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Two-dimensional weakly interacting Bose gas in the fluctuation region
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We study the crossover between the mean-field and critical behavior of the two-dimensional Bose gas
throughout the fluctuation region of the Berezinskii-Kosterlitz-Thouless phase transition point. We argue that
this crossover is described by universfar all weakly interacting ¢|* models relations between thermody-
namic parameters of the system, including superfluid and quasicondensate densities. We establish these rela-
tions with high-precision Monte Carlo simulations of the class|gaf model on a lattice, and check their
asymptotic forms against analytic expressions derived on the basis of the mean-field theory.
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I. INTRODUCTION length. Introducing the localization length by *
=[|¢o(2)|*dz, we have Vy=4ma/ml,. With the same
The mean-fieldMF) approach to the weakly interacting logarithmic accuracy, in E¢3) d~1, for nlZ<1 (cf. Refs.
Bose gas(BG) is a well established theoretical tofd-3|.  [5,6]). Finally, the case of a strong short-ranged potential
However, it is not adequate in the fluctuation region of the{which in the context of weakly interacting gas implies
superfluid phase transition. The situation is most dramatic iflh(l/nr§)>1] formally corresponds to the limi¥/y— in
the two-dimensional2D) case, where the size of the fluctua- £q.(3). In this case, the effective interaction depends only on
tion region, AT, is almost insensitive to the smallness of the parameter In(bd?) with d~r, (see Ref[7]).
interaction[4] (A =1): Because of the weak log dependence of the fluctuation
AT/T,~1/n(1/mU). (1) region on interaction, one may wonder whether the 'MF
theory makes sense at all in 2@part from the academic
Here T, is the critical temperaturen is the particle mass, limit of exponentially smallmu), and, if it does, then
andU is the effective long-wavelength interaction constant.when. As a characteristic example of how problematic it is

The regime of weak interaction corresponds to a small dito reach the proper asymptotic limit, consider a dilute gas
mensionless parameter with very small nd®> when mU~4ﬂ-/In(1/nd2)<1. With

the same logarithmic accuracy it follows then that the
critical point can be found without even resorting to the
Berezinskii-Kosterlitz-Thouless physics [3,4], T,

~(27n/m)In"Y1/mU). Meanwhile, a more accurate result
ifor the critical point is(for future reference and convenience
e write the answer for critical density as a function of tem-

muU<1, (2

which close to the transition point is equivalent to the con-
dition nU<T (n is the particle density

For the purposes of the present paper, the microscop
origin of the effective interactiot is not important. How-

ever, to make a connection between our results and realist,%erature [8]

experimental systems, we briefly review hblwrelates to the mT ¢

interatomic interaction potenti&d(r). The value ofU corre- nC=—In<—>, £=380+3. (4)

sponds to the pair vertefthe sum of ladder diagramsvith 2w \mU

typical external momenta-n2. It can be written in a ge-

neric form as Obviously, an enormous value éfmakes it virtually impos-
sible to reach the limit of small when¢ can be ignored.

Vo There is, however, a very important point about the fluc-

u ©)

tuation region of a weakly interacting BG: In the limit of
small U, all |¢|* models—quantum or classical, continuous
where microscopic parametevg andd depend on the case. or discrete—allow a universal descriptif®,9]. This obser-
The simplest one is that of a weak short-ranged potentiajation follows from a simple fact that interactions are impor-
satisfying the conditior\/(r~ro)<1/mr§, whererg is the  tant only for long-wavelength components of the order pa-
potential radius. In this cas®¥y=[V(r)d?r, and with loga- rameter field, ¢(r), with momenta k<k.=myUT<k;
rithmic accuracy assumed in E@) one may setl=r, pro-  =./mT, and in this limit the effective Hamiltonian is given
vided nr3<1 (whennr=1, the logarithmic term in the by the|y|* model

denominator can be neglecjeth thequasi2D systeny5,6],
when the localization length of 3D atoms in the direction
perpendicular to the 2D planéaxis z) is much larger
thanrg, one has first to average the pair interaction over a
wave function in the z direction, ¢o(z). Now, V, whereu is the effective chemical potential. The microscopic
=(4malm)[|po(2)|*dz, where a is the 3D scattering physics of the model is important only at much higher mo-

~ 1+ (mVy/4m)in(1ind?)’

1 U
L= [ | g lvois ot plaf?] o, @
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mentak>k., where the system behavior is idégl a linear 2nU—u
in U approximation and thus may be easily accounted for mTu 0(X), 9)
analytically.

b -It-rr]".s osbservgtizon_w?ﬁ sutccdessicutlLy us_etq i? RE_Sstl((j),ll] where # is a dimensionless function. By subtracting critical
(both in and 2Din the study of the critical point depen- vtalues fromn and ., we can restate it as

dence on interaction. Same considerations apply, though, no
only to the critical point itself, but to the whole fluctuation n—n.=mTA(X), N(X)=[6(X)— 6o+ X]/2, (10
region around it, and one thus expects that, e.g., the super-
fluid density dependence on density(n—n.), or chemical  with
potential,ng(u— 1), is also universal close to the transition
point and into the region where the MF theory takes over.

The study of this universal behavior is the subject of this
paper. We found that even for very weak interaction, say,
mU~0.01, the conventional MF theory resufi;/n=1  From previous results3], we haved,=1.07+0.01, with the
—T/T. may not be used since the fluctuation region is still oferror bar being largely determined by the uncertainty jn
orderT, itself. However, ifT, is related to the density by Eq. The \(X) function describes the so-called adsorption iso-
(4), the modified version of the MF theory developed in thistherm which is relevant to the situation where the 2D system
paper works remarkably well. In particular, the equation ofis formed by atoms adsorbed on a surface. In the case of a
state and the quasicondensate density may be predicted vargpped gas, the function(X) describes the density profile
accurately up td (this is not true for the superfluid density, of the gas in the hydrostatic reginieee the discussion in
though. Sec. V.

In Sec. I, we establish the universal form of the equation The behavior of the superfluid density is described by a
of state and the dependence of the superfluid density andimensionless functiofy
guasicondensate density on the chemical potential along with
their asymptotic behavior away from the critical point. In ns=(2mT/m)f(X). (12
Sec. Ill, we describe the numeric model and the simulation . )
procedure. Our results are presented and compared to the Myecording to the Kosterlitz-Thouless theof$2] (see also
and Kosterlitz-Thouless theories in Sec. IV. We conclude inPelow,
Sec. V by discussing the obtained universal results in the
context of quantum Bose gases.

1
60=0(0)=—In(&l¢,). (1

f(X—+0)—1+2x'X, (13)

wherek’ is some constant to be defined numerically.

Il UNIVERSAL RELATIONS FOR WEAKLY Finally, in the superfluid region an important quantity is
INTERACTING |4|* MODELS the quasicondensate density, which we define by the re-
The critical point of the BG is defined by E) and the ~ 1ation
corresponding relation for the chemical potenf&y, No= \/6 Q=2 |¢|2>2_< |¢|4>. (14)
mTU [ ¢, . . . o .
M= In| ==, £,=13.2-0.4, (6)  The idea behind this definition is as follows. The notion of
m mU the quasicondensafé] implies that the field) has the fol-

: . . lowing structure:
which can be rewritten in the form

mTU (¢ (1) = tho(r) + (1), (15)
we=2n.U+ In ?’“) (7 o(1)~ g €0, (16)

Both n, and u. are model-specific, and their values dependwhereny is called the quasicondensate density, gnds the

on the ultraviolet cutoff, k, , through the logarithm Gaussian field independent gf. Under these conditions,

In(k, /ky); for the quantum gask, ~k;. However, if the Q=n3. (The Gaussian fields; obeys Wick's theorem and

dominant MF-type contribution to the chemical potential,thus does not contribute tQ.) Away from the superfluid

2nU, is subtracted, the difference is an ultraviolet-cutoff- region the notion of quasicondensate gradually becomes ill-

independent quantity. The same is true for the differemce defined, but the quantit is still of interest as a measure of

— me Or n—n;. It seems natural then to introduce a dimen-local non-Gaussian correlations. We will jargonically use the

sionless variable term “quasicondensate density” even well inside the fluctua-
tion region, understanding hy, the quantityy/Q.

X=(pu=pc)/mTU, ®) Since the MF theory result predictg~ng, it is appro-

priate to characterize the dependenceQobn u in close

as a universal control parameter with the typical variationanalogy to Eq(12):

across the fluctuation region of order unity. The equation of

state may then be written in the universal form as Jo=(2mT/m)g(X). a7
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The three functions-(X), f(X), and g(X)—completely 1 d%k [dvg
characterize system properties in the vicinity of the critical === |5 k?, (26)
point 2mJ (2m)2 | dE

We now turn to the MF and Kosterlitz-Thouless theories

to establish the asymptotic behavior of functioagx),  @nd compare it to the expressi¢22) for the nonquasicon-
f(X), andg(X). densate part of the particle density. After integration by parts

Asymptotic behavior at % . The notion of a quasicon- and a straightforward algebra, we find that up to higher order
densate is well-defined in this region and its densifpbeys N MU terms,n,—n"=mT/2m, which means that
a typical MF relation5], Ne=no— mMT/2, 27)
no+2n")U=pu, 18 .
(No U=n 18 and, accordingly,
where f(X—)—g(X)— 1A (m/2) 6(X)~1/4.  (29)
n"=n-n 19
0 (19 It is important to note that while for obtaining asymptotic
is the nonquasicondensate part of the particle den@ye  relations(25), (27), and(28) we employed the theory of the
may worry how far the analogy between the genuine condeni€aKly interactingguantum Bose gadhe final results are
sate and quasicondensate goes; the answer is that apart frif@id for any weakly interacting 2D system of tHe/|* uni-
the long-range order problem they are indistinguishable ayersality class, since these pertain to the universal long-wave
the MF level, and our simulations confirm this assertion. P€havior of the system.

Comparing Eqs(18) and (19) with Eq. (9), we see that Asymptotic behavior at X% —. In the regionX<0, the
f function is identically zero; the quasicondensate density is
No(X—°)— mTo(X) (200 of no special interest in the normal phgsgX)—0 in this
limit]. Hence, the only quantity we have to look at is the
or equation of stateg(X). Once again, we resort to the MF

equation for the effective chemical potentjal = u—2nU

g(X—0) = (/2) 6(X). @D =—6mUT, and calculate the total density from the integral,

An explicit expression for the nonquasicondensate part is d2k
given by[13] nwf 2 [exp(e/T+6mU)—1] 1 (29

)?
d?k
" _J (272

where e(k)=k?/2m is the free-particle dispersion law,

_ ; - - This expression may be immediately related back to the
E(k)= Ve(k)[ (k) +2n,U] is the Bogoliubov quasiparticle ) )
spectrum, ande= (exfE(K)/T]—1)~ is the Bose distribu- equation of stat€9) and leads to the relation

e(k)nU—E(K)  e(K)ve
2E(R)  EW) |’

(22

~—(mT/2m)In(mU)=n.— r;—;—In( 0&). (30

tion function. In the region of interesé~ 1, the first termin o+7 Ung—|X|—7 tng, at X——o. (31

the integral is smaller than the second one by the gas param-

eter mU<1, and should be omittefil6]. With the same One has to understand the lini| - in the following
accuracy, the second term yields sense: it describes the system behavior close to the transition

23) point but outside the fluctuation region. For the quantum gas
(mU<1), it means ¥|X|<1/mU. Of course, one may eas-
ily calculate system properties for an¥X|>1 using MF
theory presented above, and take care of the phonon contri-
bution to the nonquasicondensate and superfluid densities at
mT mT 1 n~T/U [contained in the integrals of EqR2) and(26)], or,
n~5_—In(Imu)+ 7[20— ;'n(Zﬁ)} instead of Eq(30), consider a more accurate expression for
the dilute density limitn~—(mT/27)In[1—e "] to in-

n'~—(mT/2m)In(2nyU/T).

With the help of Eq.(20), the total densityn=n’+ny may
be now written as

m 1 clude the Boltzmann gas into the picture. Such obvious gen-
=Nc+ - 20— _—In(2¢0) . (24)  eralizations are not considered in this paper.
The vicinity of the Kosterlitz-Thouless paiftthe thermo-

Substituting this relation into Eq(10), we find the dynamic limit close to the point of the Berezinskii-

asymptotic behavior oB(X): Kost_erlitz-ThouIess transition requires simulations of expo-
nentially large systems, and thus can hardly be treated
60— tn 6—X+ wflln(zgﬂ) at X—oo, (25 numerically without renormalization-groufRG) analysis of

finite-size corrections. Fortunately, one can take advantage of
To find f (X— ), we consider the standard expression forthe Kosterlitz-Thouless RG equations that describe the flow
the normal component densitg] of the superfluid densityg(L) with increasing the system
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size L. In terms of dimensionless functiofy = (7/2mT) TABLE I. Final results(after taking care of finite-size and finite-
ng(L), these equations afé@2] U correctiong for the scaling function®(X), g(X), andf(X).
ddlrf1LL g2, (32 X 6(X) 9(X) 1(X)
—4.0056 2.836®) 0.26573)
dy —3.0056 1.960%) 0.30944)
L 2=ty (33 ~2.0056 1.1476) 0.38666)
—1.5056 0.790) 0.45618)
wherey(L) is the vortex-pair fugacity. By excluding variable ~ —1.0056 0.5141) 0.581(1)
y and integrating the remaining RG equation, one obtains the —0.7556 0.43®) 0.6883)
following relation: —0.5056 0.443) 0.8692)
_ —0.2556 0.63(%) 1.2144)
Py T =41In(Lo/Ly), 39 —0.1056 0.888) 1.56Q7)
whereF is defined as an integral —0.0556 0.97@) 1.6807)
S o ihe e
F(a,b,x)= Lm' (35 0.0044 1.076) 1.8214) 1.0775)
0.0444 1.135) 1.9084) 1.2744)
and x(X) is a size-independenfat k.L>1) parameter. 0.0944 1.206) 2.0134) 1.4335)
By performing large-scale simulations of systems with 0.2444 1.4165) 2.3196) 1.8236)
different sized. ;<L,<L3<---, one may solve Eq34) for 0.4944 1.7366) 2.80Q7) 2.371)
parameterx(X), verify that it is system-size-independent, 0.9944 2.33m) 3.7218) 3.3486)
and then determine the thermodynamic valdéX) 1.9944 3.460) 5.471) 5.13510)
=fL-(X) from the relation 2.9944 4.55() 7.191) 6.871)
Uf+Inf=«k, (36) 3.9944 5.63(8) 8.87(06) 8.581)

which immediately follows from Eqgs(34) and (35) at L
—o0. Since Eq.(36) has a root only ak=1, we conclude has direct Monte Carlo estimators for all quantities of inter-
that k=1 corresponds to the critical point. In contrast to theest here and does not suffer from critical slowing down.
superfluid densityx(X) has no singularities at the critical We performed simulations for system sizek
point X=0 and may be expanded into Taylor series, =64, 128, 256, 512 and two values of interaction strength
, U=1/4 andU = 1/16 to eliminate finite-size and finitd-cor-
K(X)=1+ kXt 370 rections to the results. Each quantity for each poirX was
The solution of Eq(36) for smallX is then given by formula ca[cijlated with relative accuracy better than 1Qdown to
(13. 10~ % for smaller system s_|z§1$0ur final results forg(X),
f(X), andg(X) presented in Figs. 1, 3, and 5 below are thus
obtained with accuracy better than 1%e largest error bars
of order 1% are in the vicinity of the critical point where
Although all derivations presented in the previous sectiorfinite-size corrections are the largest; the error bars for large
were done for the quantum BG, we expect them to be unitX| shrink down to 0.3—0.1 % Error bars are shown in all
versal and apply for any model with effective long-wave- plots but typically they are much smaller than the point size.
length Hamiltonian5) with smallmU. Classical lattice algo-

IIl. NUMERICAL PROCEDURE

rithms are much more efficient than quantum ones and allow 8(X)
high-accuracy simulations of very large system sizes. Also, i b
simulations of the classical lattice model directly test the idea 5k yd
of universality, since they have to agree with all E¢EL), i i
(21), (25), (28), and(31). 4 d
Our simulations were done for the simple square lattice i I’d
Hamiltonian 3 e
2, Y 4 PN ’
H= 2 [ER)-pllgd’+5 2wl (39 SN
keBZ i [ ., i
1 \s\q ,

wherey is the Fourier transform of the lattice fielt] , and i Noge®

(=]

E(k)=[2—cos(<xa)—cos(<ya)]/ma2 is the tight-binding dis-
persion law, with momenturk being defined within the first
Brillouin zone (BZ). We employed the recently developed FIG. 1. The equation of staté(X) compared to its asymptotic
Worm algorithm for classical statistical systefd¥], which  large|X| expressions, see Eq®5) and(31).
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ARO[ K(X) ;
[ * L
ns e ‘
3 ,«" L1}
2f e p
I" ’,ﬂ
1 ﬂ,ﬂ _ s
! o
n - 4
0' e’ 1 ,Asn
[ e® b ~
S| JPENPSSL e N
1 i 1 n 1 i 1 n 1 1 " 1 1 I
-4 -2 0 2 X -0.1 0 0.1 0.2 X
FIG. 2. Thex(X) function compared to its asymptotic largj¢ FIG. 4. RG parametex(X) obtained from finite-size scaling of
expressions. the data according to Eq&4) and(35) and fitted using a linear in

X expansion withd«/dX=0.61.
All the relevant data are mentioned in Table I. In Figs. 1-5, _ . _ _
the MC data are presented by dots and compared with the As explained above, the analysis of the superfluid density

asymptotic analytic solutions shown by lines. data near the critical point is based on the Kosterlitz-
Thouless RG equations. We found that foXe
IV. SIMULATION RESULTS (—0.1,0.25), the data scale according to the RG E8&4).

and (35) with negligible finitelJ corrections and¢(X) de-
In Figs. 1, 2, 3, and 5, we show our final results for thependence is well described by the linearXrexpansion Eqg.
scaling functions. To compare them with analytic predic-(37), see Fig. 4. Having determined the first derivativexof
tions, we first determine the value of tiflg parameter from at the critical point as
the 6(x) plot to verify that it agrees with the result predicted dx

by Eqg.(11). We find that o = X ~0.61+0.01, (40)
6,=1.068+0.01, (39 X=0
. , ) , we proceed with the solution of the thermodynamic value of
thus confirming the universality of parametég. Knowing () ysing Eq.(36). The results are plotted in Fig. 5 along
&, is all we need to handle the asymptotic behavior at larg€, it the asymptotic largeX law f(X)— (7/2) 6(X)— 1/4.

|X]. The best fits correspond &, = 13.4, which, within the e 1o Jimits match almost perfectly arount=0.5 and
error bars, coincides with Ed6). The agreement between eqcrine all the data points with exceptional accuracy.
the data and asymptotic laws Eq25) and (31) in Figs. 1

and 2 is remarkable.

The same is also true for the quasicondensate defssty
Fig. 3. The data perfectly agree with the idea of the quasi- The most striking result of this study is that the equation
condensate which is not entirely obvious at first glance forof state, 9(X), and the quasicondensate densiffX), are
the system without long-range order. We thus confirm thapredicted by the MF theory with the accuracy of a few per-
No, rigorously defined through the correlation function Eq.cent all the way to the critical point. Even at the critical

(14), plays the same role as the genuine condensate densigpint, the difference between the data and asymptotic rela-
in the 3D theory.

V. CONCLUSIONS

fXxX) °
gX) - b L —— Uf+ln®=1+K'X .~
I 39X il . e
P S Feco-u4 -
6 7 st ’B’(/t
Y .
II/,I 4— 0
4 P 3 e
j" 2t °
2r 4 1t {J
4 ) 0 2 %

FIG. 5. The superfluid density dependencexacompared to the
FIG. 3. The quasicondensate density dependenceammpared  asymptotic large|X| behavior according to Eq(28), and the
to the asymptotic largeX| behavior predicted by Eq21). Kosterlitz-Thouless theory foX<0.25 according to E(.36).
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tions is barely visible. This outcome is quite unexpected be- ng/n[
cause the superfluid density does show deviations from the -
MF theory for X<<0.5. 0.8
Hence, from the side of the superfluid phase, the bound-
ary of the fluctuation region correspondsXe-0.5. To ex- 066
press this estimate in terms of temperat(density, we re- '
late X and T at a constant densityX(and n at a constant L e
temperaturg Equation(10) with n, from Eq. (4) may be 04r
written as L,
mT 27 0.21 .
n  In(é/muU)+2mN(X) e ,
0 0.5 1 T/T,
or
T.(n) n o FIG. 6. Temperature dt_ependence of/n fo_r s_maII mU.
EAMA =1+ A(X), (41 ~ =107%,10°% 10°% 10°°. Points are connected with lines to guide
T ne(T) In(§/mU) the eye. The dashed lines are the mean-field theory results with an

exact relation betweem, and particle density.
and maps the control paramedonto T/T.(n) or n/n.(T).

This rel_ation is not universal becau$g, n, _and the right- no=1/Q, which is a measure of local non-Gaussian correla-
hand side of Eq(41) depend on the ultraviolet cutoff. For tgns is quite extended into the normal state.

X=0.5 and, saymU=0.1 we find that the fluctuation region oy ynjversal relations are obtained in the limitu<1.
is roughly (Te—T)/Tc~(n—nc)/nc~0.3. _ From a practical point of view, it is important to estimate a
It is instructive to compare results for the superfluid de”'typical value ofmU at which higher-order corrections to our

sity of the weakly interacting BG in the more conventional regyits become unimportant. To this end we note that if we
ng/n versusT/T. plot at a constant particle density which plot the quasicondensate density as a functiom £, for
may be imm_ediately optained from the universal relations,,arious values omu (see Fig. 7, we will find that formU
The superfluid density is given by =0.1 the rationy/n exceeds unity already af~0.4T,.

ng 2mT A(TIT,) This unphysical result tells us that nonuniversal corrections
—_— )= nEmu) f(X), (42)  for the quantum BG araot negligible even fomU~0.1 (at
N n(¢ least for the quasicondensate density; for numerical reasons
which along with Eq.41) defines a parametric dependencethey m!ght be smaIIer. for other quanﬂt}e&Ng thus expect
of ng/n on T/T.. One may construct then a modified MF that umve_rsal expressions estabhshed.m .th's study are likely
theory result by substituting(X) in this relation with to work without limitations only' fomU S|gp|f|cantly smaller
70(X)/2— 1/4, see Eq(28), and 6(X) from Eq. (25). An than 0.1. To understand the situation with the quantum cor-

analogous expression far. is obtained by replacindi(X rections quantitativgly, we compare in Fig. 8 our results for
with gg(xl; Xp ! 0! ! y replacing(X) ny/n at mU=0.2 with the previously reportefl5] results

In Fig. 6, we show the comparison between the MF Solu_for the quantum lattice modgl8]. The comparison suggests
tion and thé data for small effective interactiomJ=10"1, i "‘.‘tT.NTC' thg quantum co.rrection to the quasicondgnsate
1072, 10°3, 10°5. We see that the fluctuation region is stil Qensny is~muU (in relative unit$. The sign of the correction

of orderT, even formU=0.01—clearly that small coupling is negative, that is, we are dealing with a quantum depletion

parameter may not be obtained by going to the dilute IimitOf the quasicondensate.

for the gas of hard-core particles and thus any realistic dis-

cussion of the experimental data should involve the proper no/n
description of the fluctuation region. Even forU=0.01,
the familiar MF formulang/n~1—T/T, does not work at 0.8~
all—the slope keeps changing withand the leftmost slope
does not point tag/n=1. However, if one uses an exact 0.6
relation betweerT . andn, then the MF approach described
above is capable of reproducing the dataXor0.5. 0.4-
The other remark concerns the asymmetry of the fluctua- [
tion region afT<T; andT>T.. The minimum in the Fig. 1 o2k
plot for (X) and the agreement with the MF laws already )
suggest that the fluctuation region is much broader on the . . . .
normal side. When MF results fory(T) in Fig. 6 are ex- 0 05 1 15 27TT
trapolated to higher temperatures, the intersection with the ¢
temperature axis is still at=1.5T; for mU as small as FIG. 7. Temperature dependence bf/n for small mU
~10 5. We draw the same conclusion from thg/n plot =101, 1072, 10 3, 10 5. Points are connected with lines to guide

shown in Fig. 7: The decay of the quasicondensate densitthe eye. The dashed lines are the mean-field theory results.
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n,/nr described by our results very precisely. In experiments with
1— trapped gases, the quantity directly relevant to the experi-
M“\’\‘ mental setup is\(X) since it describes, according to Eg.

0.8 (10), the density profile in the trapping potential which is

smooth enough to guarantee the hydrostatic regime. In this
regime, the density variation over the mode-coupling radius

06 re~1/k. [the data of Ref[8] suggestr.~2/m(UT)¥3 is

0.4k small, and the coordinate dependence of density reduces to
t n=n(T,u(r)), wheren(T,u) is the homogeneous equation
ook of state,u(r) =V (r) +const, andVy, is the trapping po-

tential. It follows from Fig. 7 that fomU~ 102, the size of

L the fluctuation region on the normal side is of order unity.

0 0.5 1 15 /T, Thus when the density at the trap center is tuned to the criti-

cal point, practically the whole density profile finds itself in

FIG. 8. Temperature dependencengf/n for mU=0.2 derived  the fluctuation region where MF equations do not work.

from universal relationgfilled circles and simulated for the quan-
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