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Resonance theory of the crossover from Bardeen-Cooper-Schrieffer superfluidity to Bose-Einste
condensation in a dilute Fermi gas

J. N. Milstein, S. J. J. M. F. Kokkelmans, and M. J. Holland
JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440

~Received 15 April 2002; revised manuscript received 19 July 2002; published 10 October 2002!

We present a description of the behavior of a superfluid gas of fermions in the presence of a Feshbach
resonance over the complete range of magnetic field detunings. Starting from a resonance Hamiltonian, we
exploit a functional method to describe the continuous behavior from Bardeen-Cooper-Schrieffer to Bose-
Einstein condensation type superfluidity. Our results show an ability for a resonance system to exhibit a high
critical temperature comparable to the Fermi temperature. The results are derived in a manner that is shown to
be consistent with the underlying microscopic scattering physics.
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I. INTRODUCTION

The ability to cool a gas of fermionic atoms well into th
regime of quantum degeneracy hints at the exciting poss
ity of allowing one to study the mechanisms of superfluid
in an entirely new context@1#. Since these systems rema
extremely dilute and are not complicated by long-range C
lomb interactions or lattice effects, cold degenerate ga
seem ideal for the study of the fundamental physics beh
the exotic behavior of superfluidity. Unfortunately, tempe
tures of around 0.2TF are the current state of the art in coo
ing @1–6#. To obtain such high critical temperatures a stro
coupling mechanism is required forcing the theoretical
scription to extend beyond the standard Bardeen-Coo
Schrieffer~BCS! approach.

Several theoretical papers have studied the effects o
creasing the two-particle interactions@7–9#, characterizing
the coupling processes by large negative scattering leng
We have focused in detail upon a related yet distinct
proach@10#, which is to significantly increase the interatom
couplings by making use of a Feshbach resonance. The
ference is that, in the neighborhood of the resonance,
interactions can no longer be adequately described by a
tering length, since the scattering length diverges as one
proaches the resonance. This is an artifact of the approx
tions made in formulating the theory since the full energ
dependent scattering T-matrix, which is the true descripto
the two-particle interactions, does not diverge at finite sc
tering energy. This leads us to explicitly incorporate t
physics of the resonance into our microscopic description
the interatomic couplings. A much more detailed discuss
of this can be found in Ref.@10#.

So far, we have not discussed in detail the role of fluct
tions, which can have a significant effect on the critical b
havior @11#. How we incorporate these fluctuations prov
crucial in describing the physics correctly within the cros
over regime where we find a significant population of tigh
bound composite particles. The aim, therefore, of this pa
will be to account for fluctuations in such a way as to pro
erly describe the behavior of a superfluid Fermi gas at
detunings from the resonance. Recently, a complimen
treatment was independently developed by Ohashi and G
fin @13#. The slight quantitative differences between their
sults for the critical superfluid transition temperature and
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values we will present here appear to arise primarily from
use of quite different two-body scattering parameters an
distinct renormalization procedure.

The problem of describing a superfluid Fermi gas at
coupling strengths has been extensively studied in rec
years, motivated by a desire to explain the properties of ‘‘
otic’’ high-Tc superconductors, whose behavior seems to
in a region somewhere between BCS superconductivity
Bose-Einstein condensation~BEC!. An early description of
the crossover from BCS to BEC superconductivity was
forth by Nozières and Schmitt-Rink~NSR! @14#, after the
pioneering work of Eagles@15# and Leggett@16#, and later
expanded upon by various authors@17–19#. A functional
analysis of the crossover behavior, which is the method
we will employ, was equated to the NSR method by Ran
eria et al. @19#. We will adapt this method to a resonant sy
tem as necessary to describe the relevant physics of su
fluidity in dilute atomic gases. It should be stressed that
method contains the multichannel interatomic couplings
trinsic to the Feshbach resonance. This was not considere
previous calculations in the context of condensed matter
tems.

II. RESONANT ACTION

We consider the Feshbach resonance@20# for s-wave scat-
tering of atoms in the lowest two hyperfine states of a ferm
onic alkali atom, denoted symbolically bysP$↑,↓%. For a
homogeneous system we have the following generali
Hamiltonian:

Ĥ~ t !5(
s

E cs
†~x!~Ĥs2m!cs~x!d3x

1(
j
E cmj

† ~x!~Ĥmj
22m1n j !cmj

~x!d3x

1E U~x2x8!c↑
†~x!c↓

†~x8!c↓~x8!c↑~x!d3x d3x8

1(
j
E Fgj~x2x8!cmj

† S x1x8

2 Dc↓~x!c↑~x8!

1H.c.Gd3x d3x8, ~1!
©2002 The American Physical Society04-1
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where the operatorscs
† (cs) create~annihilate! fermions at

x5(x,t), and cmj

† (cmj
) create ~annihilate! composite

bosons. The free dispersion Hamiltonian for fermio
~bosons! is Ĥs (Ĥmj

) andn j is the detuning of thej th mo-
lecular state from the collision continuum. The collision
interactions are described by both background fermion s
tering ~U! and an interconversion between composite bos
and fermion pairs (gj ).

Functional methods prove to be especially convenien
describing the thermodynamics of the resonant system. F
finite temperature field theory, the connection with statisti
mechanics is made by Wick rotating the time coordin
t→2 i t so that one works in terms of the spatial coordin
x and temperaturet @21#. In this space, we define the actio
in the usual way,

S5(
l
E

0

b

dtE d3x c l
†~x,t!]tc l~x,t!2E

0

b

Ĥ~t!dt,

~2!

where the sum inl runs over both the Fermi and the Bo
degrees of freedom. In this functional formulation we tre
the fermion fieldscs as Grassmann variables@22# and the
composite Bose fieldscmj

as classical fields.
Let us consider a system comprised of fermions at so

finite temperaturet inside a box of volumeV ~for conve-
nience, let us work in the set of units where\5kb51). By
imposing periodic boundary conditions upon the fieldscs

andcmj
, we form the following Fourier series expansions

cs~x,t!5~bV!21/2(
k,v

ei (vt1p•x)as~p!,

~3!

cmj
~x,t!5~bV!21/2(

q,v
ei (vt1q•x)bj~q!,

with even thermal~Matsubara! frequencies for the boson
(v52pn/b, wheren is an integer! and odd frequencies fo
the fermions@v52p(n11)/b#, to preserve the particle sta
tistics. Hereas(p) annihilates a fermion atp5(k,v) and
bj (q) annihilates a molecule at q5(q,v).

By making use of the above transformation, Eq.~3!, we
may write out the action for the resonant system in terms
the Fourier coefficientsas(p) and bj (q). In order to help
clarify the following calculation, we split the resulting res
nant action into two parts, the first being the usual B
action:

SBCS5(
p,s

S iv2
p2

2m
1m Das* ~p!as~p!

2
1

bV (
p11p25p31p4

Ua↑* ~p1!a↓* ~p2!a↓~p3!a↑~p4!.

~4!

The remaining part of the action we will label the molecu
action
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SM5(
q, j

S iv2
q2

4m
2n j12m Dbj* ~q!bj~q!

2
1

AbV
(

q5p11p2 , j
gj@bj* ~q!a↓~p1!a↑~p2!

1a↑* ~p2!a↓* ~p1!bj* ~q!#. ~5!

In deriving Eqs.~4! and ~5! we have inserted contact poten
tials for the couplingsU(x2x8)→Ud(x2x8) and gj (x
2x8)→gjd(x2x8). The full partition function for our reso-
nant system, under the model Hamiltonian of Eq.~2!, can
now be written as

Z5E S)
s

Das* DasD S)
j

Dbj* Dbj DeSBCS1SM, ~6!

with the functional integral,Dc[) idci , ranging over all
Fermi and Bose fields.

III. SADDLE-POINT APPROXIMATION

From the form of the action in Eq.~6!, it should be ap-
parent that all of the resonant contributions are contai
within the molecular action. In practice this gives rise to t
integral of a displaced Gaussian that can be easily evalua
After integrating out the molecular degrees of freedom,
are left with the partition function:

Z5S)
j

ZBj
~qj

2/4m1n j22m! D E Das* DaseSBCS8. ~7!

Here ZBj
(qj

2/4m1n j22m) is a Bose partition function de

scribing the formation of bound molecules andSBCS8 is the
BCS action with a potential that is now dependent on b
thermal frequencies and momentum. The interaction po
tial in the BCS action is, therefore, modified in the presen
of a Feshbach resonance in the following way:

U→U2(
j

gj
2

qj
2/4m1n j22m2 iv

. ~8!

With the above partition function, Eq.~7!, we may go on to
calculate all thermodynamic properties of interest. Here,
are primarily interested in calculating the critical temperatu
of the superfluid phase transition. This can be done by s
ing for the gap and number equation, and then s
consistently solving these two equations for both the che
cal potential and the critical temperature. The procedure
straightforward since the full resonant calculation has b
reduced to the usual BCS calculation, only with a more co
plicated potential. Following Popov’s derivation@22#, intro-
ducing the complex auxiliary Bose fieldc(q) and expanding
about the neighborhood of its zero value~which is equivalent
to saying that we expand about the zero of the gap nearTc),
we derive the gap equation at the critical point
4-2
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15S 2U1(
j

gj
2

n j22m D(
k

tanh@b~k2/2m2m!/2#

2~k2/2m2m!
. ~9!

The second self-consistent equation, the number equatio
found in the saddle-point approximation by expanding
action to lowest order, i.e.,c(q)5c* (q)50, and using the
thermodynamic identityN52] ln Z/]m giving

N52(
j ,k

1

eb(k2/4m1n j 22m)21
12(

k

1

eb(k2/2m2m)11
.

~10!

Thus our number equation counts all free fermions,Nf , plus
an additional boson populationNb . Equations~9! and ~10!
provide for us a set of equations for determiningTc andm at
the critical point. In the usual BCS theory, this level of a
proximation proves reasonable for calculatingTc in the BCS
limit ~small negative scattering length!, but diverges as the
scattering length grows, and is wholly inapplicable for po
tive scattering lengths. The reason for this is that the prim
mechanism for the phase transition within the weak coup
BCS limit is the formation and disassociation of Coop
pairs. As the coupling increases the particles tend to pai
at higher and higher temperatures which means that the c
cal transition is no longer signaled by the formation of Co
per pairs, but rather by a coherence across the sample ca
by condensation of preformed Cooper pairs. Since we
interested in describing the resonant system at all detuni
the equations that we have derived so far are insuffic
because they do not account for this process. We sho
therefore, next focus on how to more accurately incorpor
atom pairing into our model.

IV. BEYOND THE SADDLE-POINT APPROXIMATION

To account for fluctuations in the fermion field, we follo
the method of Nozie`res and Schmitt-Rink@14# in its func-
tional form as put forth by Randeriaet al. @19#. This proce-
dure will introduce a next order correction to the saddle po
calculation of the previous section. By expanding the act
to second order inc(q), and then calculating the numbe
equation in the same way as was done when deriving
~10!, we introduce an additional population into the equati
The action becomes

S„c~q!,c* ~q!…BCS8'SBCS8~0,0!1(
q

uc~q!u2x~q!, ~11!

where we have defined the auxiliary functionx(q) as

x~q!5S U2(
j

gj
2

q2

4m
1n j22m2 ivD

3(
k

12 f ~e~q/2!1k!2 f ~e~q/2!2k!

e~q/2!1k1e~q/2!2k2 iv
. ~12!

Here f (ek) is the Fermi distribution function and
ek5k2/2m2m. The resulting modified number equation is
04360
, is
e

-
ry
g
r
p
ti-
-
sed
re
s,

nt
ld,
te

t
n

q.
.

N52(
j ,k

1

eb(k2/4m1n j 22m)21
12(

k

1

eb(k2/2m2m)11

2
1

b (
q,v

]

]m
log@12x~q,iv!#. ~13!

This inclusion of the first order fluctuations introduces
population of atom pairs,Np , that behave like bosons. W
are now able to solve for the fluctuation corrected critic
temperature from a self-consistent solution of Eqs.~9! and
~13!.

Due to the contact form of the couplings that we ha
chosen, however, we are immediately plagued with proble
of divergences in our equations. This can be remedied b
proper renormalization, which means replacing the ‘‘bar
couplings and detunings by the correct renormalized for
depending on the actual physical parameters as well a
momentum cutoffKcut . This same procedure is needed
renormalize the usual, nonresonant BCS theory@21# and is
done by relating the bare potential to the two-particle sc
tering matrix,T, through the Lippman-Schwinger equatio
This leads to a renormalization of the coupling asU5GŪ,
where the bar notation represents a bare parameter. We m
the definition a5mKcut /(2p2) and introduce the dimen
sionless factorG5(12aŪ)21. This renormalization incor-
porates the true microscopic physics into the problem,
moving the unphysical divergence.

For the resonant case, a more sophisticated approac
required, which we have extensively studied previously@10#.
In the case of a single resonance~i.e., thej sum has only a
single term! the renormalization is performed by the follow
ing relations:U5GŪ, g5Gḡ, andn5 n̄1agḡ. The chemi-
cal potential of each atomic state is modified tom5m̄
2^T(k)nk& to include the proper mean-field shifts induce
by all two-body scattering processes, wherenk is the Fermi
distribution, T(k) is the two-body scattering matrix for th
resonant system@10#, and^& denotes an averaging. This shif
however, is sufficiently small to neglect; inclusion has de
onstrated corrections of the order of 1% or less. By replac
the bare values in Eqs.~9! and ~13! with the renormalized
values, all of the results to be discussed have been show
be independent of the introduced momentum cutoffKcut .

The renormalization of the resonance theory forces u
take a closer look at the bound state physics of the system
Fig. 1 we show the bound state energies for a single re
nance system with a positive background scattering len
The figure results from a coupled square well calculation
the bound state energies@10# and shows the avoided crossin
of two molecular states. The upper state behaves to a fa
good approximation asEb5(maeff

2 )21, which is the molecu-
lar binding energy regularly associated with a contact int
action @23#. The lower state, however, is offset from the d
tuning by an energy;k and goes linear with the detuning
We find a similar behavior as in the lower state in the fi
term of Eq.~13!. Taking the cutoff to infinity, which is jus-
tified since this term does not diverge, the renormalized
tuning approachesn→ n̄2ḡ2/Ū. This produces a constan
4-3
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shift of ḡ2/Ū5k between the detuning and the molecu
binding energy. Keeping this term in the number equat
would incorrectly cause a transfer of the entire populat
into the wrong molecular state. In order to avoid this u
wanted behavior we set this term to zero, i.e.,Nb50. In the
case of a negative background scattering length, we wo
not have encountered this problem, and only one molec
state would have appeared~see Fig. 2!. We will show in the
next section that the pairing term fully accounts for the c
rect population of molecules in this system withabg.0.

FIG. 1. Binding energies for40K resonance at positive back
ground scattering lengthabg5176a0. A single resonance with a
positive background scattering length produces an effective sca
ing lengthaeff5abg(12k/n), as seen in the inset where we plot th
effective scattering length vs detuning~the dotted line is at 176a0).
A positive abg, which is larger than the range of the potenti
implies that another bound state is not far below threshold~dash-
dotted line!. In combination with the Feshbach state~dashed detun-
ing line! this results in an avoided crossing and the molecular s
of interest asymptotes quickly to the dash-dotted line.

FIG. 2. Same as Fig. 1, but now for an artifical situation w
abg,0. A resonance system with a negative background scatte
length has only one bound state relatively close to threshold, w
is shifted to the positive of the detuning. The next bound state in
potential is too far away to be of any significant influence. The l
styles are the same as for Fig. 1.
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Before we present the full crossover solution for the ca
of 40K, let us look at the analytical solutions to Eqs.~9! and
~13! in the strong~BEC! and weak~BCS! coupling regimes.
We will first turn our attention to the weak coupling~BCS!
regime. In this limit we would expect only free fermions
contribute to the population, so from Eq.~13! we find that
the chemical potential is at the Fermi surface (m5EF). With
this information, we solve the gap equation for the critic
temperature. The result is the usual exponential depend
on the effective scattering length

Tc /TF'
8

p
eg22 expS 2p

2kFuaeffu
D , ~14!

whereg;0.5772 is the Euler-Mascheroni constant,kF is the
Fermi wave number, andaeff,0 is the effective scattering
length produced by the Feshbach resonanceaeff5abg(1
2k/n).

The other limit we may consider is the strong coupli
~BEC! limit. When the argument of the tanh function in th
gap equation~9! becomes sufficiently negative, it is a goo
approximation to use its asymptotic value of unity. What th
means physically is that the fermion statistics are unimp
tant in determining the value of the gap. This allows us
solve the gap equation for the chemical potential as a fu
tion of detuning. In the limit of large negative detuning w
find that m→2Eb/2, whereEb'1/maeff

2 . Within this limit
the entire population has been converted to molecules
we can solve the number equation to get the BEC conde
tion temperature ofTc /TF;0.218.

V. NUMERICAL RESULTS

To study the transition between the BEC and BCS
gimes, we numerically solve Eqs.~9! and ~13! for 40K. The
single resonance curve is produced using a backgro
scattering length of 176a0 and k57.68 G at a density of
1014 cm23.

Figure 3 shows the critical temperature as a function
magnetic field detuning. The crossover calculation clea
merges with the BEC result for large-positive detunings a
smoothly connects between positive and negative detuni
limiting to the Bose condensation temperature ofTc /TF
;0.218 for large negative detuning. This approach give
maximum near zero detuning (Tc /TF;0.26), but the maxi-
mum critical temperature we find is less than the predictio
of the HFB approach in our earlier papers (Tc /TF;0.5)
@24#. We believe this is due to the inclusion of fluctuations
the beyond saddle point approximation which act to red
the gap at zero temperature and therefore the critical t
perature for the formation of a superfluid.

Figure 4 shows the chemical potential as a function
detuning, beginning at the Fermi energy for positive detu
ing and approaching half the bound state energy at la
negative detuningm→2Eb/2. Figure 5 shows the change i
population as a function of detuning. For large positive d
tuning, the system is composed solely of free fermions.
the detuning is decreased~i.e., from positive to negative! the
contribution of the fermions begins to decrease until all
population is transferred into the atom pairs atn;20.5 G.
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The chemical potential is then equal to2Eb/2 and we may
identify the atom pairs from that point as the molecules. T
superfluid behavior then comes from the condensation
these molecules, which are no longer disassociating into
fermions.

VI. CONCLUSION

We have presented a crossover model to describe the
havior of a gas of fermionic atoms for all detunings from
Feshbach resonance. The model is able to smoothly con
between the BCS and BEC regimes and accounts for
microscopic two-body physics throughout. We find a smo
behavior of the transition temperature in the entire crosso
regime, with a maximum near zero detuning ofTc /Tf
;0.26, and agreeing with the appropriate BEC and B
behaviors in the respective large detuning limits. The ma

FIG. 3. Critical temperatureT/TF as a function of detuningn in
gauss. The dashed line corresponds to the usual BCS solu
which limits to the full crossover theory at large positive detunin
At negative detuning,Tc drops to the BEC condensation temper
ture of Tc /TF;0.218.

FIG. 4. Chemical potential as a function of detuningn in gauss.
For large negative detuning 2m approaches the bound state ener
of the molecular state. At increasing positive detuning, the chem
potential slowly approaches the Fermi energy.
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mum is below the value predicted by the Hartree-Fo
Bogoliubov theory for the uniform gas derived in earli
work. This result is a direct indication of the important ro
of preformed atom pairs which are neglected aboveTc in the
Hartree-Fock-Bogoliubov theory. Such atomic pairing is re
resented as fluctuations in the fermion pairing field a
modify the elementary excitation spectrum even in the n
mal phase. We emphasize, however, that in this paper
have only accounted for the pairing physics by including
second order fluctuations in order to be able to account
the correct molecular binding energy as derived from
two-body scattering physics. While the inclusion of this o
der of fluctuations is the main ingredient necessary to enc
sulate essential aspects of the behavior of the system in
crossover regime, it would be interesting to extend the
proach to consider the effect of higher order interactio
which have not been accounted for. For example, we h
only included interactions between free fermion atoms,
glecting all other contributions such as the interactions
tween pairs. This is most clearly seen in the BEC lim
where our solution adopts the thermodynamic behavior
the ideal Bose gas, rather than the dilute interacting B
gas. A more sophisticated treatment could extend our
proach to consider all these factors. Nevertheless, the re
we have presented here illustrate the realistic potential in
realizable system for increasing the superfluid transition te
perature, with the aid of the Feshbach resonance, to a sig
cant fraction of the Fermi temperature. This is an import
and timely aspect from a practical perspective because
maximum value we predict is in the region of the tempe
ture range which is currently experimentally accessible.
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FIG. 5. The fraction of the total population as a function
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