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Linear spin waves in a trapped Bose gas
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An ultracold Bose gas of two-level atoms can be thought of as a spin-1/2 Bose gas. It supports spin-wave
collective modes due to the exchange mean field. Such collective spin oscillations have been observed in recent
experiments at JILA with87Rb atoms confined in a harmonic trap. We present a theory of the spin-wave
collective modes based on the moment method for trapped gases. In the collisionless and hydrodynamic limits,
we derive analytic expressions for the frequencies and damping rates of modes with dipole and quadrupole
symmetry. We find that the frequency for a given mode is given by a temperature-independent function of the
peak densityn, and falls off as 1/n. We also find that, to a very good approximation, excitations in the radial
and axial directions are decoupled. We compare our model to the numerical integration of a one-dimensional
version of the kinetic equation and find very good qualitative agreement. The damping rates, however, show
the largest deviation for intermediate densities, where one expects Landau damping—which is unaccounted for
in our moment approach—to play a significant role.

DOI: 10.1103/PhysRevA.66.043411 PACS number~s!: 32.80.Pj, 05.30.Jp
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I. INTRODUCTION

Collective spin oscillations are a general consequenc
the quantum exchange between identical particles in a
tem where a macroscopic symmetry breaking exists in s
space@1#. From a condensed matter perspective, spin wa
are most familiar in strongly interacting degenerate Fe
systems, such as a ferromagnet. It is somewhat counte
tuitive, although well established both experimentally@2–4#
and theoretically@5–9#, that collective spin behavior can als
occur in nondegenerate dilute spin-polarized gases when
thermal de Broglie wavelength exceeds the effective rang
interaction between two colliding atoms. In these system
transverse spin wave is excited by applying an inhomo
neous magnetic field followed by a small tipping pulse. It
remarkable that the mean field generates collective spin
namics, but has no discernible effect on thermodyna
equilibrium properties sincegn/kBT!1, whereg is the bi-
nary interaction parameter,n is the density, andT the tem-
perature.

Recent experiments at JILA@10,11# on a trapped87Rb gas
have revived interest in spin waves in dilute gases@12–15#.
These experiments offer several interesting new featu
compared to the earlier experiments in spin-polarized hyd
gen @2,3#, which take advantage of the technological a
vances made over the last twenty years in the measure
and control of cold atomic gases. A prominent feature of
new generation of experiments is the ability to take spatia
resolved measurements of the gas sample using absor
imaging techniques. Another exciting advancement is
ability to cool the sample into the quantum degenerate

*Present address: Department of Physics, Faculty of Science
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gime, which permits the study of spin waves in a Bos
Einstein-condensed gas at finite temperatures; this reg
has never been investigated experimentally and has only
ceived minor attention in the theoretical literature@16–18#.
In this paper, however, we focus on the noncondensed
gime relevant to the recent JILA experiments@10,11#, where
the temperatures are approximately twice that needed
Bose-Einstein condensationTBEC.

The JILA system consists of a dilute gas of87Rb atoms
that have been optically pumped into theuF51,MF521&
[u1& hyperfine state and are confined in a magnetic h
monic trapping potential. By applying microwave and rad
frequency radiation that couples to theu2,1&[u2& state, at-
oms in the gas can be uniformly prepared in an arbitr
superposition of theu1& and u2& states. This system can b
thought of as a spin-1/2 system by takingu1& as the spin-up
state andu2& as the spin-down state. In Fig. 1 we illustra
the corresponding Bloch vector spin describing the inter
state of the atoms. Note that because the magnetic field
rection varies in the trap@19#, the spin axis shown in Fig. 1
is not isomorphic with the coordinate axis describing t
position of an atom, in contrast to the situation in sp
polarized hydrogen.

In the JILA experiment, an initialp/2 pulse is applied to
tip the spins into the transverse directionv. The spin vector
then precesses about the longitudinalw axis at a rate propor-
tional to the energy difference between hyperfine states.
to the mean field and differential Zeeman effects, the lo
frequency splitting between hyperfine states varies appr
mately quadratically with position. This inhomogeneity in
tiates collective spin dynamics through the exchange m
field, the initial onset of which gives the striking appearan
of spin segregation@10,12–14#. The inhomogeneous fre
quency splitting can be made arbitrarily small to study t
linear response of the system. Recently this technique
used to probe intrinsic collective spin oscillations@11#. Stud-
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ies of such spin-wave collective modes provide us clea
physical understanding of the important role of the excha
interactions in a dilute Bose gas.

The experiments described in Refs.@10,11# present spa-
tially resolved images of spin dynamics in a gas. The den
profile of either state is measured using absorption imag
Together with the Ramsey fringe technique, integrated s
tial profiles of the longitudinal spinSw and transverse phas
f can be extracted from experimental data, as shown in
stunning images in Ref.@11#. This is in sharp contrast to th
earlier hydrogen experiments, where a pulsed NMR te
nique is used to obtain the frequency of spin oscillation
tegrated over the entire sample. In this paper, we sho
theoretical prediction of the spatial structure of the spin
namics that qualitatively agrees with experimental obser
tion.

In this paper, we present the theory of spin waves i
trapped Bose gas using the moment method@20,21#, which
was originally developed to study collective density oscil
tions in a trapped classical gas. The moment approach
also been applied to a rotating gas@22# and was recently
generalized to treat a Bose-Einstein-condensed gas at
temperature to study the scissors modes@23#. An advantage
of this technique is that the solution maps smoothly betw
the collisionless and hydrodynamic regimes@20#. We apply
the moment method to a spin kinetic equation, and de
explicit analytical expressions for frequency and damping
dipole and quadrupole modes in weak and strong coup
limits. We also numerically solve a one-dimensional~1D!
model of the kinetic equation, and compare with the mom
results.

II. SPIN KINETIC EQUATIONS

The Hamiltonian describing a single, trapped, two-le
atoms of massm is

Ĥ5F2
\2

2m
¹21Uext~r !G 1̂1

\

2
VW ~r !• t̂W . ~1!

FIG. 1. Schematic diagram of the Bloch vector spinSW . The

spins of the atoms are initially pointing up,SW 5$0,0,Sw%, corre-
sponding to all the atoms being in the stateu1&. After thep/2 pulse,

the spin vector is pointing along thev axis, SW 5$0,Sv,0%, corre-
sponding to the state (u1&1 i u2&)/A2.
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The first term in Eq.~1! is the center-of-mass Hamiltonia
containing the kinetic energy and the external parabolic t
potential

Uext~r !5
mvz

2

2
@a2~x21y2!1z2#, ~2!

wherea5v' /vz . This part of the Hamiltonian is uncouple
from the internal, pseudospin, degree of freedom, which

governed by the second term:VW (r )• t̂W5Vu(r ) t̂u1Vv(r ) t̂v

1Vw(r ) t̂w , wheret̂ i is a Pauli matrix. In the absence of a
external coupling field,Vu5Vv50 andVw5D(r ) @10,11#
is the frequency splitting between the two states~we go to a
rotating frame to eliminate the large hyperfine splittingvhf
frequency!. We model binary interactions between particl
by a d-function pseudopotential describing elastic, sp
preserving collisions, the strength of which depends
the hyperfine statesVi j (r ,r 8)5gi j d(r2r 8), where gi j
54p\2ai j /m, with ai j being the scattering length for colli
sions between atoms of speciesi and j. For 87Rb, a11
5100.9a0 , a12598.2a0 , a22595.6a0, wherea0 is the Bohr
radius@10#. In the rest of this paper, however, we make t
simplification thata115a225a12[a, which is a reasonable
approximation for87Rb.

Several groups have previously worked out the fun
mental kinetic theory of a noncondensed dilute Bose
with internal degrees of freedom, to describe spin waves
spin-polarized atomic hydrogen aboveTBEC @6–9#. Using a
semiclassical approximation to describe atomic motion
terms of a phase-space distribution function, we obt
coupled Boltzmann equations for the atomicf (r ,p,t) and
spin sW (r ,p,t) distribution functions:

] f

]t
1

p

m
•“ r f 2“Un•“pf 2

\

2
“Vni•“ps i5

] f

]t U
coll

,

~3!

]sW

]t
1

p

m
•“ rsW 2“Un•“psW 2

\

2
“VW n•“pf 2VW n3sW

5
]sW

]t
U

coll

. ~4!

Equation~3! has an implicit sum over the repeated indexi
5u,v,w in the fourth term. The total density and spin de
sity are obtained from the distribution functions asn(r ,t)
[n1(r ,t)1n2(r ,t)5*dpf (r ,p,t)/(2p\)3 and SW (r ,t)
5*dpsW (r ,p,t)/(2p\)3, respectively. Here the longitudina
component of the spin represents the relative densitySw
5n12n2 and the transverse componentsSu andSv describe
the real and imaginary parts of the internal coherence.
center-of-mass effective potential isUn(r ,t)5Uext(r )
13gn(r ,t)/2. The effective coupling field including mean
field effects is

VW n~r ,t !5VW ~r ,t !1
g

\
SW ~r ,t !. ~5!
1-2
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LINEAR SPIN WAVES IN A TRAPPED BOSE GAS PHYSICAL REVIEW A66, 043411 ~2002!
The collision integrals in Eqs.~3! and~4! are written explic-
itly in the Appendix.

The center of mass and spin are coupled via the third
fourth terms in both Eq.~3! and Eq.~4!. These terms involve
spatial gradients over the density and scale likegn/kBT
!1, and thus can be neglected. This allows us to make
further simplification that the center of mass and spin
namics are decoupled. Since we are interested in the intri
collective modes of the system, we also assume that the
VW (r )5@0,0,D(r )# can be made to vanish after the spin wa
is excited. This assumption is motivated by the JILA expe
ment @11#, where the static inhomogeneous frequency sp
ting could be adjusted to zero after a short excitation tim
The position dependence ofD(r ) determines the symmetr
of collective mode excited. With these two assumptions,
kinetic equation for the spin distribution function then sim
plifies to

]sW

]t
1

p

m
•“sW 2“Uext•“psW 2

g

\
SW 3sW 5

]sW

]t
U

coll

. ~6!

In this paper, we consider small amplitude spin oscil
tions around a fully polarized state. It is convenient to defi
new spin coordinates (u8,v8,w8) with w8 being the direction
of the initial spin polarization. In the experiment described
Ref. @11#, the spin oscillations occur about the spin sta
polarized along thev axis. In this case one must make th
mapping of the spin coordinates (u8,v8,w8)5(w,u,v), cor-
responding to a cyclic permutation@33#. We then linearize
the kinetic equation around the equilibrium state polariz
along thew8 direction~we drop the prime from our notatio
from here on!: su05sv050, andsw0(r ,p)5 f 0(r ,p), where
the equilibrium distribution is

f 0~r ,p!5expH 2bF p2

2m
1Uext~r !2m0G J . ~7!

The equilibrium density given from Eq.~7! is

n0~r !5E dp

~2p\!3
f 0~r ,p!5

1

l th
3

exp@2bUext~r !#, ~8!

wherel th5(2p\2/mkBT)1/2 is the thermal de Broglie wave
length. We then substitutesW (r ,p,t)5sW 0(r ,p)1dsW (r ,p,t)
into Eq. ~6! to obtain the linearized spin kinetic equation

]dsW

]t
1

p

m
•“dsW 2“Uext•“pdsW 2

g

\
~SW 03dsW 1dSW 3sW 0!

5
]sW

]t
U

coll

. ~9!

The linearized form of the collision integral is discussed
the Appendix.

The longitudinal spin dynamics is described by
04341
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]dsw

]t
1

p

m
•“dsw2“Uext•“pdsw5

]dsw

]t U
coll

. ~10!

Since the mean-field term does not appear in Eq.~10!, col-
lective oscillations of the longitudinal spin only occur in th
low-density collisionless regime in a trapped gas. In t
high-density hydrodynamic regime, longitudinal modes b
come purely relaxational modes damped by the diffus
transport process. The crossover from the collisionless s
oscillation to the hydrodynamic relaxation mode in a lon
tudinal spin excitation was observed in a trapped40K Fermi
gas @24,25# ~although they were not excitations from th
fully polarized state as considered here!. In contrast, trans-
verse spin waves behave collectively due to the mean fi
and will be the focus of this paper. For the transverse s
fluctuations, it is convenient to work withds6[dsu
6 idsv . We then obtain

]ds6

]t
1

p

m
•“ds62“Uext•“pds6

6 i
g

\
~ f 0dS62n0ds6!5

]ds6

]t U
coll

. ~11!

Although we are interested in a trapped Bose gas, i
useful to summarize earlier results on the theory of s
waves in a homogeneous gas@26#. In the long wavelength
limit, where the gas can be treated in the hydrodynamic
gime, the dispersion relation has the form@8,26#

v~k!52 ik2v th
2 t̃D , ~12!

wherev th5AkBT/m andt̃D is a complex diffusive relaxation
time. For transverse spin oscillations, one findst̃D

215(tD
21

2 ign/\), where the diffusive relaxation time istD

5@(32a2n/3)ApkBT/m#21. Due to the exchange mea
field, the transverse spin behaves collectively, and in
limit wheregntD /\@1, the dispersion relation has the for

v~k!5
\k2

2m*
2

i

tD
S \kv th

gn D 2

, ~13!

where m* 5(gn/2kBT)m is regarded as an effective mas
The k2 dispersion relation is a universal result for ferroma
neticlike spin systems@1#. The longitudinal spin oscillations
do not behave collectively, but rather exhibit a purely diff
sive mode, witht̃D→tD in Eq. ~12!.

III. MOMENT METHOD FOR A TRAPPED SPIN-1 Õ2 GAS

We now turn to spin waves in a Bose gas confined in
harmonic trap potential. Starting from Eq.~11!, one can de-
rive a general set of coupled moment equations associ
with a set of polynomial functionsx i(r ,p):

d^x i&
dt

2 K“x i•
p

mL 1^“Uext•“px i&

1 i
g

\
@^S1x i&02^n0x i&#5^x i&coll , ~14!
1-3
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where the moment variables are defined as

^x i&[
1

NE drE dp

~2p\!3
x i~r ,p!ds1~r ,p,t !, ~15!

^x i&coll[
1

NE drE dp

~2p\!3
x i~r ,p!

]ds1

]t U
coll

, ~16!

^x i&0[
1

NE drE dp

~2p\!3
x i~r ,p! f 0~r ,p!. ~17!

In general, moment equations are not closed since the m
field and collisional terms couple to higher moments. Tho
higher moments can be truncated by expanding the fluc
tions in the distribution functionds1 in powers of position
and momentum. One can relate the coefficients in the exp
sion to the moments of the distribution function^x i& to yield
a closed set of equations that can be solved analytically.

The choice of the functionsx i depends on the symmetr
of the spin-wave mode we are interested in. In the follow
sections, we consider the dipole and quadrupole oscillati

A. Dipole mode

We first consider the spin-wave collective mode with
dipole symmetry, which could be excited by a linear inh
mogeneous frequency splitting, such asD(r )}z. For our set
of moments to describe this oscillation, we choose

x15xi , x25pxi
/m. ~18!

The subscript indicates the axis along which the excitat
oscillatesxiP$x,y,z%. Within the moment method approx
mate treatment, the dipole modes along the three axes
completely decoupled. We also definex051, related to the
norm of ds1 ; we set^x0&50, which is required from the
conservation of the spin density.

From Eq.~14!, the equations of motion for the momen
Eq. ~18! are given by

d

dt
^x1&5^x2&, ~19!

d

dt
^x2&1v i

2^x1&2 i
g

\
^n0x2&5^x2&coll , ~20!

wherev i is eithervz for an axial mode orv' for a radial
mode. These are not a closed set of equations, since in
eral the mean field and collisional terms in Eq.~20! couple to
higher moments. The hierarchy of moment equations can
truncated by assuming the explicit truncated form for
distributionds1 :

ds15 f 0@a01a1xi1a2pxi
#. ~21!

The coefficients in the expansion can be related b
to the set of moments using Eq.~15!: a050, a1

5(mv i
2/kBT)^x1&, anda25^x2&/kBT.
04341
an
e
a-

n-

g
s.

-

n

re

n-

be
e

k

Using the explicit form fords1 in Eq. ~21!, the mean-
field and collisional terms can be expressed in terms of
dipole moments. The resulting closed set of coupled mom
equations, written in matrix form, is

d

dt
x5Ŵdx, ~22!

where the coupling matrixŴd is

Ŵd52S 0 21

v i
2 ~gD2 ivMF!

D . ~23!

Here we have defined the vector of momentsx
[$^x1&,^x2&%. Three different frequencies appear inŴd :
the trap frequencyv i along the axis of oscillation, the mean
field frequencyvMF defined by the spatial averagevMF

[*drgn0
2(r )/N\,

vMF5
gn0~0!

2A2\
, ~24!

and the spatially averaged diffusion relaxation rategD , the
form of which is given in the discussion in the Appendix.

We now look for normal mode solutionsx5x0e2 ivt.
Substituting this into Eq.~22! yields an eigenvalue equatio
with two solutions. It is straightforward to show that th
mode frequenciesv obey the dispersion relation

v21 i g̃Dv2v i
250, ~25!

where g̃D[gD2 ivMF is the effective~complex! diffusion
relaxation rate including the mean-field effect. The soluti
is given by

v5
1

2
@2 i g̃D6A4v i

22g̃D
2 #. ~26!

We shall consider two limiting cases to obtain the scal
behavior of the frequency and damping of the modes. In
weak interaction, or collisionless, limit wherev i@ug̃Du, one
has

v.6v i2
vMF

2
2 i

gD

2
. ~27!

In the strong coupling, or hydrodynamic, limit wherev i

!ug̃Du, one has

v.H 2 iv i
2/g̃D ~ low!

2 i g̃D ~high!.
~28!

These represent low- and high-frequency modes, with
low-frequency mode having a higherQ;Rev/Imv value.
The low-frequency solution has the form of the diffusio
relaxation rate with a complex diffusion coefficient. Mo
explicitly, the dispersion relation in the strong-coupling lim
takes the approximate form
1-4
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v.
v i

2

vMF
S 12

gD
2

vMF
2

2 i
gD

vMF
D . ~29!

The scaling behavior of the real part of Eq.~29! can be
recovered in a simple model based on the homogeneous
result of Eq.~12!. For low-frequency collective modes in
trapped gas along thexi direction, the wave vectork is esti-
mated ask;1/Ri , whereRi5mv i /kBT is the size of the
cloud along thexi direction.

B. Quadrupole mode

In the JILA experiment@11#, a spin-wave collective mode
with a quadrupole symmetry is excited due to an appro
mately quadratically varying frequency splittingD(r )}z2. In
principle, the oscillation may be excited along both the ax
or radial directions, and so we take the following quantit
for our set of moments:

x15z2, x25zpz /m, x35pz
2/m2, ~30!

x45r'
2 , x55r'•p' /m, x65p'

2 /m2, ~31!

where r'5Ax21y2 and p'5Apx
21py

2. We also definex0

51, related to the norm ofds, which we set to zerôx0&
50.

The six moment equations for the above quantities ar

d^x1&
dt

22^x2&50, ~32!

d^x2&
dt

2^x3&1vz
2^x1&2 i

g

\
^n0x2&5^x2&coll , ~33!

d^x3&
dt

12vz
2^x2&1 i

g

\
@^S1x3&02^n0x3&#5^x3&coll ,

~34!

d^x4&
dt

22^x5&50, ~35!

d^x5&
dt

2^x6&1v'
2 ^x4&2 i

g

\
^n0x5&5^x5&coll , ~36!

d^x6&
dt

12v'
2 ^x5&1 i

g

\
@^S1x6&02^n0x6&#5^x6&coll .

~37!

Just as in the previous case of the dipole mode, we trun
the hierarchy by assuming an appropriate form for the dis
bution

ds15 f 0@a01a1z21a2zpz1a3pz
2

1a4r'
2 1a5r'•p'1a6p'

2 #. ~38!

The coefficients in the expansion can be related back to the s
moments using Eq.~15!: a052m@vz

2^x1&1v'
2 ^x4&1^x3&

1^x6&#/2kBT, a15(mvz
2/kBT)2^x1&/2, a25mvz

2^x2&/
04341
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(kBT)2, a35^x3&/2(kBT)2, a45(mv'
2 /kBT)2^x4&/2, a5

5mv'
2 ^x5&/(kBT)2, anda65^x6&/2(kBT)2.

Following the same procedure as for the dipole mode,
obtain a closed set of coupled moment equations, written
matrix form as

d

dt
x5Ŵqx, ~39!

where the coupling matrixŴq in this case is

Ŵq52S 0 22 0 0 0 0

vz
2

g̃D/2 21 0 0 0

0 2vz
2 g̃T

z 0 0 dgT

0 0 0 0 22 0

0 0 0 v'
2

g̃D/2 21

0 0 2dgT 0 2v'
2 g̃T

'

D .

~40!

The vector of moments isx[$^x1&,^x2&, . . . ,̂ x6&%. The
tilde on the relaxation rates indicates the complex formg̃
5(g2 ivMF). The quantitiesgT

z andgT
' , given explicitly in

the Appendix, are the spatially averaged axial and radial th
mal relaxation rates, the difference of whichdg5gT

'2gT
z is

not zero in general. We note thatŴq is nearly block diagonal
and that the axial and radial oscillations are coupled o
through collisions associated withdgT .

By substitutingx5x0e2 ivt into Eq. ~39!, we obtain an
eigenvalue equation with six solutions; the dispersion law
determined from

F 1
z~v!F 1

'~v!1F2~v!F3~v!50, ~41!

where

F 1
i ~v!5S v224v i

21
2v i

2

12 iv/g̃T
i

1 iv
g̃D

2 D , ~42!

F2~v!5~v1 i g̃T
z !~v1 i g̃T

'!, ~43!

F3~v!52dgT
2S v222vz

21 iv
g̃D

2
D S v222v'

2 1 iv
g̃D

2
D .

~44!

In both the weak interaction (v i@ug̃Du,ug̃T
i u) and strong in-

teraction (v i!ug̃Du,ug̃T
i u) limits, the axial and radial mode

are uncoupled and are determined fromF 1
i (v)50, with

F 1
i (v) given in Eq.~42!. In the weak interaction limit, one

has three modes,

v52v i2
vMF

2
2

i

4
~gD1gT

i !, ~45!
1-5
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v52S 2v i1
vMF

2 D2
i

4
~gD1gT

i !, ~46!

v52
vMF

2
2

i

2
gT

i . ~47!

In the strong interaction limit, there is one~weakly damped!
low-frequency mode and two~strongly damped! high-
frequency modes. The low-frequency mode is given byv

524iv i
2/g̃D , which can be written approximately as

v.
4v i

2

vMF
S 12

gD
2

vMF
2

2 i
gD

vMF
D . ~48!

This has the same scaling behavior with respect to the d
sity, scattering length, and temperature as the dipole m
result in Eq.~29!.

IV. NUMERICAL SOLUTION OF THE 1D SPIN
KINETIC EQUATION

In this section we compare the predictions of the mom
method to a direct numerical solution of the spin kine
equation. In Refs.@13,14#, a one-dimensional model of th
kinetic equation was presented and found to give very g
agreement with experiments@10#. A justification that was
given for the model is the separation of time scales betw
the axial and radial directions. In hindsight, the success
the one-dimensional model can be further understood ba
on the moment method results in the previous section
the axial and radial modes are uncoupled in the lineari
regime.

We construct a one-dimensional model of the system
making the ansatzsW (r ,p,t)5sW (z,p,t)h0(r' ,p') and then
averaging overr' and p' . Here we take the static profil
in the radial direction to be of Gaussian formh0

5exp@2(p'
2/2m1mv'

2 r'
2 /2)/kBT#. We substitute this ansat

into Eq. ~4! and integrate over the radial phase-space v
ables, which gives the following one-dimensional mod
Boltzmann equation:

]sW

]t
1

p

m

]sW

]z
2

]Uext

]z

]sW

]p
2VW n3sW 5

]sW

]t
U

1D

. ~49!

Here we have dropped terms that scale likegn/kBT. The
collision integral in one-dimension involves a phase-sp
average in the radial direction ]sW /]tu1D

[*xy]sW /]tucoll /*xyh0, where we have introduced the not
tion *xy•••[*dr'*dp'•••/(2p\)2. The radial averaging
introduces a scaling factor in the mean-field terms, so
g→g85g/(2l th

2 ), wherel th is the thermal de Broglie wave
length.g8 has the correct units of energy times distance
quired in our one-dimensional model.

Although the direct numerical simulation using the fu
expression for the one-dimensional collision integral deriv
from Eq. ~A2! is technically feasible, we introduce a simp
model for the relaxation
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]sW

]t
U

1D

52
1

tcl~z!
@sW ~z,p,t !2MW ~z,t ! f 0~z,p!#, ~50!

wheretcl(z)5@16a12
2 n0(z)ApkBT/m#21 is the radially aver-

aged mean-collision time, f 0(z,p)[ f 0(r ,p)/h0, and
MW (z,t)5SW (z,t)/n0(z). Equation~50! contains the essentia
properties of collisions:~i! it vanishes when the distribution
function has the local equilibrium formsW (z,p,t)
}MW (z,t)e2p2/2mkBT, ~ii ! it conserves the spin density. W
note that the form Eq.~50! does not require the knowledge o
the long-time equilibrium solution forSW (r ,t).

We solve Eq.~49! numerically using a finite difference
alternating-direction Crank-Nicholson routine. As a check
the numerics we monitor the integrated spin compone
*dzSi(z,t), which are conserved ifVW 50, and the integrated
spin magnitude, which must satisfy the relation

]

]tE dz~Sx
21Sy

21Sz
2!52E dzJW•

dSW

dz
. ~51!

The total spin can decay to zero if there is an inhomogene
field VW (z,t) present~i.e.,“VW Þ0).

To compare directly with the moment method results d
rived in the previous section, we take as an initial st
sW (z,t50)5sW 0(z)1dsW (z), where sW 0(z)5$0,0,f 0(z)% and
dsW (z)5$Reds1(z),Imds1(z),0%. We take ds1 of the
form given in Eq.~21! for the dipole mode and Eq.~38!, for
the quadrupole mode. The coefficientsa i are determined by
diagonalizing the coupling matrices Eq.~23! and Eq.~40!,
respectively ~in this section we consider only the low
frequency excitations for a given symmetry!.

In order to visualize the spatial form of the spin wave, w
show the transverse spin componentSv(z,t) in Figs. 2 and 3
as a function of position and time to show the symmetry
the dipole and quadrupole modes. We note the qualita

FIG. 2. Dipole excitation. The surface shows how the spin co
ponentSv(z,t) varies with position and time. For visual clarity, w
also show the contours projected below the surface.
1-6



a

9

he
n.
tu

nu

c

n
-

te
f
ri

io
fo
n
s
tio
en

w
ic

g

e
lit
d
e

o
x

sus
-
he

ode

ical

LINEAR SPIN WAVES IN A TRAPPED BOSE GAS PHYSICAL REVIEW A66, 043411 ~2002!
agreement between the contours of Fig. 3 and the gr
shown in Fig. 1~b! of Ref. @11#. We do not plot theSu(z,t)
component, which has the same structure but is shifted
out-of-phase in time. The transverse spin$Su(z,t),Sv(z,t)%
at a given positionz traces out a spiral that terminates at t
origin ast→`, whose overall diameter varies with positio
The spin precession as a function of position for the ac
experiment is shown in Fig. 2 of Ref.@11#.

We extract a frequency and damping rate from the
merical solution by calculating the dipole^z& or quadrupole
^z2& moment and fitting this quantity to a damped sine fun
tion of the formA exp(2Bt)sin(Ct1D). The coefficients are
obtained using a least squares fitting routine. The freque
v5C and damping rateg5B are then compared to the pre
dictions of the moment method.

In Figs. 4 and 5 we plot the frequencies and damping ra
for the dipole and quadrupole spin waves. We take values
the physical quantities corresponding to the JILA expe
ment, wherevz/2p57 Hz, andv'/2p5230 Hz. We find
that the frequencies obtained from the numerical solut
agree extremely well with the moment method prediction
the dipole mode, while the quadrupole mode shows o
qualitative agreement. We also find that the frequencie
Figs. 4 and 5 are given as temperature-independent func
of the peak density, which is consistent with the mom
results. In general, one can show that the streaming term
the linearized spin kinetic equation in Eq.~11! is invariant
under the scale transformationT→T8,r→(T8/T)1/2r ,p
→(T8/T)1/2p for givenn0(0), andthus the frequency of any
given mode is temperature independent. In Figs. 4 and 5
do not show the damping as a function of temperature, wh
scales approximately asAT at fixed peak density, accordin
to Eq. ~A20!.

The most interesting feature occurs in the damping, wh
we see that the damping of the quadrupole mode is qua
tively different from that predicted by the moment metho
We postulate that this difference, which is largest at interm
diate densities, is due to Landau-type damping arising fr
the mean-field coupling of the collective mode to higher e

FIG. 3. Quadrupole excitation, as in Fig. 2.
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FIG. 4. Frequency and damping rate of the dipole mode ver
peak total densityn0(0). Thesolid line is the low-frequency solu
tion obtained from Eq.~25! and the chain and dashed lines are t
weak Eq.~27! and strong Eq.~29! interaction limits, respectively.
The points are obtained from a direct numerical solution of Eq.~49!
for three different temperaturesT: 600 nK ~circle!, 800 nK ~dia-
mond!, and 1 mK~square!.

FIG. 5. Frequency and damping rate of the quadrupole m
versus peak total densityn0(0). Thesolid line is the low-frequency
solution obtained from Eq.~42! ~e.g., F 1

z50) and the chain and
dashed lines are the weak Eq.~45! and strong Eq.~48! interaction
limits, respectively. The points are obtained from a direct numer
solution of Eq. ~49! for three different temperaturesT: 600 nK
~circle!, 800 nK ~diamond!, and 1 mK~square!.
1-7
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citations. Our moment approach using the simple trunca
form for the distribution functions1 , as given by Eqs.~21!
or ~38!, does not account for this effect@23#.

For a homogeneous Bose gas, Oktel, and Levitov wor
out the spectrum of spin waves in the collisionless regi
@16# using a linear-response theory with the random-ph
approximation. They find that the mean-field coupling giv
rise to Landau-type damping, which is in addition to t
collisional damping due to spin diffusion. The damping ra
is given by

gL5
Apg2n2

\2kv th
e2(gn/\kv th)2

. ~52!

A rough estimate of Landau damping in a trapped gas m
be given by usingk;1/Rth in this uniform gas result. How-
ever, this simple estimate predicts a damping rate tha
about an order of magnitude larger than that shown in Fig
Apparently one needs to work out the linear response ca
lation taking into account the excitation spectrum explici
in a trap potential in order to obtain a better quantitat
model for Landau damping.

In Ref. @11#, we compare the numerical solution presen
in this paper to experimental data, and find excellent ag
ment for both frequency and damping. It is important to
alize that in our numerical calculation, we have used a re
ation time approximation to treat the collision integral.
this model, one has some freedom to choose an approp
relaxation time; there are a few different candidates, but h
we have used the spatially dependent form of the me
collision time given in Eq.~50!. Although this is a reasonabl
choice, it was nota priori obvious that it would result in the
best agreement with experimental data.

We also remark that our results are strictly valid for t
case where the inhomogeneityD(r ) is vanishingly small
~though we have not carried out the full linear respon
theory, we envisionD(r ) as playing the role of an externa
perturbation used to excite the spin wave!. In the JILA ex-
periment@11#, the effect of applying a constant staticD(r )
during the entire spin-wave oscillation was investigated a
function of the magnitude of the perturbation. For a lar
inhomogeneity, the response of the system is nonlinear
the mode frequency is modified; the earlier JILA experim
@10# seems to reside in this regime.

V. CONCLUSION

In this paper, we have studied spin waves in a dilute n
condensed Bose gas of two-level atoms. Our main contr
tion is that we have treated an inhomogeneous system he
a harmonic trap in order to describe related experiments
spin waves@11#. We applied the moment method techniq
for dilute trapped gases, which lead to closed form soluti
for the frequencies and damping of dipole and quadrup
modes. As a test of the validity of our moment model,
compared the results to the numerical calculation of a o
dimensional model of the spin Boltzmann equation a
found very good agreement overall. The main discrepa
between the moment model and the numerical calcula
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occurred in the damping of the quadrupole mode. We
tribute this to the Landau damping, which is contained in
numerical approach, but absent in the moment model.

Although the salient features of spin waves in a nonc
densed dilute gas seem to be well described by our the
which shows excellent agreement with experimental d
presented in Ref.@11#, the situation for this system just be
low the Bose-Einstein-condensation temperature@18# re-
mains largely unexplored. Manyzero temperatureproperties
of a spin-1/2 condensate have been studied, when the
mal component is absent, such as spin winding@27# and
vortexlike spin textures@28,29#. It should be noted, however
that at zero temperature the condensate does not suppor
waves of the type considered in this paper, since the
change mechanism does not occur in the condensate.
very interesting that the spin-1/2 thermal gas exhibits stro
collective behavior in the spin dynamics due to the excha
effect, even in the collisionless regime; this is in sharp co
trast to the behavior of density fluctuations of a single co
ponent thermal gas, where the mean field of the noncond
sate plays a very minor role~mainly as a source of dampin
of the condensate excitations! @30,31#. At finite temperatures,
the spins of the condensate and thermal gas will inte
strongly. For future studies, it will be interesting to inves
gate how long-lived spin textures in the condensate are
fected by the thermal gas, which in principle can itself su
port ~probably short-lived! spin textures. It will also be
important to understand how the condensate modifies
waves in the thermal cloud@17#.
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APPENDIX: COLLISION INTEGRALS AND
RELAXATION TIMES

The collision integrals appearing in the kinetic equatio
Eqs.~3! and ~4! for the center of mass and spin distributio
functions are given by

] f

]t U
coll

5
pg2

\ E dp2

~2p\!3E dp3

~2p\!3E dp4d~ep1ep2

1ep3
1ep4

!d~p1p22p32p4!$3@ f ~p3! f ~p4!

2 f ~p! f ~p2!#1sW ~p3!•sW ~p4!2sW ~p!•sW ~p2!%,

~A1!

]sW

]t
U

coll

5
pg2

\ E dp2

~2p\!3E dp3

~2p\!3E dp4d~ep1ep2

2ep3
2ep4

!d~p1p22p32p4!$3 f ~p3!sW ~p4!

1sW ~p3! f ~p4!2 f ~p!sW ~p2!23sW ~p! f ~p2!%,

~A2!
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whereep[p2/2m. Here we neglect a principal value contr
bution, which gives a second-order correction to the f
streaming evolution, and we take all scattering lengthsai j to
be equal—a reasonable approximation for87Rb. This ap-
proximation results in the conservation of spin density d
ing collisions, i.e.,*dp]sW /]tucoll50. When the small differ-
ences in scattering lengths are accounted for, the transv
spin decays slowly. For87Rb, this contribution to the ‘‘T2’’
lifetime is of the order of 10 s@18#.

For the linearized form of the spin collision term appe
ing in Eq. ~9!, it is convenient to express the fluctuation
the spin distribution function as

dsW ~r ,p,t !5 f 0~r ,p!cW ~r ,p,t !. ~A3!

Then the linearized collision integral is written as]sW /]tucoll

[L@cW #,

L@cW #5
pg2

\ E dp2

~2p\!3E dp3

~2p\!3E dp4

3d~ep1ep2
2ep3

2ep4
!d~p1p22p32p4!

3 f 0~p3! f 0~p4!$2@cW ~p4!2cW ~p!#

1@cW ~p4!1cW ~p3!2cW ~p2!1cW ~p!#%. ~A4!

Using the approximate forms of the distribution functio
Eqs.~21! and~38! in the linear collision operator and takin
moments, we find that the collisional contributions to t
moment equations are given by

^pxi
&coll52gD^pxi

&, ~A5!

^zpz&coll52
gD

2
^zpz&, ~A6!

^r'•p'&coll52
gD

2
^r'•p'&, ~A7!

^pz
2&coll52gT

z^pz
2&2dgT^p'

2 &, ~A8!

^p'
2 &coll52gT8^p'

2 &22dgT^pz
2&. ~A9!

The various relaxation rates are given by spatial averag
the following spin transport relaxation times:

n0~r !

tD~r !
[2

1

3mkBTE dp

~2p\!3
pL@p#, ~A10!

n0~r !

tT~r !
[2E dp

~2p\!3

1

2~mkBT!2
pz

2L@pz
2#, ~A11!

n0~r !

tT
'~r !

[2E dp

~2p\!3

1

4~mkBT!2
p'

2 L@p'
2 #. ~A12!
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The associated spatially averaged relaxation rates are g
by

gD[
1

NE dr
n0~r !

tD~r !
5

1

2A2

1

tD~0!
, ~A13!

gT
z[

1

NE dr
n0~r !

tT~r !
5

1

2A2tT
z~0!

, ~A14!

gT
'[

1

NE dr
n0~r !

tT8~r !
5

1

2A2tT
'~0!

. ~A15!

For detailed calculations of various transport relaxat
times in a trapped Bose-Eienstein-condensed gas, we ref
Ref. @32#. It is straightforward to generalize those calcul
tions to work out the spin transport relaxation times defin
above. We find

tD
21~r !5

1

3
tcl

21~r !, ~A16!

tT
z 21~r !5

3

5
tcl

21~r !, ~A17!

tT
'21~r !5

7

15
tcl

21~r !, ~A18!

where tcl(r )[@32n0(r )a2(pkBT/m)1/2#21 is the mean-
collision time. The spatially averaged relaxation rates
given by

gD5
1

3
gcl , gT

z5
3

5
gcl , gT

'5
7

15
gcl , dgT52

2

15
gcl ,

~A19!

wheregcl is the spatially averaged mean-collision rate

gcl5
16

A2
n0~0!a2S pkBT

m D 1/2

. ~A20!

In order to compare the moment method directly with o
numerical solution of the 1D kinetic equation, we al
worked out the three relaxation rates within the simple rel
ation time approximation

]sW

]t
U

coll

52
sW ~r ,p,t !2MW ~r ,t ! f 0~r ,p!

tcl~r !
. ~A21!

This simple formula leads to the same collisional contrib
tions in the moment equations as given from the origi
collision integral, with all the transport relaxation times b
ing replaced with tcl(r ), so that one hasgD5gT5gT8
5gcl . Thus, within the relaxation time approximation, osc
lations in the axial and radial directions are completely u
coupled sincedgT50.
1-9
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