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Linear spin waves in a trapped Bose gas
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An ultracold Bose gas of two-level atoms can be thought of as a spin-1/2 Bose gas. It supports spin-wave
collective modes due to the exchange mean field. Such collective spin oscillations have been observed in recent
experiments at JILA with®’Rb atoms confined in a harmonic trap. We present a theory of the spin-wave
collective modes based on the moment method for trapped gases. In the collisionless and hydrodynamic limits,
we derive analytic expressions for the frequencies and damping rates of modes with dipole and quadrupole
symmetry. We find that the frequency for a given mode is given by a temperature-independent function of the
peak densityn, and falls off as I. We also find that, to a very good approximation, excitations in the radial
and axial directions are decoupled. We compare our model to the numerical integration of a one-dimensional
version of the kinetic equation and find very good qualitative agreement. The damping rates, however, show
the largest deviation for intermediate densities, where one expects Landau damping—which is unaccounted for
in our moment approach—to play a significant role.
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[. INTRODUCTION gime, which permits the study of spin waves in a Bose-
Einstein-condensed gas at finite temperatures; this regime
Collective spin oscillations are a general consequence dias never been investigated experimentally and has only re-
the guantum exchange between identical particles in a syseived minor attention in the theoretical literatjides—18.
tem where a macroscopic symmetry breaking exists in spifn this paper, however, we focus on the noncondensed re-
space[1]. From a condensed matter perspective, spin wavegime relevant to the recent JILA experimefit9,11], where
are most familiar in strongly interacting degenerate Fermithe temperatures are approximately twice that needed for
systems, such as a ferromagnet. It is somewhat counter ifBose-Einstein condensatiarggc.
tuitive, although well established both experimentafty-4] The JILA system consists of a dilute gas YRb atoms
and theoreticallj5—9], that collective spin behavior can also that have been optically pumped into tfe=1Mg=—1)
occur in nondegenerate dilute spin-polarized gases when the|1) hyperfine state and are confined in a magnetic har-
thermal de Broglie wavelength exceeds the effective range ahonic trapping potential. By applying microwave and radio-
interaction between two colliding atoms. In these systems, &requency radiation that couples to tHg1)=|2) state, at-
transverse spin wave is excited by applying an inhomogeems in the gas can be uniformly prepared in an arbitrary
neous magnetic field followed by a small tipping pulse. It issuperposition of thél) and|2) states. This system can be
remarkable that the mean field generates collective spin dythought of as a spin-1/2 system by takifig as the spin-up
namics, but has no discernible effect on thermodynamistate and2) as the spin-down state. In Fig. 1 we illustrate
equilibrium properties sincgn/kgT<<1, whereg is the bi- the corresponding Bloch vector spin describing the internal
nary interaction parameten, is the density, and the tem-  state of the atoms. Note that because the magnetic field di-
perature. rection varies in the trafil9], the spin axis shown in Fig. 1
Recent experiments at JILJA0,11] on a trapped’Rb gas  is not isomorphic with the coordinate axis describing the
have revived interest in spin waves in dilute gagks-15. position of an atom, in contrast to the situation in spin-
These experiments offer several interesting new featuregolarized hydrogen.
compared to the earlier experiments in spin-polarized hydro- In the JILA experiment, an initiatr/2 pulse is applied to
gen [2,3], which take advantage of the technological ad-tip the spins into the transverse direction The spin vector
vances made over the last twenty years in the measuremethien precesses about the longitudiwedxis at a rate propor-
and control of cold atomic gases. A prominent feature of theional to the energy difference between hyperfine states. Due
new generation of experiments is the ability to take spatiallyto the mean field and differential Zeeman effects, the local
resolved measurements of the gas sample using absorptifrequency splitting between hyperfine states varies approxi-
imaging techniques. Another exciting advancement is thenately quadratically with position. This inhomogeneity ini-
ability to cool the sample into the quantum degenerate retiates collective spin dynamics through the exchange mean
field, the initial onset of which gives the striking appearance
of spin segregatiorf10,12—-14. The inhomogeneous fre-
*Present address: Department of Physics, Faculty of Science, Tepuency splitting can be made arbitrarily small to study the
kyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, linear response of the system. Recently this technique was
Tokyo 162-8601, Japan. used to probe intrinsic collective spin oscillatidrid]. Stud-
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w The first term in Eq(1) is the center-of-mass Hamiltonian
. “-.. containing the kinetic energy and the external parabolic trap
L’ 0 43 . potential
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v wherea=w, /w,. This part of the Hamiltonian is uncoupled
from the internal, pseudospin, degree of freedom, which is
. / governed by the second terf(r) - 7=Q (1) 7,+Q,(r)7,
. . +Q,/(r)7,, Where7; is a Pauli matrix. In the absence of an
RO - external coupling fieldQ,=Q,=0 andQ,=A(r) [10,1]]
) is the frequency splitting between the two staies go to a
FIG. 1. Schematic diagram of the Bloch vector s@nThe  rotating frame to eliminate the large hyperfine splittiag
spins of the atoms are initially pointing u§={0,0S,}, corre-  frequency. We model binary interactions between particles
sponding to all the atoms being in the stgte. After thew/2 pulse, by a S-function pseudopotential describing elastic, spin
the spin vector is pointing along the axis, S={0,S,,0}, corre-  preserving collisions, the strength of which depends on
sponding to the statd 1) +i|2))//2. the hyperfine statesv;;(r,r')=g;;é(r—r’), where g;;
=47-rﬁ2ai]- /m, with a;; being the scattering length for colli-
ies of such spin-wave collective modes provide us clearegions between atoms of speciesand j. For ®'Rb, aj;
physical understanding of the important role of the exchange= 100.9,, a,,=98.2;, a,,=95.6a,, wherea, is the Bohr
interactions in a dilute Bose gas. radius[10]. In the rest of this paper, however, we make the
The experiments described in Ref40,11] present spa- Simplification thata,,=a,,=a;,=a, which is a reasonable
tially resolved images of spin dynamics in a gas. The densitgpproximation for®’Rb.
profile of either state is measured using absorption imaging. Several groups have previously worked out the funda-
Together with the Ramsey fringe technique, integrated spanental kinetic theory of a noncondensed dilute Bose gas
tial profiles of the longitudinal spis, and transverse phase With internal degrees of freedom, to describe spin waves in
¢ can be extracted from experimental data, as shown in thepin-polarized atomic hydrogen aboVgec [6—9]. Using a
stunning images in Ref11]. This is in sharp contrast to the semiclassical approximation to describe atomic motion in
earlier hydrogen experiments, where a pulsed NMR techterms of a phase-space distribution function, we obtain
nique is used to obtain the frequency of spin oscillation in-coupled Boltzmann equations for the atonfi@,p,t) and
tegrated over the entire sample. In this paper, we show gpin 5(r,p,t) distribution functions:
theoretical prediction of the spatial structure of the spin dy-

. .
........

namics that qualitatively agrees with experimental observa- Jf p h of
tion. E+E-V,f—VUn-fo—EVQni-Vpai:E ,

In this paper, we present the theory of spin waves in a col &)
trapped Bose gas using the moment metf@@21], which
was originally developed to study collective density oscilla- p 5
tions in a trapped classical gas. The moment approach has — 1 E.Vrg_vun.vpg_ _Vﬁn.vpf_ﬁnxg
also been applied to a rotating ge&2] and was recently gt -m 2
generalized to treat a Bose-Einstein-condensed gas at finite -
temperature to study the scissors mof23. An advantage — (7_0 (4)
of this technique is that the solution maps smoothly between It

the collisionless and hydrodynamic regin@®]. We apply
the moment method to a spin kinetic equation, and derivéequation(3) has an implicit sum over the repeated index
explicit analytical expressions for frequency and damping of=u,v,w in the fourth term. The total density and spin den-
dipole and quadrupole modes in weak and strong couplingity are obtained from the distribution functions g ,t)
limits. We also numerically solve a one-dimensiotiéaD)  =n,(r,t)+ny(r,t)=fdpf(r,p,t)/(274)% and  (r,t)
model of the kinetic equation, and compare with the moment_ [dpa(r,p,t)/(27h)3, respectively. Here the longitudinal
results. component of the spin represents the relative denSjty
=n,;—n, and the transverse componef{sandS, describe
Il. SPIN KINETIC EQUATIONS the real and imaginary parts of the internal coherence. The
center-of-mass effective potential idJ,,(r,t) =Ug(r)
+3gn(r,t)/2. The effective coupling field including mean-
field effects is

The Hamiltonian describing a single, trapped, two-level
atoms of massn is

A= vy i ta
- _% + ext(r) +§ (I’)

R

. (1) ﬁn(r,t)zﬁ(r,t)+%§(r,t). (5)
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The collision integrals in Eq$3) and(4) are written explic- by P Tw
itly in the Appendix. i T V0w VUex Vypdoy=——
The center of mass and spin are coupled via the third and coll
fourt_h terms_in both Eq(3) and Eq._(4). These term_s; involve  gjnce the mean-field term does not appear in &), col-
spatial gradients over the density and scale Ig@ksT |ective oscillations of the longitudinal spin only occur in the
<1, and thus can be neglected. This allows us to make th%w-density collisionless regime in a trapped gas. In the
further simplification that the center of mass and spin dy‘high-density hydrodynamic regime, longitudinal modes be-
namics are decoupled. Since we are interested in the intrir)s'tgome purely relaxational modes damped by the diffusion
collective modes of the system, we also assume that the fieliansport process. The crossover from the collisionless spin
Q(r)=[0,0A(r)] can be made to vanish after the spin waveoscillation to the hydrodynamic relaxation mode in a longi-
is excited. This assumption is motivated by the JILA experi-tudinal spin excitation was observed in a trapf&d Fermi
ment[11], where the static inhomogeneous frequency splitgas [24,25 (although they were not excitations from the
ting could be adjusted to zero after a short excitation timefully polarized state as considered Herln contrast, trans-
The position dependence &f(r) determines the symmetry verse spin waves behave collectively due to the mean field
of collective mode excited. With these two assumptions, theand will be the focus of this paper. For the transverse spin
kinetic equation for the spin distribution function then sim- fluctuations, it is convenient to work withSo.= o,

. (10

plifies to *ido,. We then obtain
do p Jo LLENLI PR T
il LR v . ~_ 23 *:_O- - O+ ext” ¥V pO0 +
P + o Vo—VUeg Voo ﬁSXa' . (6) at m
i 9 (7,55, —ngso )= 227 (11)
In this paper, we consider small amplitude spin oscilla- 15 (100S: =Nodors) = —5 ol

tions around a fully polarized state. It is convenient to define

new spin coordinatesi(,v’,w') with w’ being the direction Although we are interested in a trapped Bose gas, it is
of the initial spin polarization. In the experiment described inuseful to summarize earlier results on the theory of spin
Ref. [11], the spin oscillations occur about the spin statewaves in a homogeneous ge6]. In the long wavelength
polarized along the axis. In this case one must make the limit, where the gas can be treated in the hydrodynamic re-
mapping of the spin coordinates’(v’,w')=(w,u,v), cor-  gime, the dispersion relation has the fof&26]

responding to a cyclic permutatid33]. We then linearize o o=
the kinetic equation around the equilibrium state polarized w(k)= =ik, (12)

long thew’ direction(we drop the prime from our notation ~ e .
?r(())mght(-:-eromfjaeust:oav(ozeod, gﬁdtoi;zr,p)e —fo(r.p), where wherev,= VkgT/m andry is a complex dlffusnie relaxation
the equilibrium distribution is time. For transverse spin oscillations, one fings = (7 *

—ign/k), where the diffusive relaxation time isp

p? =[(32a2n/3)\mkgT/m] 1. Due to the exchange mean
—+Uext(r)—,u0“. (7) field, the transverse spin behaves collectively, and in the

fo(f,p)ZeXD(—B

2m limit wheregnrp /2>1, the dispersion relation has the form
The equilibrium density given from Eq7) is k2 i [hkog)?
oK)= — , (13
2m T\ gn

d 1
noU):J P Sfo(r,p)=—exgd—BUedr)], (8 wherem* =(gn/2kgT)m is regarded as an effective mass.
(27h) N Thek? dispersion relation is a universal result for ferromag-
neticlike spin systemgl]. The longitudinal spin oscillations
where\ = (27%2/mkgT)¥?is the thermal de Broglie wave- do not behave collectively, but rather exhibit a purely diffu-
length. We then substituter(r,p,t)=oo(r,p)+ do(r,p,t)  sive mode, withr,— 7p in Eq. (12).

into Eq. (6) to obtain the linearized spin kinetic equation
IIl. MOMENT METHOD FOR A TRAPPED SPIN-1 /2 GAS

ado p - I ¢ . s s We now turn to spin waves in a Bose gas confined in the
it V0= VUex Vo= 2(SpX do+ SX ) harmonic trap potential. Starting from E@.1), one can de-
rive a general set of coupled moment equations associated
Jo © with a set of polynomial functiong;(r,p):
e d(x)
coll X p
d—tl—<VXi' a> +(VUex Vpxi)

The linearized form of the collision integral is discussed in
the Appendix. 9 N NT— /o

The longitudinal spin dynamics is described by 15 LS xido= (Noxi)]= (xidear (14
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where the moment variables are defined as Using the explicit form fordo, in Eg. (21), the mean-
field and collisional terms can be expressed in terms of the
1 dp dipole moments. The resulting closed set of coupled moment
<Xi>ENJ drf mxi(r,p)50+(r,p,t), (15 equations, written in matrix form, is

d -
X =Wax, 22

, (16

coll

1 dp déo
<Xi>coIIENJ drf W)ﬁ(r.p) &t+

where the coupling matri¥V, is

oy | o [ Pt a7 o -1
X7 N (22 XD TP Wdz—( , | ) 23
i (yp—iovp)

In general, moment equations are not closed since the mean .
field and collisional terms couple to higher moments. Thos ere we have def'hed the vector- of mom?nxs
higher moments can be truncated by expanding the fluctua={{x1).(x2)}. Three different frequencies appear W, :
tions in the distribution functioda . in powers of position the trap frequency; along the axis of oscillation, the mean-

and momentum. One can relate the coefficients in the expaiield frequency wyr defined by the spatial averageyr

sion to the moments of the distribution functiop;) to yield ~ =Jdrgng(r)/N,
a closed set of equations that can be solved analytically.

The choice of the functiong; depends on the symmetry _9no(0) (24
of the spin-wave mode we are interested in. In the following “ME 2\2h

sections, we consider the dipole and quadrupole oscillations.
and the spatially averaged diffusion relaxation ratg, the
A. Dipole mode form of which is given in the discussion in the Appendix.
We now look for normal mode solutiong= yq,e '“".
Substituting this into Eq(22) yields an eigenvalue equation
with two solutions. It is straightforward to show that the
mode frequencies obey the dispersion relation

We first consider the spin-wave collective mode with a
dipole symmetry, which could be excited by a linear inho-
mogeneous frequency splitting, suchX&@)ocz. For our set
of moments to describe this oscillation, we choose

X1=Xi, X2=Px /m. (18 0 +iypw—w=0, (29

The subscript indicates the axis along which the excitatioN€ré yo=7yp—iwye is the effective(compley diffusion
oscillatesx; € {x,y,z}. Within the moment method approxi- relaxation rate including the mean-field effect. The solution
| 1 ) . . .

mate treatment, the dipole modes along the three axes afe91ven by
completely decoupled. We also defigg=1, related to the 1
norm of 8, ; we set(xo)=0, which is required from the w= E[—i}Di Vaw?—7%2]. (26)
conservation of the spin density.

From Eq.(14), the equations of motion for the moments

Eq. (18) are given by We shall consider two limiting cases to obtain the scaling

behavior of the frequency and damping of the modes. In the

d weak interaction, or collisionless, limit whete>|7p|, one
a<X1>:<X2>: (19  has
OMmE . YD
d g 0=*w— —(——i. (27)
&<X2>+wi2<)(l>_l%<n0X2>:<X2>collr (20) b2 2

In the strong coupling, or hydrodynamic, limit whe
where w; is eitherw, for an axial mode ow, for a radial ~ g ping y y “
<|yp|, one has

mode. These are not a closed set of equations, since in gen-
eral the mean field and collisional terms in E20) couple to i (low)
higher moments. The hierarchy of moment equations can be 0= @i’Yp (28)
truncated by assuming the explicit truncated form for the —ip (high).
distribution 6o :
These represent low- and high-frequency modes, with the
oo =folagt aXi+azpy]. (2)  low-frequency mode having a high€@~ Rew/Imw value.
The low-frequency solution has the form of the diffusion
The coefficients in the expansion can be related backelaxation rate with a complex diffusion coefficient. More
to the set of moments using Eql5): «¢=0, «a;  explicitly, the dispersion relation in the strong-coupling limit
= (M kgT){x1), anda,=(x,)/kgT. takes the approximate form
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(29 =mw(xs)/(ksT)? andas=(xe)/2(ksT)
Following the same procedure as for the dipole mode, we

The scaling behavior of the real part of E@9) can be obtain a closed set of coupled moment equations, written in
matrix form as

recovered in a simple model based on the homogeneous gas
result of Eq.(12). For low-frequency collective modes in a d
trapped gas along the direction, the wave vectd is esti- —X
mated ask~1/R;, whereR,;=muw;/kgT is the size of the dt
cloud along thex; direction.

% yo) (keD?  as=(x2)l2(ksT)?,  as=(Mw?/keT)2(xa)/2, as

WMF

=Wy, (39)

where the coupling matri)(?vq in this case is
B. Quadrupole mode

In the JILA experimenf11], a spin-wave collective mode 0 -2 0

0
with a quadrupole symmetry is excited due to an approxi- w§ Yol2 -1 0
mately quadratically varying frequency splittingr)z2. In
principle, the oscillation may be excited along both the axial 0 0
or radial directions, and so we take the following quantities q 0 0 0 0o -2 0
0 i
0 0

2
2w, ')"ZI'

for our set of moments: 0

0 25y
X4:rf, X5="r-p./m, X6=pf/m2, (31 (40

wherer, = \x?+yZ andp, = /_Z_pr+py_ We also definey, The vector of moments igx={(x1),{x2), - - - {X6)} Th~e
=1, related to the norm ofo, which we set to zerdy,) tilde on the relaxation rates indicates the complex fopm
=0. =(y—iwyg). The quantitiesy? andy7 , given explicitly in
The six moment equations for the above quantities are the Appendix, are the spatially averaged axial and radial ther-
< > mal relaxation rates, the difference of whiély=y1 — % is
X1

X1=2%, X2=2p,/m, )(3—p2/m (30

—2(x2)=0, (32)  hotzero in general. We note th% is nearly block diagonal
Cdt and that the axial and radial oscillations are coupled only
dxs) through collisions associated withy .
X2/ _ By substitutingx= xoe~'“' into Eq. (39), we obtain an
dt (xa) + w0{x1) - "% <n°X2> (X2or, (33 eigenvalue equation with six solutions; the dispersion law is

determined from

<X3>
+2w 2<X2>+| [<S+X3>O <n0X3>] <X3>c0|ly fi(w)ff(w)‘Ffz(w)fa(w):O, (41)
(34
(o) where
d(x
—qr ~ 2xs)=0, (35 2
_ 2
d(xs) ol 7y
dt —(xe) T ®F (x4~ <nOX5>:<X5>coIIv (36)
Fa(w)=(o+iy)(o+iyr), (43
d(xe)
at +207 (xs) i 7 [<S+Xe>o (Noxe)1={Xe)coll - 5 5
(37) .7:3(w)=25y$< w2—2w§+iw7D) w2—2wi+iw7D).
Just as in the previous case of the dipole mode, we truncate (44)
the hierarchy by assuming an appropriate form for the distri-
bution In both the weak interaction(>|7yp|,|7;|) and strong in-

teraction ;<|ypl,|7;|) limits, the axial and radial modes
are uncoupled and are determined frofi}(w)=0, with
i . : . S
+a4ff+015rypi+aepf]- (39) Fi(w) given in Eqg.(42). In the weak interaction limit, one
has three modes,

The coefficients in the expansion can be related back to the set of _

moments using EqQ(15): ap=—m[w5(x1)+ o7 (xa)+{x3) o owe 1 :

+(xe) 112Kk T,  a;=(MwilkgT)*(x1)/2,  a=Mwi(x,)! =20 2 4(7D+YT)’ 49

g, = fo[a0+ a122+ a22p2+ agpg
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w=—| 20+ MF —i—(y +yh) (46)
i 2 4 D T/
ove 1
w=——2 _E’yll—. (47)

s,

In the strong interaction limit, there is orteeakly dampeg
low-frequency mode and twqstrongly damped high-
frequency modes. The low-frequency mode is givendby

= —4iw?yp, which can be written approximately as

(48)

This has the same scaling behavior with respect to the den- 600 'y
sity, scattering length, and temperature as the dipole mode
result in Eq.(29). FIG. 2. Dipole excitation. The surface shows how the spin com-
ponentS,(z,t) varies with position and time. For visual clarity, we
IV. NUMERICAL SOLUTION OF THE 1D SPIN also show the contours projected below the surface.
KINETIC EQUATION

t (ms)

In this section we compare the predictions of the moment ‘9_‘7
method to a direct numerical solution of the spin kinetic dat

equation. In Refs[13,14], a one-dimensional model of the

kinetic equation was presented and found to give very googvherer,(z) =[16a§2n0(z) \/m]*l is the radially aver-
agreement with experimen{d0]. A justification that was aged mean-collision time, fo(z,p)="fo(r.p)/hy, and
given for the model is the separation of time scales betwee (z,t)=§(z,t)/no(z). Equation(50) contains the essential

:Eg g;]('eal d?rﬂgnrsailg:?alll drggggfgzn Igehéﬂiilgrhgggr;%%%eﬁz SO Joperties of collisions(i) it vanishes when the distribution
on the moment method results in the previous section thdtnction has the local equilibrium forma(z,p,t)

_p2 ey . .
the axial and radial modes are uncoupled in the linearized M (z,t)e"P7*™eT, (ii) it conserves the spin density. We

1 . -
lD:_ TCI(Z)[O-(vavt)_M(Zit)fO(Zip)]v (50)

regime. note that the form Eq50) does not require the knowledge of
We construct a one-dimensional model of the system byhe long-time equilibrium solution fog(r,t).
making the ansatz(r,p,t)=o(z,p,t)ho(r, ,p,) and then We solve Eq.(49) numerically using a finite difference,

averaging over, andp, . Here we take the static profile alternating-direction Crank-Nicholson routine. As a check on
in the radial direction to be of Gaussian forth, the numerics we monitor the integrated spin components
=exd —(p?/2m+mw?r?/2)/kgT]. We substitute this ansatz [dzS§(z,t), which are conserved {2 =0, and the integrated
into Eq. (4) and integrate over the radial phase-space varispin magnitude, which must satisfy the relation

ables, which gives the following one-dimensional model

Boltzmann equation: d A2+ 24522 [ dz3 ds
) ) i i EJ A(S+S+S))= zJ IR (51

do p do IUgydo . L 0

—t———— ——Q Xo=—| . (49 . . . :

gt m gz dz adp | The total spin can decay to zero if there is an inhomogeneous

_ field Q(zt) presenti.e., VO #0).

Here we have dropped terms that scale like'kgT. The To compare directly with the moment method results de-
collision integral in one-dimension involves a phase-spaceived in the previous section, we take as an initial state
average in  the radial  direction Jdo/dtl;p o (z,t=0)=0o(2)+ 50(z), where go(z)={0,0f0(2z)} and

= [0l dt|conl f xyno, Where we have introduced the nota- 5o(z) ={Redo . (z),Imdo,(z),0}. We take S, of the
tion fyy---=Jdr, fdp,-- -1(2mh)?. The radial averaging form given in Eq.(21) for the dipole mode and E¢39), for
introduces a scaling factor in the mean-field terms, so thaghe quadrupole mode. The coefficientsare determined by
g—g’'=g/(2\3), where\, is the thermal de Broglie wave- diagonalizing the coupling matrices E(3) and Eq.(40),
length.g’ has the correct units of energy times distance retespectively (in this section we consider only the low-
quired in our one-dimensional model. frequency excitations for a given symmetry

Although the direct numerical simulation using the full  In order to visualize the spatial form of the spin wave, we
expression for the one-dimensional collision integral derivedshow the transverse spin compon&pfz,t) in Figs. 2 and 3
from Eq.(A2) is technically feasible, we introduce a simple as a function of position and time to show the symmetry of
model for the relaxation the dipole and quadrupole modes. We note the qualitative
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400 500

300
600 100 200
t (ms)
FIG. 3. Quadrupole excitation, as in Fig. 2. 0

0 0.5 1 1.5 2 25
. density (1013 cm‘3)
agreement between the contours of Fig. 3 and the graph
shown in Fig. 1b) of Ref.[11]. We do not plot theS,(z,t) FIG. 4. Frequency and damping rate of the dipole mode versus
component, which has the same structure but is shifted 908eak total densityiy(0). Thesolid line is the low-frequency solu-
out-of-phase in time. The transverse sp#(z,t),S,(z,t)} tion obtained from Eq(25) and the chain and dashed lines are the
at a given positiorz traces out a spiral that terminates at theweak Eq.(27) and strong Eq(29) interaction limits, respectively.
origin ast— o, whose overall diameter varies with position. The points are obtained from a direct numerical solution of (E§).
The spin precession as a function of position for the actuafor three different temperatures 600 nK (circle), 800 nK (dia-
experiment is shown in Fig. 2 of RefL1]. mond, and 1 mK(squarg.
We extract a frequency and damping rate from the nu-
merical solution by calculating the dipo{e) or quadrupole
(z%) moment and fitting this quantity to a damped sine func- 2
tion of the formA exp(—Bt)sin(Ct+D). The coefficients are
obtained using a least squares fitting routine. The frequency 5
o= C and damping rate=B are then compared to the pre-
dictions of the moment method. o
In Figs. 4 and 5 we plot the frequencies and damping rates 3
for the dipole and quadrupole spin waves. We take values for
the physical quantities corresponding to the JILA experi- 0-2
ment, wherew,/2m=7 Hz, andw, /27m=230 Hz. We find
that the frequencies obtained from the numerical solution 0
agree extremely well with the moment method prediction for 4 .
the dipole mode, while the quadrupole mode shows only g AN
qualitative agreement. We also find that the frequencies in
Figs. 4 and 5 are given as temperature-independent functions g ol ‘ o ~ ]
of the peak density, which is consistent with the moment o
results. In general, one can show that the streaming term of .
the linearized spin kinetic equation in E@.1) is invariant 0.1
under the scale transformatiom—T',r—(T'/T)Yr,p
—(T'IT)Y¥?p for givenny(0), andthus the frequency of any
given mode is temperature independent. In Figs. 4 and 5we g : - ‘
do not show the damping as a function of temperature, which ~ © 05 1 5, 2 25
scales approximately agT at fixed peak density, according density (107 cm =)

to EQ-(AZO)-_ ) ) ) FIG. 5. Frequency and damping rate of the quadrupole mode
The most interesting feature occurs in the damping, wherQersus peak total density,(0). Thesolid line is the low-frequency

we see that the damping of the quadrupole mode is qualitasolution obtained from Eq42) (e.g., F2=0) and the chain and

tively different from that predicted by the moment method. dashed lines are the weak Eg5) and strong Eq(48) interaction

We postulate that this difference, which is largest at intermetimits, respectively. The points are obtained from a direct numerical

diate densities, is due to Landau-type damping arising fromolution of Eq.(49) for three different temperaturé 600 nK

the mean-field coupling of the collective mode to higher ex-(circle), 800 nK (diamond, and 1 mK(squarg.
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citations. Our moment approach using the simple truncatedccurred in the damping of the quadrupole mode. We at-
form for the distribution functionr, , as given by Eqs(21)  tribute this to the Landau damping, which is contained in the
or (38), does not account for this effef@3]. numerical approach, but absent in the moment model.

For a homogeneous Bose gas, Oktel, and Levitov worked Although the salient features of spin waves in a noncon-
out the spectrum of spin waves in the collisionless regimglensed dilute gas seem to be well described by our theory,
[16] using a linear-response theory with the random-phas@hich shows excellent agreement with experimental data
approximation. They find that the mean-field coupling givesPresented in Ref.11], the situation for this system just be-
rise to Landau-type damping, which is in addition to the!lOW the Bose-Einstein-condensation temperat{t8] re-

lisional d ina due t in diffusion. The d ; teMains Igrgely unexplored. Margero temper_atur@roperties
conisiona damping due to spin difiusion. The damping ra eof a spin-1/2 condensate have been studied, when the ther-

's given by mal component is absent, such as spin windigg] and
Jrg?n? vortexlike spin texturef28,29. It should be noted, however,
y = Zg e~ (9nfikog)? (52) that at zero temperature the condensate does not support spin
ko waves of the type considered in this paper, since the ex-

change mechanism does not occur in the condensate. It is

A rough estimate of Landau damping in a trapped gas mayery interesting that the spin-1/2 thermal gas exhibits strong
be given by usind~ 1/Ry, in this uniform gas result. How- collective behavior in the spin dynamics due to the exchange
ever, this simple estimate predicts a damping rate that isffect, even in the collisionless regime; this is in sharp con-
about an order of magnitude larger than that shown in Fig. Strast to the behavior of density fluctuations of a single com-
Apparently one needs to work out the linear response calcyponent thermal gas, where the mean field of the nonconden-
lation taking into account the excitation spectrum explicitly sate plays a very minor rolgnainly as a source of damping
in a trap potential in order to obtain a better quantitativeof the condensate excitatior{80,31]. At finite temperatures,
model for Landau damping. the spins of the condensate and thermal gas will interact

In Ref.[11], we compare the numerical solution presentedstrongly. For future studies, it will be interesting to investi-
in this paper to experimental data, and find excellent agreegate how long-lived spin textures in the condensate are af-
ment for both frequency and damping. It is important to re-fected by the thermal gas, which in principle can itself sup-
alize that in our numerical calculation, we have used a relaxport (probably short-livetl spin textures. It will also be
ation time approximation to treat the collision integral. In important to understand how the condensate modifies spin
this model, one has some freedom to choose an appropriaveaves in the thermal cloud.7].
relaxation time; there are a few different candidates, but here
we have used the spatially dependent form of the mean- ACKNOWLEDGMENTS

collision time given in Eq(50). Although this is a reasonable We would like to thank E.A. Cornell for inspiring us to

choice, it was not priori obvious that it would result in the study the linearized spin waves and to the JILA team of H.J.

best agreement with experimental data. _ Lewandowski, J.M. McGuirk, and D.M. Harber for all of
We also remark that our results are strictly valid for they,qir insight, as well as providing us with experimental re-
case where the inhomogeneity(r) is vanishingly small ¢ s

(though we have not carried out the full linear response
theory, we envisiomA(r) as playing the role of an external APPENDIX: COLLISION INTEGRALS AND
perturbation used to excite the spin wavin the JILA ex- RELAXATION TIMES

periment[11], the effect of applying a constant stat\qr) L o o )
during the entire spin-wave oscillation was investigated as a 'he collision integrals appearing in the kinetic equations
function of the magnitude of the perturbation. For a largeEds.(3) and(4) for the center of mass and spin distribution
inhomogeneity, the response of the system is nonlinear an§nctions are given by

the mode frequency is modified; the earlier JILA experiment

[10] seems to reside in this regime. ﬂ :Tr_ng dp. f dps f dpsd(e,+ e
Mo 7 ) (2an)2) (2mn)3) TP
V. CONCLUSION + €p, T €p,) P+ P2~ P3— Pa){3LF(Ps) F(Pa)
In this paper, we have studied spin waves in a dilute non- - . - .
condensed Bose gas of two-level atoms. Our main contribu- —f(p)f(p2)]+ a(ps) - a(ps) —o(p)-o(p2)},
tion is that we have treated an inhomogeneous system held in (A1)

a harmonic trap in order to describe related experiments on
spin waveq11]. We applied the moment method technique g
for dilute trapped gases, which lead to closed form solutions ot
for the frequencies and damping of dipole and quadrupole
modes. As a test of the validity of our moment model, we o o -
compared the results to the numerical calculation of a one- €py~ €py) 9P+ P2~ P3 = Pa){3F(P3) o (pa)
dimensional model of the spin Boltzmann equation and - - -

found very good agreement overall. The main discrepancy +a(ps)f(ps) —f(p)a(p2) —3a(p)f(p2)},
between the moment model and the numerical calculation (A2)

wng dp, f dps f
_T9 dpsS(eq+
h) (2an?) (2mne) P (&t &,

coll
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wheree,= p2/2m. Here we neglect a principal value contri- The associated spatially averaged relaxation rates are given
bution, which gives a second-order correction to the freedy
streaming evolution, and we take all scattering lengthso

be equal—a reasonable approximation f8Rb. This ap- 1 No(r) 1 1
proximation results in the conservation of spin density dur- o= ﬁf er(r) - 22 ™(0)’ (A13)
ing collisions, i.e.Jdpa&/&t|cou=0. When the small differ-
ences in scattering lengths are accounted for, the transverse 1 No(r) 1
spin decays slowly. Fo?'Rb, this contribution to the T2” Yi=— f dr = , (A14)
lifetime is of the order of 10 §18]. N (1) 2\274(0)

For the linearized form of the spin collision term appear-
ing in Eq.(9), it is convenient to express the fluctuation of VLZEJ rno(r) B 1 (AL5)
the spin distribution function as TN 7H(r) 2\/57#(0)

oo (r,p,t)=fo(r,p)(r,p,t). (A3) For detailed calculations of various transport relaxation
) ] o _ ) . times in a trapped Bose-Eienstein-condensed gas, we refer to
Then the linearized collision integral is written a6/dt|coi  Ref. [32]. It is straightforward to generalize those calcula-

EL[z,Z], tions to work out the spin transport relaxation times defined
above. We find
- wg®(  dp; dps
L[y]=—— d
== f (2wﬁ)3f (2wﬁ)3j P Tgl(r)=% (), (A16)
><5(6p+fpz_6p3_6p4)5(p+p2_p3_p4) 3
. . “1ipy— - -1
X To(Pa) ol Pa}2 #H(ps)~ H(P)] =g (0, (A17)
+[(Pa) +(Pa) — () + (P} (Ad) LT
Tt (=157 (N, (A18)

Using the approximate forms of the distribution function
Egs.(21) and(398) in the linear collision operator and taking
moments, we find that the collisional contributions to the
moment equations are given by

where 74(r)=[32ny(r)a’(mkgT/m)¥?]~1 is the mean-
collision time. The spatially averaged relaxation rates are

given by
<pxi>coII: - 7D<pxi>v (A5) 1 , 3 7 2
L Yo=3% YiTgYe Yr=ig¥es O¥r= Y
<sz>c0II: - 7<sz>r (AB) (A19)
where vy, is the spatially averaged mean-collision rate
Yb
(ri-pP)con=— 7(&'[3&)' (A7) 1 - kT 12 220
va= o0 == (A20)

(P2car= = ¥H{(P2) — 8¥r(p?), (A8)

) i 5 In order to compare the moment method directly with our
(PL)con=—yr(PL) —28yr(p3)- (A9) numerical solution of the 1D kinetic equation, we also
worked out the three relaxation rates within the simple relax-

The various relaxation rates are given by spatial average ofiq time approximation

the following spin transport relaxation times:
do

do| __o(rpH)=M(rDio(r.p)
)SpL[p], (A10) at '

coll 7a(r)

(A21)

No(r) 1 f dp

(1) 3mkeT) (274

This simple formula leads to the same collisional contribu-

No(r) dp 2 [p2 AlL tions in the moment equations as given from the original

(1) = (27h)3 2(mksT)? pzLlpzl.  (AlD) collision integral, with all the transport relaxation times be-
ing replaced with 7¢(r), so that one hasyp=yr= 1yt

no(r) dp 1 =y . Thus, within the relaxation time approximation, oscil-
0 E_f . spZL[p?]. (A12)  lations in the axial and radial directions are completely un-
77(r) (27h)® 4(mkgT) coupled sincedy;=0.
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