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Coherent pulse output from Bose-Einstein condensates in Wannier-Stark systems

M. Glück, F. Keck, and H. J. Korsch
Fachbereich Physik, Universita¨t Kaiserslautern, D-67653 Kaiserslautern, Germany

~Received 28 May 2002; revised 22 August 2002; published 25 October 2002!

The pulsed output from a Bose-Einstein condensate can be described using ordinary one-particle quantum
mechanics. The initial state is described in terms of Stark resonances truncated in momentum space. The states
obtained in this way resemble the normalizable scattering states defined in terms of Moshinsky functions. The
validity of this approach and the influence of the initial population on the pulse formation is discussed. Finally,
we describe an experimental setup to manufacture and observe pulsed output in Wannier-Stark systems.
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INTRODUCTION

Recently, experiments with Bose-Einstein condensa
~BECs! in a Wannier-Stark system@1# attracted much atten
tion. In these experiments, a Bose-Einstein condensat
rubidium atoms was created, which then was exposed to
optical potential of a standing laser wave. Additionally, t
gravitational force accelerates the atoms in thex direction. In
a good approximation, the system can be described by
one-dimensional Gross-Pitaevskii equation@2#

i\] tC5F p2

2M
1cosx1Mgx1UuCu2GC, ~1!

where M is the atomic mass,U describes the interactio
strength of the rubidium atoms, andg is the acceleration due
to gravity. ~A detailed introduction to the physics of BEC
can be found in Ref.@3#.! This nonlinear system shows ba
sically all the features found in the analysis of the line
equation, such as Bloch oscillations of the condensate@4–6#
or nonlinear Zener tunneling@7#. The system was also stud
ied in a tight-binding approximation@8#, neglecting the tun-
neling out of the potential, and thus the decay of the cond
sate.

Due to the gravitational force, the atoms in experiment@1#
tunnel out of the traps, and a sequence of falling drops
atoms is observed. Neglecting the nonlinear term in Eq.~1!,
we explain the experimental results in this paper by the pr
erties of a coherent superposition of Wannier-Stark re
nances. In fact, tunneling of BECs is influenced by the n
linear interaction@9#, however, the physics leading to th
experimental result@1# is already provided by single-particl
quantum mechanics. Indeed, the numerical studies@2,10#
show that for moderate densities of the condensate, the p
formation is only slightly modified by the nonlinear term
the Gross-Pitaevskii equation~1!.

The paper is organized as follows. In Sec. I we investig
the space-time decay of an initial state in a Stark system.
show that the wave function can be adequately describe
a superposition of resonances that are truncated in mom
tum or coordinate space. In Sec. II we discuss the prope
of a coherent superposition of Wannier-Stark resonance
is shown that the essential information about the decay ta
contained in an amplitude modulation factor. After a br
general discussion of this factor, we present numerical res
1050-2947/2002/66~4!/043418~11!/$20.00 66 0434
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for the decay of an initial state which models the experim
tal setup of Ref.@1#. Based on results on the decay
Wannier-Stark resonances in combined dc-ac fields prese
in Refs.@11,12#, we finally propose a slightly modified setu
that yields pulse output.

I. DECAY OF AN INITIAL WAVE FUNCTION

The aim of this section is to describe the space-time de
of an initial state that is localized aroundx50 in a Stark
system, i.e., a system that is influenced by an externa
field,

i\] tC5F p2

2M
1V~x!1FxGC, F>0. ~2!

The potentialV(x) is assumed to be bounded, therefore ea
initial state will decay. A direct expansion ofC(x) in terms
of resonance wave functions is inappropriate because
resonance states are not normalizable. Therefore the des
tion needs to be modified to take into account the finite
tension of the initial state. Recently, this problem was a
lyzed for decaying quantum systems with a finite-ran
scattering potential@13,14#. ~First steps in this direction can
already be found in textbooks, e.g., Ref.@15#.!

Let us adopt the approach of Ref.@14# to describe the
decay of Stark resonances in momentum space. In this
proach, the wave functionC(k,t) is expressed in terms o
stationary scattering statesCS(E). Let us fix these states b
their coordinate space asymptotics: limuxu→`CS(E,x)
5Ai„a(x2E/F)… with a5A3 2F\2. Let us furthermore intro-
duce two functionsg6(E) by

CS~E,k!5g6~E!C6~E,k!, ~3!

where the statesC6(E,k) asymptotically coincide with the
free solution,

lim
k→6`

C6~E,k!5expS i
\2k3

6F
2 i

Ek

F D . ~4!

Note that the definition of the stateC1(E,k) directly reflects
the way the resonance wave functions are calculated
scattering approach to Stark systems presented in R
@16–18#. The functionsg6(E) resemble the Jost functio
©2002 The American Physical Society18-1
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known from conventional scattering theory, i.e., they are
lated byg2(E* )5g1* (E); the scattering matrix is given b
their ratioS(E)5g2(E)/g1(E) and the scattering states a
normalized according to ^CS(E8)uCS(E)&
5g1(E)g2(E) d(E2E8). Expanding the initial state in the
scattering states,

C~k,t !5E
2`

`

dE
f ~E!

g1~E!g2~E!
CS~E,k!expS 2 i

Et

\ D ,

~5!

wheref (E)5^CS(E)uC(t50)&, and inserting definition~3!
yields

C~k,t !5E
2`

`

dE
f ~E!

g7~E!
C6~E,k!expS 2 i

Et

\ D . ~6!

Finally, we introduce the deviationw6(E,k) from the
asymptotic form by

C6~E,k!5w6~E,k!expS i
\2k3

6F
2 i

Ek

F D , ~7!

with limk→6`w6(E,k)51, which directly follows from Eq.
~4!. We will use this property in the following. Then th
integral ~6! takes the form

C~k,t !5E
2`

`

dE
f ~E!

g7~E!
w6~E,k!

3expS i
\2k3

6F
2 i

Ek

F
2 i

Et

\ D . ~8!

We are mainly interested in the properties of the decay
where the wave functions of the resonances can be app
mated by their asymptotic form. Therefore, let us assu
that uku is sufficiently large and replacew6(E,k) by its
asymptotic value. Then the wave function can be appro
mated as

C~k,t !5expS i
\2k3

6F DG6S k1
Ft

\ D , ~9!

whereG6(k) is the Fourier transform off (E)/g7(E),

G6~k!5E
2`

`

dE
f ~E!

g7~E!
expS 2 i

Ek

F D . ~10!

It follows that asymptotically the absolute squareuC(k,t)u2
is a function ofk1Ft/\. Thus, the wave function move
linearly in time to smaller momentak(t)5k02Ft/\, i.e., it
follows the free classical motion. Except the shift, the sha
of the wave function remains constant~see also the discus
sion on Airy wave packets in Ref.@19#!.

One can obtain Eq.~9! in a second way. Namely, w
expand the initial state in plane waves instead of scatte
states. If we then assume that the momenta are so l
enough that the potential can be neglected in compar
with the dc field, every plane wave with initial momentu
\k0 is accelerated to the plane wave with momentum\k0
04341
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2Ft. Representing the initial state by Eq.~9! with t50, the
equation correctly describes the evolution of the phases
the plane waves, too.

A. Relation to the resonances

Let us further evaluate Eq.~10!. The integrand
f (E)/g1(E) is an analytic function of the energy. It ha
poles at the zeros ofg1(E) and therefore at the poles of th
S matrix. If the initial wave functionC(k,0) has a compac
support,f (E) is an entire function in the complex plane an
does not provide additional poles. It follows that all poles
the integrandf (E)/g1(E) locate in the lower half of the
complex plane.

These properties suggest to evaluate the integral~10! with
the help of its residua, i.e., the poles of theS matrix. How-
ever, for this we need to know the asymptotic behavior of
integrand. Without knowing the analytical form of the fun
tion f (E)/g1(E), we are forced to make some assumptio
on its asymptotic behavior in order to proceed further.
particular, if we assume that the functionf (E)/g1(E) does
not influence the behavior of the integrand at infinity, t
integral yields the sum over the residua located within
appropriate contour. Explicitly, fork.0 the contour is
closed in the lower half of the complex energy plane, fok
,0 it is closed in the upper half. Therefore, we get

G1~k!5Q~k!(
n

An expS 2 i
Enk

F D , ~11!

whereQ(k) is the Heaviside function. The sum contains
polesEn5En2 iGn/2 of theS matrix ~note thatGn.0), and
the An are the residua off (E)/g1(E) at the poles. Inserting
this result in Eq.~9! yields

C~k,t !5Q~\k1Ft !(
n

An expS i
\2k3

6F
2 i

Enk

F
2 i

Ent

\ D .

~12!

The terms of the sum are actually proportional to t
asymptotic form of the resonance wave functionsCn(k,t).
Thus, we can equivalently expand the wave function as

C~k,t !5Q~\k1Ft !(
n

BnCn~k,t !, ~13!

with new coefficientsBn . Therefore, in the Stark case w
can describe the decay of an initial state by a superposi
of resonances, where we take into account the space-
decay process in the prefactorQ(\k1Ft). This factor trun-
cates the wave function at the momentum\k52Ft, i.e.,
only momenta with\k.2Ft contribute. With increasing
time, the wave function extends to smaller momenta, wh
the edge moves according to the classical equation of
tion.

Note that the location of the edge reflects the assump
we made on the behavior at infinity in order to explicit
evaluate the integral. For example, the functionf (E)/g1(E)
may contain an additional exponential exp(iaE) ~see, e.g.,
8-2
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COHERENT PULSE OUTPUT FROM BOSE-EINSTEIN . . . PHYSICAL REVIEW A 66, 043418 ~2002!
the example in Ref.@14#!. Though this factor does not influ
ence the poles, it nevertheless influences the argument o
Heaviside function. In fact, in a realistic situation the ed
will be shifted because the truncation edge att50 has to
reflect the extension of the initial state in momentum spa
We take this into account by replacing\k in the argument of
the Heaviside function by\(k1k0), wherek0 describes the
extension of the initial state in the negativek direction. Fur-
thermore, if the initial state does not have a compact sup
but a tail in negative momentum direction, the edge will
smoothed and deformed. However, the qualitative beha
remains unchanged, the prefactor is approximately cons
for positive arguments of the Heaviside function, and it a
proximately vanishes for negative arguments. Therefore
us take the Heaviside description as a rough approxima
to the real situation.

Let us finally note that the wave function constructed
this way is normalizable. In the positive momentum dire
tion, the resonance wave functions decrease stronger
exponentially, and in the negative direction the wave fu
tion considered here is truncated. Note that in the Stark c
the contributions of all resonances are truncated at the s
momentum. This is the main difference to the result@14#,
where the contributions of different resonances extend w
different velocities, according to their particular kinetic e
ergies.

B. Basis of truncated resonances

Let us briefly present an independent derivation of f
mula ~13! using truncated Stark resonance states, which
defined by the equation

Cn
K~k!5Q~k1K !Cn~k!. ~14!

If uKu is large enough that the resonances can be descr
by their asymptotic form, the evolution of the stat
Cn

K(k,0)[Cn
K(k) follows the law

Cn
K~k,t !5Q~k1K1Ft/\!Cn~k,t !, ~15!

with Cn(k,t)5exp(2iEnt/\)Cn(k). Now, assume that the
support of the initial state contains only momenta withuku
,uKu. If the truncated resonancesCn

K(k) provide an appro-
priate basis to expand such an initial state, we are directly
to Eq. ~13!.

In the following, we assume that we have a Wannier-St
system, i.e., a system described by Eq.~2! with periodic
potential V(x)5V(x1a). Then we address this problem
with the help of the Floquet-Bloch resonancesFn,k(k),
which are simultaneous eigenstates of the translation o
one lattice period of the potential and the time evolution o
one Bloch periodtB52p\/(Fa). They provide a conve-
nient basis set. In Ref.@20# it was shown that one can de
compose these states into three parts,Fn,k

(6)(k) andFn,k
(0) (k),

where theFn,k
(6)(k) contain the asymptotes in the positiv

and negative momentum directions, andFn,k
(0) (k) contains

the rest. In fact, for resonances the wave function has
04341
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asymptotes in the positive momentum direction due to
Siegert boundary conditions, thusFn,k

(1)(k)50.
Similar to the truncated Wannier-Stark states~14!, we get

the truncated Floquet-Bloch states by multiplication with t
Heaviside function. Indeed, we assumed that foruku.uKu the
asymptotic form is valid, therefore we can~without loss of
generality! identify the truncated Floquet-Bloch states wi
the vectorsFn,k

(0) (k). These states provide an appropriate b
sis for an expansion of the initial state. For eachk the Hilbert
space spanned by theFn,k

(0) (k) is finite dimensional. If no
resonance energies are degenerate, theFn,k

(0) (k) are linearly
independent and we can indeed expand the initial state

C~k,0!5E
21/2

1/2

dk(
n

an~k!Fn,k
(0) ~k!. ~16!

The integral over the quasimomentum yields an expansio
terms of truncated Wannier-Stark resonances as in Eq.~13!.

The validity of the expansion~16! depends on the validity
of the decomposition, in particular on the propertyFn,k

(1)(k)
50. Indeed, for finiteuKu, the decomposition only approxi
mates the real resonance wave functions, and there ma
small deviations. However, as it was shown in Ref.@17#, the
method converges pretty fast for a reasonable potentialV(x)
and, in particular, the resonance wave function decrea
faster than exponentially in the positive momentum dire
tion, and thus the error due to the finiteuKu is assumed to be
small.

Concluding, the approach using truncated Wannier-St
resonances yields the same form as the approach describ
Sec. I A. Therefore, in the following sections we describe
space-time decay of an initial state by a superposition
Stark resonances whose wave function is truncated in
mentum space by the Heaviside functionQ(\(k1k0)
1Ft), wherek0 is a free parameter which, together with th
expansion coefficients, reflects the properties of the ini
state.

C. Decay in coordinate space

The wave function in coordinate space is found by a F
rier transform of Eq.~12!,

C~x,t !5E
2`

`

dkQ„\~k1k0!1Ft…

3(
n

An expS i
\2k3

6F
2 i

Enk

F
2 i

Ent

\
1 ikxD .

~17!

Let us evaluate the integral by means of the stationary ph
approximation, which approximates the integral over t
product of a rapidly oscillating and a slowly varying functio
by the formula@21#

E dkeilf(k) f ~k!'(
n
A 2p

lf9~kn!
eilf(kn) f ~kn!,

~18!
8-3
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where the sum runs over the pointskn of stationary phase
f8(kn)50. In the present case, we take into account o
the real part of the energiesEn5En2 iGn/2 and add the ex-
ponential of the imaginary part to the slowly varying fun
tion. Then the phase function of the different contributions

f~k!5
\2k3

6F
2

kEn

F
1kx. ~19!

The stationary phase condition is just the energy conse
tion, and the stationary points are the classical momenta

\kn,656A2~En2Fx!. ~20!

Furthermore, we havef9(kn,6)5\2kn,6 /F. We can neglect
the contributions fromkn,1 because forx→2`, i.e., kn,1
→`, they are exponentially small due to the weight fac
e2 iEnk/F in Eq. ~17!. To shorten the notation, let us introduc
pn(x)5\kn,2 @note that pn(x)→2` for x→2`]. If
pn(x)!2\k02Ft, the prefactor is zero and the integr
vanishes. On the other hand, ifpn(x)@2\k02Ft, the inte-
gral of the contribution of thenth resonance yields approx
mately

I n~x,t !5expS 2 i
Ent

\ DA 2pF

\pn~x!

3expS 2 i
pn

3~x!

3\F
2

Gnpn~x!

2\F D . ~21!

The critical point ispn(x)52\k02Ft, where the approxi-
mation breaks down because the Heaviside function is n
slowly varying function at this point. Actually, in the vicinity
of this point, the integral interpolates between the other t
possibilities. Let us skip a more detailed analysis a
roughly describe the transition between both regimes b
Heaviside function of the argumentpn(x)1\k01Ft, or,
equivalently, of the argumentx1F(t1t0)2/22En /F, where
the parametert05\k0 /F is introduced.

The different contributions contain the asymptotic form
the resonance wave functions in coordinate space. We
therefore replace the contributions~21! by Cn(x,t). In anal-
ogy to Eq. ~13!, we then get a superposition of resonan
wave functions that are truncated in coordinate space,

C~x,t !5(
n

BnQ„x1F~ t1t0!2/22En /F…Cn~x,t !.

~22!

In comparison to Eq.~13!, there are two differences. First, i
coordinate space the truncation depends on the energy o
resonances. Furthermore, the edges of the different cont
tions move with a quadratic time dependence, which refle
the classical accelerated motion in a constant external fi

II. SUPERPOSITION OF WANNIER-STARK RESONANCES

Let us extend the results from the preceding section
analyze the decay of an initial state in a Wannier-Stark s
tem with H5p2/21cosx1Fx. Note again that this Hamil-
04341
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tonian describes the experiment@1#, if we neglect the non-
linear term in Eq.~1!. In the following discussion, we will
mainly refer to the parameters of this setup.

As shown in the preceding section, we can describ
decaying state by a truncated superposition of resona
wave functions. In the following, we take into account on
the resonances from the most stable Wannier-Stark lad
with the energiesEn5E012pFn2 iG0/2. The indexn can
be interpreted as a site index. Note, however, that the eq
tions can easily be modified to additionally take into acco
higher excited resonances. In the ground-ladder descrip
the initial state is given by a superposition

C5(
n

cnCn ~23!

of ground-ladder resonancesCn with energyEn . ~To shorten
the notation, we skip the truncation with the Heaviside fun
tion because the truncation does not influence the prope
discussed in the following.! The time evolution of the wave
function C additionally contains the time-dependent phas

C~ t !5(
n

cn exp~2 iEnt/\!Cn . ~24!

The statesCn from the ground Wannier-Stark ladder are r
lated by a coordinate shift by multiples of the lattice peri
2p. In momentum space, this shift is a multiplication by
additional phase factor:

Cn~k!5exp~2 i2pnk!C0~k!. ~25!

Combining the phase relation in the momentum represe
tion of the resonances with the different phases due to
time evolution, the time evolution of the superposition
given by

C~k,t !5C0~k,t !(
n

cn expF2 i2pnS Ft

\
1kD G

5C0~k,t !C̃S Ft

\
1kD , ~26!

whereC0(k,t)5exp(2iE0t/\)C0(k). Thus, the time evolu-
tion of the superposition is given by the time-evolved wa
function at the mean energy,C0(k,t), times the discrete
Fourier transformC̃(k) of the amplitudescn taken at the
momentak1Ft/\. The functionC̃(k) is periodic in momen-
tum space withC̃(k1n)5C̃(k) and nPZ. Consequently,
the amplitude modulation factorC̃(k1Ft/\) is also periodic
in time with the period\/F5tB , the Bloch period.

The periodicity in momentum space suggests an alte
tive interpretation of the formula. Namely, if we do not e
pand the initial state in Wannier-Stark resonances but
Floquet-Bloch states, the corresponding expansion co
cients are just given by the functionC̃(k), with 21/2<k
<1/2. Due to the dc field, the time evolution of the qua
momentum follows the equationk(t)5k2Ft/\. Then, the
expansion coefficients at timet are given by the shifted func
8-4
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tion C̃(k1Ft/\). The time evolution of the superposition
the integral over the entire Brillouin zone, which again lea
to Eq. ~26!. We will come back to this interpretation in Se
IV of this paper, where we propose a different method
generate pulse output in Wannier-Stark systems.

A. Asymptotic expansion

Let us analyze the wave function in coordinate space.
given by the Fourier transform of Eq.~26!, i.e., by

C~x,t !5E
2`

`

dk exp~ ikx!C0~k,t !C̃S t

tB
1kD . ~27!

Using the convolution property of the Fourier transform, w
can express the wave function in coordinate space as
convolution ofC0(x,t) and the Fourier transform ofC̃(k).
Proceeding further, we find it more instructive to explicit
perform the transformation. We are mainly interested in
behavior of the decay tail, therefore let us assume thatuku is
large enough, so that we can approximate the Wannier-S
resonance by an Airy function, which up to a constant fac
yields

C~x,t !5E
2`

`

dk exp~ ikx!

3expS i
\2k3

6F
2 ik

E0

F
2 i

E0t

\ D C̃S t

tB
1kD .

~28!

Similar to the preceding section, we concentrate on the de
tail, wherex→2`, and solve the integral using the statio
ary phase approximation. Explicitly, we assume that
function C̃(k1t/tB) is slowly varying and apply formula
~18!. The phase function~19! yields two stationary points
\k656A2(E02Fx). Again, we can neglect the positiv
one because its contribution is exponentially small. Th
settingp(x)5\k2 , we get

C~x,t !5expS 2 i
E0t

\ DA 2pF

\p~x!

3expS 2 i
p3~x!

3\F
2

G0p~x!

2\F D C̃S t

tB
1

p~x!

\ D .

~29!

Again, we can express the result as the product of two
tors, one of which is the asymptotic form of the particu
Wannier-Stark resonanceC0(x,t). The other one is a time
dependent amplitude modulation factor. Therefore, replac
the asymptotic form of the resonance byC0(x,t)
5exp(2iE0t/\)C0(x), we can write Eq.~29! in a form
similar to Eq.~26!,

C~x,t !5C0~x,t ! C̃S t

tB
1

p~x!

\ D . ~30!
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Indeed, up to an overall exponential decay due to the ima
nary part ofE0, the absolute value of the first factor is tim
independent. Furthermore, as can be seen from
asymptotic form, it is a slowly varying function of the coo
dinate. The whole information about the time-dependent t
neling process through the sequence of barriers impose
the periodic potential is contained in the second factor t
will be analyzed further in the following section.

B. Amplitude modulation factor

Let us first calculate the amplitude modulation fact
C̃(k) for some exemplifying initial distributions. If only a
single Wannier-Stark resonance is occupied in the beginn
cn5d0,n , the functionC̃(k) is constant and the decay is n
modified. If two arbitrary resonances are equally popula
initially,

c05cR5
1

A2
, cn50 otherwise, ~31!

with RPZ, then the square of the amplitude is modulated
the factor

uC̃~k!u252 cos2~pRk!. ~32!

The position of the maxima of this function differs byDk
51/R, which corresponds to a time period oftB /R. Another
simple case is when everyRth resonance is populated, an
the firstN of these resonances are populated equally,

cnR5
1

AN
for 0<n,N, cn50 otherwise, ~33!

which yields the modulation factor

uC̃~k!u25
1

N

sin2~NRpk!

sin2~Rpk!
, ~34!

which is well known from the analysis of diffraction gra
ings. For the particular caseR51 with N subsequent reso
nances populated, we get

uC̃~k!u25
1

N

sin2~Npk!

sin2~pk!
. ~35!

Finally, if the initial condition is a Gaussian distributioncn
;exp(2bn2) as assumed in Ref.@1#, the amplitude modula-
tion factor consists of a sequence of Gaussians@22#,

uC̃~k!u25
p

b S (
nPZ

expF2
p2

b
~k2n!2G D 2

'
p

b (
nPZ

expF2
2p2

b
~k2n!2G . ~36!

The last approximation holds for smallb.
8-5
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GLÜCK, KECK, AND KORSCH PHYSICAL REVIEW A66, 043418 ~2002!
1. Modulation in coordinate space

The last two functions consist of a series of equidist
peaks at integer values ofk. For largeN or small b, the
amplitude is concentrated at these peaks while it appr
mately vanishes between them. In coordinate space the p
appear at the points with

p~x!52F~ t1 j tB!, j PZ, ~37!

i.e., at the coordinates

x5x02
F

2
~ t1 j tB!2, ~38!

where x05E0 /F is the classical turning point. Thus, as
function of time, the peaks accelerate according to the c
sical equation of motion of a free particle subject to a co
stant electric field. Additionally, the peaks broaden linea
with increasing time~or with increasingj ). For example, the
full width at half maximumDk of the function~35! for large
N is approximatelyDk51/N. The x coordinates of the cor
responding points are given by

x65x02
F

2 S t1 j tB6
tB

2ND 2

, ~39!

which yields a peak width

Dx5x22x15FDktB~ t1 j tB!5
FtB

N
~ t1 j tB!. ~40!

A similar relation holds for the width of the sequence
Gaussians~36!, with Dk5A2b ln 2/p.

Figure 1 shows the coordinate space wave function o
superposition of Wannier-Stark resonances att50 for the
distributions discussed in the beginning of this secti
namely, for two equally populated neighbored resonan

FIG. 1. Absolute square of the wave function of a superposit
of Wannier-Stark resonances. The first figure depicts the wave f
tion for the distribution~31! with R51, the second one the distr
bution ~35! with N56, and the third one the Gaussian distributi
~36! with b51/152.
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N56 equally populated resonances, and a Gaussian dist
tion, respectively. In the following we will use scaled units
which the potential is 2p periodic with a well depth of 1 and
M51. This can be achieved by replacing\
→2p\/(aAMg) and F→aF/(2pg), whereg is half the
depth of the periodic potential. The parameters of the Ham
tonian were chosen to meet the experimental setup in R
@1#, which yields for the trap depth of 1.4 recoil energies
scaled Planck constant\53.3806 and a scaled field streng
F50.0661. The most stable resonance has a scaled wid
G057.472631023 corresponding to a lifetime of 9.66 ms
which is approximately nine Bloch timestB51.09 ms ~A
potential depth of 2.1 recoil energies yields a lifetime of
ms, in reasonable agreement with the 50 ms reported in
@1#. For a potential depth of one recoil energy, the lifetime
2.59 ms!.

The wave functions were calculated the following wa
First, a particular ground-state resonanceC0(k) was com-
puted@17,23#. Following Eq.~26!, this function was modu-
lated with the amplitude modulation factors of the initi
distributions presented at the beginning of this section.
nally, the result was Fourier transformed to coordinate spa

The behavior described above can clearly be seen in
1. The decay tail of the wave function consists of a num
of peaks that broaden with decreasing coordinate.@For Eq.
~36! the broadening can only be observed forb not too
small.# As a function of time, these maxima accelerate
ward the negativex direction, i.e., a sequence of pulse
arises. The positions of the maxima are in good agreem
with the formula~39!, which readsx52F(ntB)2/2. For ex-
ample, the last three peaks correspond ton57, 8, 9, which
yields the positionsx52286 mm, 2374 mm, 2474 mm,
respectively. The relative amount of probability stored in t
peaks increases with decreasing coordinate, which just
flects that in every pulse a certain amount of the probabi
stored in the main body of the resonance drops out an
accelerated by the external field. Note that the pulse form
tion can be interpreted as the result of Bloch oscillatio
@24,25#. During each Bloch period one peak tunnels out
the oscillating state arrives at the left turning point.

2. Stability against noise

Naturally the question arises if the behavior found
stable against noise. This topic is briefly illustrated by t
numerical results shown in Fig. 2. In all cases the init
distribution was assumed to be given by the Gaussiancn
;exp(2bn2) with b51/152, as assumed in Ref.@1#. In the
first part, the amplitudescn are multiplied with real random
coefficients taken from the interval@0.5,2#, then the distri-
bution is renormalized. The form of the peaks is sligh
modified, however, the overall behavior is pretty stab
against amplitude noise.

The second panel in Fig. 2 shows the effect of pha
noise. Explicitly, the coefficients were modified according
cn;exp(2bn2)exp(ifn), wherefn was chosen randomly in
the interval@20.4p,0.4p#. Now the effect of the noise is
stronger. The shape of the pulses is modified, and the w
function does not vanish any more in between the puls

n
c-
8-6
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COHERENT PULSE OUTPUT FROM BOSE-EINSTEIN . . . PHYSICAL REVIEW A 66, 043418 ~2002!
However, qualitatively the pulse output still survives. If w
take into account that the phases vary within 40% of
possible values, i.e., we have strong noise, we can res
that the behavior is also stable against phase noise. Final
we randomly choose the phases from the interval@2p,p#,
as in the lowest panel of Fig. 2, the pulse structure dis
pears, and the wave function periodically repeats a rand
structure, which is only stretched due to the acceleration

C. Decay in atomic tunnel arrays

It is straightforward to combine the results of the tw
previous sections. Generally, we have to truncate the w
front approximately at the coordinatex52F(t1t0)2/2
1E0 /F. Furthermore, for the initial distributions in
Wannier-Stark systems considered above, a series of pu
with constant shape is formed, which move with the sa
time dependence, i.e., their maxima are located atx52F(t
1mtB)2/21E0 /F. Consequently, to take into account th
truncation, we have to remove all pulses withm.t0 /tB .
Actually, we have a superposition of resonances with en
giesEn5E012pFn, therefore we have to truncate the co
tribution of each resonance at a different coordinate. Ho
ever, one can easily surmount this problem by truncating
momentum space.

Let us, in this way, describe the space-time decay in
experiment@1# where pulse output from a Wannier-Stark sy
tem was found. We already addressed the setup above.
scaled parameters of the Hamiltonian are\53.3806 andF
50.0661. In the experiment, the initial state was a Bo
Einstein condensate that extends over approximately
space periods. In our description, we assume a Gaussian
tribution of the ground resonances according to the form
cn;exp(2bn2) with b51/152.

Figure 3 shows the space-time decay of this initial stat
the timest53 ms, 5 ms, 7 ms, and 10 ms, respectively. T

FIG. 2. Superposition of Wannier-Stark resonances with no
Gaussian initial distributioncn;exp(2bn2) with b51/152. The
first panel shows the effect of amplitude noise, the second pan
phase noise, and the last one assumes random phases of the
distribution.
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figure was calculated the following way. First the momentu
space representation of one particular resonance from
ground Wannier-Stark ladder was calculated. Then the
plitude of the resonance was modulated with the amplitu
modulation factor~36! taken at the specified times. Th
wave function was truncated in momentum space accord
to Eq. ~13!. Actually, we shifted the truncation edge byk0
51/2 in order to avoid a truncation directly at the maxim
However, as discussed above, the location of the edge
be shifted from the result~13!. As can be seen in Fig. 1, th
wave function approximately vanishes between the maxi
and therefore the result does not change if we sligh
modify the size of the shift. Finally, the resulting functio
was Fourier transformed into coordinate space.

The figure closely resembles the findings of the expe
ment @1#. A series of pulses is formed, which accelerate
cording to the free motion. At a fixed value of the coordina
the sequence is periodic in time after the first pulse pas
up to an overall exponential decay, which reflects the f
that every drop takes away a certain amount of probabili

III. WANNIER-STARK MODE LOCKING

Let us finally discuss how to prepare an initial state wh
decays by a regular pulse formation. If the initial state pop
lates only one Wannier-Stark resonance, the decay is c
tinuous and no pulses develop. An arbitrary initial state w
contain contributions from several resonances and thus y
a modified output. An initial distribution with random
phases, however, leads to random output. Thus, the que
arises as to how to prepare initial states that populate sev
Wannier-Stark resonances with well-defined phases.

In the experiment@1#, the fixed phase relation wa
achieved by the self-interaction of the Bose-Einstein cond
sate. In the following, we show that one can easily prep
an appropriate initial state within single-particle quantu
mechanics by temporarily adding an ac field with frequen

y

of
itial

FIG. 3. Space-time decay of the wave function. The initial st
is assumed to be a Gaussian distribution of the field-free gro
Wannier states. From top to bottom, the panels correspondt
53 ms, 5 ms, 7 ms, and 10 ms, respectively.
8-7
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GLÜCK, KECK, AND KORSCH PHYSICAL REVIEW A66, 043418 ~2002!
matching the Bloch frequencyvB52p/tB . Explicitly, the
technique is as follows: Take an arbitrary initial state in t
Wannier-Stark system and expose it for a finite timeTint to
an additional ac fieldFvx cos(vBt), which is then switched
off. If the field strength is sufficiently large and the intera
tion time Tint is long enough, the initial state decays with
pulse output.

The reason is the dependence of the width~or the life-
time! of the Floquet-Bloch states of the dc-ac system on
quasimomentum@12,20,26#. Namely, letfa,k(k) denote the
Floquet-Bloch states of the dc-ac Hamiltonian

H5
p2

2
1cosx1Fx1Fvx cos~vBt !. ~41!

Then we can expand the initial statec0(k) in the Floquet-
Bloch states,

c0~k!5Q~k1k0!(
n
E

21/2

1/2

dkan~k!fn,k~k!, ~42!

where thean(k) are periodic functions of the quasimome
tum and the indexn sums over the different bands. In ana
ogy to Eq. ~13!, the Heaviside function is taken as an a
proximation to the real situation and ensures the cutoff
momentum space. Let us assume that mainly the gro
band is populated and skip the sum over the band indice
the following. In fact, higher excited states rapidly decay a
therefore mainly influence the edge of the decay tail of
wave function. Let us disregard the actual form of the ed
in the following. Then, afterN periods of driving, the wave
function reads

c0~k,NtB!5Q~\~k1k0!1FNtB!

3E
21/2

1/2

dka~k!e2 iE0(k)NtB /\f0,k~k!.

~43!

Now the ac field is switched off, and we take the final st
c0(k,NtB) as the initial state for the pure dc dynamics. W
then expand in the basis of the Floquet states of the new
Hamiltonian

H5
p2

2
1cosx1Fx, ~44!

which we denote byFn,k(k). If we again restrict ourselve
to the ground band, the expansion in the new basis read

c0~k,NtB!5Q~\~k1k0!1FNtB!

3E
21/2

1/2

dkb~k!e2 iE0(k)NtB /\F0,k~k!,

~45!

with the prefactorb(k)5a(k)^F0,kuf0,k&. We can equiva-
lently treat the functionsb(k) andE(k) as periodic functions
of the momentum instead of the quasimomentum, and t
04341
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shift them in front of the integral. It remains the integral
the statesF0,k(k) over the entire Brillouin zone, which
yields one particular Wannier-Stark resonanceC0(k) from
the ground Wannier-Stark ladder. Then we get

c0~k,NtB!5Q„\~k1k0!1FNtB…b~k!

3expS 2 i
E0~k!NtB

\ DC0~k!. ~46!

Thus, the prefactorb(k)exp@2iE0(k)NtB /\# takes the role
of the amplitude modulation factorC̃(k) of the new initial
state. Let us briefly discuss its form in the following sectio

A. Mode-locked amplitude modulation factor

Figure 4 shows the real and the imaginary parts of
quasianglesl5EtB /\ for the system~41! with parameters
\53.3806 andF50.0661 taken from the experiment@1# and
different values of the ac field strengthFv5evB

2 , which
cover the range from weak to strong driving. In all cases
real parts approximately follow a cosine,

E~k!5E01DE cos~2pk!. ~47!

The imaginary parts do so only for smalle, whereas for
larger values strong modulations of the width as a function
the quasimomentum appear, which are due to the interac
with higher excited Wannier-Stark ladders. For smalle, we
can approximate the widthG0(k) of the ground band state
by a cosine dispersion relation@12,26#,

G~k!5G01DG cos~2pk!, ~48!

and the absolute value of the amplitude modulation facto
given by

FIG. 4. Real and imaginary parts of the quasianglesl5EtB /\
of the system~41! with parameters\53.3806, F50.0661, and
different e5Fv /v2. The dotted line corresponds toe50.1, the
dashed line toe50.4, the dashed-dotted line toe50.8, and the
solid line toe51.5.
8-8
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COHERENT PULSE OUTPUT FROM BOSE-EINSTEIN . . . PHYSICAL REVIEW A 66, 043418 ~2002!
uC̃~k!u25ub~k!u2 expS 2
G0NtB

\
2

DGNtB

\
cos~2pk! D .

If the interaction timeT5NtB is large enough@and if b(k) is
sufficiently smooth#, the strong modulation of the expone
tial dominates the form of the amplitude modulation fact
Then the wave function is periodically peaked in moment
space. Of course, such a periodically peaked structure is
found for larger values ofe where formula~48! is no longer
valid. In fact, due to the stronger modulation of the width
appears even for short interaction times.

The behavior in coordinate space is additionally modifi
by the dispersion due to the real parts of the quasienergie
we approximate the real parts by Eq.~47! and again apply
the stationary phase approximation in the Fourier transfo
of Eq. ~46!, the stationary pointsks are solutions of a slightly
modified equation:

\2ks
2

2
12pDEN sin~2pks!5E02Fx. ~49!

The implications are as follows. In coordinate space,
form of the peaks is changed compared to the dispersion-
case, in particular, the peaks can be broadened or narro
Which of both possibilities occurs can most easily be s
from the function

dx

dks
52

\2ks

F
2

4p2DEN

F
cos~2pks!. ~50!

Its absolute value relates the width of the peaks in mom
tum space to the width in coordinate space. Actually,
resonances only the stationary points withks,0 are impor-
tant, the others can be neglected. In this region, the abso
value of the functiondx/dks takes minima at integerks , and
maxima at half integer values. As can be seen from Fig
the peaks in momentum space appear at integerks , and thus
the dispersion additionally narrows the peaks.

Note that for smalluksu there may be three instead of on
stationary point on each branch of the square root. Then
wave function shows additional interferences due to the
teraction of the three different contributions. However,
uksu.4p2DEN/\2 these interferences disappear. Furth
more, for largeuksu, the dispersion only perturbatively influ
ences the shape of the peaks because its contribution rem
constant while the width increases proportionally touksu.
Thus, for largeuksu, i.e., for large negative values ofx, the
shape of the peaks of the decay tail reflects the func
G(k).

B. Decay in driven tunnel arrays

Let us support the analysis by some numerical results
describe the following setup. An initial state is driven duri
a time T5NtB by an ac field, which is then switched of
The shape of the pulses that are formed are described b
amplitude modulation factorb(k)exp@2iE(k)NtB /\#. The
figures show the wave function after additional 12tB of un-
driven decay in order to make sure that the pulses shown
04341
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built after the ac field was switched off. Numerically, w
started with Eq.~46! and assumed the functionb(k) to be
constant. Explicitly, we calculated the resonances wave fu
tion C0(k), multiplied by the amplitude modulation facto
exp@2iE(k)NtB /\#, where the dispersion relation was ca
culated independently, and Fourier transformed the re
into coordinate space.

Figure 5 shows the decay tails that develop for a weak
field with e50.1. After short interaction times, the tail i
slightly modulated. For longer interaction times, the mod
lation depth increases and pulses develop, which finally
clearly separated. Note that, apart from effects due to
dispersion, we can decrease the width of the pulses by
ther increasing the interaction time, which provides a sim
way to tune the width experimentally.

A crucial point of the weak-field regime is the long a
driving time, which is needed to generate well-separa
pulses. The relevant time scale is set by the most long-li
state from the ground band. For the casee50.1, the mini-
mum width isGmin57.21431023, which corresponds to a
lifetime of 10.0 ms, i.e., approximately 10tB . Thus, the
interaction time is much longer than the lifetime of the mo
stable state. Consequently, a predominant part of the in
wave function has already decayed before pulses are b
formed. One can, however, surmount this problem by
creasing the field strength of the ac field.

Figure 6 shows the decay tail for a strong ac field w
e51.5. Now the pulses develop after much shorter inter
tion times. Fore51.5, the functionG(k) has four minima
~see Fig. 4!, which are due to two crossings with highe
excited Wannier-Stark ladders. Note that one can dire
read off this property from the substructure of the pulses
the decay tail.

The interaction times necessary to generate separ
pulses are much shorter for strong ac fields. In fact, now
necessary duration of the driving is even shorter than
lifetime of the most stable state. The minimum width for t
casee51.5 is Gmin52.2731023, which is less than one

FIG. 5. Tail of the wave function after the system was driven
an ac field for different periods. The parameters are\53.3806,F
50.0661, ande50.1.
8-9
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GLÜCK, KECK, AND KORSCH PHYSICAL REVIEW A66, 043418 ~2002!
third of the minimum width fore50.1. The corresponding
lifetime is 31.7 ms, which is approximately twice as large
the maximum interaction time in Fig. 6. Thus, in the stron
field regime, pulses develop before a substantial part of
wave function has decayed.

In the two lower panels of Fig. 6, one can clearly see
narrowing caused by the dispersion. In particular, the fi
peaks~counted from the right! strongly oscillate, which re-
flects the existence of three stationary points of the ph
function in this region. However, the last peaks have
proximately the same shape, i.e., here the narrowing aff
the shape only perturbatively.

Thus, if the field strength is sufficiently large, the pr
posed setup seems to provide a tool to explore the exp
mental dependence of the lifetime on the quasimoment
Figure 7 shows some possible shapes that develop if the

FIG. 6. Tail of the wave function after the system was driven
an ac field for different periods with strong field strengthe51.5.
The other parameters are as in Fig. 5.

FIG. 7. Tail of the wave function after several periods of drivi
by ac fields with different strengths. While the field strength
increased, the interaction time is decreased such that the wid
the peaks is comparable.
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strength is increased from the perturbative to the strong-fi
regime. The first three cases correspond to the field streng
the dispersion relationsE(k) of which are shown in Fig. 4.
With increasing field strength, the decay tail develops ad
tional substructures. In particular, additional minima occ
which correspond to the avoided crossings with exci
Wannier-Stark states. Fore50.8, the effect mainly shows up
in a strong deformation of the shape compared to the c
e50.4. For e51.5, already four minima exist, i.e., tw
crossings with excited ladders. Finally, fore52.2 even a
fifth minimum appears, which signalizes the occurrence
the next crossing. By comparing Figs. 4 and 6 we see that
relationG(k) is mirrored in the shape of the decay tail.

Up until now we have discussed results obtained direc
from Eq. ~46! where we setb(k)51. Let us compare thes
results with an exact time evolution of an initial state, i.e.
wave-packet propagation. For this we propagated an in
Gaussian wave packet,

cs~x!5
1

A4 ps
expS 2

~x2x0!2

2s D , ~51!

in the Wannier-Stark system after driving it for different p
riods with e51.5. Figure 8 compares the results obtained
this way for s52 andx05p, with the predictions of Eq.
~46!. Shown is the output from the BEC without driving (T
50) and for an additional driving during timesT54tB and
T56tB . In the last two cases, the numerical wave-pac
results~bottom subplot! are compared with the correspon
ing results from Eq.~46! ~top subplot!.

Without driving (T50), the initial state decays withou
pulse formation. This changes if we turn on the drivingT
54tB and T56tB) after which a pulsed output develop
The positions, the widths, and the relative sizes of the diff
ent peaks are in perfect agreement with the predictions of
~46!. The difference in the structure reflects the contributi
of

FIG. 8. Time evolution of wave packet~52! for s52 andx0

5p after different periods of driving; the duration of the drivin
changes fromT50 ~top! to T56tB ~bottom!. In the last two cases
the numerical wave packet results~bottom subplot! are compared
with the corresponding results from Eq.~46! ~top subplot!.
8-10
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COHERENT PULSE OUTPUT FROM BOSE-EINSTEIN . . . PHYSICAL REVIEW A 66, 043418 ~2002!
of b(k) in the real quantum propagation. As it can be se
from the lower part of Fig. 8, this influence decreases w
longer driving, as expected from Eq.~46!.

Figure 9 shows a similar discussion for a Gaussian w
packet s510, x05p. Initially, this wave packet is more
widely spread in coordinate space and has contributions f
more than one state of the ground Wannier-Stark lad
Therefore it shows an output in the form of broad puls
even without an initial driving (T50), as discussed in Sec
II. After driving the system forT54tB or T56tB , we see

FIG. 9. Same as Fig. 8, however, for a wave packet more wid
spread in coordinate space (s510).
P.

s.
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that the shape of the pulses resembles the one predicte
Eq. ~46!. Minor differences can again be attributed to the ro
of the prefactorb(k).

CONCLUSION

The wave function of a decaying state in a Stark syst
can be written as a superposition of resonance states
cated in momentum space. The movement of the edge o
truncation obeys a classical equation of motion. The sta
constructed in this way are—in contrast to the usual reson
or decaying states—normalizable. This result resembles
one obtained in Ref.@14# for scattering wave functions de
scribed in terms of Moshinsky functions.

By applying this general result to a Wannier-Stark syste
we analyzed the decay in both momentum and coordin
space of a state that populates primarily the first Wann
Stark ladder. In both representations the time evolution
be written as a product of the time evolution of a resona
state and the Fourier transform of the amplitudes of the
tial population. The whole information about the tim
dependent tunneling process is contained in the second
tor. Using an appropriate initial distribution we were able
describe the experimental results of Ref.@1#. Finally, an ex-
perimental setup for preparing an initial state that sho
regular pulse formation during decay using the interact
with an ac field is proposed. In addition, an analysis of
pulse shape may provide a method to experimentally ac
the functionG(k). We conclude that it should be possible
use the setup described to observe the pulsed deca
Wannier-Stark systems.
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