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Quantum localization in the high-frequency limit
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The quantum localization of the periodically kicked Rydberg atom in the limit of high frequenciesn is
studied. We show that the quantum suppression of fast chaotic ionization as predicted by classical dynamics
persists asn→`. Properties of localization in the regime of strong coupling to the continuum due to one-
photon transitions are discussed. For the unidirectionally kicked atom, thehigh-frequencylimit of localization
is determined by thezero-frequencyStark Hamiltonian. The persistence of quantum localization due to inter-
ference of classical trajectories can be understood in terms of smearing out of the instabilities at finite\.
Unstable trajectories whose action differs from each other and from Stark orbits in less than\ contribute to
quantum localization rather than to chaotic ionization.
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I. INTRODUCTION

The quantum mechanics of simple but classically cha
systems with few degrees of freedom has become the fo
of many investigations. Both time-independent systems s
as the hydrogen atom in a strong magnetic field@1,2# as well
as time-dependent, driven systems such as the kicked
@3,4# or the hydrogen atom in a harmonic driving field@5–8#
are prime candidates. More recently, the ‘‘kicked’’ Rydbe
atom, that is, the hydrogen atom perturbed by a perio
sequence of ultrashort pulses, has been experimentally
ized @9,10#. The experimental study of this previously the
retically investigated system@11–14# has stimulated furthe
investigations@15–19#. One of the remarkable features
discordance between quantum and classical dynamics is
suppression of classical diffusion of phase space flow du
destructive interference. This effect, usually referred to
quantum localization, has been first predicted for the kick
rotor @3# and shown for this system to be closely connec
to the Anderson localization problem in disordered syste
@4,20#. The kicked rotor has been meanwhile experimenta
realized by trapping atoms in a standing laser field@21#.
Quantum localization also has been extensively analyzed
the microwave driven Rydberg atom@5,7,22# for scaled fre-
quencies of the driving field~in units of the orbital period!
n0*1. More recently, we found first evidence for quantu
localization for the unidirectionally periodically kicked Ryd
berg atom@23#.

The regime of high frequencies is of interest for seve
reasons: For largen0, the one-photon transition leads to d
rect ionization. For the microwave ionization problem, it w
therefore concluded that in this regime of single photoioni
tion, n0*ni /2 (ni is the initial principal quantum number!
‘‘all vestiges of classical motion have disappeared’’@5,24#.
Moreover, because of the simultaneous presence of all hi
harmonics, the kicked system is, unlike harmonically driv
systems, characterized by a very strong coupling to the c
tinuum. The localized wave packets, if existent at all, m
contain a considerable admixture of continuum states, a
1050-2947/2002/66~4!/043407~9!/$20.00 66 0434
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ture absent for the kicked rotor or harmonically driven sy
tems. In the following we will show that for the kicked Ry
dberg atom classical ionization via chaotic diffusio
continues to dominate quantum ionization and the supp
sion of classical ionization by quantum localization persi
up to very high frequencies.

Identification of quantum localization in numerical sol
tions of the Schro¨dinger equation beyond the phenomen
logical observation of an enhanced stability against ioni
tion compared to its classical counterpart requires
analysis of the Floquet spectrum of the periodically driv
system@25#. As localization at high frequencies inevitab
involves coupling to continuum states, the imaginary part
the Floquet eigenvalues provides clues as to the propertie
localization. Remarkably, we find that for the unidirectio
ally kicked atom the Floquet width of localized states co
verges in the high-frequency limit to that of zero-frequen
Stark states. We present a simple semiclassical argumen
the high-frequency limit of localized states in terms of t
quantum uncertainty which allows unstable periodic orbits
retrace Stark orbits and, thereby, provide for the interferen
causing localization.

The plan of the paper is as follows: In Sec. II we briefl
describe the present method employed in the solution of
time-dependent Schro¨dinger equation~TDSE!. Numerical re-
sults for the time-development of the quantum and of
classical system will be shown in Sec. III and the Floqu
states will be studied in Sec. IV. Classical-quantum cor
spondence at high frequencies is discussed in Sec. V,
lowed by a short summary.

II. GENERALIZED PSEUDOSPECTRAL METHOD

The periodically kicked Rydberg atom is experimenta
realized by exposing alkali atoms initially prepared in a hi
lying Rydberg state (nip) to a train of equispaced half-cycl
pulsesF(t) @10#. If the duration of a pulse is much shorte
than the orbital periodTn52pn3 ~a.u.! of the Rydberg atom
©2002 The American Physical Society07-1
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with principal quantum numbern, each pulse simply trans
fers a momentum

DpW 52E FW ~ t !dt ~1!

to the electron. Thus a sequence of half-cycle pulses ca
adequately approximated by a sequence ofd functions

FW ~ t !5DpW (
k51

K

dXt2S k2
1

2DTC, ~2!

whereK is the number of kicks andT the period between
kicks. We study the one-dimensional~1D! kicked atom de-
scribed by the Hamiltonian~in atomic units!

H~ t !5Hat1V~ t !, ~3!

where

Hat5
p2

2
2

1

q
, ~4!

and

V~ t !52qDp(
k51

K

dXt2S k2
1

2DTC. ~5!

Here p and q(.0) are the momentum and position of th
electron in the rest frame of the nucleus, respectively. N
that we placed the kicks at the midpoint of the periodT, i.e.,
the first kick comes att5T/2. The restriction of the presen
calculations to a 1D model serves the purpose to ach
fully converged numerical results with the high-energy co
tinuum accurately represented. We note, however, that
have observed qualitatively similar results in numerical
lutions for the full 3D dynamics@26#. One particular feature
of the 1D model is that for unidirectional kicks (Dp.0 or
Dp,0) two structurally different systems emerge@13,16#:
When the kicks are directed towards the nucleus (Dp,0),
referred to in the following as negative kicks, the classi
dynamics typically exhibits soft chaos with regular regio
in phase space embedded in a chaotic sea. On the other
for the kicks directed away from the nucleus (Dp.0, ‘‘posi-
tive kicks’’!, the dynamics is globally chaotic even for infin
tesimally small kick strength. The positively kicked Rydbe
atom turns out to be, to some extent, more representative
the 3D case@26#. For reasons of comparison, we will als
consider a sequence of alternating kicks,

VA~ t !52qDp(
k51

K

~21!kdXt21

2 S k2
1

2DTC. ~6!

This interaction resembles to some extent more closely
microwave driven Rydberg atom@13,14#.

Due to the periodicity of the driving field, the solution o
the time-dependent Schro¨dinger equation~TDSE!

i
]

]t
uc~ t !&5H~ t !uc~ t !& ~7!
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can be simply written as

uc~ t5KT!&5U~KT!uc~0!&5@U~T!#Kuc~0!& ~8!

in terms of the Floquet~or period-one evolution! operator
U(T). This Floquet operator consists of a product of t
evolution operatore2 iH att of the unperturbed atom and th
boost operatoreiqDp, i.e.,

U~T!5e2 iH atT/2eiqDpe2 iH atT/2. ~9!

The problem is thus reduced to the evaluation of matrix
ements of these two operators. In the numerical evaluat
the size of the basis is inevitably limited. Therefore, a set
basis functions has to be carefully chosen in order to evalu
both operators effectively and accurately.

In our previous studies we employed a set of Sturm
basis functions @15,16,27,28# within which the atomic
Hamiltonian can be efficiently diagonalized and the fr
atomic evolution can be easily calculated. However, it is
straightforward to evaluate the boost operator in a Sturm
basis for largen @29#. On the other hand, grid-based metho
employing localized basis functions are most suitable
evaluate the boost operator while causing difficulties
atomic Coulomb problems due to both the singularity aq
50 and the long-range Coulomb distortion asq→`. We
therefore employ the generalized pseudospectral~GPS!
method@30# using a basis defined by

Hatufn&5Enufn& ~10!

with boundary conditionsfn(q50)50 and fn(q5Qmax)
50. The method combines two complementary methods
hybrid form: The boost operator is evaluated on a grid
coordinate space while the free atomic evolution is evalua
in the pseudospectral basis,

^fn8uU~T!ufn&5 (
m8,m

E dq8E dq^fn8ue
2 iH atT/2ufm8&

3^fm8uq8&^q8ueiqDpuq&^qufm&

3^fmue2 iH atT/2ufn&

5E dqe2 iEn8T/2^fn8uq&eiqDp^qufn&e
2 iEnT/2.

~11!

For n51,2, . . . ,nc(&AQmax/2), the fn are the bound hy-
drogenic states withEn521/(2n2). In addition,ufn& for n
.nc represent the continuum up to a cutoff energyEn
<Ec . Using the Legendre pseudospectral discretization
the spatial coordinate, both bound Rydberg and continu
states are well represented with a relatively small numbe
basis states. For example, wave functions including c
tinuum states are very accurately represented using as
as two spatial grid points per half wave. We typically empl
a numberN of grid points $qi ; i 51, . . . ,N% with 0,qi
,Qmax of the order ofN'1300 andQmax'104 a.u. This
allows one to accurately represent Rydberg states up tn
'70 and continuum states up toEc'0.02 a.u. For such a
7-2
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grid representation, the computationally efficient transform
tion from an energy to a coordinate representation^qufn& is
easily achievable. A solution of the TDSE can be determin
within a finite but large Hilbert space using the GPS meth
However, spurious reflections at the borderQmax are inevi-
table. We therefore employ absorbing boundary conditi
by multiplying the wave function with the masking functio

g~q!5
1

11exp@~q2Qc!/Ql #
~12!

in the grid basis after each kick.Qc and Ql are typically
0.8Qmax and 0.01Qmax, respectively. In addition, there is
second class of reflections to be considered. As the k
accelerate the electron to ‘‘high’’ energies~in relation to the
initial binding energy!, E can approachEc which is implic-
itly defined by the grid spacing~by the maximumkc repre-
sentable by the grid!. We therefore use an additional maskin
function for the pseudospectral basis,

g̃~En!5
1

11exp@~En2Ec!/El #
~13!

with which fn is multiplied during each time-evolution with
El'0.01Ec . One period of the time-evolution is thus give
by

^fn8uU~T!ufn&5E dqAg̃~En8!e
2 iEn8T/2^fn8uq&

3g~q!eiqDp^qufn&Ag̃~En!e2 iEnT/2.

~14!

As a result of the masking in coordinate space and ene
space, the time evolution ceases to be unitary. It is never
less possible to achieve a proper representation of loca
tion. One criterion for the latter is that the masking does
affect the localized part of the wave function within the fin
Hilbert space. As an example we show in Fig. 1 the survi
probability against ionization

Psur~ t !5 (
n(bound)

u^fnuc~ t !&u2 ~15!

as a function of time for differentQmax. Even when the norm
of the entire wave functionc(t) ~including its continuum
portion! drastically varies, the survival probability remain
stable as a function ofQmax. In other words, the masking
eliminates a portion of the outgoing continuum wave witho
affecting the bound-state or localized portion.

For the analysis of the dynamics of high frequencies
well as comparison with other driven systems, it is usefu
consider the Fourier analysis of the driving field for unid
rectional kicks@Eq. ~5!#,

V~ t !5Favq12Favq (
m51

`

cosF2pmnS t2
T

2D G . ~16!
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whereFav52Dp/T andn51/T. The train of pulses consist
of a static~dc! field Fav and a multicolor driving field where
all higher harmonics of the fundamental frequencyn are
present with twice the amplitudeFav of the static field. The
Hamiltonian can be accordingly decomposed as

H~ t !5HStark12Favq (
m51

`

cosF2pmnS t2
T

2D G ~17!

with

HStark5Hat1qFav. ~18!

Correspondingly, for alternating kicks@Eq. ~6!#,

VA~ t !54FAq (
m51

`

cosF2pn~2m11!S t2
T

4D G , ~19!

whereFA52np/T is the field of the odd Fourier compo
nents of the alternating field. Note that for alternating kicksT
encompasses two kicks. The essential difference to Eq.~16!
is the absence of the dc component which has profound c
sequences for the ensuing dynamics.

In the following sections we will use scaled units~i.e.,
measured in units of the initial Rydberg state!, which we
denote by the subscript ‘‘0.’’ The units aret05t/(2pni

3),
n052pni

3/T, q05q/ni
2 , p05pni , E05Eni

2 , and F0
av

5Favni
4 . Note that the classical dynamics in these units

invariant under a change of the actionni .

III. QUANTUM LOCALIZATION IN THE HIGH-
FREQUENCY LIMIT

We focus now on the quantum dynamics of the unidire
tionally driven Rydberg atom@Eqs. ~3!,~4!, and ~5!# at high
frequenciesn0. By high we refer not only ton0@1 but to
n0*ni /2 with ni@1, i.e., frequencies sufficient already fo

FIG. 1. Norm of the wave functions~dashed lines! and survival
probabilities ~full lines! for three choices ofQmax and N: ~1!
Qmax5104 a.u. and N51300; ~2! Qmax51.43104 a.u. and N
51700, and ~3! Qmax523105 a.u. and N52500. Dp57.5
31024 a.u., ni520 and T5Tni

/4051.33103 a.u. The survival
probabilities for these three cases are practically identical. In
long-time behavior of norms and survival probabilities.
7-3
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the lowest Fourier component@Eq. ~16!# of the driving field
to induce photoionization by one-photon absorption. As
variablesDp0 and F0

av are interrelated with each other, w
consider in the following variations ofn0 at fixedF0

av which
implies that the kick strength

Dp0522pF0
av/n0 ~20!

scales inversely withn0. Moreover, the quiver amplitude fo
a system harmonically driven with the same frequencyn0,

a05~F0
av!2/~16p2n0

2!, ~21!

which is a measure for the spatial strong-field excurs
would scale asn0

22. Regardless of the fact that the kicke
system is not dynamically equivalent to the harmonica
driven system, it is worth noting that we are concerned w
the a0→0 regime; and the localization effects discussed
the following are different in origin of the strong-field high
frequency stabilization of harmonically driven system
@31,32#. To our knowledge, this regime of localization h
not been previously investigated. The unidirectionally kick
atom is of particular interest as its classical phase spac
globally chaotic without any stable island surviving and
algebraic decay of the dwell time distribution@13#. These
features persist up to infinitely high frequencies, an exam
of which is displayed in Fig. 2 as the stroboscopic Poinc´
surface of section forn0521.1. All tori are destroyed and
eventually, all trajectories undergo chaotic ionization. W
note that the structure seen in the positive momentum pa
the plot is a manifestation of the unstable manifold above
Stark barrierE0

barrier where the density of points become
discontinuously reduced due to strong ionization. Acco
ingly, the survival probability at a fixed interaction time is
measure for the transient stability and suppression of cha
ionization.

Figure 3 shows the time evolution of the quantum a
classical survival probabilities of the kicked Rydberg ato
subject to a train of unidirectional kicks@Eq. ~5!# as a func-
tion of scaled time. We use a hydrogenic state withni520 as
an initial state, the average fieldF0

av520.095, and two dif-

FIG. 2. Stroboscopic Poincare´ surface of section forn0521.1
and positive unidirectional kicks withF0

av520.095. The line indi-
cates the initial hydrogenic state. The stroboscopic snapshots
taken att050, T0 , 2T0 , . . . .
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ferent frequencies of a train of pulses,n052.7 ~upper frame!
and 15.5~lower frame!. Classical survival probabilities ar
evaluated using a classical trajectory Monte Carlo meth
with a microcanonical ensemble as an initial state@16,33#.
They rapidly decay in contrast to the quantum survival pro
ability. This suppression of classical chaotic ionization due
quantum interference effects is considered to be the
mark of ‘‘quantum localization’’ in quantum systems corr
sponding to classically chaotic systems.

Complementary information on the phase space evolu
is provided by the spectral distribution at fixed timet0. The
latter is defined by

r0~En,0 ,t0!

5H u^fnuc~ t0!&u2/DEn,0 ~quantum!

E
Ẽn,0,E,Ẽn11,0

f ~q,p,t0!dqdp/DEn,0 ~classical!,

~22!

where Ẽn,05(En21,01En,0)/2, DEn,05(En11,02En21,0)/2,
and f (q,p,t0) is the classical phase space density distrib
tion. Figure 4~a! indicates the initial distribution while Figs
4~b! and 4~c! display the spectral distributions after 20
kicks corresponding tot0512.9. The energy distribution
function obviously depends on the definition of the unp
turbed Hamiltonian with respect to which the spectral dis
bution is determined. For the unidirectionally kicked ato
there are two physically meaningful choices: the zero-fi

re

FIG. 3. Quantum and classical survival probabilities as a fu
tion of scaled time for two different frequenciesn0 with F0

av5
20.095 andni520. tL denotes the localization time where th
classical and quantum survival probabilities diverge from ea
other.
7-4



io
in
th
-
tu
e

m
-
ica

tial
law
c-

yed
n

ion

n

in

o
the

res-

ier

tial
rk
l

as
g

um
ter-
re

k

ta
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Hamiltonian@Eq. ~4!# used in Fig. 4~c! and the Stark Hamil-
tonian@Eq. ~18!# including the dc field used in Figs. 4~a! and
4~b!. When Eq. ~22! is calculated for Stark energiesEn

5En
Stark and Stark states,ufn

Stark&, the initial state distribution
is broadened@Fig. 4~a!# while it would bed-shaped in the
hydrogenic spectral distribution~not shown!. Obviously one-
photon (m51) and two-photon (m52) excitation peaks are
much more pronounced in the Stark spectral distribut
@Fig. 4~b!# since these ‘‘photoionization’’ events take place
the presence of a dc field while they are barely visible in
hydrogenic spectrum@Fig. 4~c!#. The classical spectral distri
bution is significantly broadened compared to the quan
distribution with enhancement both in the bound state sp
trum ~the latter being responsible for the algebraic long-ti
tail of the survival probability@13#! as well as in the above
barrier continuum which is responsible for the rapid class

FIG. 4. The quantum and classical spectral densitiesr0(En,0)
with ni520, F0

av520.095, andn0515.5 as a function of the Star
energy@Eq. ~18!#. ~a! at t50 ~initial state!; ~b! afterK5200 kicks.
The same spectral density as in~b! is plotted in~c! but as a function
of hydrogenic energy. The full lines in~a! and ~b! indicate the
energyE0

barrier of the Stark barrier.
04340
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ionization. The quantum spectrum shows both exponen
localization around each photonic peak as well as power
localization for the envelope of the multiphotonic peak stru
ture.

The dependence on high driving frequencies is displa
in Fig. 5. The survival probability at fixed scaled evolutio
time t0520 shows the persistence of quantum localizat
up to very high frequenciesn0'1000. Unlike the microwave
ionization problem @5,24#, classical stochastic ionizatio
dominates over quantum ‘‘photoionization’’ even forn0
@ni /2. The classical and quantum survival probabilities
Fig. 5~a! appear to approach the same value ofPsur'0.72
with increasingn0. This is a peculiar feature for short t
intermediate interaction times and high frequencies for
unidirectionally kicked atom. Increasingt0 at fixedn0 results
in additional features to be discussed below. Due to the p
ence of an average fieldF0

av, the ionization threshold is low-
ered to the height of the saddle of the potential barr
E0

barrier522ADp0 /(2pT0)522A2F0
av displayed in Figs.

4~a! and 4~b!. Since a hydrogenic state is used as an ini
state in the simulation, the initial distribution in the Sta
basis@Fig. 4~a!# is broad and a finite fraction of the initia
probability resides aboveE0

barrier. The ionization at high kick
frequenciesandshort interaction times can be understood
the depletion of the fraction of the initial population residin
above the Stark barrier. Also in this regime, the quant
ionization is suppressed compared to the classical coun
part up to very high frequencies. This difference is mo
clearly visible in the scaled decay rateG0(t0) defined as the
logarithmic derivative

G0~ t0!52 Ṗsur~ t0!/Psur~ t0!. ~23!

FIG. 5. Quantum and classical survival probabilities~a! and
scaled decay rates~b! as a function of scaled frequency. The da
are taken att0520 with F0

av520.095 andni520.
7-5
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where a dot indicates a derivative with respect tot0. Classi-
cal decay rates remain orders of magnitude larger up to h
frequencies@Fig. 5~b!#. The behavior ofG0, both classically
and quantum mechanically, can be understood in term
simple physical arguments. A typical lifetime of the classic
system is the average time it takes for the trajectories
absorb an amout of energy equal to the binding ene
Hence the classical decay rate can be estimated from
ratio of the average energy gain per scaled unit time^DĖ0&
to the energyDE0

I 5E0
barrier2Eni ,0

necessary to reach the ba
rier,

G0
cl5^DĖ0&/~DE0

I !. ~24!

SinceDE0
I is dependent only onF0

av and is independent o
n0, the only n0 dependence in Eq.~24! originates from

^DĖ0&. The energy gain per kick is given by

^DE0&kick5
Dp0

2

2
1^p0&Dp0 . ~25!

The energy gain per scaled unit time is

^DĖ0&5n0^DE0&kick . ~26!

As an electron withE0,0 travels around the nucleus, th
average momentum cancels out~i.e., ^p0&'0) sincep0 has
different signs if the electron is traveling towards or aw
from the nucleus. Therefore Eqs.~24! and ~26! lead to the
scaling

G0
cl'^DĖ0&'1/n0 ~27!

since Dp0}1/n0 @Eq. ~20!#. This behavior is, indeed, ob
served well into the regime where the survival probabil
has reached the value predicted by the initial fraction of
derbarrier population, i.e., Eq.~27! applies also to the slow
classical diffusive ionization of the underbarrier populati
giving rise to the power-law tail inPsur. We note that this
scaling law differs from the prediction by Hillermeieret al.
using the Fokker-Planck equation@13#. This is due to the fact
that in our case the process is not well-approximated by
Fokker-Planck equation since the high frequency pertur
tion with weak kick strength does not strongly randomize
process until the electron is scattered by the nucleus.

The quantum decay rate is, for intermediate frequenc
n0'ni /2, characterized by a rapid decay;n0

23 @Fig. 5~b!#.
This behavior can be easily understood as follows: Theexact
evolution operator for the unidirectionally kicked Rydbe
atom @Eq. ~9!# can be visualized as theapproximatedis-
cretized prescription within the split-operator algorithm@34#
of the time evolution generated by the Hamiltonian with
time-independent external field@Eq. ~18!# with a discretiza-
tion stepdt5T}1/n0. This method is known to converge t
order O(dt3);O(n0

23). This is precisely the slope seen
Fig. 5~b!. However, for largern0 we observe a leveling-of
indicating the appearance of a new regime. As will be d
cussed below the regime of largen0 is governed by zero-
frequency Stark tunneling.
04340
h

of
l
to
y.
he

-

e
a-
e

s

-

IV. QUENCHING OF LOCALIZATION BY STARK
TUNNELING

In order to analyze the long-time evolution and quantu
localization in more detail, it is convenient to study the Fl
quet spectrum, i.e., the eigenstates and eigenvalues o
period-one evolution operator@25#,

U~T!ufk
F&5e2 iE kTufk

F&, ~28!

where Ek5E k
R2ıE k

I are the complex quasi-eigenenergie
The imaginary part ofEk is related to the decay ratesG0
discussed above. This relation is the key to the descriptio
quantum localization: Quantum dynamics is unitary in t
full Hilbert spaceH. Only by restricting the dynamics to
subspaceP,H the Floquet eigenvalues obtain a fini
imaginary partE k

I . The restriction in the present case corr
sponds to the projective elimination of outgoing continuu
waves by masking@Eqs.~12! and ~13!#. In other words, the
complementQ of P corresponds to a subspace of the co
tinuum spectrum not subtended by the present pseudos
tral grid. Conversely, true bound states as well as Floq
states representing completely localized wave packets in
continuum~resonances with infinite lifetimes! should reside
in P and should have zero imaginary parts. Provided that
basis set spanning upP is large enough to represent an
physical backscattering towards the nucleus and the mas
functions are smooth enough to prevent spurious reflect
at the border through high Fourier components, the flux
ing out of the basis corresponds to a physical flux rather t
a numerical artifact. SmallE k

I of Floquet states living mainly
in the bound space can then be given the physical inter
tation of decay widths of quasi-stable Floquet states in
kicked Rydberg atom, whose inverse lifetimes in scaled u
aretk,0

21/252pni
3E k

I . Floquet states with either zero or ver
small E k

I can therefore be used as one~not necessarily
unique! indicator of quantum localization. In practice,E k

I

cannot be exactly zero. Considering exponential localizat
in energy space around a fixed energyEm , the probability
for occupying a pseudo-spectral basis state with energyE is
given by

P~E!;e2u(E2Em)u/EL, ~29!

whereEL is the localization length in energy space. There
thus a small but finite probability for reaching the border
P in energy space,

P~Ec!;e2(Ec2Em)/EL.0 ~30!

and hence a small probability for escapingP and reachingQ
leading to E k

I .0. This is closely related to the so-calle
‘‘atomic conductance’’@22# in analogy to quantities used i
mesoscopic devices.

It is now instructive to analyze the behavior of the lif
times of the Floquet states at largen0 and to understand thei
7-6
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implication for quantum localization. In Fig. 6 we contra
the behavior oftk,0

21 for a few dominant Floquet states wit
the largest probability in the initial state for both unidire
tional and alternating kicks. For alternating kicks@Fig. 6~b!#,
tk,0

21 decays for high frequencies asn0
23 . The same applies to

the case of unidirectional kicks@Fig. 6~a!#, but only for in-
termediate values ofn0, in agreement with the trends ob
served forG0 ~see Fig. 5!. For higher frequencies, the invers
lifetimes begin to level off at small but finite values an
approach a constant. In other words the scaled lifetimet0

D of
localization is limited due to a constant ‘‘leakage’’ rate of t
Floquet state given by the saturation value oftk,0

21 . This leak-
age eventually destroys the quantum localization. The qu
tum localization for the unidirectionally and positive
kicked atom is therefore characterized by two different ti
scales: a localization timet0

L where classical and quantum
dynamics separate and localization sets in as quantum i
ferences suppress classical ionization~Fig. 3! and a much
longer decay~or decoherence! time t0

D where quantum local-
ization is eventually destroyed.

It is now of interest to inquire into the origin of the deca

FIG. 6. The inverse scaled lifetimetk,0
21 of the Floquet states fo

ni520 as a function of scaled frequency:~a! unidirectional kicks
with F0

av520.095 @Eq. ~5!# and ~b! alternating kicks withF05
20.5 @Eq. ~6!#. At each frequency we plot several Floquet sta
whose overlap probability with the initial stateu^fni

ufk
F&u2 is larger

than 5%~a! and 0.5%~b!. In ~a!, the data are numbered accordin
to descending order of overlap and the solid line corresponds to
inverse lifetime of the dc Stark state withE0

Stark520.62 in Fig.
4~a!. Note that only one state in~b! carries almost all of the prob
ability for largen0 and that no other state has a probability larg
than 0.5% aboven05150.
04340
n-

e

er-

of the localized state. The Fourier decomposition of t
Hamiltonian@Eq. ~17!# suggests that the high-frequency d
cay is determined by the zero-frequency Stark Hamiltoni
i.e., thestaticfield ionization process. In order to support th
interpretation, we have performed complex-scaling calcu
tions @35# for the one-dimensional Rydberg atom in the pre
ence of a dc Stark field~shown as a full line in Fig. 6!. We
find for the dominant states with the largest overlap with
initial state excellent agreement between the imaginary
of the Floquet eigenvalue of the full dynamical problem@all
Fourier components of Eq.~17! included# with the imaginary
part of the static field problem@Eq. ~18!#. This agreement
immediately implies that these Floquet states should clos
resemble Stark eigenstates in the dc field.

Since the initial Rydberg state displays a broad distrib
tion in the spectral density calculated for Stark states@Fig.
4~a!#, the high frequency limit of the unidirectionally kicke
atom corresponds to several Floquet states resembling
different Stark states overlapping with the initial state,
seen in Fig. 6~a!. For the alternating kicks, on the other han
the time-independent part of the Hamiltonian@Eq. ~6!# is the
atomic Hamiltonian @Eq. ~4!#. Therefore, in the high-
frequency limit, the time-evolution of the wave function co
verges towards just one Floquet state resembling the in
Rydberg state, as can be seen in Fig. 6~b! for n0.150. We
thus arrive at the remarkable conclusion that states repres
ing the high-frequency limit of quantum localization a
given by the time-independent part of the Hamiltonian wh
for alternating kicks is the Rydberg Hamiltonian and for un
directional kicks is the zero-frequencyStarkHamiltonian.

V. CLASSICAL STARK ORBITS AND QUANTUM
LOCALIZATION

In order to analyze the connection between the hi
frequency localization and the dc Stark problem further,
analyze the classical-quantum correspondence of the p
lem. The skeleton of the classically chaotic phase spac
provided by unstable periodic orbits~UPOs!. Figure 7~a!
shows two typical UPOs for the kicked Rydberg atom with
fixed average field and two different driving frequencies.
n0 increases, the UPOs begin to resemble a Stark orbit.
ready forn0521, the similarity between the UPO and th
Stark orbit is striking. In Fig. 7~b!, on the other hand, we
show a typical chaotic classical trajectory. The initial con
tions are almost the same as those for the UPO withn0
521, butq0 is shifted byDq050.007. This trajectory does
not correspond to a certain Stark orbit, but at each imp
with the nucleus it jumps from one Stark orbit to anoth
until it eventually ionizes. The key point is now that quantu
mechanics ‘‘smears out’’ the classical phase space struc
rendering the quantum evolution insensitive to the instabi
of the classical trajectory. To quantify the role of the unc
tainty principle in stabilizing the quantum phase space flo
we measure the deviation of an UPO from a Stark orbit
taking a difference in actionDS5rupStark(q)2pUPO(q)udq.
We consider the difference in action averaged over o
periodT, i.e., ^DS&5DS/K as a measure for the distance
action space. For̂DS&!\ the quantum system cannot ‘‘re

s

he

r
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solve’’ the difference between a Stark orbit and a UPO a
therefore, the quantum evolution will retrace the Stark or
which, in turn, corresponds to the fact that the Floquet sta
converge to Stark states. On the other hand, for^DS&@\ the
quantum evolution will ‘‘feel’’ the difference between th

FIG. 7. ~a! Classical unstable periodic orbits~UPOs! and a cor-
responding Stark orbit (F0

av520.095). ~b! Typical classical trajec-
tory launched in the vicinity of the UPO of~a!.

FIG. 8. The average difference in scaled action^DS0& between
unstable periodic orbits and a Stark orbit: Numerical simulatio
~symbols! are fitted by 11/n0

2 ~solid line!.
04340
,
it
s

UPO and the Stark orbit and will contribute to rapid dec
and ionization. Figure 8 shows the numerically evalua
scaled^DS0&5^DS&/ni as a function ofn0. In order to ob-
serve quantum localization, the scaled difference in act
^DS0& must be smaller than a critical valueDS0

c which is of
the order of the scaled Planck’s constant,DS0

c!\051/ni .
From Fig. 8 we can read off the scaling relation

^DS0&'11/n0
2!

1

ni
. ~31!

Equation~31! implies that the critical scaled frequencyn0
crit

for the onset of high-frequency localization scales as

n0
crit } ni

0.5. ~32!

This prediction can be tested against the numerical data
the unidirectionally kicked Rydberg atom. We consider t
scaled inverse lifetimetk,0

21 of the dominant Floquet state a
a function of n0 for different ni ~Fig. 9!. A well-localized
state that has converged towards the Stark state is chara
ized by a smalltk,0

21 . Setting an ‘‘arbitrary’’ threshold for the
lifetime ~e.g.,tk,0

21'431023, thick solid line in Fig. 9! we
can determine the scaling relation forn0(ni) from the points

s

FIG. 9. Scaled inverse lifetimestk,0
21/2 of the dominant Floquet

state with the largest probability in the initial state forF0
av5

20.095 and different initial states (ni510,20,40,80). The horizon
tal line indicates a lifetimet0

215431023.

FIG. 10. Points of intersection betweent0
215431023 andtk,0

21

as a function ofni ~Fig. 9!. Note that both axes are plotted i
logarithmic scale. The error bars at eachni are estimated by inter-
sections with different Floquet states@see Fig. 6~a!#.
7-8
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of intersection between the horizontal line with the curv
tk,0

21 for different ni . The resulting relation is practically in
dependent of the specific choice of the threshold value.
find n0

crit } ni
0.48 ~Fig. 10! in good agreement with the est

mate of Eq.~32!. These findings support the proposition th
the difference between the UPO and a Stark orbit cont
the frequency regime above which the localization in
high-frequency regime sets in.

VI. SUMMARY

We have studied the quantum localization of the perio
cally kicked Rydberg atom in the limit of high frequencie
for a fixed average field strength. We find that localizatio
that is, the quantum suppression of classically chaotic i
ization, persists up to very high frequencies well into t
r,

t.

e

ri
d

.

J

A

,

04340
s

e

t
ls
e

i-

,
-

photoionization regime. Moreover, the high-frequency F
quet states converge to Stark states. We have presen
semiclassical argument explaining this convergence in te
of the proximity of unstable orbits to Stark states for sm
but finite \. Several properties of high-frequency Floqu
states can be deduced from zero-frequency Stark states,
notably, the lifetime of dc Stark states against tunneling io
ization determines the upper bound for the time scale o
which quantum localization can be observed.
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