of course, the accessible states of the systems depend o
chosen geometry and in particular on the value ofl: Figure
4 shows the evolution of the collective frequency as a fu
tion of the parameterNl for two different choices of the
ratio a' /a. The corresponding curves reveal the transiti
between the 3D cigar, 1D mean-field, and Tonks-Girad
regimes.

The figure clearly shows that while for large values
a' /a the three regimes are clearly visible, fora' /a510 the
1D mean field cannot be identified. In fact, in this ca
~dashed line!, by increasingNl, the Lieb-Liniger theory pre-
dicts the achievement of the 1D mean-field regime when
Gross-Pitaevskii theory already exhibits significant 3D
fects and the two curves cannot be matched. We point
that this effect is independent of the separated values oN
and l, provided that the condition of applicability of th
local-density approximation~14! is satisfied. When the tran
sition cannot be accounted for using separately the Li
Liniger and the Gross-Pitaevskii theories or when the loc

r FIG. 3. Transition between the Tonks-Girardeau and the
mean-field regimes:v2/vz

2 as a function of the paramete
Nl(a' /a)2.

FIG. 4. Dispersion lawv2/vz
2 as a function of the parameterNl

for two choices of the ratioa' /a ~full line l5500, dashed linel
510).
0-5
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C. MENOTTI AND S. STRINGARI PHYSICAL REVIEW A66, 043610 ~2002!
density approximation is no longer applicable, mo
complete many-body approaches are required@23,24#.

V. CONCLUSIONS

According to the discussions presented in this paper,
transition between the different regimes~3D cigar, 1D mean
field, Tonks-Girardeau! is specified once the two combina
tions Nl and a' /a of parameters are known@see Eqs.~9!
and~23!#. However, these results have been derived by m
ing some important assumptions that are worth recalling

~1! The aspect ratiol5vz /v' should be significantly
smaller than 1 in order to ignore the dynamic coupling w
the radial excitations whose motion is not taken into acco
in the 1D formulation in Eqs.~1! and ~2! of the hydrody-
namic equations. In practice, values ofl smaller than 1021

are small enough to neglect such a coupling.
~2! The local-density approximation should be guarante

along the axial direction in order to apply the hydrodynam
approach to the collective modes. This condition, which
equivalent to requiringZ@az , takes a different form de
pending on whether we are in the Tonks-Girardeau or in
1D mean-field regime. In the first case the condition impl
N@1. In the second case the condition instead takes
form Nl@l3/2a' /a @see Eq.~14!#. If this condition is not
ys
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satisfied, the system, instead of being in the 1D mean-fi
Thomas-Fermi regime, will approach the ideal gas confi
ration.

~3! The scattering lengtha has been assumed to be suf
ciently smaller thana' . In fact only if a'.10a, the transi-
tion between the regimes investigated in this paper can
described using the Gross-Pitaevskii theory~from 3D cigar
to 1D mean field! and the Lieb-Liniger theory~from 1D
mean field to Tonks-Girardeau!.

~4! One should finally recall that the results of this pap
have been derived at zero temperature. They are expect
be applicable at temperatures significantly smaller than
1D quantum degeneracy energy\2n1D

2 /2m.
In conclusion, in this paper we have exploited the dep

dence of the frequencies of the collective oscillations o
harmonically trapped 1D Bose gas on the equation of st
This provides an efficient tool to explore the transition b
tween the different regimes exhibited by such systems, po
ing out the crucial interplay between the effects of quant
correlations and dimensionality.
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