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Magnetoimage effects in the van der Waals interaction of an atom and a bounded, dynamic,
nonlocal plasmalike medium
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We present a theory of van der Waals~vdW! atom-surface attraction in which the second order vdW energy
is explicitly exhibited as a correlation–self-energy of atomic electrons generated by a dynamic, nonlocal image
potential due to polarization of the electrons of the bounded metal-semiconductor surface system in the
electrostatic limit. This formulation is applied to a metal-semiconductor plasma in a magnetic field perpen-
dicular to its bounding surface. The dependence of the atom-surface vdW energy on magnetic field strength
provides an adjustable parametrization of the underlying zero-point photon energy~represented in terms of the
nonretarded longitudinal plasmon-photons of the Coulomb interaction!, opening the possibility of analyzing
the concomitant fundamental quantum phenomenology in detail with material parameters that can be examined
experimentally. The determination of the image potential, including its nonlocal and dynamic magnetic field
effects, involves the construction of a ‘‘surface dielectric function,’’ which is carried out using a Green’s
function joining procedure for nonlocal dynamic electrostatics. In this aspect of our second-order vdW energy
calculation, we take account of the role of the magnetic field by means of a hydrodynamic model of magne-
toplasma nonlocality in dynamic longitudinal dielectric response. Both local and nonlocal magnetic field
effects in vdW energy are analyzed within the framework of a multipole expansion, and are also discussed,
respectively, in expansions in powers ofvc

2 (vc is the cyclotron frequency!. Furthermore, we determine the
role of Landau quantization magnetic field effects in the skewing of the surface electron charge distribution
from its uniform positive background, exhibiting de Haas–van Alphen oscillatory~and ‘‘staircase’’! behavior.

DOI: 10.1103/PhysRevA.66.042905 PACS number~s!: 34.50.Dy, 34.20.Gj, 68.43.2h, 34.30.1h
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I. INTRODUCTION

The phenomenon of van der Waals~vdW!–Casimir inter-
action between neutral systems has attracted surges o
tense scientific interest over many decades because o
fundamental nature. It is of profound importance as an
servable manifestation@1# of the uniquely quantum mechan
cal feature of zero-point photon energy, including Coulom
interactions representative of longitudinal plasmon-phot
in the nonretarded limit@2–19#. To the many fine and in-
sightful existing theories focused on the zero-point ene
basis, we introduce here yet another theoretical point
view, which we hope provides some calculational advant
in addressing the parametrization of atom-surface vdW
ergy in terms of the strength of a magnetic field~relative to
matter parameters! applied normal to the surface. Startin
from the Gell-Mann–Low theorem for interaction energy
the systems, we show that, to second order in the at
surface Coulomb interaction, the vdW energy can be un
stood as a correlation effect manifested as a self-energ
the first system due to interaction among the particles of
first system arising from an effective potential associa
with polarization of the second system, including the role
nonlocality. While our focus here involves the electro
bound to an atom as the first system with the second sys
as a semi-infinite magnetized plasma behind the nearby
face of a semiconductor or metal, the roles of first and s
ond can be reversed~in principle, but with resulting calcula
tional difficulty!; this point of view is readily extended to th
vdW interaction between two surfaces, and even betw
1050-2947/2002/66~4!/042905~15!/$20.00 66 0429
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two atoms. Considering the atom and surface to be su
ciently close so that we can neglect retardation, the effec
potential between atomic electrons due to polarization of
semi-infinite plasma is just the dynamic, nonlocal, and inh
mogeneous image potential formed behind the surface of
bounded plasma. Taking the magnetic field normal to
plasma surface~and neglecting its effect on the tightly boun
atomic electrons!, we determine the appropriate image p
tential that provides the vdW correlation–self-energy int
action among the electrons of the atom. To accomplish t
we employ a ‘‘hydrodynamic’’ model of magnetoplasm
nonlocality and use it in the construction of the effecti
image potential for the semi-infinite magnetoplasma. On t
basis, we analyze the multipole expansion of the vdW in
action, identifying the roles of both local and nonlocal ma
netic field effects in the vdW energy within the framework
the ~magneto!hydrodynamic model. Finally, we briefly ex
amine the expansion of vdW energy to second order in
cyclotron frequency. Our results provide the parametrizat
of the vdW energy discussed above in terms of the magn
field as the ratio of the cyclotron frequencyvc to plasma
frequencyvp , as well as nonlocal~material! parameters in-
volving the magnetic field. This opens the possibility of an
lyzing experimental data on vdW energy reflecting the u
derlying quantum mechanical zero-point photon energy in
detailed dependence on magnetic field. Moreover, in our
amination of first-order energy, we determine the skewing
the surface electron charge distribution from its semi-infin
uniform positive background, with its full complement o
Landau quantization effects due to the magnetic field,
both nondegenerate and degenerate plasma statistica
©2002 The American Physical Society05-1
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gimes. Since the skewing distance alters the effective at
surface separation, this introduces purely quantum magn
field parameters~such as\vc /EF , with EF as the Fermi
energy! which will further affect the vdW energy, adding ye
more material parametrization of the underlying quant
mechanical zero-point photon energy that can be exam
experimentally.

II. FORMULATION OF ATOM-SURFACE INTERACTION
ENERGY

A. Quantum mechanical perturbation theory for nonretarded
interaction energy between an atom and a semiconductor

or metal surface

Our formulation of perturbation theory for nonretard
van der Waals atom-surface interaction energy will be
cused on the effective potential concept for a bounded
namic nonlocal medium and its concomitant image poten
with sufficient generality to incorporate both classical a
quantum magnetic field effects and the role of opti
phonons as well as stratification of the medium. To this e
we reexamine atom-surface interaction energy making
usual implicit assumptions~1! that the adatom electrons d
not penetrate the surface~thus excluding chemisorption an
tunneling phenomenology!, and ~2! that the adatom is fa
enough from the surface that the repulsive exchange eff
between its electrons and those of the surface medium
small ~such that the quantitative measure of the correspo
ing loss of indistinguishability of the two sets of electrons
negligible!. On this basis, we take the nonretarded vdW
ergy to be due solely to Coulombic interaction of the tw
sets of electrons and, considering their substantial sp
separation, we treat this particular electron-electron (e-e) in-
teraction perturbatively in a power series while retaining
full e-e interaction and concomitant correlation effec
among the atomic electrons and, separately, among the
face medium electrons to include collective modes and n
local screening effects with the various features indica
above.

The interaction energy,Eint , between two systems, say
neutral helium atom and a bounded semiconductor or me
can be written using a theorem of Gell-Mann and Low
@20#

Eint5 lim
e→0

^F0uHIUe~0,2`!uF0&

^F0uUe~0,2`!uF0&
. ~2.1!

Here, uF0& is the ground state of the noninteracting syst
and is to be understood as a product state, i.e.,

uF0&5uF0&
auF0&

s, ~2.2!

with uF0&
a as the state of the atomic electrons anduF0&

s as
the state of the electrons of the surface medium~in the ab-
sence of the mutual interactionHI). Also, all operators tha
appear in Eq.~2.1!, as well as states, are in the secon
quantized interaction picture, referred to the atom-surf
Coulomb interaction HamiltonianHI given as
04290
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1

2E dr1E dr2@ r̂a~r1,0!V~r12r2!r̂s~r2,0!

1 r̂s~r1,0!V~r12r2!r̂a~r2,0!#, ~2.3!

with V(r12r2) being the Coulomb interaction. Ther̂(r ,0)
operators are second-quantized fermion field operators
electron density given byr̂(r ,0)5c†(r ,0)c(r ,0). The time
evolution operatorUe , which has the propertyuF0(t)&
5Ue(t,t0)uF0(t0)&, is given by the time-ordered exponen
tial (e→0)

Ue~0,2`!5S expF2
i

\E2`

0

dt8e2eut8uHI~ t8!G D
1

.

~2.4!

As indicated above, we perform a perturbative power exp
sion for Ue in powers ofHI , the Coulomb interaction be
tween atomic electrons and bound surface electrons, with
result to first order inHI as

Ue~0,2`!512
i

\E2`

0

dt8e2eut8uHI~ t8!, ~2.5!

or, with Eq. ~2.3!, we have~suppress the ‘‘convergence fac
tor’’ e2eutu)

Ue~0,2`!

512
i

\E2`

0

dtE dr1E dr2ca†~r1 ,t !ca~r1 ,t !

3V~r12r2!cs†~r2 ,t !cs~r2 ,t !. ~2.6!

Within the framework of this perturbation theory, the atom
electrons and bounded surface system electrons do not i
act with one another, but each is subject to heavy correlat
from its own electron-electron interactions. Corresponding
the field operators of the atomic electrons and those of
surface electrons act in different subspaces of the prod
space of Eq.~2.2!.

Considering the matrix elements of Eq.~2.1!, we have
from Eq. ~2.6! the result

^F0uUe~0,2`!uF0&

5^F0uF0&2
i

\E2`

0

dtE dr1E dr2V~r12r2!

3^F0uca†~r1 ,t !ca~r1 ,t !cs†~r2 ,t !cs~r2 ,t !uF0&.

~2.7!

Taking uF0&
a as the ground state of the atom, we avera

over the degenerate statesuF0&
s for a given macroscopic

number and energy of the electrons of the surface syst
This microcanonical ensemble average is asymptotic
equivalent to the grand canonical ensemble average for
5-2
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MAGNETOIMAGE EFFECTS IN THE van der WAALS . . . PHYSICAL REVIEW A 66, 042905 ~2002!
surface electrons for large number and energy, and the a
ciatedn-particle thermodynamic Green’s function definitio
is given by@21#

Gn
il,i t~r1 ,t1 , . . . ,rn ,tn ;r18 ,t18 , . . . ,rn8tn8!

5~2 i !nẽ^„c~r1t1!•••c~rntn!c†~rn8tn8!•••c†~r18t18!…1&,

~2.8!

where (•••)1 denotes time ordering,ẽ is identically11 for
bosons while for fermions it is the antisymmetrical functi
of the time coordinates~11 for an even permutation of th
coordinates as shown;21 for an odd permutation!, and

^X& il,i t5
Tr~e2 iNl2 iH tX!

Tr~e2 iNl2 iH t!
, ~2.9!

with i t5b51/kBT, il52m/kBT (T is the temperature,kB
is the Boltzmann constant, andm is the chemical potential!.
he

nd
e

04290
so-Tr denotes the trace whose diagonal sum extends ove
states of the system with all possible numbers of particles
surface electrons~whose total number operator isN).

In this notation@Eq. ~2.8!# with the further simplification
for surface electrons,Gn

il,i t→Gn
s , and with a similar defini-

tion for Green’s functions of the atomic electronsGn
a ~aver-

aged in the atom ground state!, we have the denominator o
Eq. ~2.1! as

^F0uUe~0,2`!uF0&

511
i

\E2`

0

dtE dr1E dr2V~r12r2!

3G1
a~r1t;r1t1!G1

s~r2t;r2t1!. ~2.10!

The numerator of Eq.~2.1! may be described in a simila
fashion except for the appearance of the two-particle Gre
function G2 as well as theG1 function, with the result
^F0uHIUe~0,2`!uF0&52E dr1E dr2V~r12r2!G1
a~r10;r101!G1

s~r20;r201!2
i

\E2`

0

dtE dr1E dr2E dr3E dr4

3V~r12r2!V~r32r4!G2
a~r10,r3t;r101,r3t1!G2

s~r20,r4t;r201,r4t1!. ~2.11!

To second order in the atom-surface interactionV, it is sufficient in forming@^F0uUe(0,2`)uF0&#21 to keep only terms linear
in the Coulomb potential, which, considered jointly with Eq.~2.11!, yield the result

Eint52E dr1E dr2V~r12r2!G1
a~r10;r101!G1

s~r20;r201!2
i

\E2`

0

dtE dr1E dr2E dr3E dr4V~r12r2!V~r32r4!

3G2
a~r10,r3t;r101,r3t1!G2

s~r20,r4t;r201,r4t1!1
i

\E2`

0

dtE dr1E dr2E dr3E dr4V~r12r2!V~r32r4!

3G1
a~r10,r101!G1

s~r20,r201!G1
a~r3t,r3t1!G1

s~r4t,r4t1!. ~2.12!
ds

-

B. First-order energy and skewing of the surface electron
charge distribution from its uniform positive background

Considering the first-order energy term,

Eint
(1)52E dr1

3E dr2V~r12r2!G1
a~r10;r101!G1

s~r20;r201!,

~2.13!

we note that the Green’s functionsG1
a andG1

s involve equal
space-time arguments and are thus simply related to t
corresponding densities,G1(r0,r01)52 i ^r̂(r )&[2 ir(r ).
Moreover, in this level of approximation they do not depe
on their mutual interaction,V, so the planar geometry of th
surface system dictates thatG1

s(r0,r01)5G1
s(z,01) and the
ir

surface electron density in the semi-infinite limit depen
only on the ‘‘z’’ coordinate perpendicular to the surface,r(z)
~see Fig. 1!.

Since the surface electrons occupy only the regionz.0,
and the atomic electrons occupy only the regionz,0, we
have~set x2x85X, y2y85Y and introduce polar coordi
natesdXdY5rdrdu, r 5AX21Y2),

Eint
(1)52pE

2`

1`

dx8E
2`

1`

dy8E
2`

0

dz8E
0

1`

dz

3E
0

1`

dr r
rs~z!ra~r 8!

Ar 21~z2z8!2
. ~2.14!

Replacing the upper limit ofr integration byR, a large con-
stant, a straighforward integration yields
5-3
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E
0

R

drr
rs~z!ra~r 8!

Ar 21~z2z8!2

5rs~z!ra~r 8!@AR21~z2z8!22uz2z8u#

.rs~z!ra~r 8!R, ~2.15!

and in the planar limit (R→`) we have

Eint
(1)52pRE

2`

1`

dx8E
2`

1`

dy8E
2`

0

dz8ra~r 8!

3E
0

1`

dzrs~z!

5
2

R
QaQs50, ~2.16!

FIG. 1. Atom in the vdW interaction with semi-infinite medium
at a distanceuZu from its surface, with a magnetic fieldB normal to
the surface.
da
in

-
ith
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where Qs is the total charge of the surface system, whi
vanishes by its neutrality, andQa is the total charge of the
atom, which also vanishes by neutrality. Moreover, even
Qs and Qa represented systems having a net charge,Eint

(1)

would still vanish in the planar limitR→` because of the
prefactor 2/R. This result is to be expected by Gauss’s la
for the planar surface system, which precludes the existe
of a nonzero electric field in the vicinity of the atom,z8
,0, so no work can be done and no electrostatic energy
be formed~in first order!.

Notwithstanding the null result,Eint
(1)50, we can learn

more about the system by analyzing the density integr
The requisite thermodynamic Green’s function for the s
face electron system can be constructed in the case of a m
netic field normal to the interface, using a thermodynam
Schrödinger image Green’s function to simulate a bounda
condition of specular reflection withG1(•••) vanishing at

z50, such that forz.0 @r5( r̄ ,z)5(x,y,z)#

G1~r ,r 8;T!5G1
`~ r̄ ,z; r̄ 8,z8,T!2G1

`~ r̄ ,z; r̄ 8,2z8,T!,
~2.17!

wherein we take the surface barrier potential to be infinit
high. Here, G1

`(r ,r 8;T) is the infinite-space one-electro
thermodynamic Schro¨dinger Green’s function in the pres
ence of a magnetic field in thez direction, which has been
determined as@22# (T5t2t8; B is the magnetic field;vc is
the cyclotron frequency;m0 is the Bohr magneton;s3 is the
Pauli spin matrix no. 3;R5r2r 8; f 0(v) is the Fermi func-
tion; m is the chemical potential;b is inverse thermal en-
ergy; m is the mass!
S G1.
` ~r ,r 8,T!

G1,
` ~r ,r 8,T!

D 5eimTC~r ,r 8!E dv

2p
e2 ivTS 2 i @12 f 0~v!#

i f 0~v!
D E

2`

`

dT8eivT8E dp

~2p!3
eip•R expF2 i S m0Bs31

pz
2

2mDT8G
3secS vcT8

2 DexpF2 i
px

21py
2

mvc
tanS vcT8

2 D G , ~2.18!
where C(r ,r 8)5exp$i@er•B3r 8/22f(r )1f(r 8)#% with
f(r ) as an arbitrary gauge function, and we take the Lan
level separation and spin splitting to be the same. Carry
out the p integrations of Eq.~2.18!, taking the spin-space
trace and settingr5r 8, t2t85T50 in G1,

` to construct the
electron contribution tors(z), the uniform background den
sity rBack(z.0) is added to ensure charge neutrality, w
the result
u
g

rs~z!5rback1S m

2p D 3/2

\vcE
0

` dv

\3
f 0~v!

3E
2 i`1d

i`1d ds

2p i

esv

s1/2
cothS \vcs

2 D
3@12e22mz2/\2s# ~z.0!. ~2.19!
5-4
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Deep in the medium,z→`, the bulk electron densityrbulk is
properly identified as

rbulk~z!5S m

2p D 3/2

\vcE
0

` dv

\3
f 0~v!

3E
2 i`1d

i`1d ds

2p i

esv

s1/2
cothS \vcs

2 D . ~2.20!

As a result of forcing the electron Green’s function a
charge density to vanish atz50 @Eq. ~2.19!#, it is clear that
the electron and background charge distributions are skew
with an offset in theirz termination points required to assu
overall charge neutrality. This is readily seen by integrat
Eq. ~2.19! with respect to volume~half-spacez.0). The
result, setting the total charge to zero for neutrality, is giv
by (A is area!

rBackV01rbulkV1AS m

2p D 3/2

\vcS \2p

8m D 1/2E
0

` dv

\3
f 0~v!

3E
2 i`1d

i`1d ds

2p i
esv cothS \vcs

2 D50. ~2.21!

The z integral is a Gaussian. This facilitates identification
the offset,z0[uV02Vu/A, as

z05
1

rbulk
S m

2p D 3/2

\vcS \2p

8m D 1/2E
0

` dv

\3
f 0~v!

3E
2 i`1d

i`1d ds

2p i
esv cothS \vcs

2 D . ~2.22!

It should be noted that an effective area density of electro
rarea , can be defined as the coefficient of the term prop
tional to A on the left hand side of Eq.~2.21!, such that

rarea5z0rbulk5S m

2p D 3/2

\vcS \2p

8m D 1/2

3E
0

` dv

\3
f 0~v!E

2 i`1d

i`1d ds

2p i
esv cothS \vcs

2 D .

~2.23!

In the nondegenerate limitf 0(v)5emb2vb, the v and s
integrations are Laplace transform and inverse. One then
mediately obtains

z05S \2pb

8m D 1/2

, ~2.24!

where

rbulk5
emb

\3 S m

2p D 3/2 \vc

b1/2 tanh~b\vc/2!
~2.25!

has been used. Note that the correspondingrarea for the
nondegenerate case is given by
04290
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rarea5
emb\vcm

8p\2 tanh~b\vc/2!
. ~2.26!

A general evaluation ofz0 @Eq. ~2.22!# and rarea @Eq.
~2.23!# for arbitrary statistical regime can be carried out u
ing the expansion

cothS \vcs

2 D5(
6

(
r 50

`

exp~@612122r #\vcs/2!,

~2.27!

which yields

E
2 i`1d

i`1d ds

2p i
esv coth~\vcs/2!

5(
6

(
r 50

`

d~v1@612122r #\vc/2!, ~2.28!

and, consequently,

z05
1

rbulk
S m

2p D 3/2S \2p

8m D 1/2\vc

\3

3(
6

(
r 50

`

f 0~@711112r #\vc/2!, ~2.29!

with

rarea5S m

2p D 3/2S \2p

8m D 1/2\vc

\3

3(
6

(
r 50

`

f 0~@711112r #\vc/2!. ~2.30!

In the degenerate zero-temperature limit@h1(x) is the
Heaviside unit step function#,

(
6

(
r 50

`

f 0~@711112r #\vc/2!

5(
6

(
r 50

`

h1~m2@711112r #\vc/2!

5112F m

\vc
G

maxI

, ~2.31!

where@x#maxI is the maximum integer less than or equal tox.
This ‘‘staircase’’ function is depicted in Fig. 2. Using th
identity

@x#maxI5x21/21@1/22x#per , ~2.32!

it can be reexpressed in terms of the periodic linear sawto
function @1/22x#per , shown in Fig. 3, with a semiclassica
average of (x21/2). The function@1/22m/\vc#per is peri-
odic in the de Haas–van Alphen sense and can be writte
terms of oscillatory exponentials as
5-5
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F1

2
2

m

\vc
G

per

5
1

\vc
(
nÞ0

`
ei2pnm/\vc

i2pn/\vc
~2.33!

to exhibit its spectral constitution. These results, E
~2.31!–~2.33!, provide explicit quantum magnetic field osci
lations in the structure ofz0 and rarea @Eqs. ~2.29!,~2.30!#.
The zero-field limit, given by (pF is the Fermi wave number!

z05
1

rbulk

m

\3

\m

8p
5

3p\

8pF
, ~2.34!

is in agreement with earlier results of Huntington@23# in the
absence of a magnetic field. Finally, the quantum strong fi
limit, in which \vc;m, may be obtained forz0 andrarea by
neglecting all terms on the right hand sides of Eqs.~2.29!
and ~2.30! except for the leading terms, since the remain
terms represent relatively very lightly populated contrib
tions.

III. THE ROLE OF SURFACE PLASMA DIELECTRIC
RESPONSE PROPERTIES IN SECOND-ORDER

van der WAALS ENERGY

A. The effective potential in second-order perturbation theory
and dynamic, nonlocal imaging for a planar surface

We now consider the second-order termsEint
(2) in the van

der Waals energy expression~2.12! and examine their inter

FIG. 2. The ‘‘staircase’’ maximum integer function.
04290
.
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pretation in terms of the dynamic, nonlocal, and inhomo
neous inverse dielectric functionK(1,2) of the bounded
solid-state plasma. The defining equation forK(1,2) is given
as (15r1 ,t1, etc.!

K~1,2!5
dVe f f~1!

dU~2!
,

Ve f f~1!5E d(4)2K~1,2!U~2!, ~3.1!

which states thatK(1,2) linearly relates the effective poten
tial Ve f f(1) with an impressed potentialU(2). This linear
response function for the surface medium and its equilibri
two-particle Green’s functionG2

s are related as

K~1,2!5d (4)~122!1 i E V~123!@G2
s~2,3;21,31!

2G1
s~2,21!G1

s~3,31!#d(4)3. ~3.2!

Employing this equation to replace*VG2
s in terms ofK(1,2)

in Eq. ~2.12!, we obtain,

FIG. 3. The periodic linear sawtooth function.
Eint
(2)52

1

\E2`

0

dtE dr1E dr2E dr3V~r12r2!G2
a~r10,r3t;r101,r3t1!K~r3t,r20!1

1

\E2`

0

dtE dr1E dr2E dr3

3V~r12r2!d~r32r2!d~ t !G2
a~r10,r3t;r101,r3t1!2

i

\E2`

0

dtE dr1E dr2E dr3E dr4V~r12r2!V~r32r4!

3G2
a~r10,r3t;r101,r3t1!G1

s~r20,r201!G1
s~r4t,r4t1!1

i

\E2`

0

dtE dr1E dr2E dr3E dr4V~r12r2!V~r32r4!

3G1
a~r10,r101!G1

s~r20,r201!G1
a~r3t,r3t1!G1

s~r4t,r4t1!. ~3.3!
5-6
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Recalling the first-order energyE(1) as given by Eq.~2.13!, we note that the last term of Eq.~3.3! involving ‘‘ G1
aG1

aG1
sG1

s’’
vanishes by Eq.~2.16!, since

i

\E2`

0

dtE dr1E dr2E dr3E dr4V~r12r2!V~r32r4!G1
a~r10,r101!G1

a~r3t,r3t1!G1
s~r20,r201!G1

s~r4t,r4t1!

5
i

\E2`

0

dtE(1)E(1)50, ~3.4!

where we have used the fact thatG1
a,s(r1 ,t;r ,t1)5G1

a,s(r1,0;r ,01). Finally, considering the third term of Eq.~3.3! involving
‘‘ G2

aG1
sG1

s , ’’ we observe that

G1
s~r ,t;r ,t1!5G1

s~r ,0;r ,01!52 irs~z!, ~3.5!

since the density for the surface electrons depends only on thez coordinate perpendicular to the surface. Therefore,
‘‘ G2

aG1
sG1

s’’ term takes the form

2
i

\E2`

0

dtE dr1E dr2E dr3E dr4V~r12r2!V~r32r4!G2
a~r10,r3t;r101,r3t1!G1

s~r20,r201!G1
s~r4t,r4t1!

5
i

\E2`

0

dtE dz1E dz2E dz3E dz4rs~z2!rs~z4!E dr̄1E dr̄2E dr̄3E dr̄4V~ u r̄12 r̄2u,z12z2!

3V~ u r̄32 r̄4u,z32z4!G2
a~r10,r3t;r101,r3t1!. ~3.6!
o
m

Changing variable in the translationally invariantr̄5(x,y)
plane of the surface,

R̄25 r̄22 r̄1, R̄45 r̄42 r̄3 , ~3.7!

we note that as a consequence of the fact thatrs(z) has no
dependence onr̄ , we have

E dr̄1E dr̄2E dr̄3E dr̄4

3V~ u r̄12 r̄2u,z12z2!V~ u r̄32 r̄4u,z32z4!

3G2
a~r10,r3t;r101,r3t1!

5E dr̄1E dr̄3E dR̄2E dR̄4

3V~ uR̄2u,z12z2!V~ uR̄4u,z32z4!

3G2
a~r10,r3t;r101,r3t1!. ~3.8!

The R̄ integrals involved here may be viewed as the limit
the two-dimensional space Fourier transform of the Coulo
potential, so that
04290
f
b

E d2R̄

~2p!2
V~ uR̄u,z12z2!

5 lim
q̄→0

E d2R̄

~2p!2
ei q̄•R̄V~ uR̄u,z12z2!

5 lim
q̄→0

2p

q̄
e2q̄uz12z2u5C, ~3.9!

whereC is a large constant independent ofz1 ,z2 ~apparently
infinite, but limited by the cross-sectional area!. Therefore,

E dr̄1E dr̄2E dr̄3E dr̄4VVG2
a

5~2p!4C2E dr̄1E dr̄3G2
a~r10,r3t;r101,r3t1!,

~3.10!

and we obtain

2
i

\E2`

0

dtE dr1E dr2E dr3E dr4VVG2
aG1

sG1
s

5
i

\
~2p!4C2E

2`

0

dtE dz2E dz4rs~z2!rs~z4!

3E dr̄1E dr̄3G2
a~r10,r3t;r101,r3t1!

5
i

\
~2p!4

~CQs!2

A2
^Q̂a~0!Q̂a~ t !&50, ~3.11!
5-7
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where we again note that*dzrs(z)5Qs/A50 is the total
charge~per unit area! of the surface medium, and we hav
introduced the total atomic charge operatorQ̂a in the ground-
state average of the atom definingG2

a , which also vanishes
for a neutral atom.

We are thus left with only the first terms of Eq.~3.3! as
contributors to the vdW energy. They may be written
gether as

Eint
(2)52

1

\E2`

0

dtE dr1E dr2E dr3

3G2
a~r10,r3t;r101,r3t1!

3@K~r3t,r20!2d~r32r2!d~ t !#V~r22r1!.

~3.12!

Bearing in mind Eq.~3.1!, we can relate the inverse diele
tric function K(r3t;r20) to the effective potential due to
Coulumb center atr1. Replacing the impressed potenti
U(2) by the Coulumb potentialV(221), the effective po-
tential Ve f f(3)→Ve f f(3,1) is given by

Ve f f~3,1!5E d~2!K~3,2!V~221!

5E dr2K~r3t3;r2t1!V~r22r1! ~3.13!

with

U~2!5V~221!5V~r22r1!d~ t22t1!. ~3.14!

Hence, we may rewrite Eq.~3.3! as

Eint
(2)52

1

\E2`

0

dtE dr1E dr3G2
a~r10,r3t;r101,r3t1!

3@Ve f f~r3t,r10!2V~r32r1!d~ t !#. ~3.15!

In Eq. ~3.15!, the last term in the square brackets on the ri
represents the role of direct Coulomb interaction betw
two atomic electrons. While this is an important part of t
electronic energy of the atom, including correlations, it is n
involved in atom-surface interaction. It is therefore quite a
propriate that this term appears as a subtraction from
total effective interactionVe f f between atomic electrons. Th
remainder~the whole bracket! is that part of the interaction
between two atomic electrons that is generated by polar
tion of the electrons of the surface system; that is, in fact,
image contribution~which carries information about correla
tion among the surface electrons! to be denoted byVimg , so
Eint

(2) may be written as
04290
-

t
n

t
-
e

a-
e

Eint
(2)52

1

\E2`

0

dtE dr1E dr3G2
a~r10,r3t;r101,r3t1!

3Vimg~r3t,r10!

52
1

\E2`

0

dtE dr1E dr3G2
a~r10,r3t;r101,r3t1!

3E dv

2p
e2 ivtE dp̄

~2p!2
ei p̄•(r32̄r1)̄Vimg~z3 ,z1 ;p̄,v!,

~3.16!

where, in the last line of Eq.~3.16!, we have Fourier trans
formed Vimg using space-translational invariance in the l
eral plane of the surface, as well as time-translational inv
ance. In Eq.~3.16!, we have a general interpretation ofEint

(2)

as given by the image part of the interaction of two electro
of the atom; thus it is a correlation or self-energy of t
atomic electrons mediated by the image potential aris
from the surface system polarization~without the direct Cou-
lomb interaction of the atomic electrons!. Of course, this
image potential of the surface system is dynamic, nonlo
and inhomogeneous.

The determination of the effective potential~and hence
the image potential! attracted much attention in connectio
with the theory of surface collective modes@24#. Even the
case of a sharp surface with an infinite potential barrier
troduced quantum phenomenology into electrostatics, s
as the vanishing of wave function and density at an infin
barrier boundary with a spatial Friedel oscillation increas
to the bulk value in the interior~with associated Landau
quantization effects in the presence of a magnetic field!. A
detailed analysis of the deviation of dielectric response pr
erties from their bulk values near the surface due to s
quantum effects and its impact onVe f f andVimg was carried
out in the absence of a magnetic field by Newns@25# and it
was later done in the presence of a magnetic field by Hor
and Yildiz @26#. However, the deviation from bulk dielectri
properties occurs only over a small region near the surfa
of the order of an inverse Fermi wave number, and we
therefore neglect much of the associated detail and gain
siderable insight by assuming that the bulk dielectric prop
ties extend up to the bounding surface~including their bulk
quantum and magnetic field effects!. In this connection, we
employ a Green’s function joining method of Inglesfield@27#
and Garcia Moliner et al. @28# applied to Ve f f(z1 ,z2)
[G(z1 ,z2) ~suppressingp̄,v) as the Green’s function of the
Poisson equation in the presence of the semi-infinite sur
electron system,z1 ,z2.0 @with its nonlocal, dynamic bulk
dielectric function«(p,v) extended up to the surface from
within the metal/semiconductor# and the atom outside
z1 ,z2,0 ~with its unit vacuum dielectric constant extende
up to the surface from the outside!. Denoting the surface
electron region byB (z.0), and the vacuum region of th
atom outside byA (z,0), the effective potentialVe f f(z8,z9)
experienced by atom electrons inA is determined by this
method in terms ofGA(z8,z9) and GB(z8,z9), the dynami-
cally, nonlocally screened Coulomb interaction potentials
5-8
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regionsA andB alone, respectively~with unit point charges
at z9 and field points atz8). The corresponding componen
of the electric displacement field are given b
D $A,B%(z8,z9)52*dz-«$A,B%(z8,z-)]G$A,B%(z-,z9)/]z-.

Requiring continuity ofG(z8,z9) and of D(z8,z9) at the
interface of regionsA and B (z50), the result for
Ve f f(z8,z9) ~suppressing the lateral wave vectorp̄ andv) is
given by ~regionA)

Ve f f~z8,z9!5GA~z8,z9!1
1

4p
@G~0,z9!DA~0,z8!

2GA~z8,0!D~0,z9!#, ~3.17!

where the factors on the right of Eq.~3.17! are given by

G~0,z9!5
GB~0,0!GA~0,z9!

GA~0,0!1GB~0,0!
~3.18!

and ~further details may be found in Ref.@29#!

D~0,z9!5
4pGA~0,z9!

GA~0,0!1GB~0,0!
. ~3.19!

We distinguish the infinite space Green’s function for
gion A, G A

` , from GA , as they can differ by a boundar
condition. In particular, for convenience, we employ a su
sidiary image in this respect to force vanishing ofDA(0,z9)
at the interface. Correspondingly,

GA~z8,z9!5G A
`~z82z9!1G A

`~z81z9!,

G A
`~z82z9!5

2p

p̄
e2 p̄uz82z9u, ~3.20!

with DA(z8,z9)52]GA(z8,z9)/]z8 since regionA is local
~vacuum!. Furthermore, for the surface electron dielectric
gion B, we have similar relations forGB(z8,z9) and
DB(z8,z9) involving denominator factors of«B(p̄,v) with a
similar subsidiary image. In particular,

GA~0,0!5
4p

p̄

and

GB~0,0!54E
2`

`

dpz

1

~pz
21 p̄2!«B~p,v!

5
4p

p̄
« p̄

21~v!,

~3.21!

since our choice of subsidiary image doublesG$A,B%(0,z9) at
the interfacez850. The last part of Eq.~3.21! on the right
defines the ‘‘surface dielectric function’’« p̄(v) for the semi-
infinite regionB. Finally, noting that the image potential
given byVimg(z8,z9)5Ve f f(z8,z9)2G A

`(z8,z9), we have
04290
-

-

-

Vimg~z8,z9;p̄,v!

52
2p

p̄
exp@2 p̄~ uz8u1uz9u!#

« p̄~v!21

« p̄~v!11
, ~3.22!

which is well known in the local limit.

B. Multipole expansion and nonlocality

ConsideringG2
a of Eq. ~3.16! written in terms of the

atomic electron density operatorr̂a and its matrix elements
between the atom’s electronic energy eigenstates,HauFn

a&
5En

auFn
a&, which include internal correlations due to intra

atomic-electron interactions, we have

G2
a~r 9t9,r 8t8;r 9t91,r 8t81!

5(
n

8 ^r̂a~r 9!&0n^r̂
a~r 8!&n0eivn0

a (t82t9), ~3.23!

where ^F0
aur̂a(r 9,t9)uFn

a&5^r̂a(r 9)&0n and vn0
a 5En

a2E0
a .

~The prime on(8 indicates that then50 term is excluded
since it has no time dependence and yields a constant, s
contribution, which is irrelevant to the van der Waals inte
action.! Substitution of this into Eq.~3.16! ~first equality!
yields Eint

(2) in terms of the Fourier time transform o
Vimg(t82t9)→Vimg(v) as

Eint
(2)5

1

\E dr 8E dr 9E
2`

` dv

2p i
Vimg~r 8,r 9;v!

3(
n

8
^r̂a~r 9!&0n^r̂

a~r 8!&n0

v2vn0
a

, ~3.24!

where we have recalled the ‘‘convergence factor’’e2eutu of
Eq. ~2.4! in performing the time integration. Considerin
spatial translational invariance@Eq.~3.16!# in the r̄5(x,y)
→p̄ ~lateral! plane and using Eq. ~3.22! for
Vimg(z8,z9;p̄,v), we obtain

Eint
(2)5

1

\E dp̄

~2p!2E dr 8E dr 9

3E
2`

` dv

2p i
ei p̄•( r̄82 r̄88)

2p

p̄
e2 p̄(uz8u1uz9u)

3
« p̄~v!21

« p̄~v!11
(

n
8

^r̂a~r 9!&0n^r̂
a~r 8!&n0

v2vn0
a

.

~3.25!

It is important to note that nonlocality of the surfac
plasma changes the character of a ‘‘standard’’ multipole
pansion ofEint

(2) , such that it no longer has a term by ter
correspondence with a series in inverse powers of the s
ration of the center of the atom,Z, from an origin of coordi-
5-9
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nates located on the surface. Denoting the lateral coordi
of the atom center byR̄, we have

r̄ 85R̄1D r̄ 8, r̄ 95R̄1D r̄ 9,
~3.26!

z85Z1Dz8, z95Z1Dz9,

and

ei p̄•( r̄82 r̄9)e2 p̄(uz8u1uz9u)5e22p̄uZue2 p̄(uDz8u1uDz9u)ei p̄•(D r̄82D r̄9),

~3.27!

from which a multipole expansion may be undertaken
expanding the exponentials in powers ofD r̄ and Dz. The
leading term involves matrix elements of the total cha
operator for the atom,

Q̂5E dr 8r̂a~r 8!50, ^Q̂&0n[0, ~3.28!

which vanishes identically for a neutral atom along with
its matrix elements. The dipole moment operator for
atomDW and its matrix elements involved in the second te
are

DW 5E dr 8r̂a~r 8!Dr 8, DW 0n5^F0
auDW uFn

a&5DW n0* .

~3.29!

Similarly, the quadrupole moment operator of the third te
written in dyadic form is

Q5E dr 8r̂a~r 8!FDr 8Dr 82
1

3
I uDr 8u2G , ~3.30!

with matrix elementsQ0n , etc. With these definitions, th
position-space integrals of Eq.~3.25! yield Eint

(2) to dipole-
dipole terms as (\→1)

Eint
(2)5

1

3p (
n

8 uD0nu2E
2`

`

dv
1

i ~v2vn0
a !

3E
0

`

dp̄p̄2e22p̄uZuS 12« p̄~v!

11« p̄~v!
D . ~3.31!

The p̄ integral is of central importance in determining theZ

dependence ofEint
(2) . Defining q̄5 p̄Z, it takes the form

E
0

`

dp̄p̄2e22p̄uZuS 12« p̄~v!

11« p̄~v!
D

5
1

Z3E0

`

dq̄q̄2e22q̄S 12« q̄/Z~v!

11« q̄/Z~v!
D . ~3.32!

It is at once apparent that the inclusion of quardrupole
higher-order moments, which involve higher powers ofD r̄
and/or Dz, would bring additional powers ofp̄ with them
into thep̄ integrand through the expansion of the exponen
04290
te

y

e

l
e
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discussed above. Every such additional power ofp̄ in the p̄
integrand contributes another factor of 1/Z to the correspond-
ing integral inEint

(2) , as one readily sees from the substituti

q̄5 p̄Z above. Thus, it is only the dipole-dipole term ofEint
(2)

which varies as 1/Z3 and any involvement of quadrupole o
higher-order multipoles produces terms which vary at le
like 1/Z4. Even within the framework of the dipole-dipo
term, however, the nonlocality of« p̄(v) results in terms
varying at least like1/Z4 ~in competition with quadrupole
terms!. It is only the local limit of« p̄(v)→«(v) that genu-
inely results inEint

(2) varying like 1/Z3. In this case, Eq.~3.31!
readily yields the result of Mavroyannis@30#,

Eint
(2)5

1

6pZ3 (
n

8 uD0nu2

3E
0

`

du
vn0

a

u21~vn0
a !2 S 12«~ iu !

11«~ iu ! D , ~3.33!

where we have setv5 iu and deformed the contour of fre
quency integration. Considering a perfect metal of infin
polarizability, «( iu)→`, the u integral is elementary, lead
ing to

Eint
(2)52

1

12Z3 (
n

8 uD0nu252
e2

12Z3
^uDr u2&0 , ~3.34!

which is the well-known Lennard-Jones result@31# for neu-
tral atoms interacting with a perfect metal. Of course, a cl
approach of the atom to the metal will result in Pauli exc
sion exchange effects coming into play, with a concomit
repulsive potential which dominates over the weak van
Waals attraction at very short distances.

IV. MAGNETIC FIELD EFFECTS IN VAN DER WAALS
ENERGY OF INTERACTION BETWEEN A

NEUTRAL ATOM AND A SEMI-INFINITE SURFACE
MAGNETOPLASMA

A. Magnetoplasma models

Considering the dipole term ofEint
(2) as given by Eq.

~3.31!, the effects of a magnetic field are fully embodied
the structure of« p̄(v), defined in Eq.~3.21! as

« p̄
21~v!5

p̄

pE2`

` dpz

~pz
21 p̄2!«B~p,v!

, ~4.1!

where«B(p,v) is thebulk dynamic nonlocal dielectric func
tion of the semi-infinite surface electron plasma, which
take to be in a magnetic field perpendicular to the surfa
This bulk dielectric function has been determined in the r
dom phase approximation~RPA! @22# with its full comple-
ment of quantum effects and magnetic field effects in
statistical regimes~degenerate, nondegenerate! and its appli-
cation here would produce de Haas–van Alphen oscillat
effects, as well as classical magnetic field effects. Howe
that study involves a highly complicated analysis and it c
5-10
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be deferred while a simpler hydrodynamic analysis is app
here to exhibit some of the principal features of the role o
magnetic field in van der Waals atom-surface attraction.

The hydrodynamic model@24# is based on linearized clas
sical continuity and force balance equations~collisionless! in
the form @d designates the departure from equilibrium v
ues,n0 is the equilibrium number density,v(r ,t) is the ve-
locity field#

]

]t
dn~r ,t !1n0¹•dv~r ,t !50, ~4.2!

n0m
]

]t
dv~r ,t !5n0edE~r ,t !1n0edv3B2“ r•P~r ,t !,

~4.3!
04290
d
a
where the magnetic Lorentz force has been included.
hydrodynamic model closes this set of equations with
stress tensor@P(r ,t)# ansatz,

“ r•P~r ,t !5mb2
“ rdn~r ,t !, ~4.4!

with b as a constant parameter having the dimensions
speed.~The choiceb25vF

2/3 properly reproduces the stat
Thomas-Fermi shielding law, whileb25 3

5 vF
2 matches the

leading nonlocal correction of the hydrodynamic zero-fie
bulk plasmon to that of the RPA.! Fourier transforming
(r→p, t→v), these equations may be rewritten as
2 ivdn~p,v!1 in0p•dv~p,v!50, ~4.5!

dvx5
~e/m!vdEx1 i ~evc /m!dEy1vcb

2pydn/n02 ib2vpxdn/n0

i ~vc
22v2!

, ~4.6!

dvy5
~e/m!vdEy2 i ~evc /m!dEx2vcb

2pxdn/n02 ib2vpydn/n0

i ~v22vc
2!

, ~4.7!

dvz5 i
edEz

mv
1

b2

v
pz

dn

n0
. ~4.8!
e

o-
ne-
of
Considering self-consistency with the Poisson equation
the presence of an external sources(r ,t)→s(p,v),
“•E(r ,t)→ ip•E(p,v) we have

ip•dE~p,v!54pe@s~p,v!1dn~p,v!#. ~4.9!

Equations~4.6! to ~4.8! may be used to eliminatedvx ,dvy ,
dvz from the equation of continuity@Eq. ~4.5!# in favor of
dE anddn, and Eq.~4.9! may then be used to eliminatedE
in favor of dn or s ~also using“3E50 and “3“dn
50). The resulting relation betweendn and s may be ex-
pressed as

F2v21S vp
2

p2
1b2D g~v,vc!Gdn~p,v!

52
vp

2

p2
g~v,vc!s~p,v!, ~4.10!

where

g~v,vc!5pz
22

v2p̄2

vc
22v2

and vp
25

4pn0e2

m
. ~4.11!
inNoting that the bulk dielectric function may be written in th
form

«B
21~p,v!5

dn~p,v!1s~p,v!

s~p,v!
, ~4.12!

we obtain

«B
21~p,v!512

vp
2g~v,vc!

2v2p21~vp
21p2b2!g~v,vc!

.

~4.13!

In the local limit (b→0), we have

«B~p,v!512
vp

2pz
2

v2p2
2

vp
2

v22vc
2

p̄2

p2
, ~4.14!

which correctly yields the local bulk anisotropic magnet
plasma spectrum. The nonlocal bulk hydrodynamic mag
toplasmon disperson relation arising from the vanishing
«B(p,v) in Eq. ~4.13! with bÞ0 is given by
5-11
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v25
1

2 H vp
21vc

21b2p26F ~vp
21vc

21b2p2!2

24S vp
2

p2
1b2D pz

2vc
2G 1/2J . ~4.15!

B. Construction of the surface dielectric function« p̄„v…

in the magnetohydrodynamic model: Magnetic field effects
on van der Waals interaction

We construct« p̄(v) using Eqs.~4.1! to ~4.13! as

« p̄
21~v!5

2p̄

p E
0

`

dpz

b2g~v,vc!2v2

g~v,vc!~b2p21vp
2!2v2p2

.

~4.16!

With the definition ofg(v,vc) @Eq. ~4.11!#, this can be re-
written in the form

« p̄
21~v!5

2p̄

p E
0

`

dpz

pz
22A

~pz
21d1!~pz

21d2!
, ~4.17!

where

A5
v2p̄2

vc
22v2

1
v2

b2
,

B5 p̄22
v2p̄2

vc
22v2

1
vp

22v2

b2
,

~4.18!

d65
1

2
~B7AB224C!,

C52S v2

b2
1

v2vp
2

b2~vc
22v2!

1
v2p̄2

vc
22v2D p̄2.

Thepz integrals involved in Eq.~4.17! are carried out on the
understanding that the subsequentv integration will be per-
formed with the substitutionv5 iu and contour deformation
to the realu axis ~so there is no singular behavior!, with the
result

« p̄
21~v!5

p̄

Ad21Ad1
S 12

A

Ad1d2
D . ~4.19!

Considering a low-wave-number power expansion,
obtain

« p̄
21~v!5

1

A„12vp
2/~v22vc

2!…~12vp
2/v2!

1
b p̄vp

2

~vp
22v2!3/2

. ~4.20!
04290
e

These expressions describe the role of a magnetic field in
effective surface dielectric function. The associated surf
plasmon dispersion relation« p̄(v)1150 is given to orderp̄
by

v25
vp

21vc
2

2
1

b p̄~vp
21vc

2!

A2~vp
22vc

2!
, ~4.21!

which is in agreement with the well known nonlocal result
Ritchie @32# in the zero-field limit.

Equation~4.20! may be employed to determine the role
magnetic field effects in the van der Waals interaction ene
within the framework of the hydrodynamic model. Follow
ing Eq. ~3.31! and settingv5 iu with a deformation of the
contour, we have

Eint
(2)5

2

3p\ (
n

8 uD0nu2vn0
a E

0

`

dp̄p̄2e22p̄uZu

3E
0

` du

u21vn0
a 2 S « p̄

21~ iu !21

« p̄
21~ iu !11

D , ~4.22!

and expansion of the integrand to linear order inp̄ yields the
corresponding vdW energy as

Eint
(2)5

1

6p\ (
n

8 uD0nu2vn0
a

3E
0

` du

u21~vn0
a !2 H 12W~u!

11W~u!

1

uZu3

1
vp

2b

~vp
21u2!3/2

W2~u!

@11W~u!#2

3

uZu4J , ~4.23!

where magnetic field dependence is embedded in both
local (1/uZu3) and nonlocal (1/uZu4) terms throughW(u) de-
fined as

W~u!5F S 11
vp

2

u21vc
2D S 11

vp
2

u2 D G 1/2

, ~4.24!

within the framework of the hydrodynamic model of dy
namic, nonlocal dielectric response of the semi-infinite s
face plasma system.

One may obtain further information about magnetic fie
effects on the vdW energyEint

(2) in the hydrodynamic mode
by directly employing Eq.~4.16! in Eq. ~4.22!, avoiding the
expansion in inverse powers ofZ. While this would enrich
the description of theZ dependence ofEint

(2) , it severely com-

plicates the analysis of thep̄ integral. For example, consid
ering the magnetic field (vc) to be small in all senses, th
expansion of« p̄

21(v) @Eq. ~4.16!# to orderO(vc
2) yields
5-12
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« p̄
21

~v!5
2p̄

p E
0

`

dpzF b2p22v2

p2~b2p21vp
22v2!

1
vc

2p̄2vp
2

p4~b2p21vp
22v2!2G . ~4.25!

The resultingpz integral may be expressed in the form

« p̄
21

~v!5«v
c
0

21
~v!1«v

c
2

21
~v!, ~4.26!

where the first term on the right, of orderO(vc
0), is the null

magnetic field limit given by

«v
c
0

21
~v!5

v2

v22vp
2

2
p̄bvp

2

~v22vp
2!Ap̄2b22v21vp

2
,

~4.27!

and the second term on the right, of orderO(vc
2), is
04290
«v
c
2

21
~v!5

p̄3b3vc
2vp

2~4p̄2b225v215vp
2!

2~2v21vp
2!3~ p̄2b22v21vp

2!3/2

1
vc

2 vp
2~4p̄2b21v22vp

2!

2~v22vp
2!3

. ~4.28!

Using this result for« p̄
21(v), we may expressEint

(2) to order
vc

2 as (vn0
a →vn0 hereafter!

Eint
(2)5

2

3p (
n

8 uD0nu2vn0E
0

`

dp̄p̄2e22p̄uZu E
0

` du

u21vn0
2

3H «v
c
0

21
~ iu !21

«v
c
0

21
~ iu !11

1

2«v
c
2

21
~ iu !

„«v
c
0

21
~ iu !11…2J . ~4.29!

The null magnetic field part ofEint
(2) , given by the first term

on the right hand side of Eq.~4.29!, involves both local
structure leading to Mavroyannis’ result and nonlocal fe
tures of the type discussed by Mahanty and Paranjape@33#.
This zero-field nonlocal term is
Ev
c
0 ,nonloc

(2)
5

2

3p
(

n

8 uD0nu2vn0E
0

`

dp̄p̄2e22p̄uZu E
0

` du

u21vn0
2

2p̄bvp
2~u21vp

2!

~2u21vp
2!@ p̄bvp

21~2u21vp
2!Ap̄2b21u21vp

2#
,

~4.30!
of

and its leading term in an expansion in inverse powers ofZ is
given by

Ev
c
0 ,nonloc

(2)
5

1

2puZu4
(

n
8 uD0nu2vn0

3E
0

` du

u21vn0
2

bvp
2Au21vp

2

~2u21vp
2!2

. ~4.31!

Carrying out theu integral, we obtain

Ev
c
0 ,nonloc

(2)
5

b

4puZu4 (
n

8
uD0nu2

~vp
222vn0

2 !2

3H ~22p!vn0
3 1~p21!vn0vp

2

22vp
2Avp

22vn0
2 arctanS vn0

Avp
22vn0

2 D J .

~4.32!
The leading magnetic field correction@O(vc
2)# also has both

local and nonlocal parts: the local vdW energy correction
ordervc

2 is ~definevs5vp /A2)

Ev
c
2

(2)
5

vc
2vs

2

12pZ3 (
n

8 uD0nu2vn0

3E
0

` du

~u21vn0
2 !~u21vs

2!2

5
vc

2/vs

48Z3 (
n

8 uD0nu2
vn012vs

~vn01vs!
2

, ~4.33!

and the nonlocal contribution of ordervc
2 is given by

Ev
c
2 ,nonloc

(2)
5

2

3p (
n

8 uD0nu2vn0E
0

`

dp̄p̄2e22p̄uZu

3E
0

` du

u21vn0
2 FM ~ p̄!

N~ p̄!
2

vc
2vp

2

~2u21vp
2!2G ,

~4.34!
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with the definitions

M ~ p̄!5vc
2vp

2$ p̄3b3~5u214p̄2b215vp
2!

1Au21 p̄2b21vp
2@u423u2p̄2b224p̄4b4

1~2u223p̄2b2!vp
21vp

4#%, ~4.35!
th
re
o
r

lf-
tio
d

ng
tr
,’’
ge
m

ib
he

,

.
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N~ p̄!5~u21vp
2!Au21 p̄2b21vp

2

3@2u2Au21 p̄2b21vp
2

1vp
2~ p̄b1Au21 p̄2b21vp

2!#2. ~4.36!

The leading term ofEv
c
2 ,nonloc

(2)
of Eq. ~4.34! is of order

O(uZu24) due to the cancellation of the last term of its int
grand with part of the ratioM ( p̄)/N( p̄), as one should ex-
pect. It is given by
Ev
c
2 ,nonloc

(2) .2
vc

2bvp
4

2puZu4
(

n
8 uD0nu2vn0E

0

` du

u21vn0
2

1

~2u21vp
2!3Au21vp

2

.
vc

2b

8pvp
2uZu4 (

n
8 uD0nu2H ~3p14!vp

4vn02~4p18!vp
2vn0

3 14pvn0
5

@vp
222vn0

2 #3
1

4vp
6 arctan~vn0 /Avp

22vn0
2 !

@vp
222vn0

2 #3Avp
22vn0

2 J .

~4.37!
ck-
ve
qs.

as
of
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ex-

nd
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V. CONCLUSIONS

We have determined the role of a magnetic field in
vdW atom-surface interaction to second order in the non
tarded electrostatic Coulomb force between atomic electr
and surface electrons. In this, we have exhibited the ene
of interaction in terms of an indirect correlation or se
energy of the atomic electrons mediated by the polariza
of the surface-electron system described in terms of a
namic, nonlocal image potential. A Green’s function joini
procedure has been applied to semi-infinite nonlocal elec
statics in the construction of a ‘‘surface dielectric function
which incorporates the dynamic, nonlocal, and inhomo
neous dielectric properties of the surface medium in a nor
magnetic field, using a~magneto!hydrodynamic model of
plasma nonlocality. Furthermore, we have explicitly exh
ited quantum magnetic field effects in the skewing of t
e
-

ns
gy

n
y-

o-

-
al

-

surface electron charge distribution from its positive ba
ground, effects which play a role in altering the effecti
atom-surface separation. Our results, described in E
~4.30!–~4.37! as well as Eqs.~2.24! and ~2.29!–~2.33!, pro-
vide a basis for employing magnetic field strength~taken in a
dimensionless combination with material constants, such
vc /vp , \vc /EF , etc.! as an adjustable parametrization
the vdW energy, and of the underlying fundamental quant
phenomenology of zero-point plasmon-photon energy, in
perimental studies.
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