
PHYSICAL REVIEW A 66, 043608 ~2002!
Two-dimensional weakly interacting Bose gas in the fluctuation region

Nikolay Prokof’ev and Boris Svistunov
Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003

and Russian Research Center ‘‘Kurchatov Institute,’’ 123182 Moscow, Russia
~Received 14 June 2002; published 11 October 2002!

We study the crossover between the mean-field and critical behavior of the two-dimensional Bose gas
throughout the fluctuation region of the Berezinskii-Kosterlitz-Thouless phase transition point. We argue that
this crossover is described by universal~for all weakly interactingucu4 models! relations between thermody-
namic parameters of the system, including superfluid and quasicondensate densities. We establish these rela-
tions with high-precision Monte Carlo simulations of the classicalucu4 model on a lattice, and check their
asymptotic forms against analytic expressions derived on the basis of the mean-field theory.
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I. INTRODUCTION

The mean-field~MF! approach to the weakly interactin
Bose gas~BG! is a well established theoretical tool@1–3#.
However, it is not adequate in the fluctuation region of t
superfluid phase transition. The situation is most dramati
the two-dimensional~2D! case, where the size of the fluctu
tion region, DT, is almost insensitive to the smallness
interaction@4# (\51):

DT/Tc;1/ln~1/mU!. ~1!

Here Tc is the critical temperature,m is the particle mass
andU is the effective long-wavelength interaction consta
The regime of weak interaction corresponds to a small
mensionless parameter

mU!1, ~2!

which close to the transition point is equivalent to the co
dition nU!T (n is the particle density!.

For the purposes of the present paper, the microsc
origin of the effective interactionU is not important. How-
ever, to make a connection between our results and rea
experimental systems, we briefly review howU relates to the
interatomic interaction potentialV(r ). The value ofU corre-
sponds to the pair vertex~the sum of ladder diagrams! with
typical external momenta;n1/2. It can be written in a ge-
neric form as

U5
V0

11~mV0/4p!ln~1/nd2!
, ~3!

where microscopic parametersV0 andd depend on the case
The simplest one is that of a weak short-ranged poten
satisfying the conditionV(r;r 0)!1/mr0

2, where r 0 is the
potential radius. In this case,V05*V(r )d2r , and with loga-
rithmic accuracy assumed in Eq.~3! one may setd5r 0 pro-
vided nr0

2!1 ~when nr0
2*1, the logarithmic term in the

denominator can be neglected!. In thequasi-2D system@5,6#,
when the localization length of 3D atoms in the directi
perpendicular to the 2D plane~axis ẑ) is much larger
than r 0, one has first to average the pair interaction ove
wave function in the ẑ direction, f0(z). Now, V0
5(4pa/m)* uf0(z)u4dz, where a is the 3D scattering
1050-2947/2002/66~4!/043608~7!/$20.00 66 0436
e
in

.
i-

-

ic

tic

al

a

length. Introducing the localization length byl z
21

5* uf0(z)u4dz, we have V054pa/mlz . With the same
logarithmic accuracy, in Eq.~3! d' l z for nlz

2!1 ~cf. Refs.
@5,6#!. Finally, the case of a strong short-ranged poten
@which in the context of weakly interacting gas implie
ln(1/nr0

2)@1] formally corresponds to the limitV0→` in
Eq. ~3!. In this case, the effective interaction depends only
the parameter ln(1/nd2) with d'r 0 ~see Ref.@7#!.

Because of the weak log dependence of the fluctua
region on interaction, one may wonder whether the M
theory makes sense at all in 2D~apart from the academic
limit of exponentially small mU!, and, if it does, then
when. As a characteristic example of how problematic it
to reach the proper asymptotic limit, consider a dilute g
with very small nd2 when mU;4p/ ln(1/nd2)!1. With
the same logarithmic accuracy it follows then that t
critical point can be found without even resorting to t
Berezinskii-Kosterlitz-Thouless physics @3,4#, Tc
'(2pn/m)ln21(1/mU). Meanwhile, a more accurate resu
for the critical point is~for future reference and convenienc
we write the answer for critical density as a function of te
perature! @8#

nc5
mT

2p
lnS j

mUD , j538063. ~4!

Obviously, an enormous value ofj makes it virtually impos-
sible to reach the limit of smallU whenj can be ignored.

There is, however, a very important point about the flu
tuation region of a weakly interacting BG: In the limit o
small U, all ucu4 models—quantum or classical, continuo
or discrete—allow a universal description@3,9#. This obser-
vation follows from a simple fact that interactions are impo
tant only for long-wavelength components of the order p
rameter field, c(r ), with momenta k&kc5mAUT!kT

5AmT, and in this limit the effective Hamiltonian is give
by the ucu4 model

H@c#5E H 1

2m
u¹cu21

U

2
ucu42mucu2J dr , ~5!

wherem is the effective chemical potential. The microscop
physics of the model is important only at much higher m
©2002 The American Physical Society08-1
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NIKOLAY PROKOF’EV AND BORIS SVISTUNOV PHYSICAL REVIEW A66, 043608 ~2002!
menta,k@kc , where the system behavior is ideal~in a linear
in U approximation! and thus may be easily accounted f
analytically.

This observation was successfully used in Refs.@8,10,11#
~both in 3D and 2D! in the study of the critical point depen
dence on interaction. Same considerations apply, though
only to the critical point itself, but to the whole fluctuatio
region around it, and one thus expects that, e.g., the su
fluid density dependence on density,ns(n2nc), or chemical
potential,ns(m2mc), is also universal close to the transitio
point and into the region where the MF theory takes ove

The study of this universal behavior is the subject of t
paper. We found that even for very weak interaction, s
mU;0.01, the conventional MF theory resultns /n51
2T/Tc may not be used since the fluctuation region is still
orderTc itself. However, ifTc is related to the density by Eq
~4!, the modified version of the MF theory developed in th
paper works remarkably well. In particular, the equation
state and the quasicondensate density may be predicted
accurately up toTc ~this is not true for the superfluid densit
though!.

In Sec. II, we establish the universal form of the equat
of state and the dependence of the superfluid density
quasicondensate density on the chemical potential along
their asymptotic behavior away from the critical point.
Sec. III, we describe the numeric model and the simulat
procedure. Our results are presented and compared to th
and Kosterlitz-Thouless theories in Sec. IV. We conclude
Sec. V by discussing the obtained universal results in
context of quantum Bose gases.

II. UNIVERSAL RELATIONS FOR WEAKLY
INTERACTING zcz4 MODELS

The critical point of the BG is defined by Eq.~4! and the
corresponding relation for the chemical potential@8#,

mc5
mTU

p
lnS jm

mUD , jm513.260.4, ~6!

which can be rewritten in the form

mc52ncU1
mTU

p
lnS jm

j D . ~7!

Both nc andmc are model-specific, and their values depe
on the ultraviolet cutoff, k* , through the logarithm
ln(k* /kc); for the quantum gas,k* ;kT . However, if the
dominant MF-type contribution to the chemical potenti
2nU, is subtracted, the difference is an ultraviolet-cuto
independent quantity. The same is true for the differencem
2mc or n2nc . It seems natural then to introduce a dime
sionless variable

X5~m2mc!/mTU, ~8!

as a universal control parameter with the typical variat
across the fluctuation region of order unity. The equation
state may then be written in the universal form as
04360
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2nU2m

mTU
5u~X!, ~9!

whereu is a dimensionless function. By subtracting critic
values fromn andm, we can restate it as

n2nc5mTl~X!, l~X!5@u~X!2u01X#/2, ~10!

with

u0[u~0!5
1

p
ln~j/jm!. ~11!

From previous results@8#, we haveu051.0760.01, with the
error bar being largely determined by the uncertainty injm .
The l(X) function describes the so-called adsorption is
therm which is relevant to the situation where the 2D syst
is formed by atoms adsorbed on a surface. In the case
trapped gas, the functionl(X) describes the density profil
of the gas in the hydrostatic regime~see the discussion in
Sec. V!.

The behavior of the superfluid density is described b
dimensionless functionf,

ns5~2mT/p! f ~X!. ~12!

According to the Kosterlitz-Thouless theory@12# ~see also
below!,

f ~X→10!→11A2k8X, ~13!

wherek8 is some constant to be defined numerically.
Finally, in the superfluid region an important quantity

the quasicondensate densityn0, which we define by the re-
lation

n05AQ, Q52^ ucu2&22^ ucu4&. ~14!

The idea behind this definition is as follows. The notion
the quasicondensate@5# implies that the fieldc has the fol-
lowing structure:

c~r !5c0~r !1c1~r !, ~15!

c0~r !'An0 eiF(r ), ~16!

wheren0 is called the quasicondensate density, andc1 is the
Gaussian field independent ofc0. Under these conditions
Q[n0

2. ~The Gaussian fieldc1 obeys Wick’s theorem and
thus does not contribute toQ.! Away from the superfluid
region the notion of quasicondensate gradually becomes
defined, but the quantityQ is still of interest as a measure o
local non-Gaussian correlations. We will jargonically use t
term ‘‘quasicondensate density’’ even well inside the fluctu
tion region, understanding byn0 the quantityAQ.

Since the MF theory result predictsn0'ns , it is appro-
priate to characterize the dependence ofQ on m in close
analogy to Eq.~12!:

AQ5~2mT/p!g~X!. ~17!
8-2
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TWO-DIMENSIONAL WEAKLY INTERACTING BOSE GAS . . . PHYSICAL REVIEW A 66, 043608 ~2002!
The three functions—u(X), f (X), and g(X)—completely
characterize system properties in the vicinity of the criti
point

We now turn to the MF and Kosterlitz-Thouless theor
to establish the asymptotic behavior of functionsu(X),
f (X), andg(X).

Asymptotic behavior at X→`. The notion of a quasicon
densate is well-defined in this region and its densityn0 obeys
a typical MF relation@5#,

~n012n8!U5m, ~18!

where

n85n2n0 ~19!

is the nonquasicondensate part of the particle density.~One
may worry how far the analogy between the genuine cond
sate and quasicondensate goes; the answer is that apart
the long-range order problem they are indistinguishable
the MF level, and our simulations confirm this assertio!
Comparing Eqs.~18! and ~19! with Eq. ~9!, we see that

n0~X→`!→ mTu~X! ~20!

or

g~X→`!→~p/2!u~X!. ~21!

An explicit expression for the nonquasicondensate pa
given by @13#

n85E d2k

~2p!2 Fe~k!1n0U2E~k!

2E~k!
1

e~k!nE

E~k! G , ~22!

where e(k)5k2/2m is the free-particle dispersion law
E(k)5Ae(k)@e(k)12n0U# is the Bogoliubov quasiparticle
spectrum, andnE5„exp@E(k)/T#21…21 is the Bose distribu-
tion function. In the region of interest,u;1, the first term in
the integral is smaller than the second one by the gas pa
eter mU!1, and should be omitted@16#. With the same
accuracy, the second term yields

n8'2~mT/2p!ln~2n0U/T!. ~23!

With the help of Eq.~20!, the total densityn5n81n0 may
be now written as

n'
mT

2p
ln~1/mU!1

mT

2 F2u2
1

p
ln~2u!G

[nc1
mT

2 F2u2
1

p
ln~2ju!G . ~24!

Substituting this relation into Eq.~10!, we find the
asymptotic behavior ofu(X):

u2p21ln u→X1p21ln~2jm! at X→`. ~25!

To find f (X→`), we consider the standard expression
the normal component density@2#
04360
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2mE d2k

~2p!2 FdnE

dE Gk2, ~26!

and compare it to the expression~22! for the nonquasicon-
densate part of the particle density. After integration by pa
and a straightforward algebra, we find that up to higher or
in mU terms,nn2n85mT/2p, which means that

ns5n02mT/2p, ~27!

and, accordingly,

f ~X→`!→g~X!21/4→~p/2!u~X!21/4. ~28!

It is important to note that while for obtaining asymptot
relations~25!, ~27!, and~28! we employed the theory of the
weakly interactingquantum Bose gas, the final results are
valid for any weakly interacting 2D system of theucu4 uni-
versality class, since these pertain to the universal long-w
behavior of the system.

Asymptotic behavior at X→2`. In the regionX,0, the
f function is identically zero; the quasicondensate densit
of no special interest in the normal phase@g(X)→0 in this
limit #. Hence, the only quantity we have to look at is t
equation of state,u(X). Once again, we resort to the M
equation for the effective chemical potentialm85m22nU
52umUT, and calculate the total density from the integr

n'E d2k

~2p!2
@exp~e/T1umU!21#21 ~29!

'2~mT/2p!ln~umU![nc2
mT

2p
ln~uj!. ~30!

This expression may be immediately related back to
equation of state~9! and leads to the relation

u1p21ln u→uXu2p21ln jm at X→2`. ~31!

One has to understand the limituXu→` in the following
sense: it describes the system behavior close to the trans
point but outside the fluctuation region. For the quantum
(mU!1), it means 1!uXu!1/mU. Of course, one may eas
ily calculate system properties for anyuXu@1 using MF
theory presented above, and take care of the phonon co
bution to the nonquasicondensate and superfluid densitie
n;T/U @contained in the integrals of Eqs.~22! and~26!#, or,
instead of Eq.~30!, consider a more accurate expression
the dilute density limitn'2(mT/2p)ln@12e2umU# to in-
clude the Boltzmann gas into the picture. Such obvious g
eralizations are not considered in this paper.

The vicinity of the Kosterlitz-Thouless point. The thermo-
dynamic limit close to the point of the Berezinski
Kosterlitz-Thouless transition requires simulations of exp
nentially large systems, and thus can hardly be trea
numerically without renormalization-group~RG! analysis of
finite-size corrections. Fortunately, one can take advantag
the Kosterlitz-Thouless RG equations that describe the fl
of the superfluid densityns(L) with increasing the system
8-3
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NIKOLAY PROKOF’EV AND BORIS SVISTUNOV PHYSICAL REVIEW A66, 043608 ~2002!
size L. In terms of dimensionless functionf L5(p/2mT)
ns(L), these equations are@12#

d fL

d ln L
52y2f L

2 , ~32!

dy

d ln L
52~12 f L!y, ~33!

wherey(L) is the vortex-pair fugacity. By excluding variabl
y and integrating the remaining RG equation, one obtains
following relation:

F~ f L2
, f L1

,k!54 ln~L2 /L1!, ~34!

whereF is defined as an integral

F~a,b,k!5E
a

b dt

t2~ ln t2k!1t
, ~35!

andk(X) is a size-independent~at kcL@1) parameter.
By performing large-scale simulations of systems w

different sizesL1,L2,L3,•••, one may solve Eq.~34! for
parameterk(X), verify that it is system-size-independen
and then determine the thermodynamic valuef (X)
5 f L5`(X) from the relation

1/f 1 ln f 5k, ~36!

which immediately follows from Eqs.~34! and ~35! at L
→`. Since Eq.~36! has a root only atk>1, we conclude
thatk51 corresponds to the critical point. In contrast to t
superfluid density,k(X) has no singularities at the critica
point X50 and may be expanded into Taylor series,

k~X!'11k8X1•••. ~37!

The solution of Eq.~36! for smallX is then given by formula
~13!.

III. NUMERICAL PROCEDURE

Although all derivations presented in the previous sect
were done for the quantum BG, we expect them to be u
versal and apply for any model with effective long-wav
length Hamiltonian~5! with smallmU. Classical lattice algo-
rithms are much more efficient than quantum ones and a
high-accuracy simulations of very large system sizes. A
simulations of the classical lattice model directly test the id
of universality, since they have to agree with all Eqs.~11!,
~21!, ~25!, ~28!, and~31!.

Our simulations were done for the simple square latt
Hamiltonian

H5 (
kPBZ

@E~k!2m#ucku21
U

2 (
i

uc i u4, ~38!

whereck is the Fourier transform of the lattice fieldc i , and
E(k)5@22cos(kxa)2cos(kya)#/ma2 is the tight-binding dis-
persion law, with momentumk being defined within the firs
Brillouin zone ~BZ!. We employed the recently develope
Worm algorithm for classical statistical systems@17#, which
04360
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has direct Monte Carlo estimators for all quantities of int
est here and does not suffer from critical slowing down.

We performed simulations for system sizesL
564, 128, 256, 512 and two values of interaction stren
U51/4 andU51/16 to eliminate finite-size and finite-U cor-
rections to the results. Each quantity for each point inX was
calculated with relative accuracy better than 1023 ~down to
1024 for smaller system sizes!. Our final results foru(X),
f (X), andg(X) presented in Figs. 1, 3, and 5 below are th
obtained with accuracy better than 1%~the largest error bars
of order 1% are in the vicinity of the critical point wher
finite-size corrections are the largest; the error bars for la
uXu shrink down to 0.3–0.1 %!. Error bars are shown in al
plots but typically they are much smaller than the point si

TABLE I. Final results~after taking care of finite-size and finite
U corrections! for the scaling functionsu(X), g(X), and f (X).

X u(X) g(X) f (X)

24.0056 2.8363~3! 0.2657~3!

23.0056 1.9603~5! 0.3094~4!

22.0056 1.1472~6! 0.3866~6!

21.5056 0.791~1! 0.4561~8!

21.0056 0.514~1! 0.581~1!

20.7556 0.434~3! 0.688~3!

20.5056 0.442~3! 0.869~2!

20.2556 0.630~4! 1.214~4!

20.1056 0.885~9! 1.560~7!

20.0556 0.973~9! 1.680~7!

20.0156 1.041~9! 1.774~8!

20.0056 1.061~4! 1.800~3!

0.0044 1.075~5! 1.821~4! 1.077~5!

0.0444 1.137~5! 1.908~4! 1.274~4!

0.0944 1.208~5! 2.013~4! 1.433~5!

0.2444 1.415~6! 2.319~6! 1.823~6!

0.4944 1.734~6! 2.800~7! 2.37~1!

0.9944 2.334~9! 3.721~8! 3.348~6!

1.9944 3.469~9! 5.47~1! 5.135~10!

2.9944 4.554~9! 7.19~1! 6.87~1!

3.9944 5.631~8! 8.870~6! 8.58~1!

FIG. 1. The equation of stateu(X) compared to its asymptotic
large uXu expressions, see Eqs.~25! and ~31!.
8-4
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All the relevant data are mentioned in Table I. In Figs. 1–
the MC data are presented by dots and compared with
asymptotic analytic solutions shown by lines.

IV. SIMULATION RESULTS

In Figs. 1, 2, 3, and 5, we show our final results for t
scaling functions. To compare them with analytic pred
tions, we first determine the value of theu0 parameter from
theu(x) plot to verify that it agrees with the result predicte
by Eq. ~11!. We find that

u051.06860.01, ~39!

thus confirming the universality of parameteru0. Knowing
jm is all we need to handle the asymptotic behavior at la
uXu. The best fits correspond tojm513.4, which, within the
error bars, coincides with Eq.~6!. The agreement betwee
the data and asymptotic laws Eqs.~25! and ~31! in Figs. 1
and 2 is remarkable.

The same is also true for the quasicondensate density~see
Fig. 3!. The data perfectly agree with the idea of the qua
condensate which is not entirely obvious at first glance
the system without long-range order. We thus confirm t
n0, rigorously defined through the correlation function E
~14!, plays the same role as the genuine condensate de
in the 3D theory.

FIG. 2. Thel(X) function compared to its asymptotic largeuXu
expressions.

FIG. 3. The quasicondensate density dependence onX compared
to the asymptotic largeuXu behavior predicted by Eq.~21!.
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As explained above, the analysis of the superfluid den
data near the critical point is based on the Kosterli
Thouless RG equations. We found that forXP
(20.1,0.25), the data scale according to the RG Eqs.~34!
and ~35! with negligible finite-U corrections andk(X) de-
pendence is well described by the linear inX expansion Eq.
~37!, see Fig. 4. Having determined the first derivative ofk
at the critical point as

k85
dk

dXU
X50

50.6160.01, ~40!

we proceed with the solution of the thermodynamic value
f (X) using Eq.~36!. The results are plotted in Fig. 5 alon
with the asymptotic largeX law f (X)→(p/2) u(X)21/4.
The two limits match almost perfectly aroundX50.5 and
describe all the data points with exceptional accuracy.

V. CONCLUSIONS

The most striking result of this study is that the equati
of state,u(X), and the quasicondensate density,g(X), are
predicted by the MF theory with the accuracy of a few p
cent all the way to the critical point. Even at the critic
point, the difference between the data and asymptotic r

FIG. 4. RG parameterk(X) obtained from finite-size scaling o
the data according to Eqs.~34! and~35! and fitted using a linear in
X expansion withdk/dX50.61.

FIG. 5. The superfluid density dependence onX compared to the
asymptotic largeuXu behavior according to Eq.~28!, and the
Kosterlitz-Thouless theory forX<0.25 according to Eq.~36!.
8-5
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tions is barely visible. This outcome is quite unexpected
cause the superfluid density does show deviations from
MF theory forX,0.5.

Hence, from the side of the superfluid phase, the bou
ary of the fluctuation region corresponds toX;0.5. To ex-
press this estimate in terms of temperature~density!, we re-
late X and T at a constant density (X and n at a constant
temperature!. Equation~10! with nc from Eq. ~4! may be
written as

mT

n
5

2p

ln~j/mU!12pl~X!

or

Tc~n!

T
5

n

nc~T!
511

2p

ln~j/mU!
l~X!, ~41!

and maps the control parameterX ontoT/Tc(n) or n/nc(T).
This relation is not universal becauseTc , nc , and the right-
hand side of Eq.~41! depend on the ultraviolet cutoff. Fo
X50.5 and, say,mU50.1 we find that the fluctuation regio
is roughly (Tc2T)/Tc;(n2nc)/nc;0.3.

It is instructive to compare results for the superfluid de
sity of the weakly interacting BG in the more convention
ns /n versusT/Tc plot at a constant particle density whic
may be immediately obtained from the universal relatio
The superfluid density is given by

ns

n
5

2mT

pn
f ~X![

4~T/Tc!

ln~j/mU!
f ~X!, ~42!

which along with Eq.~41! defines a parametric dependen
of ns /n on T/Tc . One may construct then a modified M
theory result by substitutingf (X) in this relation with
pu(X)/221/4, see Eq.~28!, and u(X) from Eq. ~25!. An
analogous expression forn0 is obtained by replacingf (X)
with g(X).

In Fig. 6, we show the comparison between the MF so
tion and the data for small effective interactionmU51021,
1022, 1023, 1025. We see that the fluctuation region is st
of orderTc even formU50.01—clearly that small coupling
parameter may not be obtained by going to the dilute li
for the gas of hard-core particles and thus any realistic
cussion of the experimental data should involve the pro
description of the fluctuation region. Even formU50.01,
the familiar MF formulans /n'12T/Tc does not work at
all—the slope keeps changing withT and the leftmost slope
does not point tons /n51. However, if one uses an exa
relation betweenTc andn, then the MF approach describe
above is capable of reproducing the data forX.0.5.

The other remark concerns the asymmetry of the fluct
tion region atT,Tc andT.Tc . The minimum in the Fig. 1
plot for u(X) and the agreement with the MF laws alrea
suggest that the fluctuation region is much broader on
normal side. When MF results forns(T) in Fig. 6 are ex-
trapolated to higher temperatures, the intersection with
temperature axis is still at'1.5Tc for mU as small as
;1025. We draw the same conclusion from then0 /n plot
shown in Fig. 7: The decay of the quasicondensate den
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n0[AQ, which is a measure of local non-Gaussian corre
tions, is quite extended into the normal state.

Our universal relations are obtained in the limitmU!1.
From a practical point of view, it is important to estimate
typical value ofmU at which higher-order corrections to ou
results become unimportant. To this end we note that if
plot the quasicondensate density as a function ofT/Tc for
various values ofmU ~see Fig. 7!, we will find that formU
50.1 the ration0 /n exceeds unity already atT'0.4 Tc .
This unphysical result tells us that nonuniversal correctio
for the quantum BG arenot negligible even formU;0.1 ~at
least for the quasicondensate density; for numerical reas
they might be smaller for other quantities!. We thus expect
that universal expressions established in this study are lik
to work without limitations only formU significantly smaller
than 0.1. To understand the situation with the quantum c
rections quantitatively, we compare in Fig. 8 our results
n0 /n at mU50.2 with the previously reported@15# results
for the quantum lattice model@18#. The comparison suggest
that atT;Tc , the quantum correction to the quasicondens
density is;mU ~in relative units!. The sign of the correction
is negative, that is, we are dealing with a quantum deple
of the quasicondensate.

FIG. 6. Temperature dependence ofns /n for small mU
51021, 1022, 1023, 1025. Points are connected with lines to guid
the eye. The dashed lines are the mean-field theory results wit
exact relation betweenTc and particle density.

FIG. 7. Temperature dependence ofn0 /n for small mU
51021, 1022, 1023, 1025. Points are connected with lines to guid
the eye. The dashed lines are the mean-field theory results.
8-6
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For helium films on various substrates@19,20# and spin-
polarized atomic hydrogen on a helium film@21#, the value
of mU is most probably of order unity@5#.

In the recently created quasi-2D gas of sodium ato
@22#, mV0 is of order 1022, and this system is supposed to

FIG. 8. Temperature dependence ofn0 /n for mU50.2 derived
from universal relations~filled circles! and simulated for the quan
tum lattice BG~open circles!. Points are connected with lines t
guide the eye.
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described by our results very precisely. In experiments w
trapped gases, the quantity directly relevant to the expe
mental setup isl(X) since it describes, according to E
~10!, the density profile in the trapping potential which
smooth enough to guarantee the hydrostatic regime. In
regime, the density variation over the mode-coupling rad
r c;1/kc @the data of Ref.@8# suggestr c'2/m(UT)1/2] is
small, and the coordinate dependence of density reduce
n[n„T,m(r )…, wheren(T,m) is the homogeneous equatio
of state,m(r )5Vext(r )1const, andVext is the trapping po-
tential. It follows from Fig. 7 that formU;1022, the size of
the fluctuation region on the normal side is of order uni
Thus when the density at the trap center is tuned to the c
cal point, practically the whole density profile finds itself
the fluctuation region where MF equations do not work.
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