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Coherent pulse output from Bose-Einstein condensates in Wannier-Stark systems

M. Gluck, F. Keck, and H. J. Korsch
Fachbereich Physik, Universitaaiserslautern, D-67653 Kaiserslautern, Germany
(Received 28 May 2002; revised 22 August 2002; published 25 Octobep 2002

The pulsed output from a Bose-Einstein condensate can be described using ordinary one-particle quantum
mechanics. The initial state is described in terms of Stark resonances truncated in momentum space. The states
obtained in this way resemble the normalizable scattering states defined in terms of Moshinsky functions. The
validity of this approach and the influence of the initial population on the pulse formation is discussed. Finally,
we describe an experimental setup to manufacture and observe pulsed output in Wannier-Stark systems.
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INTRODUCTION for the decay of an initial state which models the experimen-
tal setup of Ref.[1l]. Based on results on the decay of

Recently, experiments with Bose-Einstein condensate¥/annier-Stark resonances in combined dc-ac fields presented
(BECs in a Wannier-Stark systeifii] attracted much atten- in Refs.[11,12], we finally propose a slightly modified setup
tion. In these experiments, a Bose-Einstein condensate dlfiat yields pulse output.
rubidium atoms was created, which then was exposed to the
optical potential of a standing laser wave. Additionally, the I. DECAY OF AN INITIAL WAVE FUNCTION
gravitational force accelerates the atoms inxfugrection. In . ) o ) )
a good approximation, the system can be described by the The aim of this section is to describe the space-time decay

one-dimensional Gross-Pitaevskii equat[@ﬂ] of an initial state that is localized around=0 in a Stark
system, i.e., a system that is influenced by an external dc
2 field,
iho¥= zp—lvl+cosx+ng+U|\If|2 v, )
2

oM v, F=0. (2

. . ) . ) iﬁat\P={p—+V(x)+Fx
where M is the atomic massy describes the interaction
strength of the rubidium atoms, agds the acceleration due ) )
to gravity. (A detailed introduction to the physics of BECs |Nhe potentiaV(x) is assumed to be bounded, therefore each
can be found in Ref[3].) This nonlinear system shows ba- initial state will decay. A direct expansion & (x) in terms
sically all the features found in the analysis of the linearf résonance wave functions is inappropriate because the
equation, such as Bloch oscillations of the condenghtes| ~ 'esonance states are not normalizable. Therefore the descrip-
or nonlinear Zener tunneling’]. The system was also stud- tion needs to be modified to take into account the finite ex-
ied in a tight-binding approximatiof8], neglecting the tun- tension of the initial state. Recently, this problem was ana-
neling out of the potential, and thus the decay of the condenlyzed for decaying quantum systems with a finite-range
sate. scattering potentidl13,14]. (First steps in this direction can

Due to the gravitational force, the atoms in experinfaft ~ already be found in textbooks, e.g., REf5].) .
tunnel out of the traps, and a sequence of falling drops of Let us adopt the approach of R¢fl4] to describe the
atoms is observed. Neglecting the nonlinear term in(&y.  decay of Stark resonances in momentum space. In this ap-
we explain the experimental results in this paper by the propProach, the wave functio’(k,t) is expressed in terms of
erties of a coherent superposition of Wannier-Stark resostationary scattering statéiss(E). Let us fix these states by
nances. In fact, tunneling of BECs is influenced by the nontheir coordinate space asymptotics: |lim..¥ s(E,X)
linear interaction[9], however, the physics leading to the =Ai(a(x—E/F)) with a=32F#2. Let us furthermore intro-
experimental resuftl] is already provided by single-particle duce two functionsy.. (E) by
guantum mechanics. Indeed, the numerical studizs0]
show that for moderate densities of the condensate, the pulse Ws(E, k) =9 (E)¥.(Ek), ©)
formation is only slightly modified by the nonlinear term in
the Gross-Pitaevskii equatidf).

The paper is organized as follows. In Sec. | we investigat

where the state¥ . (E,k) asymptotically coincide with the
dree solution,

the space-time decay of an initial state in a Stark system. We 23 Ek
show that the wave function can be adequately described by lim \p+(E’k):eX[< — —j _) (4)
a superposition of resonances that are truncated in momen- koo 6F F

tum or coordinate space. In Sec. Il we discuss the properties

of a coherent superposition of Wannier-Stark resonances. Note that the definition of the state, (E,k) directly reflects

is shown that the essential information about the decay tail ithe way the resonance wave functions are calculated in a
contained in an amplitude modulation factor. After a briefscattering approach to Stark systems presented in Refs.
general discussion of this factor, we present numerical resul{d6—-18. The functionsg-.(E) resemble the Jost function
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known from conventional scattering theory, i.e., they are re—Ft. Representing the initial state by E®) with t=0, the
lated byg_(E*)=g% (E); the scattering matrix is given by equation correctly describes the evolution of the phases of
their ratioS(E) =g_(E)/g. (E) and the scattering states are the plane waves, too.

normalized according to (P4(E")|W4(E))

=g.(E)g_(E) 6(E—E’"). Expanding the initial state in the A. Relation to the resonances

scattering states, Let us further evaluate Eq.(10). The integrand

f(E)/g,(E) is an analytic function of the energy. It has
), poles at the zeros af . (E) and therefore at the poles of the
) S matrix. If the initial wave function? (k,0) has a compact
support,f(E) is an entire function in the complex plane and
wheref(E)=(¥«(E)|¥(t=0)), and inserting definitiod) ~ does not provide additional poles. It follows that all poles of
yields the integrandf(E)/g, (E) locate in the lower half of the
complex plane.
o f(E) _Et These properties suggest to evaluate the inté@talwith
Wk t)= f_wdE 9-(E) \PI(E,k)exp< - ﬁ)' (6)  the help of its residua, i.e., the poles of tBenatrix. How-
B ever, for this we need to know the asymptotic behavior of the
Finally, we introduce the deviationp. (E,k) from the integrand. Without knowing the analytical form of the func-
asymptotic form by tion f(E)/g.(E), we are forced to make some assumptions
- on its asymptotic behavior in order to proceed further. In
. . particular, if we assume that the functid(E)/g. (E) does
\Pi(E’k):@i(E’k)eXF{'G_F_'?>’ (M ot influence the behavior of the integrand at infinity, the
integral yields the sum over the residua located within the
with limy_, .. (E,k) =1, which directly follows from Eq. appropriate contour. Explicitly, folkk>0 the contour is
(4). We will use this property in the following. Then the closed in the lower half of the complex energy plane, Kor

f(E)

B ek p(—E
9. (E)g_(E) 'slEkexp i

\P(k,t)ledE

integral (6) takes the form <0 it is closed in the upper half. Therefore, we get
* f(E) &k
\Ifk,tzf dE —— o+ (Ek = i
2,3
xexp{i 7k i E_k_i E ®) where® (k) is the Heaviside function. The sum contains all
6F F h) poles€,=E,—il' /2 of the S matrix (note thatl’ ,>0), and

the A, are the residua of(E)/g . (E) at the poles. Insertin
We are mainly interested in the properties of the decay ta”this rtvesult in Eq(9) yields( )9 (E) P g

where the wave functions of the resonances can be approxi
mated by their asymptotic form. Therefore, let us assume E2k3 £k Et
that |k| is sufficiently large and replace. (E,k) by its V(kt)=0(kk+Ft)>, A, exp(iﬁ—i I; i }:)
asymptotic value. Then the wave function can be approxi- v

mated as (12)
72K3 Ft The terms of the sum are actually proportional to the
\P(k,t)zexp{i F)G+< + ?), (9 asymptotic form of the resonance wave functiohs(k,t).

Thus, we can equivalently expand the wave function as
whereG.. (k) is the Fourier transform of (E)/g+ (E),
- J,m e f(E) F{ . Ek) . ‘If(k,t)—@(ﬁkJrFt)ZV B,V (k,t), (13
+(K) . 9-(E) ex = (10 ' N .
with new coefficientsB,. Therefore, in the Stark case we
It follows that asymptotically the absolute squame(k,t)|>  can describe the decay of an initial state by a superposition
is a function ofk+Ft/#. Thus, the wave function moves of resonances, where we take into account the space-time
linearly in time to smaller momentia(t)=k,—Ft/#, i.e., it  decay process in the prefact®r(zk+ Ft). This factor trun-
follows the free classical motion. Except the shift, the shapeates the wave function at the momentdik= —Ft, i.e.,
of the wave function remains constaisee also the discus- only momenta withAk>—Ft contribute. With increasing
sion on Airy wave packets in Ref19]). time, the wave function extends to smaller momenta, where
One can obtain Eq(9) in a second way. Namely, we the edge moves according to the classical equation of mo-
expand the initial state in plane waves instead of scatteringon.
states. If we then assume that the momenta are so large Note that the location of the edge reflects the assumption
enough that the potential can be neglected in comparisowe made on the behavior at infinity in order to explicitly
with the dc field, every plane wave with initial momentum evaluate the integral. For example, the functi¢g)/g. (E)
fiky is accelerated to the plane wave with momentiky may contain an additional exponential exf) (see, e.g.,
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the example in Ref.14]). Though this factor does not influ- asymptotes in the positive momentum direction due to the
ence the poles, it nevertheless influences the argument of ti8iegert boundary conditions, thds")(k)=0.

Heaviside function. In fact, in a realistic situation the edge  Similar to the truncated Wannier-Stark stat®g), we get
will be shifted because the truncation edgetat0 has to  the truncated Floguet-Bloch states by multiplication with the
reflect the extension of the initial state in momentum spaceHeaviside function. Indeed, we assumed that kpr |K| the
We take this into account by replacirig in the argument of asymptotic form is valid, therefore we cdwithout loss of
the Heaviside function by (k+kq), wherek, describes the generality identify the truncated Floguet-Bloch states with
extension of the initial state in the negatikelirection. Fur-  the vectorsb(®)(k). These states provide an appropriate ba-
thermore, if the initial state does not have a compact suppois for an expansion of the initial state. For eacthe Hilbert
but a tail in negative momentum direction, the edge will bespace spanned by trré(yo,{(k) is finite dimensional. If no
smoothed and deformed. However, the qualitative behaviofagonance energies areydegenerate,cliffé(k) are linearly

remains unchanged, the prefactor is approximately constafiigependent and we can indeed expand the initial state as
for positive arguments of the Heaviside function, and it ap-

proximately vanishes for negative arguments. Therefore, let 172 (©)
us take the Heaviside description as a rough approximation \If(k,0)=f / de> a,(k)DK). (16)
to the real situation. Sl

_Let us _fmally hote that the wave f_u_nctlon constructe_d NThe integral over the quasimomentum yields an expansion in
t_hls way is normalizable. In the.posmve momentum d'rec'terms of truncated Wannier-Stark resonances as inBy.
tion, the .re"sonandcg wk?ve func_'uon; dec_reas: strongefr than The validity of the expansiofil6) depends on the validity
exponentially, and in the negative direction the wave func-¢ v, 4oomposition, in particular on the propedty’) (k)
tion considered here is truncated. Note that in the Stark Case | eed. for finitdK|. the d ii | K -
the contributions of all resonances are truncated at the same . 129, Tor fini gK|, the ecomposition only approxi
momentum. This is the main difference to the rega], mates the real resonance wave functions, and there may be

where the contributions of different resonances extend witf?nrg?rllloiegg“%r:sésHOt\;?:/e;ésffgrvgarsezzg\r’:’;b'lg F{gg‘;‘ t_he
different velocities, according to their particular kinetic en- Verges pretly P (e

ergies. and, in particular, thg resonance wave function decrgases
faster than exponentially in the positive momentum direc-
tion, and thus the error due to the finjt€| is assumed to be
B. Basis of truncated resonances small.

Let us briefly present an independent derivation of for- €oncluding, the approach using truncated Wannier-Stark
mula (13) using truncated Stark resonance states, which ariSonances yields the same form as the approach described in

defined by the equation Sec. | A. Therefore, in the following sections we describe the
space-time decay of an initial state by a superposition of
TKK) =0 (k+K)P (k). (14)  Stark resonances whose wave function is truncated in mo-

mentum space by the Heaviside functidd (7 (k+Kkgp)
+Ft), wherekg is a free parameter which, together with the
ed . . . L
expansion coefficients, reflects the properties of the initial
state.

If |K| is large enough that the resonances can be describ
by their asymptotic form, the evolution of the states
K (k,0)=T¥(k) follows the law

K C. Decay in coordinate space
v (k) =0(k+K+Ft/a)V,(k,t), (15 o ) )
The wave function in coordinate space is found by a Fou-

. . rier transform of Eq(12),
with ¥, (k,t)=exp(=i&,t/h) ¥ (k). Now, assume that the

support of the initial state contains only momenta with
<|K|. If the truncated resonancds'j(k) provide an appro-
priate basis to expand such an initial state, we are directly led
to Eq.(13). RS £k Er
In the following, we assume that we have a Wannier-Stark X EV Ay ex;{ g T Tl tikx).
system, i.e., a system described by E2). with periodic
potential V(x)=V(x+a). Then we address this problem 17
with the help of the Floquet-Bloch resonancés, , (k),
which are simultaneous eigenstates of the translation ov
one lattice period of the potential and the time evolution ove
one Bloch periodrg=27#/(Fa). They provide a conve-
nient basis set. In Ref20] it was shown that one can de-

compose these states into three paits,)(k) and®{%)(k),
where the®{")(k) contain the asymptotes in the positive f dke M5k~ A [_2m e lkaf (k)
and negative momentum directions, a (’),)((k) contains n A" (k) "

the rest. In fact, for resonances the wave function has no (18

T (x,t) = F dk® (i (k+ ko) + Ft)

hetus evaluate the integral by means of the stationary phase
approximation, which approximates the integral over the
product of a rapidly oscillating and a slowly varying function
by the formula[21]
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where the sum runs over the poirks of stationary phase tonian describes the experimddi], if we neglect the non-
¢’ (k,)=0. In the present case, we take into account onlflinear term in Eq.(1). In the following discussion, we will
the real part of the energiegs,=E,—iT" /2 and add the ex- mainly refer to the parameters of this setup.
ponential of the imaginary part to the slowly varying func- As shown in the preceding section, we can describe a
tion. Then the phase function of the different contributions isdecaying state by a truncated superposition of resonance
b 3 wave functions. In the following, we take into account only
H(K)= ﬂ_ Eu+kx (19 the resonances from the most stable Wannier-Stark ladder
6F F ' with the energies,,=Ey+2mFn—il"y/2. The indexn can
be interpreted as a site index. Note, however, that the equa-
The stationary phase condition is just the energy conservaions can easily be modified to additionally take into account
tion, and the stationary points are the classical momenta higher excited resonances. In the ground-ladder description,
the initial state is given by a superposition

ik, » = = \2(E,~ FX). (20)
Furthermore, we have”(k, .)=%2k, . /F. We can neglect v=> ¢V, (23)

the contributions fronk, ;. because fox— —, i.e,, k, , "

- ?cg,k/tpgy are exponentially small due to the weight factoryt ground-ladder resonancds, with energy&, . (To shorten

e =" in Eq. (17). To shorten the notation, let us introduce he notation, we skip the truncation with the Heaviside func-
p,(x)=fik, _ [note that p,(x)——%= for x——o]. If  {on pecause the truncation does not influence the properties
p.(X)<—fikoy—Ft, the prefactor is zero and the integral giscussed in the following The time evolution of the wave

vanishes. On the other hand,pf(x)> —#ko—Ft, the inte-  fynction¥ additionally contains the time-dependent phases,
gral of the contribution of thesth resonance yields approxi-

matel
Y V()= c, exp(—iEt/R) Y, . (24)
B &t 2nF !
Lixt=exp ~i o hp,(X) The statesV , from the ground Wannier-Stark ladder are re-
3 lated by a coordinate shift by multiples of the lattice period
wexd —i P, (%) _ I',p, (%) 21) 27r. In momentum space, this shift is a multiplication by an
3nF 2hF |’ additional phase factor:
The critical point isp,(x) = —#k,—Ft, where the approxi- W o(k)=exp(—i27nk)Wo(K). (25

mation breaks down because the Heaviside function is not a o o
slowly varying function at this point. Actually, in the vicinity ©0mbining the phase relation in the momentum representa-

of this point, the integral interpolates between the other twdion of the resonances with the different phases due to the
possibilities. Let us skip a more detailed analysis anot'_me evolution, the time evolution of the superposition is
roughly describe the transition between both regimes by &1Ven by
Heaviside function of the argumemnt,(x)+7%ky+Ft, or,
equivalently, of the argument+ F (t+t,)%/2— E, /F, where \I'(k,t)=‘lf0(k,t)2 Cn eXF{ —i2n
the parametety=7Kky/F is introduced. n

The different contributions contain the asymptotic form of
the resonance wave functions in coordinate space. We can =W,(k,t)C
therefore replace the contributiof®l) by ¥ ,(x,t). In anal-

ogy to Eg.(13), we then get a superposition of resonance B - .
wave functions that are truncated in coordinate space, v_vhere\Ifo(k,t)—exp(_ .'5°t./ﬁ)\.1’°(k)' Thus,_the time evolu-
tion of the superposition is given by the time-evolved wave

function at the mean energW(k,t), times the discrete

\If(x,t):g, B,O (x+F(t+10)/2—E,/F)¥,(x.1). Fourier transformC(k) of the amplitudesc, taken at the
(22) momentek + Ft/4. The functionC(k) is periodic in momen-

tum space withC(k+n)=C(k) and neZ. Consequently,
ﬂ;' e amplitude modulation fact@(k+ Ft/#) is also periodic

Ft.
a2

Ft
h

: (26)

In comparison to Eq13), there are two differences. First, in
coordinate space the truncation depends on the energy of the™. ) . - ;
resonances. Furthermore, the edges of the different contribdf? t_:_r::e W'th tdh.eltpe_rlodi/F— 7;5’ the Bloch perlotd. it
tions move with a quadratic time dependence, which reﬂect? . et perlot It(':l y |r]1 tmhor?en urln sEace Isugfges sdan at erna-
the classical accelerated motion in a constant external field" VS Nt€rpretation of the formuia. INamely, It we do not ex-
pand the initial state in Wannier-Stark resonances but in

Floguet-Bloch states, the corresponding expansion coeffi-
cients are just given by the functid®(x), with —1/2<x

Let us extend the results from the preceding section te<1/2. Due to the dc field, the time evolution of the quasi-
analyze the decay of an initial state in a Wannier-Stark sysmomentum follows the equatior(t)=«—Ft/%. Then, the
tem with H=p?/2+ cosx+Fx. Note again that this Hamil- expansion coefficients at timiare given by the shifted func-

Il. SUPERPOSITION OF WANNIER-STARK RESONANCES
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tion C(x+ Ft/#). The time evolution of the superposition is Indeed, up to an overall exponential decay due to the imagi-
the integral over the entire Brillouin zone, which again leadshary part of&, the absolute value of the first factor is time
to Eq. (26). We will come back to this interpretation in Sec. independent. Furthermore, as can be seen from the

IV of this paper, where we propose a different method toaSymptotic form, it is a slowly varying function of the coor-
generate pu|se Output in Wannier-Stark Systems_ dinate. The whole information about the tlme—dependent tun-

neling process through the sequence of barriers imposed by
the periodic potential is contained in the second factor that
will be analyzed further in the following section.

Let us analyze the wave function in coordinate space. It is
given by the Fourier transform of EQ6), i.e., by

A. Asymptotic expansion

B. Amplitude modulation factor

Let us first calculate the amplitude modulation factor

C(k) for some exemplifying initial distributions. If only a
single Wannier-Stark resonance is occupied in the beginning,

Using the convolution property of the Fourier transform, wec,=é,,, the functionC(k) is constant and the decay is not
can express the wave function in coordinate space as thaodified. If two arbitrary resonances are equally populated

convolution of Wy(x,t) and the Fourier transform at(k).  initially,

Proceeding further, we find it more instructive to explicitly

perform the transformation. We are mainly interested in the .
behavior of the decay tail, therefore let us assume|tjais Co=Cr™ 2’
large enough, so that we can approximate the Wannier-Stark

resonance by an Airy function, which up to a constant factoiyith Re 7, then the square of the amplitude is modulated by
yields the factor

‘I'(x,t)zfidkexp(ikx)\lfo(k,t)f:(%Jrk . (27

c,=0 otherwise, (31

© o 2_
W(X,t):f dkexpikx) |C(k)|?=2 cod(mRK). (32)
The position of the maxima of this function differs vk
R & &t & t " =1/R, which corresponds to a time period gf/R. Another
xexpgl = TK] simple case is when eveth resonance is populated, and
the firstN of these resonances are populated equally,

6F F 4
(28

Similar to the preceding section, we concentrate on the decay CnR:i for O0=<n<N, c,=0 otherwise, (33
tail, wherex— —, and solve the integral using the station- VN

ary phase approximation. Explicitly, we assume that the

function C(k+t/7g) is slowly varying and apply formula Which yields the modulation factor

(18). The phase functiori19) yields two stationary points

hk.=+2(Eo;—Fx). Again, we can neglect the positive |f:(k)|2=£ sir?(NRwk) (34
one because its contribution is exponentially small. Then, N siA(Rmk)

settingp(x) =fk_, we get
which is well known from the analysis of diffraction grat-

B ot 2mF ings. For the particular cade=1 with N subsequent reso-
Yx,)=exp —iZ=|\ Ap(X) nances populated, we get
3
pP(x)  Top(X) |~ [t p(x) - 1 sir(Nwk)
Xex%—lw— hE C T_B+T . |Ck ZZN W (35

(29)
Finally, if the initial condition is a Gaussian distributian
Again, we can express the result as the product of two fac=—exp(—8n?) as assumed in Refl], the amplitude modula-
tors, one of which is the asymptotic form of the particulartion factor consists of a sequence of Gauss|@24,
Wannier-Stark resonancBy(x,t). The other one is a time-

dependent amplitude modulation factor. Therefore, replacing = T D w? ) 2
the asymptotic form of the resonance by y(x,t) [CK “Ble T (k=n)
=exp(—i&t/h)¥o(x), we can write EQ.(29) in a form
similar to Eq.(26), T 212 )
~— exg — —— (k—n)“|. (36)
,8 neZ ﬂ
T(x,1)=Wo(x,1) C L (30)
o T no) The last approximation holds for smadl
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2 - , - , N=6 equally populated resonances, and a Gaussian distribu-
tion, respectively. In the following we will use scaled units in
1r T which the potential is 2 periodic with a well depth of 1 and
M=1. This can be achieved by replacingh
—2mhil(ayMy) and F—aF/(2my), wherey is half the
depth of the periodic potential. The parameters of the Hamil-
tonian were chosen to meet the experimental setup in Ref.

/\ L 1 1
I ] [1], which vyields for the trap depth of 1.4 recoil energies a
A/\ k/\ M/\ /\ /\ j\ scaled Planck constant=3.3806 and a scaled field strength

N O

2
[

F=0.0661. The most stable resonance has a scaled width of
I'y=7.4726< 103 corresponding to a lifetime of 9.66 ms,

N ©

which is approximately nine Bloch timegs=1.09 ms(A
I ] potential depth of 2.1 recoil energies yields a lifetime of 73
/\ A A /\N ms, in reasonable agreement with the 50 ms reported in Ref.
Oc00 400 800  —200  —100 0 [1]. For a potential depth of one recoil energy, the lifetime is
X [um] 2.59 ms.
. -~ The wave functions were calculated the following way.
FIG. 1. Absolute square of the wave function of a superposmon,:irst, a particular ground-state resonankg(k) was com-
of Wannier-Stark resonances. The first figure depicts the wave funcputed[l?,ZSl. Following Eq.(26), this function was modu-
tion for the distribution(31) with R=1, the second one the distri- lated with the amplitude modulation factors of the initial
bution.(35) with N=6, and the third one the Gaussian distribution distributions presented at the beginning of this section. Fi-
(36) with B=1/1%. nally, the result was Fourier transformed to coordinate space.
The behavior described above can clearly be seen in Fig.
1. The decay tail of the wave function consists of a number
The last two functions consist of a series of equidistaniyf peaks that broaden with decreasing coordinger Eq.
peaks at integer values &f For largeN or small 8, the  (36) the broadening can only be observed f@rnot too
amplitude is concentrated at these peaks while it approxXismall] As a function of time, these maxima accelerate to-
mately vanishes between them. In coordinate space the pealigrd the negativex direction, i.e., a sequence of pulses
appear at the points with arises. The positions of the maxima are in %ood agreement
_ . L with the formula(39), which readsx=—F(nrg)“/2. For ex-
p(X)=—F(t+js), jeZ, 37 ample, the last three peaks corresponato7, 8, 9, which
i.e., at the coordinates yields the positionsx=—286 um, —374 um, —474 um,
respectively. The relative amount of probability stored in the
o peaks increases with decreasing coordinate, which just re-
X=X~ 75 (t+]7s)%, (38 flects that in every pulse a certain amount of the probability
stored in the main body of the resonance drops out and is
where x,=E,/F is the classical turning point. Thus, as a accelerated by the external field. Note that the pulse forma-
function of time, the peaks accelerate according to the clagion can be interpreted as the result of Bloch oscillations
sical equation of motion of a free particle subject to a con{24,25. During each Bloch period one peak tunnels out as
stant electric field. Additionally, the peaks broaden linearlythe oscillating state arrives at the left turning point.
with increasing timeor with increasing). For example, the
full width at half maximumAk of the function(35) for large 2. Stability against noise
N is approximatelyAk=1/N. The x coordinates of the cor-
responding points are given by

—_

1. Modulation in coordinate space

Naturally the question arises if the behavior found is
stable against noise. This topic is briefly illustrated by the

i T8 numerical results shown in Fig. 2. In all cases the initial
Xe=Xo™ 5 t+JTBiﬁ) : (39 distribution was assumed to be given by the Gaussjan
~exp(—pBn?) with B=1/1%, as assumed in Refl]. In the
which yields a peak width first part, the amplitudes,, are multiplied with real random

coefficients taken from the interv@D.5,2], then the distri-
bution is renormalized. The form of the peaks is slightly
modified, however, the overall behavior is pretty stable
against amplitude noise.
A similar relation holds for the width of the sequence of The second panel in Fig. 2 shows the effect of phase
Gaussiang36), with Ak= 28 In2/m. noise. Explicitly, the coefficients were modified according to
Figure 1 shows the coordinate space wave function of &,~exp( Bn?)exp(¢,), where ¢, was chosen randomly in
superposition of Wannier-Stark resonances=ab for the the interval[ —0.44,0.47]. Now the effect of the noise is
distributions discussed in the beginning of this sectionstronger. The shape of the pulses is modified, and the wave
namely, for two equally populated neighbored resonancegunction does not vanish any more in between the pulses.

F
AX=X_—X, =FAKrg(t+]rg)= %(tﬂ ). (40)
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FIG. 2. Superposition of Wannier-St?rk resonances with noisy  FIG. 3. Space-time decay of the wave function. The initial state
Gaussian initial distributiorc,~exp(—gn’) with B=1/1%. The  is assumed to be a Gaussian distribution of the field-free ground

first panel shows the effect of amplitude noise, the second panel Qjyannier states. From top to bottom, the panels correspontd to
phase noise, and the last one assumes random phases of the initia§ s, 5 ms, 7 ms, and 10 ms, respectively.

distribution.

figure was calculated the following way. First the momentum

However, qualitatively the pulse output still survives. If we : :
T o space representation of one particular resonance from the
take into account that the phases vary within 40% of the b b P

ib I : h A . round Wannier-Stark ladder was calculated. Then the am-
possibie values, 1.€., We nave strong noise, we can resUntigy e of the resonance was modulated with the amplitude
that the behavior is also stable against phase noise. Finally,

domlv ch the ph ¢ the int b odulation factor(36) taken at the specified times. This
we randomly choose the phases from the intefvalr, 7], wave function was truncated in momentum space according

as in the lowest panel of !:'g' 2, .the' pulse structure d'sapfo Eqg. (13). Actually, we shifted the truncation edge by
pears, and the wave function periodically repeats a random

structure, which is only stretched due to the acceleration. 1/2 in order to avoid a truncation directly at the maxima.
' y * However, as discussed above, the location of the edge may

be shifted from the resultL3). As can be seen in Fig. 1, the
C. Decay in atomic tunnel arrays wave function approximately vanishes between the maxima,

. . . and therefore the result does not change if we slightl
It is straightforward to combine the results of the two g gnty

. " G i h to 1 te th modify the size of the shift. Finally, the resulting function
previous sections. enerafly, we have 1o fruncate 2e Walias Fourier transformed into coordinate space.
front approximately at the coordinatg=—F(t+tq)“/2

L LN . The figure closely resembles the findings of the experi-
+Eo/F. Furthermore, for the initial distributions in 004111 A series of pulses is formed, which accelerate ac-

V\/_a;nier-Stark ?’Sten?s ]?onsitzljere?]_art])ove, a se_rri]eshof PUISESding to the free motion. At a fixed value of the coordinate,
with constant shape Is hor_me » Whic mlove With the Samgpq sequence is periodic in time after the first pulse passed,
time dependence, i.e., their maxima are located=at-F(t 5 {5 an overall exponential decay, which reflects the fact

2 .
+mrg)“/2+Ey/F. Consequently, to take into account the 4 every drop takes away a certain amount of probability.
truncation, we have to remove all pulses with>ty/75.

Actually, we have a superposition of resonances with ener-
gies&,=&y+27Fn, therefore we have to truncate the con-
tribution of each resonance at a different coordinate. How- Let us finally discuss how to prepare an initial state which
ever, one can easily surmount this problem by truncating indlecays by a regular pulse formation. If the initial state popu-
momentum space. lates only one Wannier-Stark resonance, the decay is con-
Let us, in this way, describe the space-time decay in theinuous and no pulses develop. An arbitrary initial state will
experimen{1] where pulse output from a Wannier-Stark sys-contain contributions from several resonances and thus yield
tem was found. We already addressed the setup above. The modified output. An initial distribution with random
scaled parameters of the Hamiltonian &re 3.3806 andF phases, however, leads to random output. Thus, the question
=0.0661. In the experiment, the initial state was a Bosearises as to how to prepare initial states that populate several
Einstein condensate that extends over approximately 3Wannier-Stark resonances with well-defined phases.
space periods. In our description, we assume a Gaussian dis- In the experiment[1], the fixed phase relation was
tribution of the ground resonances according to the formulachieved by the self-interaction of the Bose-Einstein conden-
Cn~exp(—Bn?) with B=1/1%. sate. In the following, we show that one can easily prepare
Figure 3 shows the space-time decay of this initial state aan appropriate initial state within single-particle quantum
the timest=3 ms, 5 ms, 7 ms, and 10 ms, respectively. Themechanics by temporarily adding an ac field with frequency

IIl. WANNIER-STARK MODE LOCKING
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matching the Bloch frequencyg=27/7g. Explicitly, the 3 : 0

technique is as follows: Take an arbitrary initial state in the

Wannier-Stark system and expose it for a finite tifg to

an additional ac field~  x cos(gt), which is then switched

off. If the field strength is sufficiently large and the interac-

tion time T;,,; is long enough, the initial state decays with a

pulse output. —_
The reason is the dependence of the witth the life- %

time) of the Floquet-Bloch states of the dc-ac system on the T

quasimomentuni12,20,26. Namely, let¢,, (k) denote the

Floquet-Bloch states of the dc-ac Hamiltonian i

2
H=%+cosx+ Fx+F X cog wgt). (42)

Then we can expand the initial stagg(k) in the Floquet- . .
Bloch states, k k

12 FIG. 4. Real and imaginary parts of the quasiangles€rg /%
Po(k)=0(k+ ko)z f dra, (k) ¢, (K), (42 of the system(41) with parametersi=3.3806, F=0.0661, and
v J-112 ' different e=F,/w®. The dotted line corresponds ©=0.1, the

o ) _ dashed line toe=0.4, the dashed-dotted line ©=0.8, and the
where thea,(«) are periodic functions of the quasimomen- solid line toe=1.5.

tum and the index sums over the different bands. In anal-

ogy to Eq.(13), the Heaviside function is taken as an ap-shift them in front of the integral. It remains the integral of
proximation to the real situation and ensures the cutoff inhe states®, (k) over the entire Brillouin zone, which
momentum space. Let us assume that mainly the groungields one particular Wannier-Stark resonangg(k) from

band is populated and skip the sum over the band indices ithe ground Wannier-Stark ladder. Then we get
the following. In fact, higher excited states rapidly decay and

therefore mainly influence the edge of the decay tail of the Wo(k,N7g) =0 (h(k+kq) +FN7z)b(k)
wave function. Let us disregard the actual form of the edge
in the following. Then, afteN periods of driving, the wave Eo(K)N T
function reads X ex;{ T Wo(k). (46
Yo(k,N7g) =0 (fi(k+ko) +FN7g) Thus, the prefactob(k)exg —i&y(k)N7g /%] takes the role
12 (N T of the amplitude modulation factdZ(k) of the new initial
X f_ dra(x)e “0vTB Ry (k). state. Let us briefly discuss its form in the following section.

(43 A. Mode-locked amplitude modulation factor

Now the ac field is switched off, and we take the final state Figure 4 shows the real and the imaginary parts of the
Yo(k,N7g) as the initial state for the pure dc dynamics. We quasiangles\=Erg /% for the system(41) with parameters
then expand in the basis of the Floquet states of the new dt=3.3806 and-=0.0661 taken from the experimdri] and
Hamiltonian different values of the ac field strength,=ew3, which
cover the range from weak to strong driving. In all cases the

2 . .
real parts approximately follow a cosine,

H:%+cosx+ FX, (44)
E(k)=Eg+ Ag cog2wk). (47)
which we denote byb, (k). If we again restrict ourselves

to the ground band, the expansion in the new basis reads The imaginary parts do so only for smadl whereas for
larger values strong modulations of the width as a function of

o(k,N7g) = O (7i(k+Kko) +FN7g) the quasimomentum appear, which are due to the interaction
o with higher excited Wannier-Stark ladders. For smalwe
xf dxb(k)e 'EO(K)NTB/h(I)O’K(k), can approximate the widthy(k) of the ground band states
172 by a cosine dispersion relatigt2,26],
(49)
I'(k)=Ty+Ar cog27k), (48

with the prefactob(x)=a(«)(®Pg,|Po.). We can equiva-
lently treat the functionb(«) and&(«) as periodic functions and the absolute value of the amplitude modulation factor is
of the momentum instead of the quasimomentum, and thegiven by
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~ I'oN ArN T =201 ' ' ' '
|C(k)|2=|b(k)|2ex%— OﬁTB_ FhTBcogzwk))- /TjB/\/_\/\/\/\/\/\/V

If the interaction timeT = N7 is large enoughand ifb(k) is or =
sufficiently smooth, the strong modulation of the exponen- T =401y
tial dominates the form of the amplitude modulation factor.
Then the wave function is periodically peaked in momentum o«
space. Of course, such a periodically peaked structure is also 2 0
found for larger values o where formula(48) is no longer
valid. In fact, due to the stronger modulation of the width, it
appears even for short interaction times. Ol ,
The behavior in coordinate space is additionally modified T =160,
by the dispersion due to the real parts of the quasienergies. If
we approximate the real parts by Ed.7) and again apply
the stationary phase approximation in the Fourier transform 0800 -500 400  -300 200 -100 0
of Eq. (46), the stationary pointkg are solutions of a slightly X [um]
modified equation:

FIG. 5. Tail of the wave function after the system was driven by
£2K2 an ac field for different periods. The parameters 7are3.3806, F

TS+27TAEN sin(2mkg) = Eq— FX. (490  =0.0661, and=0.1.

The implications are as follows. In coordinate space, theuilt after the ac field was switched off. Numerically, we
form of the peaks is changed compared to the dispersion-fregarted with Eq.(46) and assumed the functide(k) to be
case, in particular, the peaks can be broadened or narrowegPnstant. Explicitly, we calculated the resonances wave func-
Which of both possibilities occurs can most easily be seefion Wo(k), multiplied by the amplitude modulation factor

from the function exd —i&(k)N7g /%], where the dispersion relation was cal-
culated independently, and Fourier transformed the result
dx  #h%ks 4m*AeN into coordinate space.
& F F cog2mks). (50) Figure 5 shows the decay tails that develop for a weak ac

field with e=0.1. After short interaction times, the tail is
Its absolute value relates the width of the peaks in momenslightly modulated. For longer interaction times, the modu-
tum space to the width in coordinate space. Actually, forlation depth increases and pulses develop, which finally are
resonances only the stationary points wWith<0 are impor- cI_earIy _separated. Note that, apart from effects due to the
tant, the others can be neglected. In this region, the absolufliSPersion, we can decrease the width of the pulses by fur-
value of the functiordx/dk, takes minima at integet,, and ther increasing the_ interaction time, which provides a simple
maxima at half integer values. As can be seen from Fig. 4y t0 tune the width experimentally.

the peaks in momentum space appear at integeand thus A crucial point of the weak-field regime is the long ac
the dispersion additionally narrows the peaks. driving time, which is needed to generate well-separated

Note that for smallk¢| there may be three instead of one pulses. The relevant time scale is set by the most Iong_—lived
stationary point on each branch of the square root. Then thetate from the ground band. For the case0.1, the mini-

. _ 73 -
wave function shows additional interferences due to the inmMum width isI'yi;=7.214<10"°, which corresponds to a

teraction of the three different contributions. However, forlifetime of 10.0 ms, i.e., approximately 1&. Thus, the
|k{>4m2AcN/#2 these interferences disappear. Further-Nteraction time is much longer than the lifetime of the most

more, for largek/, the dispersion only perturbatively influ- stable state. Consequently, a predominant part of the initi_al
ences the shape of the peaks because its contribution remaiff@ve function has already decayed before pulses are being
constant while the width increases proportionally |kg|. ~ formed. One can, however, surmount this problem by in-
Thus, for largelkd, i.e., for large negative values af the ~ C€reasing the field strength of the ac field.

shape of the peaks of the decay tail reflects the function F9uré 6 shows the decay tail for a strong ac field with
(k). e=1.5. Now the pulses develop after much shorter interac-

tion times. Fore=1.5, the functionl’(k) has four minima
(see Fig. 4, which are due to two crossings with higher
excited Wannier-Stark ladders. Note that one can directly
Let us support the analysis by some numerical results thatad off this property from the substructure of the pulses on
describe the following setup. An initial state is driven duringthe decay tail.
a time T=N7g by an ac field, which is then switched off. The interaction times necessary to generate separated
The shape of the pulses that are formed are described by tipailses are much shorter for strong ac fields. In fact, now the
amplitude modulation factob(k)exd —i&(k)Ntg/%]. The  necessary duration of the driving is even shorter than the
figures show the wave function after additional-df un-  lifetime of the most stable state. The minimum width for the
driven decay in order to make sure that the pulses shown aasee=1.5 is I',;,=2.27x 10 3, which is less than one-

B. Decay in driven tunnel arrays
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FIG. 6. Tail of the wave function after the system was driven by  FIG. 8. Time evolution of wave packéb2) for c=2 andx,
an ac field for different periods with strong field strength 1.5. =1 after different periods of driving; the duration of the driving
The other parameters are as in Fig. 5. changes fronT =0 (top) to T=675 (bottom). In the last two cases,

the numerical wave packet resultsottom subplot are compared

third of the minimum width fore=0.1. The corresponding With the corresponding results from B6) (top subplok

lifetime 'S 31'7. ms, Wh'Ch IS ap.pro?qmately twice as large asstrength is increased from the perturbative to the strong-field
the maximum interaction time in Fig. 6. Thus, in the strong-

' . . regime. The first three cases correspond to the field strengths,
field regime, pulses develop before a substantial part of thﬁ1e dispersion relations(k) of which are shown in Fig. 4,
Wal\;let];::enfvt\;gnlor\]/\iasr%i\%gs%f Fig. 6, one can clearly see th With increasing field strength, the decay tail develops addi-

: : ] : . _Jional substructures. In particular, additional minima occur,
narrowing caused by the.dlspersmn. In parhcular: the f|rsWhiCh correspond to thpe avoided crossings with excited
peaks(counted from the rightstrongly oscillate, which re- g\/annier—Stark states. Fer=0.8, the effect mainly shows up

flects the existence of three stationary points of the phasIn a strong deformation of the shaoe compared to the case
function in this region. However, the last peaks have ap- 9 e pared t
=0.4. For e=1.5, already four minima exist, i.e., two

{Jhrgx;?;;(él)grt]rl]; pscgr?:ﬁbzrt]i?/g?j .., here the narrowing aﬁeac%rossir}g_s with excited Iad(_jers._Fina_IIy, fer=2.2 even a
Thus, if the field strength is sufficiently large, the pro- fifth minimum appears, wh|c_h S|g_nal|zes the occurrence of
posed setup seems to provide a tool to explore the exper}he next crossing. By comparing Figs. 4 and 6 we see.that the
mental dependence of the lifetime on the quasimomentun{.elat'onr(_k) is mirrored m_the shape of the dec_ay ta|l._
Figure 7 shows some possible shapes that develop if the fielfd Up until now we have d|scu5fed results obtained directly
rom Eq. (46) where we seb(k)=1. Let us compare these
results with an exact time evolution of an initial state, i.e., a
wave-packet propagation. For this we propagated an initial

Gaussian wave packet,

€= d.4,T ='401:B '

(51)

0 : : ; : : : ! 1 X—Xg)?
e=08T =201, Wo(X)= (0) ,

To 20

| <l
-

in the Wannier-Stark system after driving it for different pe-
riods with e=1.5. Figure 8 compares the results obtained in
this way for c=2 andxy= m, with the predictions of Eq.

LJ\J (46). Shown is the output from the BEC without driving (
’ =0) and for an additional driving during timéds=47g and
T=67g. In the last two cases, the numerical wave-packet
uu u results(bottom subplot are compared with the correspond-
ing results from Eq(46) (top subplof.

Without driving (T=0), the initial state decays without
pulse formation. This changes if we turn on the drivifig (

FIG. 7. Tail of the wave function after several periods of driving =478 and T=67g) after which a pulsed output develops.
by ac fields with different strengths. While the field strength is The positions, the widths, and the relative sizes of the differ-
increased, the interaction time is decreased such that the width &t peaks are in perfect agreement with the predictions of Eq.
the peaks is comparable. (46). The difference in the structure reflects the contribution

2
']

0 } = } ‘
€=1.5, =101:B

e=22T =61B

700 —600 -500 —400 -300 -200 -100 O
X [um]
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T-0 that the shape of the pulses resembles the one predicted by
MN Eq. (46). Minor differences can again be attributed to the role
0 of the prefactob (k).

CONCLUSION

The wave function of a decaying state in a Stark system
can be written as a superposition of resonance states trun-
cated in momentum space. The movement of the edge of the
truncation obeys a classical equation of motion. The states
constructed in this way are—in contrast to the usual resonant
or decaying states—normalizable. This result resembles the
o , , , ; , one obtained in Refl14] for scattering wave functions de-

scribed in terms of Moshinsky functions.
AN M By applying this general result to a Wannier-Stark system,
0800 300 200 300 200 100 0 we analyzed the decay in both momentum and coordinate
x [um] space of a state that populates primarily the first Wannier-
Stark ladder. In both representations the time evolution can

FIG. 9. Same as Fig. 8, however, for a wave packet more widelihe written as a product of the time evolution of a resonance

spread in coordinate space £ 10). state and the Fourier transform of the amplitudes of the ini-
tial population. The whole information about the time-
of b(k) in the real quantum propagation. As it can be seerdependent tunneling process is contained in the second fac-
from the lower part of Fig. 8, this influence decreases withtor. Using an appropriate initial distribution we were able to
longer driving, as expected from E@L6). describe the experimental results of Rdf]. Finally, an ex-

Figure 9 shows a similar discussion for a Gaussian wav@erimental setup for preparing an initial state that shows
packeto=10, Xo=. Initially, this wave packet is more regular pulse formation during decay using the interaction
widely spread in coordinate space and has contributions fromwith an ac field is proposed. In addition, an analysis of the
more than one state of the ground Wannier-Stark laddepulse shape may provide a method to experimentally access
Therefore it shows an output in the form of broad pulseshe functionl’ (k). We conclude that it should be possible to
even without an initial driving T=0), as discussed in Sec. use the setup described to observe the pulsed decay in
[Il. After driving the system folT=475 or T=67, we see  Wannier-Stark systems.
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