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Quantum localization in the high-frequency limit
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The quantum localization of the periodically kicked Rydberg atom in the limit of high frequemciss
studied. We show that the quantum suppression of fast chaotic ionization as predicted by classical dynamics
persists ay—. Properties of localization in the regime of strong coupling to the continuum due to one-
photon transitions are discussed. For the unidirectionally kicked atonhjghefrequencyimit of localization
is determined by theero-frequencystark Hamiltonian. The persistence of quantum localization due to inter-
ference of classical trajectories can be understood in terms of smearing out of the instabilities d&t. finite
Unstable trajectories whose action differs from each other and from Stark orbits in less tuantribute to
guantum localization rather than to chaotic ionization.
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[. INTRODUCTION ture absent for the kicked rotor or harmonically driven sys-
tems. In the following we will show that for the kicked Ry-
The quantum mechanics of simple but classically chaotidberg atom classical ionization via chaotic diffusion
systems with few degrees of freedom has become the focuntinues to dominate quantum ionization and the suppres-
of many investigations. Both time-independent systems suchion of classical ionization by quantum localization persists
as the hydrogen atom in a strong magnetic fidl@] as well  up to very high frequencies.
as time-dependent, driven systems such as the kicked rotor |dentification of quantum localization in numerical solu-
[3,4] or the hydrogen atom in a harmonic driving fi¢s-8]  tions of the Schidinger equation beyond the phenomeno-
are prime candidates. More recently, the “kicked” Rydberg|ogical observation of an enhanced stability against ioniza-
atom, that is, the hydrogen atom perturbed by a periodigion compared to its classical counterpart requires the
sequence of ultrashort pulses, has been experimentally regjnalysis of the Floquet spectrum of the periodically driven
ized[9,10]. The experimental study of this previously theo- system[25]. As localization at high frequencies inevitably
retically investigated systeifi1-14 has stimulated further inyolves coupling to continuum states, the imaginary part of
investigations[15-19. One of the remarkable features of the Floquet eigenvalues provides clues as to the properties of
discordance between quantum and classical dynamics is thgcalization. Remarkably, we find that for the unidirection-
suppression of classical diffusion of phase space flow due tgly kicked atom the Floquet width of localized states con-
destructive interference. This effect, usually referred to agerges in the high-frequency limit to that of zero-frequency
quantum localization, has been first predicted for the kickedstark states. We present a simple semiclassical argument for
rotor [3] and shown for this system to be closely connectedhe high-frequency limit of localized states in terms of the
to the Anderson localization problem in disordered systemguantum uncertainty which allows unstable periodic orbits to
[4,20]. The kicked rotor has been meanwhile experimentallyretrace Stark orbits and, thereby, provide for the interferences
realized by trapping atoms in a standing laser fidd].  causing localization.
Quantum localization also has been extensively analyzed for The plan of the paper is as follows: In Sec. Il we briefly
the microwave driven Rydberg atof,7,22 for scaled fre-  gescribe the present method employed in the solution of the
quencies of the driving fieldin units of the orbital period time-dependent Schdinger equatiof TDSE). Numerical re-
vo=1. More recently, we found first evidence for quantumsyits for the time-development of the quantum and of the
localization for the unidirectionally periodically kicked Ryd- c|assical system will be shown in Sec. lll and the Floquet
berg atom[23]. states will be studied in Sec. IV. Classical-quantum corre-

The regime of high frequencies is of interest for severalspondence at high frequencies is discussed in Sec. V, fol-
reasons: For large,, the one-photon transition leads to di- jowed by a short summary.

rect ionization. For the microwave ionization problem, it was

therefore concluded that in this regime of single photoioniza-

tion, vo=n;/2 (n; is the initial principal quantum number Il. GENERALIZED PSEUDOSPECTRAL METHOD

“all vestiges of classical motion have disappear¢d;24].

Moreover, because of the simultaneous presence of all higher The periodically kicked Rydberg atom is experimentally
harmonics, the kicked system is, unlike harmonically drivenrealized by exposing alkali atoms initially prepared in a high
systems, characterized by a very strong coupling to the corlying Rydberg stater(;p) to a train of equispaced half-cycle
tinuum. The localized wave packets, if existent at all, mustpulsesF (t) [10]. If the duration of a pulse is much shorter
contain a considerable admixture of continuum states, a feahan the orbital period,=27n? (a.u) of the Rydberg atom
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with principal quantum numbem, each pulse simply trans- can be simply written as
fers a momentum K
[p(t=KT))=U(KT)[#(0))=[U(T)]*[%(0)) (8

Ap= —f F(t)dt (1) in terms of the Floquetor period-one evolutionoperator
U(T). This Flogquet operator consists of a product of the
to the electron. Thus a sequence of half-cycle pulses can volution operatoe™"a! of the unperturbed atom and the

adequately approximated by a sequence dfinctions boost operatog'd*?, i.e.,
A A K 1 U(T):e—iHatT/Zeique—iHatT/Z. (9)
F(t)=Ap>, 5(t—(k— —)T), (2) . . .
k=1 2 The problem is thus reduced to the evaluation of matrix el-

ements of these two operators. In the numerical evaluation,
. . h | the size of the basis is inevitably limited. Therefore, a set of
kicks. We study the one-dimensiondD) kicked atom de- s functions has to be carefully chosen in order to evaluate
scribed by the Hamiltoniatin atomic unit3 both operators effectively and accurately.
_ In our previous studies we employed a set of Sturmian
H(t)=H, +V(t), 3 ) . - . X
(®) ar V(D) @ basis functions[15,16,27,28 within which the atomic
where Hamiltonian can be efficiently diagonalized and the free
atomic evolution can be easily calculated. However, it is not

whereK is the number of kicks and the period between

pe 1 straightforward to evaluate the boost operator in a Sturmian

Hat:E_ q’ @ pasis for largen [29]. On the other hand, grid-based methods

employing localized basis functions are most suitable to

and evaluate the boost operator while causing difficulties for

atomic Coulomb problems due to both the singularitygat
) ®) =0 and the long-range Coulomb distortion @s»o. We
: therefore employ the generalized pseudospect@PS
method[30] using a basis defined by
Here p and g(>0) are the momentum and position of the
electron in the rest frame of the nucleus, respectively. Note Hal #n) = En| én) (10

that we placed the kicks at the midpoint of the perigd.e., with boundary conditionss,(q=0)=0 and ¢, (q=Q™

the first kick comes at=T/2. The restriction of the present —0. The method combines two complementary methods in a
calculations to a 1D model serves the purpose to achievﬁ : P Y

fully converged numerical results with the high-energy con- gg:gnf;rem; ;22 vt\)/(r)]ﬁ:ttr?gﬁféoa:tésrn?cvzyoaﬁ% noins 2Vg[:1dat'2 d
tinuum accurately represented. We note, however, that wg P

o - . . Ih th ral i
have observed qualitatively similar results in numerical so- the pseudospectral basis,

lutions for the full 3D dynamic$26]. One particular feature
of the 1D model is that for unidirectional kick®&p>0 or (¢, |U(T)| )= >, f dq’f do( by e a2 p)
Ap<0) two structurally different systems emerffe3,16: m'.m
When the kicks are directed towards the nucleap<€0), Jda’Ma’leladp
referred to in the following as negative kicks, the classical *(dm lq.xq [ la)al dm)
dynamics typically exhibits soft chaos with regular regions X{(pmle” a2 )
in phase space embedded in a chaotic sea. On the other hand,
for the kicks directed away from the nucleusg>0, “posi- :f dqefiEn/T/2<¢n/|q>eiqu<q|d)n)efiEnT/z.
tive kicks”), the dynamics is globally chaotic even for infini-
tesimally small kick strength. The positively kicked Rydberg (12)
atom turns out to be, to some extent, more representative for
the 3D casd26]. For reasons of comparison, we will also For n=1,2, ... n.(sVQM#%¥2), the ¢, are the bound hy-
consider a sequence of alternating kicks, drogenic states witl,,= — 1/(2n?). In addition,| ¢,) for n
K . >n, represent the continuum up to a cutoff energy
<E;. Using the Legendre pseudospectral discretization of
VA(t):_qugfl (_1)k5(t_5(k_ E)T)' © e spatial coordinate, both bound Rydberg and continuum
states are well represented with a relatively small number of
This interaction resembles to some extent more closely thbasis states. For example, wave functions including con-

K

1
V(t):—qukZ1 5(t—(k—E T

microwave driven Rydberg atofi 3,14 tinuum states are very accurately represented using as little
Due to the periodicity of the driving field, the solution of as two spatial grid points per half wave. We typically employ
the time-dependent Schtimger equatiofTDSE) a numberN of grid points {qg;;i=1,... N} with 0<q

<QMa of the order ofN~1300 andQM®~10* a.u. This
allows one to accurately represent Rydberg states up to
~70 and continuum states up #.~0.02 a.u. For such a

Jd
= () =H® (D) ()
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grid representation, the computationally efficient transforma- 1.0
tion from an energy to a coordinate representatigi,,) is
easily achievable. A solution of the TDSE can be determined
within a finite but large Hilbert space using the GPS method. >~ 09|
However, spurious reflections at the bordgf?* are inevi- %
table. We therefore employ absorbing boundary conditions fod
by multiplying the wave function with the masking function g 0.8
(a) = (12
SV T exl(a-QurQl] 0r
"0 5 10 15 20

in the grid basis after each kick). and Q, are typically
0.8QM** and 0.0Q™2* respectively. In addition, there is a v,
second class of reflections to be considered. As the kicks . . .
accelerate the electron to “high” energiéis relation to the FIG. 1. Norm of the wave functionglashed linesand survival
s o S . probabilities (full lines) for three choices ofQ and N: (1)
initial binding energy, E can approaclE, which is implic- M 10 . and N=1300; (2) QM 1.4x 10¢ au. andN
itly defined by the grid spacin@oy the maximumk, repre- =1700, and (3) Qmaxzzx'los au. and N=2500. Ap=7.5
sentable by the gridWe therefore use an additional masking ;-4 ’a U. ni=20 and T=T./40=1.3x10® a.u. The survival
U, N n . u.

function for the pseudospectral basis, probabilities for these three cases are practically identical. Inset:

1 long-time behavior of norms and survival probabilities.

9(En) = XA (B —EL/E ]

13
(3 whereF®=—Ap/T andv=1/T. The train of pulses consists

of a static(dc) field F2 and a multicolor driving field where
with which ¢,, is multiplied during each time-evolution with all higher harmonics of the fundamental frequenecyare
E,~0.01E.. One period of the time-evolution is thus given present with twice the amplitude®’ of the static field. The

by Hamiltonian can be accordingly decomposed as
(Gu U9~ [ daVGELIe Ty o) H<t>=Hsu,uk+2F""quE;1 cos{zwmv t-5|| an
X g(q) 9%y} VG(Ep)e B with
e Hs=Hact GF™ 19
Cpace, he fme evoluton ceases 10 be unitay. It & neverhazorespondingly, for atemating kickEa. ()
Igass possibl_e to achieve a proper representatiqn of localiza- w T
Lo, Ope teronfor e fr s W e maskig doss 106 v)=af 3, cog 2ruczm= v 1] |, 19

Hilbert space. As an example we show in Fig. 1 the survival
probability against ionization whereFA=— Ap/T is the field of the odd Fourier compo-

nents of the alternating field. Note that for alternating kitks
) encompasses two kicks. The essential difference to .
Psu(t) = bE ; [(nlp(D))] (19 s the absence of the dc component which has profound con-
(boune) sequences for the ensuing dynamics.

In the following sections we will use scaled unifse.,
measured in units of the initial Rydberg statavhich we
denote by the subscript “0.” The units atg=t/(27n?),
vo=2mn3IT, qo=0q/n?, po=pn,, Eq=En?, and F&"
Fan!. Note that the classical dynamics in these units is

as a function of time for differer®™2* Even when the norm
of the entire wave function/(t) (including its continuum
portion drastically varies, the survival probability remains
stable as a function o®™2% In other words, the masking
eliminates a portion of the outgoing continuum wave without =

affecting the bound-state or localized portion. invariant under a change of the action

For the analysis of the dynamics of high frequencies as
well as comparison with other driven systems, it is useful to 1. QUANTUM LOCALIZATION IN THE HIGH-
consider the Fourier analysis of the driving field for unidi- FREQUENCY LIMIT

rectional kicks[Eq. (5], We focus now on the quantum dynamics of the unidirec-

tionally driven Rydberg atomEgs. (3),(4), and(5)] at high

V(t)=Fqg+2FaYq E coz{Zwmv(t— I” (16) frequenciesl/o. By high we refer n_ot onIy_t(_)/o>1 but to
m=1 2 vo=n;/2 with n;>1, i.e., frequencies sufficient already for
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FIG. 2. Stroboscopic Poincasurface of section fowy=21.1 0.8 Classical ——
and positive unidirectional kicks witk5'=—0.095. The line indi- ) \
cates the initial hydrogenic state. The stroboscopic snapshots are 06
taken atto=0, Tg, 2Tg, ... . g \ vp=15.5
o
0.4
the lowest Fourier componefiEg. (16)] of the driving field \
to induce photoionization by one-photon absorption. As the 0.2 ¥ \\\
variablesAp, and F§" are interrelated with each other, we L
consider in the following variations of; at fixed F§’ which 0.0 0 10 20 30 40 50
implies that the kick strength %
Apo=—27F§vg (20 FIG. 3. Quantum and classical survival probabilities as a func-

tion of scaled time for two different frequencieg with F5'=
scales inversely withvg. Moreover, the quiver amplitude for —0.095 andn;=20. t, denotes the localization time where the
a system harmonically driven with the same frequengy classical and quantum survival probabilities diverge from each

other.

ag=(F3?/(1673), (21) _ _

ferent frequencies of a train of pulseg,= 2.7 (upper frame
which is a measure for the spatial strong-field excursiorfnd 15.5(lower frame. Classical survival probabilities are
would scale as, 2. Regardless of the fact that the kicked evaluated using a classical trajectory Monte Carlo method
system is not dynamically equivalent to the harmonicallyWith & microcanonical ensemble as an initial stg16,33.
driven system, it is worth noting that we are concerned with! "€y rapidly decay in contrast to the quantum survival prob-
the ay— 0 regime; and the localization effects discussed indbility. This suppression of classical chaotic ionization due to
the following are different in origin of the strong-field high- duantum interference effects is considered to be the hall
frequency stabilization of harmonically driven systemsMark of “‘quantum localization” in quantum systems corre-
[31,37. To our knowledge, this regime of localization has SPONding to classically chaotic systems. _
not been previously investigated. The unidirectionally kicked COmMplementary information on the phase space evolution
atom is of particular interest as its classical phase space |§ Provided by the spectral distribution at fixed time The
globally chaotic without any stable island surviving and anlatter is defined by
algebraic decay of the dwell time distributigd3]. These (E, orto)
features persist up to infinitely high frequencies, an exampl€°' "0
of which is displayed in Fig. 2 as the stroboscopic Poincare (@l (to))|?/AEno (quantum
surface of section fowy=21.1. All tori are destroyed and,

eventually, all trajectories undergo chaotic ionization. We - J~ ~ f(q,p,to)dqdpAE,, (classical,
note that the structure seen in the positive momentum part of Eno<E<En+10 ’
the plot is a manifestation of the unstable manifold above the (22)

Stark barrierES*™®" where the density of points becomes

discontinuously reduced due to strong ionization. Accord-where En,O:(Enfl,O"' Eno/2, AE,o=(Eni10-En-10/2,
ingly, the survival probability at a fixed interaction time is a and f(q,p,t,) is the classical phase space density distribu-
measure for the transient stability and suppression of chaotigon. Figure 4a) indicates the initial distribution while Figs.
ionization. 4(b) and 4c) display the spectral distributions after 200
Figure 3 shows the time evolution of the quantum andkicks corresponding td,=12.9. The energy distribution
classical survival probabilities of the kicked Rydberg atomfunction obviously depends on the definition of the unper-
subject to a train of unidirectional kick€q. (5)] as a func-  turbed Hamiltonian with respect to which the spectral distri-
tion of scaled time. We use a hydrogenic state with 20 as  bution is determined. For the unidirectionally kicked atom,
an initial state, the average fiekf'= —0.095, and two dif- there are two physically meaningful choices: the zero-field

043407-4



QUANTUM LOCALIZATION IN THE HIGH-FREQUENCY LIMIT PHYSICAL REVIEW A 66, 043407 (2002

10 , : 1.0

(a)
N Classical 0.8

X

- ——-\L .
(@ ! e

10° N 0.6

Quantum 0.4

107 _ ]
/ Egamey 0.2

v Quantum —v—
Classical ——

PSur

Stark
Po

102 0.0
-0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 10 100 1000
g Stark Vo
0 -1
10! 10 £y
() 3 Mg{vo
Classical d \\ (b)

Stark
Po

\ -2
-1 | o 4 10
10 g J t Y Quantum o \
\\ J\(—

|
1073
r— Vv
3 Quantum -+
y 10/‘:&\, Classical ——

S
1074
10 100 1000

Y

10 '
-2.0 -1.0

10 FIG. 5. Quantum and classical survival probabilitied and
? (C) scaled decay rate®) as a function of scaled frequency. The data

Classical are taken atq=20 with F§'= —0.095 andh;= 20.
=

107" dom

o

ionization. The quantum spectrum shows both exponential
localization around each photonic peak as well as power law
/\ localization for the envelope of the multiphotonic peak struc-
10° T ture.
Quantum The dependence on high driving frequencies is displayed
_ in Fig. 5. The survival probability at fixed scaled evolution
10°° ' time t,=20 shows the persistence of quantum localization
2.0 -1.0 0.0 1.0 : ) X .
Eg'yd up _to very high frequenciesy~ 10_00. Unlike thg microwave
ionization problem[5,24], classical stochastic ionization
FIG. 4. The quantum and classical spectral densjiig,)  dominates over quantum “photoionization” even fof,
with n; =20, F&'= —0.095, andv,=15.5 as a function of the Stark > Ni/2. The classical and quantum survival probabilities in
energy[Eq. (19)]. (a) att=0 (initial state; (b) afterK =200 kicks. ~ Fig. 5@ appear to approach the same valuePgf~0.72
The same spectral density as(in is plotted in(c) but as a function ~ With increasingv,. This is a peculiar feature for short to
of hydrogenic energy. The full lines ifa) and (b) indicate the intermediate interaction times and high frequencies for the
energyES3™"®" of the Stark barrier. unidirectionally kicked atom. Increasirg at fixed v, results
in additional features to be discussed below. Due to the pres-
Hamiltonian[Eq. (4)] used in Fig. 4c) and the Stark Hamil- ence of an average fiel’, the ionization threshold is low-
tonian[Eq. (18)] including the dc field used in Figs(@ and  ered to the height of the saddle of the potential barrier
4(b). When Eq.(22) is calculated for Stark energies,  gba"e= —p JAp /(27 T,)=—2—F2 displayed in Figs.
=E;"™*and Stark state$¢™", the initial state distribution  4(z) and 4b). Since a hydrogenic state is used as an initial
is broadenedFig. 4(@] while it would be 5-shaped in the state in the simulation, the initial distribution in the Stark
hydrogenic spectral distributiamot shown. Obviously one-  basis[Fig. 4(a)] is broad and a finite fraction of the initial
photon (m=1) and two-photonrfi=2) excitation peaks are probability resides above >, The ionization at high kick
much more pronounced in the Stark spectral distributiorfrequenciesand short interaction times can be understood as
[Fig. 4(b)] since these “photoionization” events take place in the depletion of the fraction of the initial population residing
the presence of a dc field while they are barely visible in theahove the Stark barrier. Also in this regime, the quantum
hydrogenic spectrurfFig. 4(c)]. The classical spectral distri- jonization is suppressed compared to the classical counter-
bution is significantly broadened compared to the quantunhart up to very high frequencies. This difference is more

distribution with enhancement both in the bound state speclearly visible in the scaled decay rdfg(t,) defined as the
trum (the latter being responsible for the algebraic long-timejggarithmic derivative

tail of the survival probabilityf 13]) as well as in the above- _
barrier continuum which is responsible for the rapid classical Io(tg) = —Psulto)/Psulto)- (23

Hyd
Po”
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where a dot indicates a derivative with respectgoClassi- IV. QUENCHING OF LOCALIZATION BY STARK
cal decay rates remain orders of magnitude larger up to high TUNNELING
frequenciegFig. 5b)]. The behavior of’o, both cla_ssmally In order to analyze the long-time evolution and quantum
and quantum mechanically, can be understood in terms qf L o .
. : . o .~_localization in more detalil, it is convenient to study the Flo-
simple physical arguments. A typical lifetime of the classical . . .
) X . . . quet spectrum, i.e., the eigenstates and eigenvalues of the
system is the average time it takes for the trajectories tg = .
o eriod-one evolution operat¢25],
absorb an amout of energy equal to the binding energ;}.)
Hence the classical decay rate can be estimated from the

ratio of the average energy gain per scaled unit &) U(M¢r)=e"“c[¢p), (28)
to the energyA E,= ER"e"— En. o Necessary to reach the bar-
rier, where 5k=5E— |SL are the complex quasi-eigenenergies.
o . | The imaginary part of is related to the decay ratd,
I'g=(AE)/(AEy). (24)  discussed above. This relation is the key to the description of

. . av . quantum localization: Quantum dynamics is unitary in the
SinceAE, is dependent only off,” and is independent of ¢, Hilbert space?. Only by restricting the dynamics to a

vo, the only vy dependence in Eq(24) originates from g hsnacePC 7 the Floguet eigenvalues obtain a finite

(AEg). The energy gain per kick is given by imaginary part} . The restriction in the present case corre-
Ap? sponds to the projective elimination of outgoing continuum
z .
<AEO>kick:T+<p0>Ap0- (25 Wwaves by maskingEgs.(12) and(13)]. In other words, the

complement@ of P corresponds to a subspace of the con-
tinuum spectrum not subtended by the present pseudospec-
tral grid. Conversely, true bound states as well as Floquet
states representing completely localized wave packets in the
continuum(resonances with infinite lifetimg¢should reside
in P and should have zero imaginary parts. Provided that the
basis set spanning up is large enough to represent any
physical backscattering towards the nucleus and the masking
functions are smooth enough to prevent spurious reflections
at the border through high Fourier components, the flux go-
ing out of the basis corresponds to a physical flux rather than

T8~ (AEQ)~1/v, 27 2 numerical artifact. Smadf|, of Floqget states Iiviqg m_ainly

in the bound space can then be given the physical interpre-

since Apyx 1/vy [Eq. (20)]. This behavior is, indeed, ob- tation of decay widths of quasi-stable Floquet states in the
served well into the regime where the survival probability kicked Rydberg atom, whose inverse lifetimes in scaled units
has reached the value predicted by the initial fraction of unare 7 o/2=27n>¢|. Floquet states with either zero or very
derbarrier population, i.e., E¢27) applies also to the slow small £} can therefore be used as ofieot necessarily
classical diffusive ionization of the underbarrier populationunique indicator of quantum localization. In practicé,,
giving rise to the power-law tail ifPg,. We note that this cannot be exactly zero. Considering exponential localization
scaling law differs from the prediction by Hillermeiet al.  in energy space around a fixed enefgy, the probability
using the Fokker-Planck equatiph3]. This is due to the fact for occupying a pseudo-spectral basis state with enErgy
that in our case the process is not well-approximated by thgiven by
Fokker-Planck equation since the high frequency perturba-
tion with weak kick strength does not strongly randomize the
process until the electron is scattered by the nucleus.

The quantum decay rate is, for intermediate frequencies
vo~n;/2, characterized by a rapid dece‘:vyua3 [Fig. 5(b)].  whereE, is the localization length in energy space. There is
This behavior can be easily understood as follows: &kect  thus a small but finite probability for reaching the border of
evolution operator for the unidirectionally kicked Rydberg P in energy space,
atom [Eg. (9)] can be visualized as thapproximatedis-
cretized prescription within the split-operator algoritha]
of the time evolution generated by the Hamiltonian with a
time-independent external fie[&q. (18)] with a discretiza-
tion stepdt=To 1/vy. This method is known to converge to and hence a small probability for escapiRgnd reaching®
order O(6t3) ~0(v, ). This is precisely the slope seen in leading to&£}>0. This is closely related to the so-called
Fig. 5(b). However, for larger, we observe a leveling-off “atomic conductance’[22] in analogy to quantities used in
indicating the appearance of a new regime. As will be dis-mesoscopic devices.
cussed below the regime of largg is governed by zero- It is now instructive to analyze the behavior of the life-
frequency Stark tunneling. times of the Floguet states at larggand to understand their

The energy gain per scaled unit time is
(AEq)=vo{ AEo)ick - (26)

As an electron withEy<<O travels around the nucleus, the
average momentum cancels que., {(pg)~0) sincep, has
different signs if the electron is traveling towards or away
from the nucleus. Therefore EqR4) and (26) lead to the
scaling

P(E)~e (E-Eml/E (29

P(E.) ~e (EcEm/EL>0 (30)
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10" of the localized state. The Fourier decomposition of the
Hamiltonian[Eq. (17)] suggests that the high-frequency de-
1 T " cay is determined by the zero-frequency Stark Hamiltonian,

107 [oTtey;: . . .2 . .
3 45 i.e., thestaticfield ionization process. In order to support this

g ™ . ) :
R '5‘1:%"%‘ 3 interpretation, we have performed complex-scaling calcula-

3 °
1

10’8

tions[35] for the one-dimensional Rydberg atom in the pres-
"y, ence of a dc Stark fieléshown as a full line in Fig. 6 We
"“a.,::‘ find for the dominant states with the largest overlap with the
2 3m, initial state excellent agreement between the imaginary part
s of the Floquet eigenvalue of the full dynamical probléa
107 Ao Fourier components of E417) included with the imaginary
10 100 part of the static field problerhEq. (18)]. This agreement
Vo immediately implies that these Floquet states should closely
10’ resemble Stark eigenstates in the dc field.
Since the initial Rydberg state displays a broad distribu-
I (b) tion in the spectral density calculated for Stark stdfag.
10 bt b 4(a)], the high frequency limit of the unidirectionally kicked
P E e 9 N atom corresponds to several Floquet states resembling the
different Stark states overlapping with the initial state, as
103 ¢ R seen in Fig. ). For the alternating kicks, on the other hand,
Overlap >0.5% - o the time-independent part of the Hamiltonidty. (6)] is the
053.'138 Zo0h - ° atomic Hamiltonian [Eq. (4)]. Therefore, in the high-
Overlap >50% o frequency limit, the time-evolution of the wave function con-
10 100 verges towards just one Floque_t state resembling the initial
Rydberg state, as can be seen in Figp) 6or v,>150. We
thus arrive at the remarkable conclusion that states represent-
FIG. 6. The inverse scaled lifetimg § of the Floquet states for ir!g the high-.frquency limit of quantum IOC?”Z"’T“O” are
ni=20 as a function of scaled frequend@ unidirectional kicks ~ 9iven by the time-independent part of the Hamiltonian which
with F&=—0.095[Eq. (5)] and (b) alternating kicks withF = fqr alt'ernatm.9 quks is the Rydberg Hamllton|an anq for uni-
—0.5[Eq. (6)]. At each frequency we plot several Floguet statesdirectional kicks is the zero-frequenStark Hamiltonian.
whose overlap probability with the initial sta|t(a¢>ni|¢,f>|2 is larger
than 5%(a) and 0.5%(b). In (a), the data are numbered according
to descending order of overlap and the solid line corresponds to the

To/2

10"

To /2
L3

10

Vo

V. CLASSICAL STARK ORBITS AND QUANTUM

inverse lifetime of the dc Stark state withy®™*=—0.62 in Fig. LOCALIZATION

4(a). Note that only one state ifb) carries almost all of the prob- In order to analyze the connection between the high-
ability for large vy and that no other state has a probability larger frequency localization and the dc Stark problem further, we
than 0.5% abover,=150. analyze the classical-quantum correspondence of the prob-

T o . lem. The skeleton of the classically chaotic phase space is
implication for quantum localization. In Fig. 6 we contrast provided by unstable periodic orbitéJPOS. Figure 7a)
the behavior ofr, g for a few dominant Floguet states With gpqs two typical UPOS for the kicked Rydberg atom with a
the largest probability in the initial state for both unidirec- fiyeq average field and two different driving frequencies. As
tional and alternating kicks. For alternating kidksg. 6b)],  , increases, the UPOs begin to resemble a Stark orbit. Al-
7y, decays for high frequencies ag>. The same applies to  ready for vy=21, the similarity between the UPO and the
the case of unidirectional kickFig. 6@}, but only for in-  gtark orbit is striking. In Fig. @), on the other hand, we
termediate values ofy, in agreement with the trends ob- show a typical chaotic classical trajectory. The initial condi-
s_er\_/ed forl" (see Fig. 5. For higher frequen_c[es, the inverse tjons are almost the same as those for the UPO with
lifetimes begin to level off at small but finite v_alu_es and =o1, butq, is shifted byAqy=0.007. This trajectory does
approach a constant. In other words the scaled lifetifhef  not correspond to a certain Stark orbit, but at each impact
localization is limited due to a constant “leakage” rate of the with the nucleus it jumps from one Stark orbit to another
Floguet state given by the saturation valuergf . This leak-  until it eventually ionizes. The key point is now that quantum
age eventually destroys the quantum localization. The quamrmechanics “smears out” the classical phase space structure
tum localization for the unidirectionally and positively rendering the quantum evolution insensitive to the instability
kicked atom is therefore characterized by two different timeof the classical trajectory. To quantify the role of the uncer-
scales: a localization timd; where classical and quantum tainty principle in stabilizing the quantum phase space flow,
dynamics separate and localization sets in as quantum intewve measure the deviation of an UPO from a Stark orbit by
ferences suppress classical ionizatidiig. 3) and a much taking a difference in actiod S=§|pswi(d) — Purc(d)|da.
longer decayor decoherenoetimetg’ where quantum local- We consider the difference in action averaged over one-
ization is eventually destroyed. periodT, i.e.,(AS)=AS/K as a measure for the distance in
It is now of interest to inquire into the origin of the decay action space. FofAS)<# the quantum system cannot “re-
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FIG. 9. Scaled inverse Iifetimes;(}lz of the dominant Floquet
state with the largest probability in the initial state f&f'=
—0.095 and different initial statesi(=10,20,40,80). The horizon-
tal line indicates a lifetimery *=4x10"3.

UPO and the Stark orbit and will contribute to rapid decay
and ionization. Figure 8 shows the numerically evaluated
scaled(ASy)=(AS)/n; as a function ofyy. In order to ob-
serve quantum localization, the scaled difference in action
(ASy) must be smaller than a critical valueS§ which is of

the order of the scaled Planck’s constat§;<7,=1/n; .
From Fig. 8 we can read off the scaling relation

(ASy)~113< ni (3D

Equation(31) implies that the critical scaled frequeneg™
for the onset of high-frequency localization scales as

0.5 1.0 1.5 2.0
%o

crit 0.5
. . . . VO oS ni . (32)
FIG. 7. (a) Classical unstable periodic orbidPOg and a cor-
responding Stark orbitR5'= —0.095). (b) Typical classical trajec-

: o~ This prediction can be tested against the numerical data for
tory launched in the vicinity of the UPO d#8).

the unidirectionally kicked Rydberg atom. We consider the

_ _ scaled inverse lifetime; & of the dominant Floquet state as
solve” the difference between a Stark orbit and a UPO anda function of v, for different n; (Fig. 9. A well-localized

therefore, the quantum evolution will retrace the Stark orbitstate that has converged towards the Stark state is character-

WhiCh, in turn, Corl’eSpondS to the fact that the F|Oquet State§ed by a Smalh-;é— . Set“ng an “arbitrary" threshold for the
converge to Stark states. On the other hand(Ad8)>% the |ifetime e.g. legmélx 1072, thick solid line in Fig. 9 we

quantum evolution will “feel” the difference between the .o, getermine the scaling relation fag(n;) from the points

A

10° 40

10 \\ " /I/

2
10 oo
& 13 >
< 1073 3.1n>48
10 10 i

10

10’8 10 100
10" 10 10° n
\Y
o FIG. 10. Points of intersection betweej'=4x10"% and 7, §
FIG. 8. The average difference in scaled actiar§,) between as a function ofn; (Fig. 9). Note that both axes are plotted in
unstable periodic orbits and a Stark orbit: Numerical simulationdogarithmic scale. The error bars at eaghare estimated by inter-
(symbolg are fitted by 1w§ (solid line). sections with different Floquet statfsee Fig. 63)].
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of intersection between the horizontal line with the curvesphotoionization regime. Moreover, the high-frequency Flo-
Ty, & for differentn; . The resulting relation is practically in- quet states converge to Stark states. We have presented a
dependent of the specific choice of the threshold value. Weemiclassical argument explaining this convergence in terms
find ,,g”t « n%*8 (Fig. 10 in good agreement with the esti- Of the proximity of unstable orbits to Stark states for small
mate of Eq.(32). These findings support the proposition thatbut finite 7. Several properties of high-frequency Floquet
the difference between the UPO and a Stark orbit control§tates can be deduced from zero-frequency Stark states, most

the frequency regime above which the localization in thenotably, the lifetime of dc Stark states against tunneling ion-
high-frequency regime sets in. ization determines the upper bound for the time scale over

which quantum localization can be observed.
VI. SUMMARY
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