PHYSICAL REVIEW A 66, 042904 (2002
Energy loss of charged particles moving in cylindrical tubules
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The interactions of charged particles with cylindrical tubules are studied within the framework of the
dielectric theory. Elementary excitations on a tubule are modeled by an infinitesimally thin layer of free-
electron gas, uniformly distributed over the surface of the tubule. The dielectric function of such a system,
obtained from the random-phase approximation, exhibits a dimensional crossover from two-dimensional to
one-dimensional electron gas, when the radius of the tubule decreases. Energy loss of a charged particle,
moving paraxially in a tubule, can be divided into a single-particle excitation part and a resonant excitation
part. It is shown that the resonant excitation modes on a tubule, which dominate the energy loss in the
high-velocity regime, are quite different from those in a cylindrical cavity in a solid, described by a bulk
dielectric function of the surrounding three-dimensional electron gas.
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[. INTRODUCTION entz models, which provided suitable modeling of the high-
frequency excitation modes, both in the bulk regions and on
Ever since their discovery by lijima in 1991], carbon the interfaces, in such 3D structures.
nanotubes have been widely studied from various aspects, Carbon nanotubes present systems that are quite different
both theoretically and experimentally. In particular, one offrom the cavities in solids or nanowires made of different
the most fascinating aspects is the interaction of charged pamaterials. Although all these systems share the same under-
ticles with carbon nanotubes, which may be relevant for aptying cylindrical geometry, carbon nanotubes cannot be mod-
plications in several areas of research and technology. Faled as a part of a 3D structure. It is well known that, in
example, important information about the electronic struc-general, the dielectric functions of nanotubes exhibit rather
ture of carbon nanotubes can be obtained using the electraith and complex properties regarding the dependence on the
probe techniques, such as the transmission-electron microlngitudinal wave number, the frequency, and the angular
copy [2] and the electron energy-loss spectroscOpiELS momentum of the elementary excitations, in ways that are
[3,4]. On the other hand, in one of the most intriguing appli-strongly influenced by the geometric structure of the nano-
cations, carbon nanotubes may be used as waveguides fube, such as its radius and the chiral afig®&—23. In a first
transporting and focusing charged particle bedBs9]. In  approximation, elementary excitations on a nanotube may be
addition, when carbon nanotubes are irradiated by iommodeled by an infinitesimally thin layer of free-electron gas,
beams, their properties and their structure can be modifiedyniformly distributed over an infinitely long cylindrical sur-
resulting in, for example, surface amorphization and diamface of a tubule. At zero temperature, such an electron gas is
eter shrinkag¢10,11]. completely parametrized by its surface density and the radius
Theoretical investigation of interactions of charged par-of the tubule. Consequently, the dielectric properties of such
ticles with cylindrical structures by means of the dielectrica system cannot be deduced as a “zero-thickness limit” of a
theory has a rather long histof2,12—17. Most of the work  cylindrical layer, or film, of a 3D electron gas parametrized
has been performed for particles moving paraxially throughby its volume density. This is clearly corroborated by a dem-
cylindrical cavities(or channels, or capillari¢én the bulk of  onstration that the dielectric function of the free-electron gas
a solid target[12-16. In particular, Arista and Fuentes on a tubule, obtained in the random-phase approximation
[14-16 have reported pioneering work on the calculations(RPA), exhibits a dimensional crossover from a 2D system to
of the induced potentials, energy losses, and the self-energiaslD system when the radius of the tubule decrepk®49.
for ions and clusters moving in microcapillaries and nano- Therefore, analysis of the interactions of charged particles
capillaries in solids. On the other hand, Zabalaal. [17] with nanotubes requires an extension of the formalism devel-
have been the first to calculate the energy losses of fast eleoped in the previous studi¢®,12—17, in order to fully take
trons impinging perpendicularly on cylindrical nanowires, into account the complexity of the dielectric response of such
made of both metallic and semiconductor materials. It shoulé system. Important contribution in that direction has been
be pointed out that the structures studied in all those reportiecently reported by Stili et al. [24], who have described
[2,12-17 contained solid regions characterized by the bulkthe dielectric properties of carbon nanotubes by means of the
dielectric functions for three-dimensionéD) electron-gas hydrodynamic theory of plasmon excitations in a 2D electron
models, which were separated, or bounded, by cylindricajas on a cylindrical surface, in order to interpret the EELS
interfaces. The bulk dielectric functions ugejl12-17q were data for collective excitations on single-wall carbon nano-
dependent on the frequency only, such as in Drude or Lortubes, caused by the incidence of fast electrons perpendicular
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to the nanotube. Given the properties of the hydrodynamievherel,(x) is the modified Bessel function of the first kind
model, such a study is suitable for describing the high-energgndw=kv. The first term in Eq(2) is the external potential
electrons passing through, or close by, the carbon nanotubesf. the moving particle, while the second term is the induced
On the other hand, experimental study of transport, or charmpotential. In terms of a Fourier-Bessel expansion, the exter-
neling, of charged particles through carbon nanotubes in theal potential can be expressed[25]

paraxial direction seems feasible, at present, only in the sys-

tems of the so-called “ropes,” or bunches, of nanotuff@s Q Q Kz+im(dm do)—iat
In such systems, the interactions of charged particles with the —| P ; e f dké 0
medium may be described, in a first approximation, by the

model of a cylindrical cavity in the bulk of a solid4-16. X m(kp)Km(kp=), (3)
Although the transport of charged particles through single,

isolated carbon nanotubes still presents an experimental chalthere p_ (p-.) is the smaller(largep of p and py, and
lenge, we nevertheless address theoretically this problemq,(x) is the modified Bessel function of the second kind.
here in order to elucidate the significance of those dielectriGimilarly, the potential outside the tubule can be expressed as
properties of the cylindrical tubules related to the reduced

dimensionality of the electron gas, and to compare the results o . :
for the energy losses of particles in tubules with those ob- ~ Pa(p.¢.2,t)= 2 dkgkHim(@ do)-let
tained in the cylindrical cavities. mmeE T

We use, and extend, the dielectric formalism developed X Bk, 0)Kn(kp). (4

by the previous authors for cylindrical structuf@s12—16,
in order to study the energy loss of a charged particle moving'he unknown coefficients,, andB,, in Egs.(2) and(4) can
paraxially inside a tubule characterized by the appropriatée determined by the continuity conditionspat a, for each
RPA dielectric functior{18,19, as described above. General angular momentunm. Using the continuity of the electric
expressions for the induced potential and the energy loss @gfotential atp=a and Eqgs.(1)—(4), it is easy to obtain the
the projectile are presented in Sec. Il, which is followed by afirst relation betweer\,, andB,,:
discussion of resonant excitations on a tubule in Sec. lll,
based on the full RPA dielectric functidd8,19. In Sec. IV, I m(kpg)Km(ka) +An(k,w)l n(ka)=B(k,w). (5
we analyze the contributions to the energy loss, coming from
the single-particle excitations and the resonant excitationsfhe second relation betwedéy, andB,, can be obtained by
and present the results of numerical calculations for the totatonsidering the continuity of the displacement field at the
energy loss as a function of the projectile velocity, its posi-tubule’s surface:
tion in the tubule, as well as of the radius of the tubule. A
short summary is given in Sec. V. Atomic unita.u) are I m(kpo) K (k@) + Am(k, 0)1(ka)
used throughout, unless otherwise indicated.

=g(m,k,w)Bn(k,w)K(ka), (6)

Il. GENERAL EXPRESSIONS

wheree (m,k, ) is the dielectric function of the electron gas
We model a tubule as an infinitesimally thin and infinitely gn the tubule.

long cylindrical shell with the radiua, and assume that the  \jith the above equations, the induced potential inside the
valence electrons can be considered a free-electron gas dighyle can be written as

tributed uniformly over the cylindrical surface. We further

consider a charged particle, moving within the tubule, with

its trajectory parallel to the tubule axis such that the par- Ping(p, ¢,2,)=— Q E dke"‘(Z v +im($= o)
ticle’s instantaneous position is given in the cylindrical coor- m=-e J-
dinates byry=(pg,¢9,vt), Wherev is the particle’s speed. XK, )
The electric potentiadb (r,t), created by the particle, can be I m(kp)l m(kpo) K. )
determined by the Poisson equation Zn(k, @)’

V2D =—47Q8(r—r,), (1)  interms of the auxiliary functions
whereQ is the particle charge. Xm(k,w)=[1—s(m,k,w)]Km(ka)Kr'n(ka) (8

Taking into account the natural boundary conditiong at
=0 andp=x, EqQ. (1) can be solved in cylindrical coordi- and
natesr=(p,¢,z), so that the potential inside the tubule is
given by Zn(k,0)=g(m,k,0)l n(ka)K (ka)— I (ka)Kn(ka).
o 9
|r—r0| T Finally, using the induced potential, one can obtain the en-

ergy loss of the charged particle moving in the tubule, as
X An(K,w)l(kp), (20  follows:

q)l(pyd)lzyt): f dkékz+lm(¢ 'vbO) iwt
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d 20
S:_QE(Dind(P1¢-Z1t)|r=ro rs=1 r=2 =3
- / )
_QZ jw 5 Xm(k,kl)) 15}
_?m;m ﬂcdklm(kpo)lm Z (kko) | (10)
g“ 101
We note that the form of Eq10), along with Eqs(8) and
(9), is the consequence of the geometry of the problem and, 05
as such, it has been obtained before by other authors study- =T
ing cylindrical structured12,14]. However, the additional
feature here is the appearance in E(®. and (9) of the N .

dielectric functione(m,k, ), which depends on the angular 0'00

momentumm, the longitudinal wavenumbey, and the fre-
guency w of the elementary excitations on the surface of
tubule of radiusa, whereas the previous studigi<,14] used FIG. 1. Dependence of the reduced chemical poteptial, on

in that place in Eqs(8) and(9) the bulk dielectric function of 6 radius of tubulea, for several values of the electron density
the surrounding mediung(w), which depends on the fre- parameter.

guency of elementary excitations in a 3D electron gas.

2 3 4 5

a(a.u.)

s

1
Im x(lI,m,k,w)==—— for |[E_(I,m,k)|<w<|E.(l,mk
I1l. DIELECTRIC FUNCTION AND RESONANT x(mk, o) 2mk 0 | (,m, )| @ | +(m, )|

EXCITATIONS

1

We discuss the properties of the electron gas on a tubule =5 for [E.(1,m,K)|
and provide some details regarding the dielectric function
used in the present work. It should be mentioned that, when
the tubule radius is large enough, the dielectric behavior of =0 otherwise. (15
the electron gas on the tubule will be reduced to that of a
planar 2D electron gas. On the other hand, for sufficientlyln the above expressionsy., is the largest occupied sub-
small a, the electron gas becomes a 1D system, which i®and index, while
similar to a quantum wire. When the tubule radais in the

<w<|E_(I,m,K)|

k?=+ 2kg(1)k N m?+2ml

intermediate region, the electron gas on the tubule surface is E.(l,mKk)= ' (16)
neither 1D nor 2D systerfi8,19. - 2 2a?

Based on the random-phase approximation, the dielectric
function of the tubule can be expressed #3,19 with ke(1)=(2x—1%/a®)*? being the Fermi momentum of

the Ith subband, wherg: is the chemical potential of the
electron gas. For a fixed surface density of the electron

gas on tubule, the chemical potential and the largest occupied
subband index are related \jia8]

e(MK,w)=1-V(m,k,a)x(mk, w), (11

where V(m,k,a) is the Fourier transform of the Coulomb

2\ 112

interaction among two electrons on the tubule’s surface, w2an Mmax m
P=pr2 Y |- (17)
\/E m=1 232
V(m,k,a)=4mxl(ka)K(ka). (12
where My, =maX{m | u—m?/(2a%)>0]. Figure 1 shows the
Here, x(m,k,w) is the response function, ways how the reduced chemical potentiglw, (where wq

= k§/2 is the chemical potential of a planar 2D electron gas,
Mimax with ke = 27ng being the corresponding Fermi wave num-
_ ben depends on the tubule radiasfor several values of the
mlk! - | !ma ky [} 13 .
x( w) E X( w) (13 electron-density parameteg=(1/7ng)*2. One can observe
that, whena<r.//m, the chemical potential increases with
increasing tubule radiug, so that only them=0 band is

=~ Mmax

with

occupied. In this case, the electron gas can be regarded as a

quasi-1D system. Fa>r/+/7, however, the chemical po-
w?—E2( ,m,k)‘ tential oscillates around the value characteristic of the planar
PYEALL T i) (14 2D electron gas, and approaches itaas «.
R According to Eq.(15), the imaginary part of the response
function y(m,k, w) becomes zero for high enough frequency
and w, giving rise to vanishing of the imaginary part of the func-

Rex(l,mk,w)=
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tion Z(k,w), Eg. (9). One can see from Eqs7) and (10) 1.2 —=
that the resonant excitation will occur if the real part of the a=10au
function Z,(k,w) is zero as well. Thus, the dispersion rela- o e
tion of the resonant excitation modess w,,(k), is given by 08l /,;«:;t'i'-"”
the roots of the equation Rg,(k,w)=0, i.e., -~ -
. — =
’ ’ - 2 (P, m=1
Rele(m,k,w)}H (ka)K(ka)—1(ka)K,(ka)=0. é A m=2
(18) S 04p m=3
On combining Eq.(18) with Eqg. (11), we obtain the reso-
nance condition
0.0 - -
0 2 4 6 8 10
Mmx | w?—E2(1,m,k) " 19 o
n—————= ,
I == Mpax wz—Ei(I,m,k) " . .
FIG. 2. Dispersion curves,,(k), Eg. (22), for the resonant
in terms of the function excitations with several angular-momentum modedor a tubule
with the radiusa=10 and the electron-density parametey

~ wk  1-gmn(ka)

s =0.86.
Him(k)= 2 I (ka)Kn(ka)’ (20
obtained by Pichler and co-workef8,29]. Those authors
have used the EELS technique to measure the loss function
Im[ —1/e(m,k,w)] in bulk samples of purified single-wall
(21)  nanotubes witla=0.7 nm, which is then used to deduce the
plasmon dispersion relation. In this case, the resonance con-
dition is Ree(m,k,w)=0, which, on using Eqs11)—(14),
gives the approximate plasmon dispersion relation as fol-

with

T K0

where the Wronskian property,,(X)Km(X) — I m(X)K (X)
=1/x, has been usef®6]. Whenw>|E? (I,m,k)|, one can

I :
expand the left-hand side of E¢L9) to the first order in ows "
large w? and obtain the dispersion relation for a tubule as 4l p(ka)Kp(ka) &%
follows: P wpk)=———2— X (Ka*tm*+2mike(l),
. o = 7 Mmax
2 2 4l m(ka)Kp(ka) (23
o~ oK)= —————
ma (l—gnka)] in analogy to Eq{(22). Note that the dispersion relations in
M Egs. (22) and (23) are different because they were derived
« 2224 m24 _ from resonance condlthns being imposed on d|fferent. func-
|:meax(k attme+2mbke(l) 22 tions, Inf —1/Z,(k,w)] in Eq. (10), and the loss function

. ' _ _ - Im[=1/e(m,k,w)], respectively. Figure 3 shows compari-
It is evident from _Eq.(22) that th_e dispersion relation is son of our theoretical results fas,,(k), Eq. (23), with the
completely parametrized by the radius of the tulmind the  experimental data of Pichler and coworkers for several exci-

surface electron-density parameter. In order to provide tation modesn. Rather satisfactory qualitative agreement is
realistic estimates for the ranges of values of these param-

eters, we note that the radii of single-wall carbon nanotubes

range from about 6.6 to almost 20. Using the atomic density

of a graphene sheet, 0.107, the surface electron density of a

single-wall carbon nanotube can be approximatedhby 4

X 0.107 [27], which yieldsrs=0.86. In the following, we

will present results of our calculations with tleeand rg

values close to, or within, such a parameter space. Figure 2

shows the dependences of the resonant frequency modes

wm(k) on the longitudinal wave numbérfor a tubule char-

acterized bya=10 andr¢=0.86. It should be noticed from

the figure that, fork—0, one haswy(0)=0, but w,(0)

#0 for m#0, whereas, fok—®, w,(k) approach same ) ) ) )

function for allm. Actually, them=0 case is quite similar to %.0 02 04 06 08 1.0

the plasma dispersiom(k) = y27ngk, in a planar 2D elec- k (10° cm™)

tron gas with the surface density [28].
In order to test how reliable is the modeling of the dielec-  FiG. 3. Comparison of the dispersion curves for the plasmon

tric function, presented in this section, we consider the exexcitation modes, Eq23), with the experimental data, Ref&,29],

perimental data for the dispersion relation of theé 7 plas-  for a carbon nanotube with the radias=0.7 nm and the electron-

mon (the collective excitation of all valence electrons density parameter,=0.86.

o, (k) (V)

— experiment
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25 IV. NUMERICAL RESULTS FOR ENERGY LOSS
m=1 cylindrical cavity Using the dielectric function given in EqL1), the energy
20F loss, given by Eq(10), can be divided into two parts: one
L m=0 e coming from the single-particle excitations, in which
T T Ime(m,k,w)#0, and the other corresponding to the reso-
e 1.5F nant, or collective, excitations in whicy,(k,w)=0. For the
;‘% L single-particle excitations, the energy loss can be calculated
< 10t cylindrical tube directly from Eq.(10), as follows:
g _ Q? .
| m= == dkiZ(k
05k m1 Ssp = m;w f_oc m(Kpo)
/" m=0
ool . , , s Kmi(K ko) Zine(K kv ) = Xin((K ko) ZmiCk, ko))
"o 1 2 3 4 5 22 (k.kv)+Z2(k,kv) ’
ka (25

FIG. 4. Comparison of the dispersion curves for the resonanjyhere the subscripts andi denote the real parts and the
excitation modesn=0 and 1 for a cylindrical tubule, Eq22), and imaginary parts, respectively, of the functioks(k,kv) and

a cylindrical cavity, Eq(24), with equal radiia=10. The electron- Z.(k,kv). On the other hand, on using the limiting proce-
density parameters are equal to 0.86 for both systes texkt d{Jnre

evident in Fig. 3, which lends confidence in the present mod- im 1 — lim 1
eling of the dielectric function of carbon nanotubes, at least |5 |_oZm(K,®) |zmr|HOZmr(k,w)—i|Zmi(k,w)|
when the collective electron excitations are considered.

Finally, we wish to discuss the relation of the present =P[1Zy (K, 0) ]+ 17 Zy (K 0)],
dielectric model to that used in modeling the cylindrical (26)
cavities in solids. Note that the dispersion relation for the
resonant mode of a cylindrical cavity in a solid can be de-one can obtain the resonant excitation part of the energy loss
duced from Eq.(18) by replacing the dielectric function gs follows:
e(m,k,w) of the tubule with the bulk dielectric function of

oo . -1
the solid surrounding the cavif2,14]. Adequate description _ A2 dKIZ (ko) X (K IZm(K,0)
of a cavity has been achievd@,14] by using the Drude S=Q m;w —w m(kpo) Xmi(k, ) Jw
dielectric function, e(w)=1- w3/ w(w+y), where o, <[ (K)— 8w+ o (K)] @7
®— o —S(w+ oy, ,

=4mny is the plasma frequency of the surrounding 3D
electron gas with the volume density,, while y is the
damping constant, such that<w,. On using the Drude
dielectric function in Eq(18), one recovers the result of the
previous author$2,14] for the plasmon dispersion in a cy-
lindrical cavity of radiusa,

where w=kv. Using the resonance conditioB,, (k,)
=0, along with the expressions for the functiodg,(k, )
andZ.,,(k,»), Egs.(8) and(9), we finally obtain the reso-
nant energy loss

‘ Kin(Km
§=Q° X kéli(kmpw%. (28)

wm(K) = op\kaly(ka)|Kp(ka)l. (24)

We compare in Fig. 4 the resonant excitation modes wherek, is a function of the speed, which is determined
=0 and 1 on a cylindrical tubule and in a cylindrical cavity by solving the equatiow,(k) =kv for eachv. The form of
with the equal radia= 10, by showing the dispersion curves Eq. (28) is identical to that obtained by Arista and Fuentes
wn(K) against the reduced longitudinal wave numie; [14], where it represents the total stopping force, since the
obtained from Eqs(22) and(24), respectively. We note that, single-particle contributiors, is absent due to their use of
since the density parameters of the two systems are defindlde k-independent dielectric functios(w). In addition, the
in different ways, i.e.rs=(mng) ~ Y2 for the electron gas on resonant excitations in the two approaches, although de-
the tubule andr,=(47n,/3) 2 for the 3D electron gas scribed by the same expression, E28), will give different
surrounding the cavity, we have set=r,=0.86 in Fig. 4 in  contributions to the energy loss, owing to the fact that the
order to make the physical parameters of the systems conequationwy,(k)=kv is to be solved with different disper-
parable. One observes rather striking differences between tfsons, given by Eq(22) or Eq. (24).
two sets of dispersion curves, which are the consequence of In the following calculations, we assume the charged par-
the different dimensions of the electron-gas models used tticle to be protonQ=1. The single-particle excitation part
represent the two systems. Consequently, significant differSsy, the resonant excitation pa8t, and the total energy loss
ences are expected between the energy losses of charg8d-Ss,+S; are shown in Figs. @) and %b) versus the pro-
particles due to resonant excitations in tubules and cavitieston speed, for two rather small values of the radius of the
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0.12 0.015
. 3
;i 0.08 E 0.0101
g 5
2 a
< 2
2 0.04 & 0005y
S k)
& n
0.00 0.000
v(a.u)
FIG. 6. Velocity dependence of the energy losses per unit path
length due to resonant excitations for a proton that moves in the
0.05 center, po=0, of tubules with the electron-density parametegr
=0.86, for several values of the radiws=5, 10, and 15.
(b) a=3 a.u.
~ 0.04} s
3 t each curve for the energy loss has a maximum, which shifts
‘g 0.03} S, to a lower speed as the ion moves closer to the surface.
2 Moreover, the role of the single-particle excitations becomes
e 502t increasingly noticeable at low speeds as the particle moves
2 closer to the surface, even in a tubule with a large radius,
‘%‘ 001l such asa=10. Finally, we display in Fig. 8 the influence of
o the density parametars on the dependence of the energy
S, loss on speed, for=5 andpy=0. It is observed that, with
0.00, 5 10 15 20 the increasing density parameter, the positions of the maxima
in the energy-loss curves move towards lower speeds, with
v(@u) the peak heights remaining almost unchanged, while the

FIG. 5. Energy losses per unit path length versus the speed forgverall shapes of the energy-loss curves become narrower.

proton that moves in the centep=0, of tubules with the electron-
density parameter,=0.86, for two values of the radiuga) a V. CONCLUSIONS
=2, (b) a=3. S;,, S, andS; describe, respectively, the single-
particle excitation part, the resonant excitation part, and the total We have used the dielectric formalism to study the energy
stopping power. loss of charged particles moving parallel to the axis in cylin-
drical tubules. On modeling the elementary excitations on
tubule,a=2 anda=3, with the particle positiopy=0 and the tubule by a free-electron gas confined to the surface of a
the electron-gas density parametgr=0.86. It is clear that cylinder, the random-phase approximation gives a dielectric
the single-particle excitation pafi, is significant only in
the low-velocity regime, while the high-velocity regime is 0.008
dominated by the resonant excitatidgs It is also clear that
the relative participation of the single-particle p&g, in the
total energy lossS; decreases with increasing radias so
that, for realistic values od, the stopping seems to be com-
pletely dominated by the resonance excitations. Therefore, in
Fig. 6, we show the velocity dependence of the resonant
stopping power of ions moving ait;=0 in tubules withr
=0.86 for several realistic values of the radiass5, 10,
and 15. It is evident from both Fig. 5 and Fig. 6 that the
overall magnitude of the ion energy loss decreases, while the
maximum of the stopping power shifts to higher speeds 0.000 . .
with increasing radius: of the tubule. N0 5 10 15 20
In Fig. 7, we show the influence of the charged particle
position py on the dependence of the total energy loss on
speed, fom=10 andr;=0.86. For a fixed speed, the energy  FiG. 7. Total energy loss per unit path length versus the speed
loss is smallest when the particle moves along the tubule axi@r a proton that moves at different positiopg away from the
and increases gradually when the particle position shiftgenter of a tubule with the radius=10 and the density parameter
closer to the surface of the tubule. One also observes tha{=0.86.

p,=0.82

u.)

; 0.006}
0.004

0.002+

Stopping Power (a

v (a.u.)
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regimes. In addition, it has been demonstrated that the radius
of the tubule as well as the particle position strongly affect
the energy loss.

We believe that the results obtained illustrate the impor-
tance of suitable modeling of the geomeffie., the dimen-
sionality) effects on the dielectric properties of carbon nano-
tubes and, accordingly, on the energy losses of charged
particles moving through them. However, one has to go be-
yond the free-electron gas model in further refinements of
the dielectric formalism, in order to take into account the
electronic band structure and the exchange-correlation inter-
action among the electrons in real carbon nanotubes. As a
first estimate, one should expect that such refinements may
lead to the introduction of the effective Bohr radius and the

gffective electron mass. In addition, while the present ap-
proach only considers the single-wall nanotubes, it would be
interesting to consider the energy loss of charged particles
moving through carbon nanotubes with multiple walls.

FIG. 8. Total energy loss per unit path length versus the spee
for a proton that moves in the cent@y=0, of a tubule with the
radiusa=5, for several values of the density parameter

function that depends on the angular momentum, the wave
number, the frequency, and the tubule geometry. Such a
model exhibits significant differences, most notably as re-
gards the dispersion of resonant excitation modes, when The authors wish to express their gratitude to Professor
compared to the model of a cylindrical cavity in a solid, Nestor R. Arista for his very useful comments on the present
described by a 3D electron gas with a dielectric function thawork. This work was jointly supported by the National Natu-
depends only on the frequency. It has been shown that the&l Science Foundation of Chin&rant No. 19975008and
energy loss is dominated by the contribution from the collecthe Ministry of Education State of Chin&.N.W.). Support

tive excitations, while the single-particle excitation contribu-from the Natural Sciences and Engineering Research Council
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