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We present a theory of van der Wa@lsl\W) atom-surface attraction in which the second order vdW energy
is explicitly exhibited as a correlation—self-energy of atomic electrons generated by a dynamic, nonlocal image
potential due to polarization of the electrons of the bounded metal-semiconductor surface system in the
electrostatic limit. This formulation is applied to a metal-semiconductor plasma in a magnetic field perpen-
dicular to its bounding surface. The dependence of the atom-surface vdW energy on magnetic field strength
provides an adjustable parametrization of the underlying zero-point photon €nepggsented in terms of the
nonretarded longitudinal plasmon-photons of the Coulomb interg¢tapening the possibility of analyzing
the concomitant fundamental quantum phenomenology in detail with material parameters that can be examined
experimentally. The determination of the image potential, including its nonlocal and dynamic magnetic field
effects, involves the construction of a “surface dielectric function,” which is carried out using a Green’s
function joining procedure for nonlocal dynamic electrostatics. In this aspect of our second-order vdW energy
calculation, we take account of the role of the magnetic field by means of a hydrodynamic model of magne-
toplasma nonlocality in dynamic longitudinal dielectric response. Both local and nonlocal magnetic field
effects in vdW energy are analyzed within the framework of a multipole expansion, and are also discussed,
respectively, in expansions in powers @f (w¢ Is the cyclotron frequengy Furthermore, we determine the
role of Landau quantization magnetic field effects in the skewing of the surface electron charge distribution
from its uniform positive background, exhibiting de Haas—van Alphen oscilldtotyg “staircase) behavior.
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I. INTRODUCTION two atoms. Considering the atom and surface to be suffi-

ciently close so that we can neglect retardation, the effective

The phenomenon of van der Wa#lslW)—Casimir inter-  potential between atomic electrons due to polarization of the
action between neutral systems has attracted surges of igemi-infinite plasma is just the dynamic, nonlocal, and inho-

tense scientific interest over many decades because of ifl80geneous image potential formed behind the surface of the
fundamental nature. It is of profound importance as an obbounded plasma. Taking the magnetic field normal to the
servable manifestatidii] of the uniquely quantum mechani- Plasma surfacéand neglecting its effect on the tightly bound
cal feature of zero-point photon energy, including Coulomb@tomic electrons we determine the appropriate image po-
interactions representative of longitudinal plasmon-photon{ential that provides the vdW correlation—self-energy inter-
in the nonretarded limif2—19]. To the many fine and in- action among tr‘]e electrons (_)f”the atom. To accomplish this,
sightful existing theories focused on the zero-point energy'S €MPIoy a *hydrodynamic” model of magnetoplasma

basis, we introduce here yet another theoretical point Oponlocallty and use it in the construction of the effective

. . . . Image potential for the semi-infinite magnetoplasma. On this
VIew, Wh'Ch we hope prowdgs some calculational advantag%asis we analyze the multipole expansion of the vdW inter-
n ad_dressmg the parametrization of atom-gurface_ vdwW er]z'iction, identifying the roles of both local and nonlocal mag-
ergy in terms of the strength of a magnetic fi¢ldlative to

: - netic field effects in the vdW energy within the framework of
matter parametersapplied normal to the surface. Starting (o (magnetghydrodynamic model. Finally, we briefly ex-

from the Gell-Mann—Low theorem for interaction energy of ymine the expansion of vdW energy to second order in the
the systems, we show that, to second order in the atomeyciotron frequency. Our results provide the parametrization
surface Coulomb interaction, the vdW energy can be undeipf the vdw energy discussed above in terms of the magnetic
stood as a correlation effect manifested as a self-energy @feld as the ratio of the cyclotron frequeney. to plasma

the first system due to interaction among the particles of th‘ﬁequencywp, as well as nonlocalmateria) parameters in-
first system arising from an effective potential associatedsolving the magnetic field. This opens the possibility of ana-
with polarization of the second system, including the role oflyzing experimental data on vdW energy reflecting the un-
nonlocality. While our focus here involves the electronsderlying quantum mechanical zero-point photon energy in its
bound to an atom as the first system with the second systenetailed dependence on magnetic field. Moreover, in our ex-
as a semi-infinite magnetized plasma behind the nearby suamination of first-order energy, we determine the skewing of
face of a semiconductor or metal, the roles of first and secthe surface electron charge distribution from its semi-infinite
ond can be reversegh principle, but with resulting calcula- uniform positive background, with its full complement of
tional difficulty); this point of view is readily extended to the Landau quantization effects due to the magnetic field, for
vdW interaction between two surfaces, and even betweehoth nondegenerate and degenerate plasma statistical re-
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gimes. Since the skewing distance alters the effective atom- 1 . .

surface separation, this introduces purely quantum magnetic H|:§f dflf dra[ p(r1,0)V(ry—r,)ps(r,,0)

field parametergsuch asfiw./Eg, with Eg as the Fermi

energy which will further affect the vdW energy, adding yet +pS(r,0V(r—r,)p3(r,0)], 2.3
more material parametrization of the underlying quantum

mechgnlcal zero-point photon energy that can be exammevq/i,[h V(r,—r,) being the Coulomb interaction. Th}z(r,O)
experimentally.

operators are second-quantized fermion field operators for
electron density given by(r,0)="(r,0)y(r,0). The time

Il. FORMULATION OF ATOM-SURFACE INTERACTION evolution operatorU,, which has the propertytbo(t))
ENERGY =U(t,to)|Po(to)), is given by the time-ordered exponen-

A. Quantum mechanical perturbation theory for nonretarded tial (e—0)

interaction energy between an atom and a semiconductor ]

1 (0 ,
or metal surface U(0,—)= ( exp{ _ %f dt’e €t lH'(t,)D

Our formulation of perturbation theory for nonretarded — "

van der Waals atom-surface interaction energy will be fo- (2.4

cused on the effective potential concept for a bounded dy-
namic nonlocal medium and its concomitant image potentialAs indicated above, we perform a perturbative power expan-
with sufficient generality to incorporate both classical andsion for U, in powers ofH,, the Coulomb interaction be-
quantum magnetic field effects and the role of opticaltween atomic electrons and bound surface electrons, with the
phonons as well as stratification of the medium. To this endresult to first order irH, as
we reexamine atom-surface interaction energy making the
usual implicit assumptiongl) that the adatom electrons do I
not penetrate the surfacehus excluding chemisorption and U0,=)=1~ ﬁf
tunneling phenomenology and (2) that the adatom is far
enough from the surface that the repulsive exchange effecbsr’ with Eq. (2.3), we have(suppress the
between its electrons and those of the surface medium agg» et
small (such that the quantitative measure of the correspond-
ing loss of indistinguishability of the two sets of electrons is (0,— )
negligible. On this basis, we take the nonretarded vdW en-
ergy to be due solely to Coulombic interaction of the two i (o af a
sets of electrons and, considering their substantial spatial :1_gf_mdtj drlf drog®(ry, ) (r,t)
separation, we treat this particular electron-electee) in-
teraction perturbatively in a power series while retaining the XV(ry—r) ST (ry 1) gs(r,,1). (2.6)
full e-e interaction and concomitant correlation effects
among the atomic electrons and, separately, among the suwithin the framework of this perturbation theory, the atomic
face medium electrons to include collective modes and nonelectrons and bounded surface system electrons do not inter-
local screening effects with the various features indicatecict with one another, but each is subject to heavy correlations
above. from its own electron-electron interactions. Correspondingly,

The interaction energy;,;, between two systems, say a the field operators of the atomic electrons and those of the
neutral helium atom and a bounded semiconductor or metasurface electrons act in different subspaces of the product
can be written using a theorem of Gell-Mann and Low asspace of Eq(2.2).
[20] Considering the matrix elements of E(.1), we have

from Eqg. (2.6) the result
<q)0|HIUe(01_OO)|q)0>

Bint= M = U (0] dg) @3

O ’
dt’e <IH,(t"), (2.5

convergence fac-

(Po|U(0,—)|Dy)

Here,|®,) is the ground state of the noninteracting system _ '_ 0 _
and is to be understood as a product state, i.e., =(Po|Po) 3 ,wdt dry | draV(ry=ro)
| Do) =|Pg)?|Dg)°, (2.2 X (Dol T (r ) YA, P (1, ) 432, 1) | o).

(2.7
with |®()? as the state of the atomic electrons asg)® as
the state of the electrons of the surface mediiimthe ab-  Taking |®,)? as the ground state of the atom, we average
sence of the mutual interactidt,). Also, all operators that over the degenerate statgb,)° for a given macroscopic
appear in Eq.2.1), as well as states, are in the second-number and energy of the electrons of the surface system.
guantized interaction picture, referred to the atom-surfac@his microcanonical ensemble average is asymptotically
Coulomb interaction Hamiltoniak, given as equivalent to the grand canonical ensemble average for the
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surface electrons for large number and energy, and the assér denotes the trace whose diagonal sum extends over all
ciatedn-particle thermodynamic Green’s function definition states of the system with all possible numbers of particles for

is given by[21] surface electronévhose total number operator ).
i o L In this notation[Eq. (2.8)] with the further simplification
Gn'(rte, oty ty, oo rpty) for surface electronsﬁ'” IT—>GS and with a similar defini-

N Yooty rtoerer tion for Green’s functions of the atomic electroG§ (aver-
(=D)7e(G(raty) - p(Faln) ¢ (Vatn) - - 41 (Fat1)4), aged in the atom ground stateve have the denominator of
(2.8 Eqg. (2.1) as

where (- -), denotes time ordering; is identically +1 for (DU (0,—%)| D)

bosons while for fermions it is the antisymmetrical function

of the time coordinateé+1 for an even permutation of the i ro

coordinates as shown: 1 for an odd permutationand =1+ f mdtf drlf droV(ry—rs)

<x>i>\,i7:w, (2.9 X GI(rot;rt HGI(rot;rot ™). (2.10
Tr(ele)\leT)
The numerator of Eq(2.1) may be described in a similar
with i 7= B8=1/kgT, iN=— ul/kgT (T is the temperaturékg  fashion except for the appearance of the two-particle Green'’s
is the Boltzmann constant, andis the chemical potential  function G, as well as the&s; function, with the result

i o
<q)0|HIUe(Ou_OO)|CDO>=_fdrlf dr2V(r1—rz)GT(rlo;r10+)G§(r20;r20+)—%f_ dtf drlf drzf drsj dry

XV(ri=r)V(rg—r)G3(ri0,r3t;r107,r5t ™ )G3(r,0,r ;1,071 t™). (2.11

To second order in the atom-surface interackit is sufficient in forming (®,|U (0,— )| ®,)] ! to keep only terms linear
in the Coulomb potential, which, considered jointly with &g11), yield the result

i ro
Eim=—fdr1f erV(rl—rz)G"{‘(rlo;r10+)G§(r20;r20+)—gf_mdtf drlf drzf drsf dr V(ri—ry)V(rz—ry)

i (o
><Gg(rlo,r3t;r10+,r3t+)G§(r20,r4t;r20+,r4t+)+%f dtf drlf drzf drgf draV(ri—ry)V(rg—ry)

XG(ri0,r107)GI(r0,r,07)Gi(rat,rgt )Gi(rat,rat™). (212
I
B. First-order energy and skewing of the surface electron surface electron density in the semi-infinite limit depends
charge distribution from its uniform positive background only on the “z” coordinate perpendicular to the surfagez)
Considering the first-order energy term, (see Fig. 1

Since the surface electrons occupy only the regioi®,
W _ and the atomic electrons occupy only the regmn0, we
Eini= f dry have(setx—x'=X, y—y'=Y and introduce polar coordi-
natesdXdY=rdrd g, r=X?+Y?),

X J droV(ri—r)Gi(ri0;r;07)Gi(r,05r,07),

+ o0 +o0 0 +oo
(213 El(,}t)—wa dx’f dy’f dz’f dz
© — — o0 0
we note that the Green’s functio@§ andG; involve equal f dr PA(2)pA(r') (2.14
space-time arguments and are thus simply related to their 2+ 7—7 )2 ’

corresponding densitiess;(r0r0")=—i(p(r))=—ip(r).

Moreover, in this level of approximation they do not depend

on their mutual interactiory, so the planar geometry of the Replacing the upper limit of integration byR, a large con-
surface system dictates th@f(r0,r0")=G3(z,0") and the stant, a straighforward integration yields

042905-3



N. J. M. HORING AND L. Y. CHEN

)

Atomn
‘M

|

2]

7
o]
v

/

/N

Surface

FIG. 1. Atom in the vdW interaction with semi-infinite medium
at a distancé¢Z| from its surface, with a magnetic fieBl normal to
the surface.

R p(2)p(r")
r°+(z—z2')°

=p%(2)p*(r")[VR*+(z—2')*~|z—2'[]

=p%(2)p*(r')R, (2.15
and in the planar limit R—«) we have
+oo +o0 0
E§,}3=2WRJ dx’f dy’f dz' p3(r’)
+ 00
><f dzp(z)
0
2
=—-0Q2Q°%°=0, (2.16
R
Goo ’ T 1 —
i>(r,r, : =e””C(r,r’)fd—we“"T I[.l fol@)]
G1<(r!r,lT) 277 |f0(w)

pi+ pit

We

w:T’ .
Xse T expg —1

where C(r,r')=exgi[er-BXr'/2—¢(r)+ ¢(r')]} with

¢(r) as an arbitrary gauge function, and we take the Landau
level separation and spin splitting to be the same. Carrying

out the p integrations of Eq(2.18), taking the spin-space
trace and setting=r’, t—t’=T=0 in G]_ to construct the
electron contribution t@5(z), the uniform background den-

Sity ppac(z>0) is added to ensure charge neutrality, with

the result

([
Sl
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where Q° is the total charge of the surface system, which
vanishes by its neutrality, an@? is the total charge of the
atom, which also vanishes by neutrality. Moreover, even if
Q° and Q? represented systems having a net chafgg)
would still vanish in the planar limiR—« because of the
prefactor 2R. This result is to be expected by Gauss'’s law
for the planar surface system, which precludes the existence
of a nonzero electric field in the vicinity of the atorm)

<0, so no work can be done and no electrostatic energy can
be formed(in first ordey.

Notwithstanding the null resultz{})=0, we can learn
more about the system by analyzing the density integrals.
The requisite thermodynamic Green’s function for the sur-
face electron system can be constructed in the case of a mag-
netic field normal to the interface, using a thermodynamic
Schralinger image Green’s function to simulate a boundary
condition of specular reflection witks,(---) vanishing at

z=0, such that foz>0 [r=(r_,z)=(x,y,z)]

Gy(r,r;T)=G5(r,z;r',2',T) -G (r.z;r',— 2", T),
(2.17)

wherein we take the surface barrier potential to be infinitely
high. Here, G7(r,r’;T) is the infinite-space one-electron
thermodynamic Schdinger Green’s function in the pres-
ence of a magnetic field in thedirection, which has been
determined a§22] (T=t—t’; B is the magnetic fieldw, is

the cyclotron frequencyg, is the Bohr magnetonrs is the
Pauli spin matrix no. 3R=r—r’; fo(w) is the Fermi func-
tion; u is the chemical potential3 is inverse thermal en-
ergy; mis the masp

2
z

2m

g

dp . .
(27T)3elp.ReXF{_l ,LLoBO'3+

(2.18
[
3/2 * dw
PS(Z):Pback+(E) ﬁwcfo ﬁfo(w)
J'ixﬂ? ds e hwcS
s sz 2N T2
X[1—e 2mZ/i%]  (7>0). (2.19
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Deep in the mediung— o, the bulk electron densityy, is

e*Phw,m
properly identified as e

8nh?tant Bhw/2)

(2.26

Parea™

m | 32 = do
@)= | o[ St

iv+s ds e hws
xf > ot —— . (2.20

_ioc+527Ti 31/2

A general evaluation of, [Eq. (2.22] and p.,e4 [EQ.
(2.23)] for arbitrary statistical regime can be carried out us-
ing the expansion

cotf(ﬁzcs) 22 > exp[+1-1-2rhws/2),
As a result of forcing the electron Green’s function and s (2.27)
charge density to vanish at=0 [Eq. (2.19], it is clear that '
the electron and background charge distributions are skewedhich yields
with an offset in theirz termination points required to assure
overall charge neutrality. This is readily seen by integrating o Eem cothf w,s/2)

; : ¢
Eq. (2.19 with respect to volumehalf-spacez>0). The —icot 527
result, setting the total charge to zero for neutrality, is given

by (A is area
m 3/2 hz’]T 12~ do
packVoT PouikY +A E) ﬁwC(S_m) fo ﬁfo(w)

xfiwﬂ? ds . hwes o
Cag2m S oM T

(2.21

Thezintegral is a Gaussian. This facilitates identification of

the offset,zo=|V,—V|/ A, as

1 [ m\32 520012 oo oo
Zo=—| = | hrarg| et f :
0 Pbulk(zﬂ') wc( ) o A3 ol @)

jixﬂ? ds . hwS
X _ioc+§2_77ie CcO 2 .

(2.22

It should be noted that an effective area density of electrons,
Parea, Can be defined as the coefficient of the term propor-

tional to A on the left hand side of Eq2.21), such that

m 3/2 h27T 1/2
Parea™ ZoPbulk™ o We sm
Xf’ﬁ dwf fi°°+5 ds howes
. F o(w) 7iw+5ﬁe cot 5 |
(2.23

In the nondegenerate limfiy(w)=e*#~“# the w ands

integrations are Laplace transform and inverse. One then im-

mediately obtains

ﬁz’ﬂﬂ 1/2
20=< am ) , (2.29
where
e’ [ m\3? ho
pbum:?(ﬁ BY?tanh Bhw./2) 229

has been used. Note that the corresponging, for the
nondegenerate case is given by

=> ZO Sw+[+1-1-2rlhwl2), (2.28

and, consequently,

1 m 312 ﬁz'ﬂ 1/2ﬁwc
= )

Zoz
Pbulk

oo

XD ZO fo([F1+1+2rhwd2),

*

(2.29

with

m 3/2 hz’]T lIZhw
c
Parea™ (E) (8_m) 53

xZ Z,O fo((F1+1+2rlhwd2). (2.30

In the degenerate zero-temperature lirhig, (x) is the
Heaviside unit step functidn

0

> 20 fo([F1+1+2r]hw/2)

DD pi(p—[Fl+1+2rlhw2)
+ 1=0

o
hwe

=1+2

) (2.3)

max|

where[ X]max IS the maximum integer less than or equakto
This “staircase” function is depicted in Fig. 2. Using the
identity

[X]maxi=X— 12+ [ 12— X] e, (2.32

it can be reexpressed in terms of the periodic linear sawtooth
function [ 1/2—x],er, shown in Fig. 3, with a semiclassical
average of X—1/2). The function 1/2— u/fiw]pe, is peri-

odic in the de Haas—van Alphen sense and can be written in
terms of oscillatory exponentials as
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FIG. 2. The “staircase” maximum integer function.
FIG. 3. The periodic linear sawtooth function.

s}

1 ei271'n,u./ﬁwC

1 nu
2 hog

_ﬁ_wc nzo 12mn/fio, (233 pretation in terms of the dynamic, nonlocal, and inhomoge-
per neous inverse dielectric functioK(1,2) of the bounded
to exhibit its spectral constitution. These results, Eqgssolid-state plasma. The defining equationKql,2) is given
(2.3)—(2.33, provide explicit quantum magnetic field oscil- as (1=r4,t,, etc)
lations in the structure of, and p,.ea [EQs. (2.29,(2.30]. Nopi(1)

The zero-field limit, given by §¢ is the Fermi wave numbgr K(1,2= %{2)

1 w#fm 37k
Z f— ——:_,
O ppu 3 8T 8Pk

(2.39

Veri(1)= f d®2K(1,2U(2), (3.9
is in agreement with earlier results of Hunting{@3] in the
absence of a magnetic field. Finally, the quantum strong field

limit, in which Z w.~ x, may be obtained fary andp,,ea by whi ; ;
: ; ; ch states thaK(1,2) linearly relates the effective poten-
neglecting all terms on the right hand sides of EGs29 tial Vet4(1) with an impressed potenti&l (2). This linear

and(2.30 except for the leading terms, since the remalmm:]response function for the surface medium and its equilibrium
terms represent relatively very lightly populated contribu- . ) s
tions. two-particle Green’s functios; are related as

IIl. THE ROLE OF SURFACE PLASMA DIELECTRIC @ _ . L
RESPONSE PROPERTIES IN SECOND-ORDER K(1,2)=¢ (1—2)+If V(1-3)[G3(2,3;27,3")
van der WAALS ENERGY

. . _ —G35(2,2")G5(3,3")1d™3. (3.2
A. The effective potential in second-order perturbation theory

and dynamic, nonlocal imaging for a planar surface

We now consider the second-order terEfg) in the van  Employing this equation to replage/G$ in terms ofK (1,2)
der Waals energy expressi¢2.12) and examine their inter- in Eq. (2.12, we obtain,

1o 1o
E@)=— %f_mdtf drlf drzf draV(ry—r,)G5(r,0,r5t;r,0%,rat " )K(rst,r,0) + %f_wdtJ drlf drzf drg

i (o
XV(ry—=ry) 8(rz—r,) 8(t)G3(r,0,r3t;r,0%,rat*)— %J dtj drlf erJ drgj draV(ri—ry)V(rz—r,)

i o
><Gg(rlo,rgt;r10+,r3t*)Gi(rzo,rzo*)Gi(r4t,r4t+)+% dtj drlf drzf drej dr V(r—ry)V(rs—ry,)

X GE(r10,,107)GI(r,0,r,07)Gi(rat,rt " )G3(rat,rat™). 3.3
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Recalling the first-order energg?) as given by Eq(2.13, we note that the last term of E¢B.3) involving “ GiG3G;G3”
vanishes by Eq(2.16), since

i o
%fﬁmdtf drlf drzf draj draV(ri—ra)V(rg—r)Gi(r;0,r,07)Gi(rst,rgt ")Gi(r0,r,0 ") Gi(rat,rat™)

i ro
:%f dtEMEM =0, (3.9

where we have used the fact tHa§'5(r,t;r,t ") =G$°(r,,0;r,0%). Finally, considering the third term of E¢3.3) involving
“G5GIG],” we observe that

Gi(r,t;r,tT)=G3(r,0;r,0") =—ip%2), (3.5

since the density for the surface electrons depends only oz twordinate perpendicular to the surface. Therefore, the
“ G5GIG3” term takes the form
i ro
- %J_mdtf drlf erJ drgf drgV(ri—ro)V(rg—r)G5(r,0,rst;r10%,rgt ) GI(r,00r,0")G3(r4t,r,t™)
i ro T
= %ﬁmdtJ dzlf dzzf d23J dZ4pS(22)pS(Z4)J’ drlj erJ dr3J’ draV(|ri—rsl,z1—2)

XV(|r3= 4], 23— 24) GA(r10r5t;r,0%,rgt™). (3.6

Changing variable in the translationally invariaTFt:(x,y) f d’R

plane of the surface, (277)2V(|§|’Zl_ Z,)

, d’R - _
- - - =|Imf elq.RV(|R|,Zl_22)
Ro=ro—ry, Ry=rs—rs, 3.7 (2m)?

q—0
2T =
=lim—=e 92 zl=c, (3.9
we note that as a consequence of the fact gigz) has no q-0d
dependence on, we have whereC is a large constant independentzfz, (apparently

infinite, but limited by the cross-sectional aye@herefore,

T fdr_lfdr_zfdﬂfdﬁvveg

f drlf drzf dr3j dry
_ _ =(2 4c2fdr_fdr_earo,rt;ro+,rt+,
XV(|ri=r[,21—=2p)V([r3—r4],23—24) (zm) ! sG2AT101 5N +)

X G3(ri0rst;r;07,rat™) (3.10
and we obtain

:Jolr_lfonr_gjolﬁzjdil i ro e
_%f,wdtf drlf drzf dr3f dr,VVG;G;G;

XV(IRy|,21—22)V(|R4|, 23— 24) i .
X G100 ot ). 38 —remc? [ at[ dz [ dzpapz

XJ' dr_lf draG3(r10,rat;r 0%, rath)
Theﬁintegrals involved here may be viewed as the limit of . (CQ9)?2
the two-dimensional space Fourier transform of the Coulomb ! 4 H2(0)0(t)) =
e two-dimensio (2m) v (Q%0)Q%1))=0, (3.1
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where we again note thdtdzp%(z) =Q%A=0 is the total ) 1 (o0 . .
charge(per unit arep of the surface medium, and we have Ein{=— gﬁ dtf drlJ drzGa(r,0,r3t;r,07,rgt™)
introduced the total atomic charge opera@srin the ground-

state average of the atom defini@j, which also vanishes X Vimg(rst,r10)
for a neutral atom. 1 (o
We are thus left with only the first terms of E€B.3) as - %f dtf dflf drsGa(r,05t;r,0%,r5t")
contributors to the vdW energy. They may be written to- —w
gether as _
x [ oo [ P dn Y,z 2ipw)
1 (o0 2m (2m)? o
E@)=— ﬂ_mdtf dr1J drzf drg (3.16
X G5(r,0,4t;r,0%,rgth) where, in the last line of Eq.3.16), we have Fourier trans-
formed V4 using space-translational invariance in the lat-
X[K(rat,r0)=6(rg—ry) o(t) JV(ro—ry). eral plane of the surface, as well as time-translational invari-

(312  ance. In Eq(3.16, we have a general interpretation B
as given by the image part of the interaction of two electrons
of the atom; thus it is a correlation or self-energy of the
Bearing in mind Eq(3.1), we can relate the inverse dielec- atomic electrons mediated by the image potential arising
tric function K(rt;r,0) to the effective potential due to a from the surface system polarizatiomithout the direct Cou-
Coulumb center ar;. Replacing the impressed potential lomb interaction of the atomic electronsOf course, this
U(2) by the Coulumb potentiaV(2—1), the effective po- image potential of the surface system is dynamic, nonlocal,
tential Ve4(3)— Vet1(3,1) is given by and inhomogeneous.
The determination of the effective potenti@nd hence
the image potentialattracted much attention in connection
Ve”(3,1):f d(2)K(3,2V(2—1) with the theory of surface collective modga4]. Even the
case of a sharp surface with an infinite potential barrier in-
troduced quantum phenomenology into electrostatics, such
:f droK(rsts;rot)V(ro—ry)  (3.13  as the vanishing of wave function and density at an infinite
barrier boundary with a spatial Friedel oscillation increasing
to the bulk value in the interiofwith associated Landau
with guantization effects in the presence of a magnetic )fiedd
detailed analysis of the deviation of dielectric response prop-
erties from their bulk values near the surface due to such
U(2)=V(2—1)=V(r,—rq)8(t,—1;). (3.19 quantum effects and its impact & s and V4 was carried
out in the absence of a magnetic field by NeW25] and it
] was later done in the presence of a magnetic field by Horing
Hence, we may rewrite E¢3.3) as and Yildiz [26]. However, the deviation from bulk dielectric
properties occurs only over a small region near the surface,
1 (o of the order of an inverse Fermi wave number, and we can
Ei(r?ft): — _f dtf drlJ drG3(r0r5t;r,0%,rgth) therefore neglect much of the associated detail and gain con-
) siderable insight by assuming that the bulk dielectric proper-
ties extend up to the bounding surfa@ecluding their bulk
quantum and magnetic field effegt$n this connection, we
employ a Green'’s function joining method of InglesfighY]

In Eq. (3.15), the last term in the square brackets on the righfnd Garcia Molineret al. [28] applied to Vesi(z1,2,)
represents the role of direct Coulomb interaction betweer=G(z;,2,) (suppressing,») as the Green’s function of the
two atomic electrons. While this is an important part of thePoisson equation in the presence of the semi-infinite surface
electronic energy of the atom, including correlations, it is notelectron systemz;,z,>0 [with its nonlocal, dynamic bulk
involved in atom-surface interaction. It is therefore quite ap-dielectric functione(p,w) extended up to the surface from
propriate that this term appears as a subtraction from thwithin the metal/semiconductprand the atom outside,
total effective interactiolVq¢; between atomic electrons. The z;,z,<0 (with its unit vacuum dielectric constant extended
remainder(the whole bracketis that part of the interaction up to the surface from the outsideDenoting the surface
between two atomic electrons that is generated by polarizeelectron region byB (z>0), and the vacuum region of the
tion of the electrons of the surface system,; that is, in fact, thatom outside byA (z<0), the effective potential ¢¢(z’,2")
image contributioriwhich carries information about correla- experienced by atom electrons Ais determined by this
tion among the surface electrorte be denoted by/;,4, S0 method in terms olGa(z’,2") and Gg(z',2"), the dynami-

E®) may be written as cally, nonlocally screened Coulomb interaction potentials of

X[Vesilrat,r10)—V(rzg—ry) é(t)]. (3.19
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regionsA andB alone, respectivelywith unit point charges V,
at z’ and field points az’). The corresponding components

of the electric displacement field are given

D{A’B}(ZI ,ZH) — _fdz’”s{A'B}(Z,,Z”’)ag{A’B}(Z,,,,Z”)/aZ”/.
Requiring continuity ofG(z’,z") and of D(z’,z") at the

interface of regionsA and B (z=0), the result for

Vei1(z',Z") (suppressing the lateral wave vecEand w) is
given by (regionA)

1
Vei(2',2")=Ga(2',2") +E[Q(O,ZN)DA(O:Z/)

—Ga(z",00D(02)], (3.17

where the factors on the right of E(.17) are given by

Gs(0,0G(0,2")

0= 500+ Ga(00 318
and (further details may be found in Rd29])
. AmGA0Z")
P02 = 5,00+ 60,0 (319

PHYSICAL REVIEW A 66, 042905 (2002

mol(Z,2'5P,0)

__2_77 o " 85((0 -1
= EeXF{ p(z'|+]z |)]—_(w vy (3.22

&p

which is well known in the local limit.

B. Multipole expansion and nonlocality

ConsideringG3 of Eq. (3.16 written in terms of the
atomic electron density operatpf and its matrix elements
between the atom’s electronic energy eigenstategd?)

E2|®3), which include internal correlations due to intra-
atomic-electron interactions, we have

Gezl(r/ltlr’rrt/;r//t/l+’r/t/+)

=2 (P on(p(r o' ro T, (3.23

where (B8 p3(r" )| 2 =(p(r"))on and wiy=E2—E3.

(The prime onX’ indicates that thev=0 term is excluded
since it has no time dependence and yields a constant, static
contribution, which is irrelevant to the van der Waals inter-

We distinguish the infinite space Green’s function for re-action) Substitution of this into Eq(3.16 (first equality
gion A, G, from G,, as they can differ by a boundary Yyields El(,ft) in terms of the Fourier time transform of
condition. In particular, for convenience, we employ a sub-Vimg(t' —t")—Vin4(w@) as

sidiary image in this respect to force vanishing»£(0,z")
at the interface. Correspondingly,

In(Z',2")=GA(Z' =2") +GA(Z' +27),

. 2w Nl M
Ga(z —2")=—=eP¥ 7], (3.20

with Da(2',2")=—09Ga(2',2")/ 92" since regionA is local

|mg(r " w)

E@)=— fdr fdr”f

XS (p2(r"))on(P3(r" )>no

n w— (l)no

(3.29

where we have recalled the “convergence facter™!tl of
Eq. (2.4) in performing the time integration. Considering

(vacuum). Furthermore, for the surface electron dielectric re-spatial translational invariand€q(3.16] in the r=(x,y)

gion B, we have similar relations forGgz(z',z") and

Dg(z',2") involving denominator factors afg(p,w) with a
similar subsidiary image. In particular,

Ga(0,0=—=
p

and

1 A
2,2 - =
p;+p9es(p,w) P

Gu(0.0=4] " dp
(3.2)

since our choice of subsidiary image doubdgg g,(0,2") at
the interfacez’ =0. The last part of Eq(3.21) on the right
defines the “surface dielectric functior;(w) for the semi-

HE (latera) plane and
Vimg(Z',2";p, ), we obtain

o J ar [ ar

Xfw 4o o= 27 gpilz'|+12)
—3027T| p

using Eg. (3.22 for

(2m)?

><8p%a))—1
gp(w)+1 n

(PP (") on(P?(r"))no

a
W— Wpo

(3.29

It is important to note that nonlocality of the surface
plasma changes the character of a “standard” multipole ex-
pansion ofE(2), such that it no longer has a term by term

infinite regionB. Finally, noting that the image potential is correspondence with a series in inverse powers of the sepa-

given byVing(z',2") =Vei(Z',2")— Ga(z',2"), we have

ration of the center of the atord, from an origin of coordi-
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nates located on the surface. Denoting the lateral coordinai@iscussed above. Every such additional powep dfi the p
of the atom center bR we have integrand contrlbutes another factor oZ 16 the correspond-
ing integral inE() | as one readily sees from the substitution

r'=R+Ar’, r’=R+Ar”, q=pZ above. Thus, it is only the dipole-dipole termB§)

2 =74Az Z'=Z7+AZ (320 which varies as Z° and any involvement of quadrupole or
' ' higher-order multipoles produces terms which vary at least
and like 1/Z*. Even within the framework of the dipole-dipole
- _ o term, however, the nonlocality of;(w) results in terms
elP (" =)= p(IZ'[+12') = g~ 2pIZlg=p(AZ'[+|AZ")gip-(Ar"=Ar") * yarying at least likel/Z* (in competition with quadrupole

termg. It is only the local limit ofe(w)—¢&(w) that genu-
(327 inely results inE(?) varying like 172 In this case, Eq:3.31)

from which a multipole expansion may be undertaken byreadny yields the result of Mavroyanni80],

expanding the exponentials in powers of and Az. The 2 , )
leading term involves matrix elements of the total charge Eint_6 > Dol
operator for the atom, mesn

1—¢e(iu)
1+e(iu)

Q= f dr'p(r')=0, (Q)on=0, (3.28 X qu w”Oa ) (3.33

0 Ui+ (wdy)?

which vanishes identically for a neutral atom along with all, .o \ve have sab=iu and deformed the contour of fre-

its matrix elements. The dipole moment operator for the quency integration. Considering a perfect metal of infinite
atomD and its matrix elements involved in the second termpolanzabmty, 8(|U)—>OO theu |ntegra| is e|ementary, lead-

are ing to

2

B — (HADdHA\ — 1 , e
D= fdl’ ar")Ar', Dgp (CI)0|'D|(I)n> Do - E@__ _~ |DOH|ZZ_E<|Ar|2>O’ (3.34)

int

(3.29 1273 “w

Similarly, the quadrupole moment operator of the third termwhich is the well-known Lennard-Jones residt] for neu-
written in dyadic form is tral atoms interacting with a perfect metal. Of course, a close

approach of the atom to the metal will result in Pauli exclu-
(3.30 sion exchange effects coming into play, with a concomitant
repulsive potential which dominates over the weak van der
Waals attraction at very short distances.

- 1
=j dr’pa‘(r’)[Ar’Ar’—§I|Ar’|2 ,

with matrix elements®,,, etc. With these definitions, the
position-space integrals of E§3.25 yield E{?) to dipole-

dipole terms as#(—1) IV. MAGNETIC FIELD EFFECTS IN VAN DER WAALS

ENERGY OF INTERACTION BETWEEN A
NEUTRAL ATOM AND A SEMI-INFINITE SURFACE

Efﬁ@— > | Donl? J do—— ( ) MAGNETOPLASMA
| w— w
no A. Magnetoplasma models
ijdp—pzefzﬂz\ 1-ep(w) _ (3.3) Considering the dipole term oE( as given by Eq.
0 1+ ep(w) (3.3)), the effects of a magnetic field are fully embodied in

the structure oky(w), defined in Eq(3.21) as
Thep p integral is of central |mportance in determining the q
p Pz

dependence (E,(,ft) Deflnlngq pZ, it takes the form 8_ Yw)= 4.2
7= (pi+peg(p,)’
1—8p%a)))

1+ep(w)

“dppre 297 . . .
o whereeg(p,w) is thebulk dynamic nonlocal dielectric func-
tion of the semi-infinite surface electron plasma, which we

x 11_85/2((0» (.92 take to be in a magnetic field perpendicular to the surface.

This bulk dielectric function has been determined in the ran-
dom phase approximatiofRPA) [22] with its full comple-

: : : ent of quantum effects and magnetic field effects in all
It. is at once apparent that_the_lnclusmn_ of quardrupolg ana;:at|st|cal regimesdegenerate, nondegenejaied its appli-
higher-order moments, which involve higher powersAf  o4iqn here would produce de Haas—van Alphen oscillatory
and/orAz, would bring additional powers op with them  effects, as well as classical magnetic field effects. However,
into thep integrand through the expansion of the exponentiathat study involves a highly complicated analysis and it can

1+egzo)]
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be deferred while a simpler hydrodynamic analysis is appliedvhere the magnetic Lorentz force has been included. The
here to exhibit some of the principal features of the role of ahydrodynamic model closes this set of equations with the
magnetic field in van der Waals atom-surface attraction.  stress tensdflI(r,t)] ansatz,

The hydrodynamic mod¢PR4] is based on linearized clas-
sical continuity and force balance equatigosllisionless$ in

the form|[ § designates the departure from equilibrium val- V.- II(r,t) =mB2V,én(r,t), (4.4
ues,nq is the equilibrium number density(r,t) is the ve-
locity field]
J with B as a constant parameter having the dimensions of
—on(r,t)+nyV-év(r,t)=0, 4.2 . .
ot (1) + 1o ("0 “.2 speed.(The ch0|ce,82=vE/3 properly reproduces the static
Thomas-Fermi shielding law, whil@?=2v2 matches the
nom% ov(r,t)=nyedE(r,t)+needvxB—V,-II(r,t), leading nonlocal correction of the hydrodynamic zero-field

bulk plasmon to that of the RPA.Fourier transforming
(43 (r—p, t—w), these equations may be rewritten as

—iwdén(p,w)+ingp- 8v(p,w)=0, (4.9
(e/m)wSE,+i(ewc/m) SEy+ w.B2pydn/ng—iBZwpyn/ng
S0, = = , (4.6
(wi— )
(e/m)wSE,—i(ew./m)SEx— w:B7pydning—iBZwp,dning
vy= — , (4.7
(0w —wf)
esE 2 6n
o, =i Z+B—pz—. (4.8

Mw w no

Considering self-consistency with the Poisson equation ifNoting that the bulk dielectric function may be written in the
the presence of an external sourcr,t)—s(p,w), form
V-E(r,t)—ip-E(p,0) we have

on(p,w)+s(p,w)

ip- 6E(p,w)=4me[s(p,w) + on(p,w)]. (4.9 g (pw)= Sp.0) : (4.12
Equations(4.6) to (4.8) may be used to eliminatév,,dv,,
dv, from the equation of continuityEq. (4.5)] in favor of  we obtain
SE and én, and Eq.(4.9) may then be used to elimina
in favor of én or s (also usingVXE=0 and VXV én 2
=0). The resulting relation betweesn ands may be ex- 65 (p,w)=1— wp (@, wc) _
pressed as — 0’p?+ (0 + P Y(w,w;)
(4.13
2
2, [ ®p, 2
ot E+B Y(w’wc)lén(p"") In the local limit (3—0), we have
% n)S(p.0) (4.10 P2 @y P
Z——Z)/(x),wc y W), . __prz_ 7P ]
p eg(p,w)=1 202 WPl p? (4.14
where
which correctly yields the local bulk anisotropic magneto-
w?p? 47n,e? plasma spectrum. The nonlocal bulk hydrodynamic magne-
y(w,wc)=p§— PR and w,ZJ: (4.1)  toplasmon disperson relation arising from the vanishing of
W~ w m eg(p,w) in Eq. (4.13 with B#0 is given by
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These expressions describe the role of a magnetic field in the

wZZ%[ w5+ o+ BApPE| (wd+ wi+ B2p?)? effective surface dielectric function. The associated surface
plasmon dispersion relatios(w) +1=0 is given to ordep
2 1/2 by
“p 2|2 2
-4 —2+,8 pzwcl ] (415)
P 0>+ wg Bp(w2+ a)g)
W=t —r, (4.2
B. Construction of the surface dielectric function e;( w) \/Z(wp_ @)
in the magnetohydrodynamic model: Magnetic field effects
on van der Waals interaction which is in agreement with the well known nonlocal result of
: Ritchie[32] in the zero-field limit.
We construciy(w) using Egs(4.1) to (4.13 as Equation(4.20 may be employed to determine the role of
25 w B2 y(w,0,) — 2 m_ag_netic field effects in the van der Waals interaction energy
(@ f ; I L within the framework of the hydrodynamic model. Follow-
Yo, 0)(BP+wp) —wp ing Eq. (3.31) and settingw=iu with a deformation of the

(4.16  contour, we have

With the definition of y(w,w.) [EQ. (4.11)], this can be re-

written in the form 2 , v =
B =37 2 |DPonl*efo fodppze 2Pl

pf ~
w)=— 4.1 3 71 i —1
ple)= (pz+d+)(pz+d @ ><f i Sfl(lu) . (422
0 u2+wﬁ02 &y (iu)y+1
where
P 2 and expansion of the integrand to linear ordepipields the
A 2P + 2 corresponding vdW energy as
wc—wz B
1 '
— w?p? (u,zj—w2 Eu(r?t)_ﬂ |D0n|2wﬁ0
B:p 2 (1)2+ BZ !
e 4.18 wa du {l—W(u) 1
4.~ (B JB7_4C) 0 Ut (wpo)* [ HHWIW) 122
* 2 ’
Lo W 3
B a)2+ w?w) . w?p? |-, (05 +u?)¥[1+W(w)]? |Z*) '
[ v R

where magnetic field dependence is embedded in both the
The p, integrals involved in Eq4.17) are carried out on the local (1/Z|3) and nonlocal (1Z|*) terms throughW/(u) de-
understanding that the subsequenintegration will be per- fined as
formed with the substitutiom=iu and contour deformation

to the realu axis (so there is no singular behavjpwith the w2 w2\ 12
result W(u)=||1+—-"> 2)<1+—§> . (4.29
o U+ wg u
_ p A
&5 (@)= 1= ) @19 \ithin the f K of the hydrodynamic model of d
Jd_++d. [d.d_ within the framework of the hydrodynamic model of dy-

namic, nonlocal dielectric response of the semi-infinite sur-
Considering a low-wave-number power expansion, wdace plasma system.

obtain One may obtain further information about magnetic field

effects on the vdwW energt;‘cl(ﬁt) in the hydrodynamic model

1 by directly employing Eq(4.16) in Eq. (4.22), avoiding the

sgl(w)z — expansion in inverse powers @f While this would enrich

V- o @y [(0*= wd))(1-w ol @) the description of th& dependence d(2, it severely com-
ﬁawz plicates the analysis of the integral. For example, consid-
2—53/2_ (4.20 ering the magnetic fieldd;) to be small in all senses, the

(wp— ) expansion ok *(w) [Eq. (4.16] to orderO(w?) yields
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. 2p(=
&y (w)_7f0 dp,

222
WP o,

pY(B%p%+ wi— w?)?|

szz_ 0)2
pPA(B%P?+ wp— w?)

(4.25

The resultingp, integral may be expressed in the form
sgl(a))=s;ol(a))+s;2l(w),

(4.2

where the first term on the right, of ord@r(wg), is the null
magnetic field limit given by

—, 2
. w® pBwy
L e .
Cc p—
0 —w, (wz—wp)\/pzﬂz—wz-i-wp

(4.27)

and the second term on the right, of or@{w?), is

() —

PHYSICAL REVIEW A 66, 042905 (2002

-1 3 F‘,B3w§w,2)(432,82—5w2+ 5w§)

g 2(w)= —
c 2(— w’+ wg)g(pzﬁz— w’+ ou,zj)?’/2

wg wg(452,82+ - w,z))
+ 33 . (4.28
2(w’— wp)

Usmg this result fors— (w) we may expresE,‘ﬁt) to order
w? as (©%)— wno hereafte}

du

0 u2+w no

2
Efﬁg_EE | Dop| wnof dpp2e 20

eo(iu)—1  2s5(iu)
8 s;&(iu)+1+(8;§(iu)+1)2 ' 429

The null magnetic field part (E,(,ft) given by the first term
on the right hand side of Eg4.29, involves both local
structure leading to Mavroyannis’ result and nonlocal fea-
tures of the type discussed by Mahanty and Parar{jagk
This zero-field nonlocal term is

du ZHﬂwg(uz-i- wg)

2 » _
E'g =— "Dn 2w f d 2e_2P|Z‘
ol ,nonloc 3r 5 | 0n| n0 o pp

and its leading term in an expansion in inverse poweizief
given by

(2)
Ewo nonloc |Z| ;

On|2wn0

2 2 2
BwpJut vy

jw du
0 U+ wly (2uP+wd)?

(4.31

Carrying out theu integral, we obtain

|,~DOn|2

2 2,2
n (0= 2w5)

0] B '

wo nonloc A |Z|4

X [ (2— 7T)w§0+(77—1)a)n0w’2)

@no
— 203\ wi— whsarctan ————=| | .
\(I)p_wno

(4.32

O Ut oo (20 + wd)[pRwit (2uP+ wl) VP2B2+ U2+ 2]

(4.30

The leading magnetic field correcti@@(wg)] also has both
local and nonlocal parts: the local vdW energy correction of
order »f is (definews=w,/4/2)

2 2
@)_ “cs 2
1= — Donl @
w? 127723 ; | 0n| n0

% du
X 2, 2 2. 2\2
0 (Ut wpo) (U + w7)

(4.33

’x
ws)

and the nonlocal contribution of ordex% is given by

2 w
2 —
Efu) nonloc_3_ E |D0n|2wn0f0 dppze 2plZ|
Xfw du M(E)_ wiw?
0 U+wh| N(p)  (2u"+wp)’
(4.39
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with the definitions N(H)=(u2+ wg) /u2+32/32+w§
2 2, 202 2
X[2u U+ p B+ oy
M(p) = wiwi{p’B%(5u*+4p? B+ 50p) +op(pPBT U+ PP B+ 0P (4.30
n /u2+52,82+wﬁ[u4—3u252ﬁ2—454[34 The leading term oiEffg)’nomoc of Eq. (4.39 is of order
s i o 2 4 O(|Z|~*) due to the cancellation of the last term of its inte-
+H(2u"=3p*Bwpt wpll, (4.35 grand with part of the ratioV (p)/N(p), as one should ex-
pect. It is given by
2 4
) weBwy <, 5 J“ du 1
E =— D
wi,nonloc 27T|Z|4 ; | 0“| ®no 0 U2+wﬁo (2u2+wg)3\/u2+wg

(37+4) wgwno— (4m+ 8)w’2)wﬁ0+ 47Twﬁ0 4wg arctamwnolwws— wﬁo)

2 2193 2 213 2 2
[wp_zwno] [“’p_zwno] \/wp_wno

2
CB !
Y |7>0n|2[

87TwS|Z|4 n

(4.37

V. CONCLUSIONS surface electron charge distribution from its positive back-
ground, effects which play a role in altering the effective

We have determined the role of a magnetic field in the

vdW atom-surface interaction to second order in the nonre@tom-surface separation. Our results, described in- Eqs.

: . 4.30—-(4.37 as well as Eqs(2.24 and(2.29—(2.33), pro-
tarded electrostatic Coulomb force between atomic electrong . - o .
and surface electrons. In this, we have exhibited the ener vide a basis for employing magnetic field strengtiken in a

. . ) L - géfimensionless combination with material constants, such as
of interaction in terms of an indirect correlation or self- . o

. . . ooy, ho /Eg, etc) as an adjustable parametrization of
energy of the atomic electrons mediated by the polarizatior)

of the surface-electron system described in terms of a dyt—he vdw energy, and of the underlying fundamental quantum

namic, nonlocal image potential. A Green’s function joining phgnomenology of zero-point plasmon-photon energy, in ex-
: NP O[_)erlmental studies.

procedure has been applied to semi-infinite nonlocal electr

statics in the construction of a “surface dielectric function,”

which incorporates the dynamic, nonlocal, and inhomoge-

neous dielectric properties of the surface medium in a normal The authors wish to thank Professor M. L. Glasser and

magnetic field, using d@magnetohydrodynamic model of Thames Goldman for helpful criticism, and acknowledge the

plasma nonlocality. Furthermore, we have explicitly exhib-participation of Dr. Steven Silverman in an early stage of this

ited quantum magnetic field effects in the skewing of thework.

ACKNOWLEDGMENTS

[1] U. Mohideen and Anushree Roy, Phys. Rev. L&, 4549 [8] V.M. Mostrepanenko and N.N. TrunoVhe Casimir Effect and

(1998. its Applications(Clarendon Press, Oxford 1997Sov. Phys.
[2] K.A. Milton, The Casimir EffecfWorld Scientific, Singapore, Usp. 31, 965 (1988.
2001). [9] G. Plunien, B. Mlier, and W. Greiner, Phys. Ref34, 87
[3] The Casimir Effect 50 Years Latexdited by Michael Bordag (1986.
(World Scientific, Singapore, 1999 [10] J. Mahanty and B.W. NinhanBDispersion ForcegAcademic,
[4] Peter W. Milonni, The Quantum VacuunAcademic, New New York, 1976.
York, 1999. [11] D. Langbein,Theory of van der Waals Attractipifracts in
[5] W. Dittrich and H. GiesProbing the Quantum Vacuymvol. Modern Physics Vol. 72Springer-Verlag, Berlin, 19794
166 of Tracts in Modern PhysicgSpringer-Verlag, Berlin, [12] J.N. Israelachvilli and D. Tabor, Prog. Surf. Membrane Phys.
2000. 7, 1(1973.
[6] Paul R. BermanCavity Quantum Electrodynami¢8cademic, [13] G. Feinberg, J. Sucher, and C.-K. Au, Phys. R&p0, 83
New York, 1994. (1989.
[7] Long Range Casimir Forcesdited by F.S. Levin and D.A. [14] I.E. Dzyaloshinskii, E.M. Lifshitz, and L.P. Pitaevskii, Adv.
Micha (Plenum Press, New York, 1993 Phys.10, 165(1961).

042905-14



MAGNETOIMAGE EFFECTS IN THE van der WAAE . ..

[15] E.A. Power and T. Thirunamachandran, Phys. ReS0A3929
(1994).

[16] M. Hawton, Phys. Rev. A6, 6846(1992.

[17] Yu.S. Barash and V.L. Ginzburg, Sov. Phys. U48 306
(1975.

[18] P.W. Milonni and M.L. Shih, Phys. Rev. A5, 4241(1992.

[19] J. Bardeen, Phys. Reb8, 727 (1940.

[20] A.L. Fetter and J.D. Waleck@uantum Theory of Many Par-
ticle System$McGraw-Hill, New York, 197).

[21] P.C. Martin and J. Schwinger, Phys. Ré&¥5 1342(1959.

[22] N.J.M. Horing, Ann. Phys(N.Y.) 31, 1 (1969; N.J.M. Horing
and M.M. Yildiz, Phys. Rev. B33, 3895(1986.

[23] H.B. Huntington, Phys. Re81, 1035(1957.

[24] A.D. Boardman Electromagnetic Surface Modé3ohn Wiley,
New York, 1982.

[25] D.M. Newns, Phys. Rev. B, 3304(1978.

PHYSICAL REVIEW A 66, 042905 (2002

[26] N.J.M. Horing and M.M. Yildiz, Phys. Rev. B3, 3895(1986.

[27] J.E. Inglesfield, J. Phys. @, L14 (1971J.

[28] F. Garcia-Moliner and F. Floresntroduction to the Theory of
Solid SurfacegCambridge University Press, Cambridge, En-
gland, 1979, F. Garcia-Moliner and V. R. Velascdheory of
Singlet and Multiple InterfaceéWorld Scientific, Singapore,
1992.

[29] N.J.M. Horing (unpublishedl

[30] C. Mavroyannis, Mol. Phys5, 593 (1963.

[31] J.E. Lennard-Jones, Trans. Faraday 28;:.333(1932.

[32] R.H. Ritchie, Phys. Revl06, 874 (1957).

[33] J. Mahanty and B.V. Paranjape, Solid State Comn24n 651
(1977; G. Mukhopadhyay and J. Mahantipid. 16, 597
(1979; J. Mahanty and B.W. Ninham, J. Chem. Phy8.6157
(1973.

042905-15



