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Resonance theory of the crossover from Bardeen-Cooper-Schrieffer superfluidity to Bose-Einstein
condensation in a dilute Fermi gas
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We present a description of the behavior of a superfluid gas of fermions in the presence of a Feshbach
resonance over the complete range of magnetic field detunings. Starting from a resonance Hamiltonian, we
exploit a functional method to describe the continuous behavior from Bardeen-Cooper-Schrieffer to Bose-
Einstein condensation type superfluidity. Our results show an ability for a resonance system to exhibit a high
critical temperature comparable to the Fermi temperature. The results are derived in a manner that is shown to
be consistent with the underlying microscopic scattering physics.
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[. INTRODUCTION values we will present here appear to arise primarily from the
use of quite different two-body scattering parameters and a
The ability to cool a gas of fermionic atoms well into the distinct renormalization procedure.
regime of quantum degeneracy hints at the exciting possibil- The problem of describing a superfluid Fermi gas at all
ity of allowing one to study the mechanisms of superfluidity coupling strengths has been extensively studied in recent
in an entirely new contexfl]. Since these systems remain years, motivated by a desire to explain the properties of “ex-
extremely dilute and are not complicated by long-range Couetic” high-T. superconductors, whose behavior seems to lie
lomb interactions or lattice effects, cold degenerate gaseis a region somewhere between BCS superconductivity and
seem ideal for the study of the fundamental physics behin@ose-Einstein condensatigBEC). An early description of
the exotic behavior of superfluidity. Unfortunately, tempera-the crossover from BCS to BEC superconductivity was put
tures of around 0B are the current state of the art in cool- forth by Noziges and Schmitt-RinKNSR) [14], after the
ing [1—6]. To obtain such high critical temperatures a strongpioneering work of Eaglegl5] and Legget{16], and later
coupling mechanism is required forcing the theoretical deexpanded upon by various authdis7-19. A functional
scription to extend beyond the standard Bardeen-Coopegnalysis of the crossover behavior, which is the method that
Schrieffer(BCS approach. we will employ, was equated to the NSR method by Rand-
Several theoretical papers have studied the effects of ineriaet al. [19]. We will adapt this method to a resonant sys-
creasing the two-particle interactiof$—9], characterizing tem as necessary to describe the relevant physics of super-
the coupling processes by large negative scattering lengthBuidity in dilute atomic gases. It should be stressed that our
We have focused in detail upon a related yet distinct apmethod contains the multichannel interatomic couplings in-
proach[10], which is to significantly increase the interatomic trinsic to the Feshbach resonance. This was not considered in
couplings by making use of a Feshbach resonance. The difsfrevious calculations in the context of condensed matter sys-
ference is that, in the neighborhood of the resonance, theems.
interactions can no longer be adequately described by a scat-
tering length, since the scattering length diverges as one ap- Il. RESONANT ACTION
proaches the resonance. This is an artifact of the approxima- .
tions made in formulating the theory since the full energy- e consider the Feshbach resonafg for s:wave scat-
dependent scattering T-matrix, which is the true descriptor oféfing of atoms in the lowest two hyperfine states of a fermi-
the two-particle interactions, does not diverge at finite scatOnic alkali atom, denoted symbolically hye{T,|}. Fora
tering energy. This leads us to explicitly incorporate thehomogeneous system we have the following generalized
physics of the resonance into our microscopic description offamiltonian:
the interatomic couplings. A much more detailed discussion
of this can be found in Ref10]. A=, J YT (Ay— w) i, (x)d3x
So far, we have not discussed in detail the role of fluctua- o
tions, which can have a significant effect on the critical be-
havior [11]. How we incorporate these fluctuations proves +, j Yh OO0 (Hm =2+ ) thn (X)X
crucial in describing the physics correctly within the cross- i ! ! !
over regime where we find a significant population of tightly
bqund composite particles. T.he ai_m, therefore, of this paper +J U(x—x’)zﬁ(x)w](x’)wl(x’)sz(x)dgx d3x’
will be to account for fluctuations in such a way as to prop-

erly describe the behavior of a superfluid Fermi gas at all X+ X'

detunings from the resonance. Recently, a complimentary +2 f gj(x—x’)zp,’;_(T) b (X) iy (x")
treatment was independently developed by Ohashi and Grif- ! :

fin [13]. The slight quantitative differences between their re-

sults for the critical superfluid transition temperature and the +H.c.|d®xd3x’, (1)
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where the operator&f, (¢,) create(annihilate fermions at _ q° .
x=(x,t), and z,/;,Tnj (¢mj) create (annihilate composite SM:Z 'U_m_”ﬁzf“ b (@)b;(q)
bosons. The free dispersion Hamiltonian for fermions

(bosong is H,, (Hmj) andv; is the detuning of th¢th mo- _ 1 2 | gj[bj*(Q)al(pl)aT(pz)

lecular state from the collision continuum. The collisional VBV a=p1+p2 i
interactions are described by both background fermion scat- . . .
tering (U) and an interconversion between composite bosons +aj(p2)aj (pyby (a)]. )

and fermion pairs g;).

Functional methods prove to be especially convenient irin deriving Eqs.(4) and(5) we have inserted contact poten-
describing the thermodynamics of the resonant system. Fortials for the couplingsU(x—x")—U&(x—x') and g;(x
finite temperature field theory, the connection with statistical—X") —g;8(x—x"). The full partition function for our reso-
mechanics is made by Wick rotating the time coordinatenant system, under the model Hamiltonian of E2), can
t— —ir so that one works in terms of the spatial coordinatenow be written as
x and temperature [21]. In this space, we define the action

in the usual way, z—f (H Da*Da

s=2 foﬁdrf d3x¢|T(X,T)aTzﬂ|(X,T)—foﬁﬂ(T)dT,

fj[ Db}‘Dbj)eSBcs+SM, 6)

with the functional integralDc=II;dc', ranging over all
Fermi and Bose fields.

where the sum il runs over both the Fermi and the Bose
degrees of freedom. In this functional formulation we treat Ill. SADDLE-POINT APPROXIMATION

the fermion fieldsy, as Grassmann variabl¢22] and the From the form of the action in Eq6), it should be ap-

composite Bos.e f|eld$mj as classm:?ll fields. . arent that all of the resonant contributions are contained
_ Let us consider a system comprised of fermions at SOMithin the molecular action. In practice this gives rise to the
finite temperaturer inside a box of volumeV (for conve-  iieqral of a displaced Gaussian that can be easily evaluated.
nience, let us work in the set of units whete-k,=1). By  after integrating out the molecular degrees of freedom, we

imposing periodic boundary conditions upon the fields  5re |eft with the partition function:
and 1,//mj, we form the following Fourier series expansions

= 2 L * S, 4
¢(r(X17)=(BV)7l/2kZ ei(“’”p'x)a(,(p), Z (H ZBj(qJ/4m+vj 2#))f Da] Da,escs, 7

®) Here ZBj(qu/4m+ v;j—2u) is a Bose partition function de-

P, (X, 7)=(BV) VZY, erranp (q), scribing the formation of bound molecules aBgtg is the

av BCS action with a potential that is now dependent on both
thermal frequencies and momentum. The interaction poten-
tial in the BCS action is, therefore, modified in the presence
of a Feshbach resonance in the following way:

with even thermal(Matsubara frequencies for the bosons
(v=2mn/pB, wheren is an integer and odd frequencies for
the fermiond w=2m(n+1)/8], to preserve the particle sta-
tistics. Herea, (p) annihilates a fermion ap=(k,w) and
b;(q) annihilates a molecule at¢(q, »).

By making use of the above transformation, E8), we
may write out the action for the resonant system in terms of

the Fourier coefficients,,(p) and b;(q). In order to help . " .
clarify the following calculation, we split the resulting reso- With the above partition function, Eg7), we may go on to

nant action into two parts, the first being the usual BCScaIculate 6.‘” t'hermodyngmic propgrties of i.n'terest. Here, we
action: are primarily interested in calculating the critical temperature

of the superfluid phase transition. This can be done by solv-

2
Uu—u->, 9

—. ()
i qj2/4m+ vi—2u—iv

p2 ing for the gap and number equation, and then self-
SBcszE (iw— 2—+,u az(p)as(p) consistently solving these two equations for both the chemi-
P m cal potential and the critical temperature. The procedure is
1 straightforward since the full resonant calculation has been
~ 5V Uat (py)al(p2)a (ps)a;(pa). reduced to the usual BCS calculation, only with a more com-
BV pi+p3=pa+pa plicated potential. Following Popov’s derivati¢@2], intro-

(4)  ducing the complex auxiliary Bose fiett{q) and expanding

about the neighborhood of its zero valiwehich is equivalent

The remaining part of the action we will label the molecularto saying that we expand about the zero of the gap figar
action we derive the gap equation at the critical point
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tani B(k?/2m— p)/2 1
A L oS
K 2(k212m— ) S Bl Y —2p) _ 1 -

1

1= A02m=) 1

g?
-U+ J
Ej: vi—2up

The second self-consistent equation, the number equation, is 4 E il 1— . 13
found in the saddle-point approximation by expanding the B & n ogl1-x(aiw)]. (13
action to lowest order, i.eg(q)=c*(q)=0, and using the

thermodynamic identitN=—J In Z/du giving This inclusion of the first order fluctuations introduces a
1 1 population of atom pairsN,, that behave like bosons. We
NZZE T —w— +22 S e a are now able to solve for the fluctuation corrected critical
Tk ef =1 K ef M+l temperature from a self-consistent solution of E@3.and
10 (13,

Due to the contact form of the couplings that we have
chosen, however, we are immediately plagued with problems
of divergences in our equations. This can be remedied by a
proper renormalization, which means replacing the “bare”
couplings and detunings by the correct renormalized forms
i . : . depending on the actual physical parameters as well as a
limit (small negative scattering lengthout diverges as the momentum cutofiK,,,. This same procedure is needed to

scattering length grows, and is wholly inapplicable for POSI- - ormalize the usual, nonresonant BCS thda] and is

tive scattering lengths. The reason for this is that the primar one by relating the bare potential to the two-particle scat-
mechanism for the phase transition within the weak couplinéj ne by relating pOte WO-p ;
ering matrix, T, through the Lippman-Schwinger equation.

BCS limit is the formation and disassociation of Cooper " o ) ghn
pairs. As the coupling increases the particles tend to pair uphis leads to a renormalization of the couplinglds-T'U,

at higher and higher temperatures which means that the critivhere the bar notation represents a bare parameter. \We make
cal transition is no longer signaled by the formation of Coo-the definition a=mK_,/(27%) and introduce the dimen-

per pairs, but rather by a coherence across the sample causgdnless factol’=(1— «U) 1. This renormalization incor-

by condensation of preformed Cooper pairs. Since we arporates the true microscopic physics into the problem, re-
interested in describing the resonant system at all detuningsjoving the unphysical divergence.

the equations that we have derived so far are insufficient For the resonant case, a more sophisticated approach is
because they do not account for this process. We shouldequired, which we have extensively studied previo(i$.
therefore, next focus on how to more accurately incorporatén the case of a single resonange., thej sum has only a

Thus our number equation counts all free fermiadss, plus
an additional boson populatiod,. Equations(9) and (10)
provide for us a set of equations for determinihgand x. at
the critical point. In the usual BCS theory, this level of ap-
proximation proves reasonable for calculatihgin the BCS

atom pairing into our model. single term the renormalization is performed by the follow-
ing relations:U=T1'U, g=I'g, andv= v+ agg. The chemi-
IV. BEYOND THE SADDLE-POINT APPROXIMATION cal potential of each atomic state is modified fio=pu

To account for fluctuations in the fermion field, we follow —(T(K)ny to include the proper mean-field shifts induced
the method of Nozies and Schmitt-Rink14] in its func- b)/ a.II two-body scattering processes, whepes the_z Fermi
tional form as put forth by Randerit al.[19]. This proce- distribution, T(K) is the two-body scattering matrix for the
dure will introduce a next order correction to the saddle poin}leson""nt systelfl0], and() denotes an averaging. This shift,
calculation of the previous section. By expanding the actior’oWeVer, is sufficiently small to neglect; inclusion has dem-
to second order ire(g), and then calculating the number onstrated corrections of the order of 1% or less. By re_placmg
equation in the same way as was done when deriving E he bare values in Eqg9) and(13) with the renormalized
(10), we introduce an additional population into the equation Ya/ues all of the results to be discussed have been shown to
The action becomes be independent of the introduced momentum cukQff; .
The renormalization of the resonance theory forces us to
take a closer look at the bound state physics of the system. In
* ~ 2
S(e(a),c (Q))BCS’NSBCS’(O’OH%Z lc(@)*x(@), (1D Fig. 1 we show the bound state energies for a single reso-
nance system with a positive background scattering length.

where we have defined the auxiliary functig(q) as The figure results from a coupled square well calculation of
5 the bound state energigk0] and shows the avoided crossing
B E 9gj of two molecular states. The upper state behaves to a fairly
x(@)=f U= = q? _ good approximation aB,=(maZ;) ~*, which is the molecu-
er vi—2pu—iw lar binding energy regularly associated with a contact inter-
action[23]. The lower state, however, is offset from the de-
1—f(eq+1) —Fl€q)—k) tuning by an energy- « and goes linear with the detuning.

X > :
kK €q)+kt Eqr-k— 1o

(120 e find a similar behavior as in the lower state in the first
term of Eq.(13). Taking the cutoff to infinity, which is jus-
Here f(e) is the Fermi distribution function and tified since this term does not diverge, the renormalized de-

ex=k2/2m— . The resulting modified number equation is tuning approaches— v—g?/U. This produces a constant

043604-3



MILSTEIN, KOKKELMANS, AND HOLLAND PHYSICAL REVIEW A 66, 043604 (2002

0

Before we present the full crossover solution for the case
of %%, let us look at the analytical solutions to E¢8) and
(13) in the strong(BEC) and weak(BCS) coupling regimes.
We will first turn our attention to the weak couplif@CS
regime. In this limit we would expect only free fermions to
contribute to the population, so from E@L3) we find that
the chemical potential is at the Fermi surfageE). With
this information, we solve the gap equation for the critical
temperature. The result is the usual exponential dependence
on the effective scattering length

1}

2t

_af

-4F

E, (mK)

-5k

8 _
Te/Te~—e" % ex : (14

2kF| aeﬁ|

wherey~0.5772 is the Euler-Mascheroni constaa s the
Fermi wave number, and.4<0 is the effective scattering

FIG. 1. Binding energies fof%K resonance at positive back- 1€ngth produced by the Feshbach resonamgg=ap(1
ground scattering length,g=176a,. A single resonance with a —«klv). o ) . ]
positive background scattering length produces an effective scatter- The other limit we may consider is the strong coupling
ing lengthaey=an(1— «/v), as seen in the inset where we plot the (BEC) limit. When the argument of the tanh function in the
effective scattering length vs detunifipe dotted line is at 175). gap equation(9) becomes sufficiently negative, it is a good
A positive a,q, which is larger than the range of the potential, approximation to use its asymptotic value of unity. What this
implies that another bound state is not far below thresiida&sh-  means physically is that the fermion statistics are unimpor-
dotted ling. In combination with the Feshbach statiashed detun-  tant in determining the value of the gap. This allows us to
ing line) this results in an avoided crossing and the molecular statgolve the gap equation for the chemical potential as a func-
of interest asymptotes quickly to the dash-dotted line. tion of detuning. In the limit of large negative detuning we

o find that u— —E,/2, WhereEb~l/ma§ﬂ. Within this limit
shift of g/U=« between the detuning and the molecularthe entire population has been converted to molecules and
binding energy. Keeping this term in the number equatiorwe can solve the number equation to get the BEC condensa-
would incorrectly cause a transfer of the entire populationtion temperature of ./ Tg~0.218.
into the wrong molecular state. In order to avoid this un-
wanted behavior we set this term to zero, iN,=0. In the V. NUMERICAL RESULTS
case of a negative background scattering length, we would .
not have encountered this problem, and only one molecular. To study the transition between the BEC and BCS re-

state would have appear¢ske Fig. 2. We will show in the gimes, we numerically solye Eqe) and (13? for “K. The
next section that the pairing term fully accounts for the cor-Slngle resonance curve is produced using a background

rect population of molecules in this system wih,>0. ig?}ts:]'j% length of 12 and «=7.68 G at a density of

0 Figure 3 shows the critical temperature as a function of
magnetic field detuning. The crossover calculation clearly
merges with the BEC result for large-positive detunings and
smoothly connects between positive and negative detunings,
limiting to the Bose condensation temperature Tof/ T¢
~0.218 for large negative detuning. This approach gives a
maximum near zero detuning {/Tg~0.26), but the maxi-
mum critical temperature we find is less than the predictions
of the HFB approach in our earlier papers.(Tg~0.5)
[24]. We believe this is due to the inclusion of fluctuations in
the beyond saddle point approximation which act to reduce
the gap at zero temperature and therefore the critical tem-
perature for the formation of a superfluid.

Figure 4 shows the chemical potential as a function of
detuning, beginning at the Fermi energy for positive detun-
ing and approaching half the bound state energy at large

FIG. 2. Same as Fig. 1, but now for an artifical situation with Negative detuning.— —E/2. Figure 5 shows the change in
ap,;<0. A resonance system with a negative background scatteringopulation as a function of detuning. For large positive de-
length has only one bound state relatively close to threshold, whickuning, the system is composed solely of free fermions. As
is shifted to the positive of the detuning. The next bound state in théhe detuning is decreaséice., from positive to negatiyehe
potential is too far away to be of any significant influence. The linecontribution of the fermions begins to decrease until all the
styles are the same as for Fig. 1. population is transferred into the atom pairsvat —0.5 G.
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FIG. 3. Critical temperatur&/Tg as a function of detuning in FIG. 5. The fraction of the total population as a function of
gauss. The dashed line corresponds to the usual BCS solutioetyningy in gauss. The dot-dashed line corresponds to the pairing
which limits to the full crossover theory at large positive detuning. fr5ction N, and the solid to the free fermion fractidiy .

At negative detuningT, drops to the BEC condensation tempera-
ture of T, /Tg~0.218. mum is below the value predicted by the Hartree-Fock-
Bogoliubov theory for the uniform gas derived in earlier
The chemical potential is then equal toE,/2 and we may  work. This result is a direct indication of the important role
identify the atom pairs from that point as the molecules. Thef preformed atom pairs which are neglected abbyén the
superfluid behavior then comes from the condensation ofartree-Fock-Bogoliubov theory. Such atomic pairing is rep-
these molecules, which are no longer disassociating into fregesented as fluctuations in the fermion pairing field and
fermions. modify the elementary excitation spectrum even in the nor-
mal phase. We emphasize, however, that in this paper we
VI. CONCLUSION have only accounted for the pairing physics by including the
second order fluctuations in order to be able to account for

We have presented a crossover model to describe the bgre correct molecular binding energy as derived from the
havior of a gas of fermionic atoms for all detunings from atwo-body scattering physics. While the inclusion of this or-
Feshbach resonance. The model is able to smoothly connegér of fluctuations is the main ingredient necessary to encap-
between the BCS and BEC regimes and accounts for thgylate essential aspects of the behavior of the system in the
microscopic two-body physics throughout. We find a smootherossover regime, it would be interesting to extend the ap-
behavior of the transition temperature in the entire Crossovefroach to consider the effect of higher order interactions
regime, with a maximum near zero detuning ©f/T+  which have not been accounted for. For example, we have
~0.26, and agreeing with the appropriate BEC and BCSnly included interactions between free fermion atoms, ne-
behaviors in the respective large detuning limits. The maxiglecting all other contributions such as the interactions be-
tween pairs. This is most clearly seen in the BEC limit,
where our solution adopts the thermodynamic behavior of
the ideal Bose gas, rather than the dilute interacting Bose
gas. A more sophisticated treatment could extend our ap-
proach to consider all these factors. Nevertheless, the results
we have presented here illustrate the realistic potential in this
realizable system for increasing the superfluid transition tem-
perature, with the aid of the Feshbach resonance, to a signifi-
cant fraction of the Fermi temperature. This is an important
and timely aspect from a practical perspective because the
maximum value we predict is in the region of the tempera-
ture range which is currently experimentally accessible.
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