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Energy loss of charged particles moving in cylindrical tubules
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The interactions of charged particles with cylindrical tubules are studied within the framework of the
dielectric theory. Elementary excitations on a tubule are modeled by an infinitesimally thin layer of free-
electron gas, uniformly distributed over the surface of the tubule. The dielectric function of such a system,
obtained from the random-phase approximation, exhibits a dimensional crossover from two-dimensional to
one-dimensional electron gas, when the radius of the tubule decreases. Energy loss of a charged particle,
moving paraxially in a tubule, can be divided into a single-particle excitation part and a resonant excitation
part. It is shown that the resonant excitation modes on a tubule, which dominate the energy loss in the
high-velocity regime, are quite different from those in a cylindrical cavity in a solid, described by a bulk
dielectric function of the surrounding three-dimensional electron gas.

DOI: 10.1103/PhysRevA.66.042904 PACS number~s!: 79.20.Rf, 34.50.Bw, 34.50.Dy
c
o
p
ap
F

uc
tr
ro

li
s

io
fie
m

ar
ric

g

s
n
rg
o

le
s
u
or
ul

ic

o

h-
on

rent
nt
der-
od-
in
her

the
lar

are
no-

be
s,
-
s is

dius
uch
f a

ed
m-
as

tion
to

les
vel-

ch
en

the
on
LS
o-
ular
I. INTRODUCTION

Ever since their discovery by Iijima in 1991@1#, carbon
nanotubes have been widely studied from various aspe
both theoretically and experimentally. In particular, one
the most fascinating aspects is the interaction of charged
ticles with carbon nanotubes, which may be relevant for
plications in several areas of research and technology.
example, important information about the electronic str
ture of carbon nanotubes can be obtained using the elec
probe techniques, such as the transmission-electron mic
copy @2# and the electron energy-loss spectroscopy~EELS!
@3,4#. On the other hand, in one of the most intriguing app
cations, carbon nanotubes may be used as waveguide
transporting and focusing charged particle beams@5–9#. In
addition, when carbon nanotubes are irradiated by
beams, their properties and their structure can be modi
resulting in, for example, surface amorphization and dia
eter shrinkage@10,11#.

Theoretical investigation of interactions of charged p
ticles with cylindrical structures by means of the dielect
theory has a rather long history@2,12–17#. Most of the work
has been performed for particles moving paraxially throu
cylindrical cavities~or channels, or capillaries! in the bulk of
a solid target@12–16#. In particular, Arista and Fuente
@14–16# have reported pioneering work on the calculatio
of the induced potentials, energy losses, and the self-ene
for ions and clusters moving in microcapillaries and nan
capillaries in solids. On the other hand, Zabalaet al. @17#
have been the first to calculate the energy losses of fast e
trons impinging perpendicularly on cylindrical nanowire
made of both metallic and semiconductor materials. It sho
be pointed out that the structures studied in all those rep
@2,12–17# contained solid regions characterized by the b
dielectric functions for three-dimensional~3D! electron-gas
models, which were separated, or bounded, by cylindr
interfaces. The bulk dielectric functions used@2,12–17# were
dependent on the frequency only, such as in Drude or L
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entz models, which provided suitable modeling of the hig
frequency excitation modes, both in the bulk regions and
the interfaces, in such 3D structures.

Carbon nanotubes present systems that are quite diffe
from the cavities in solids or nanowires made of differe
materials. Although all these systems share the same un
lying cylindrical geometry, carbon nanotubes cannot be m
eled as a part of a 3D structure. It is well known that,
general, the dielectric functions of nanotubes exhibit rat
rich and complex properties regarding the dependence on
longitudinal wave number, the frequency, and the angu
momentum of the elementary excitations, in ways that
strongly influenced by the geometric structure of the na
tube, such as its radius and the chiral angle@18–23#. In a first
approximation, elementary excitations on a nanotube may
modeled by an infinitesimally thin layer of free-electron ga
uniformly distributed over an infinitely long cylindrical sur
face of a tubule. At zero temperature, such an electron ga
completely parametrized by its surface density and the ra
of the tubule. Consequently, the dielectric properties of s
a system cannot be deduced as a ‘‘zero-thickness limit’’ o
cylindrical layer, or film, of a 3D electron gas parametriz
by its volume density. This is clearly corroborated by a de
onstration that the dielectric function of the free-electron g
on a tubule, obtained in the random-phase approxima
~RPA!, exhibits a dimensional crossover from a 2D system
a 1D system when the radius of the tubule decreases@18,19#.

Therefore, analysis of the interactions of charged partic
with nanotubes requires an extension of the formalism de
oped in the previous studies@2,12–17#, in order to fully take
into account the complexity of the dielectric response of su
a system. Important contribution in that direction has be
recently reported by Sto¨ckli et al. @24#, who have described
the dielectric properties of carbon nanotubes by means of
hydrodynamic theory of plasmon excitations in a 2D electr
gas on a cylindrical surface, in order to interpret the EE
data for collective excitations on single-wall carbon nan
tubes, caused by the incidence of fast electrons perpendic
©2002 The American Physical Society04-1
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to the nanotube. Given the properties of the hydrodyna
model, such a study is suitable for describing the high-ene
electrons passing through, or close by, the carbon nanotu
On the other hand, experimental study of transport, or ch
neling, of charged particles through carbon nanotubes in
paraxial direction seems feasible, at present, only in the
tems of the so-called ‘‘ropes,’’ or bunches, of nanotubes@9#.
In such systems, the interactions of charged particles with
medium may be described, in a first approximation, by
model of a cylindrical cavity in the bulk of a solid@14–16#.
Although the transport of charged particles through sing
isolated carbon nanotubes still presents an experimental c
lenge, we nevertheless address theoretically this prob
here in order to elucidate the significance of those dielec
properties of the cylindrical tubules related to the reduc
dimensionality of the electron gas, and to compare the res
for the energy losses of particles in tubules with those
tained in the cylindrical cavities.

We use, and extend, the dielectric formalism develop
by the previous authors for cylindrical structures@2,12–16#,
in order to study the energy loss of a charged particle mov
paraxially inside a tubule characterized by the appropr
RPA dielectric function@18,19#, as described above. Gener
expressions for the induced potential and the energy los
the projectile are presented in Sec. II, which is followed b
discussion of resonant excitations on a tubule in Sec.
based on the full RPA dielectric function@18,19#. In Sec. IV,
we analyze the contributions to the energy loss, coming fr
the single-particle excitations and the resonant excitatio
and present the results of numerical calculations for the t
energy loss as a function of the projectile velocity, its po
tion in the tubule, as well as of the radius of the tubule
short summary is given in Sec. V. Atomic units~a.u.! are
used throughout, unless otherwise indicated.

II. GENERAL EXPRESSIONS

We model a tubule as an infinitesimally thin and infinite
long cylindrical shell with the radiusa, and assume that th
valence electrons can be considered a free-electron gas
tributed uniformly over the cylindrical surface. We furth
consider a charged particle, moving within the tubule, w
its trajectory parallel to the tubule axisz, such that the par-
ticle’s instantaneous position is given in the cylindrical co
dinates byr05(r0 ,f0 ,vt), wherev is the particle’s speed
The electric potentialF(r ,t), created by the particle, can b
determined by the Poisson equation

¹2F524pQd~r2r0!, ~1!

whereQ is the particle charge.
Taking into account the natural boundary conditions ar

50 andr5`, Eq. ~1! can be solved in cylindrical coordi
natesr5(r,f,z), so that the potential inside the tubule
given by

F1~r,f,z,t !5
Q

ur2r0u
1

Q

p (
m52`

` E
2`

`

dkeikz1 im(f2f0)2 ivt

3Am~k,v!I m~kr!, ~2!
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whereI m(x) is the modified Bessel function of the first kin
andv5kv. The first term in Eq.~2! is the external potentia
of the moving particle, while the second term is the induc
potential. In terms of a Fourier-Bessel expansion, the ex
nal potential can be expressed as@25#

Q

ur2r0u
5

Q

p (
m52`

` E
2`

`

dkeikz1 im(f2f0)2 ivt

3I m~kr,!Km~kr.!, ~3!

where r, (r.) is the smaller~larger! of r and r0, and
Km(x) is the modified Bessel function of the second kin
Similarly, the potential outside the tubule can be expresse

F2~r,f,z,t !5
Q

p (
m52`

` E
2`

`

dkeikz1 im(f2f0)2 ivt

3Bm~k,v!Km~kr!. ~4!

The unknown coefficientsAm andBm in Eqs.~2! and~4! can
be determined by the continuity conditions atr5a, for each
angular momentumm. Using the continuity of the electric
potential atr5a and Eqs.~1!–~4!, it is easy to obtain the
first relation betweenAm andBm :

I m~kr0!Km~ka!1Am~k,v!I m~ka!5Bm~k,v!. ~5!

The second relation betweenAm andBm can be obtained by
considering the continuity of the displacement field at t
tubule’s surface:

I m~kr0!Km
8 ~ka!1Am~k,v!I m

8 ~ka!

5«~m,k,v!Bm~k,v!Km
8 ~ka!, ~6!

where«(m,k,v) is the dielectric function of the electron ga
on the tubule.

With the above equations, the induced potential inside
tubule can be written as

F ind~r,f,z,t !5
Q

p (
m52`

` E
2`

`

dkeik(z2vt)1 im(f2f0)

3I m~kr!I m~kr0!
Xm~k,v!

Zm~k,v!
, ~7!

in terms of the auxiliary functions

Xm~k,v!5@12«~m,k,v!#Km~ka!Km
8 ~ka! ~8!

and

Zm~k,v!5«~m,k,v!I m~ka!Km
8 ~ka!2I m

8 ~ka!Km~ka!.
~9!

Finally, using the induced potential, one can obtain the
ergy loss of the charged particle moving in the tubule,
follows:
4-2
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S52Q
]

]z
F ind~r,f,z,t !ur5r0

5
Q2

p (
m52`

` E
2`

`

dkIm
2 ~kr0!ImFXm~k,kv !

Zm~k,kv ! G . ~10!

We note that the form of Eq.~10!, along with Eqs.~8! and
~9!, is the consequence of the geometry of the problem a
as such, it has been obtained before by other authors st
ing cylindrical structures@12,14#. However, the additiona
feature here is the appearance in Eqs.~8! and ~9! of the
dielectric function«(m,k,v), which depends on the angula
momentumm, the longitudinal wavenumberk, and the fre-
quencyv of the elementary excitations on the surface
tubule of radiusa, whereas the previous studies@12,14# used
in that place in Eqs.~8! and~9! the bulk dielectric function of
the surrounding medium,«(v), which depends on the fre
quency of elementary excitations in a 3D electron gas.

III. DIELECTRIC FUNCTION AND RESONANT
EXCITATIONS

We discuss the properties of the electron gas on a tu
and provide some details regarding the dielectric funct
used in the present work. It should be mentioned that, w
the tubule radiusa is large enough, the dielectric behavior
the electron gas on the tubule will be reduced to that o
planar 2D electron gas. On the other hand, for sufficien
small a, the electron gas becomes a 1D system, which
similar to a quantum wire. When the tubule radiusa is in the
intermediate region, the electron gas on the tubule surfac
neither 1D nor 2D system@18,19#.

Based on the random-phase approximation, the dielec
function of the tubule can be expressed as@18,19#

«~m,k,v!512V~m,k,a!x~m,k,v!, ~11!

where V(m,k,a) is the Fourier transform of the Coulom
interaction among two electrons on the tubule’s surface,

V~m,k,a!54pI m~ka!Km~ka!. ~12!

Here,x(m,k,v) is the response function,

x~m,k,v!5 (
l 52mmax

mmax

x~ l ,m,k,v!, ~13!

with

Rex~ l ,m,k,v!5
1

2p2k
lnUv22E2

2 ~ l ,m,k!

v22E1
2 ~ l ,m,k!

U ~14!

and
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Im x~ l ,m,k,v!5
1

2pk
for uE2~ l ,m,k!u,v,uE1~ l ,m,k!u

52
1

2pk
for uE1~ l ,m,k!u

,v,uE2~ l ,m,k!u
50 otherwise. ~15!

In the above expressions,mmax is the largest occupied sub
band index, while

E6~ l ,m,k!5
k262kF~ l !k

2
1

m212ml

2a2
, ~16!

with kF( l )5(2m2 l 2/a2)1/2 being the Fermi momentum o
the l th subband, wherem is the chemical potential of the
electron gas. For a fixed surface densitynS of the electron
gas on tubule, the chemical potential and the largest occu
subband index are related via@18#

p2anS

A2
5m1/212 (

m51

mmax S m2
m2

2a2D 1/2

, ~17!

where mmax5max@m u m2m2/(2a2).0#. Figure 1 shows the
ways how the reduced chemical potentialm/m0 ~wherem0

5kF
2/2 is the chemical potential of a planar 2D electron g

with kF5A2pnS being the corresponding Fermi wave num
ber! depends on the tubule radiusa, for several values of the
electron-density parameterr s5(1/pnS)1/2. One can observe
that, whena,r s /Ap, the chemical potential increases wi
increasing tubule radiusa, so that only them50 band is
occupied. In this case, the electron gas can be regarded
quasi-1D system. Fora.r s /Ap, however, the chemical po
tential oscillates around the value characteristic of the pla
2D electron gas, and approaches it asa→`.

According to Eq.~15!, the imaginary part of the respons
functionx(m,k,v) becomes zero for high enough frequen
v, giving rise to vanishing of the imaginary part of the fun

FIG. 1. Dependence of the reduced chemical potentialm/m0 on
the radius of tubule,a, for several values of the electron densi
parameterr s .
4-3
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tion Zm(k,v), Eq. ~9!. One can see from Eqs.~7! and ~10!
that the resonant excitation will occur if the real part of t
function Zm(k,v) is zero as well. Thus, the dispersion rel
tion of the resonant excitation modes,v5vm(k), is given by
the roots of the equation ReZm(k,v)50, i.e.,

Re$«~m,k,v!%I m~ka!Km
8 ~ka!2I m

8 ~ka!Km~ka!50.
~18!

On combining Eq.~18! with Eq. ~11!, we obtain the reso-
nance condition

(
l 52mmax

mmax

lnUv22E2
2 ~ l ,m,k!

v22E1
2 ~ l ,m,k!

U5Hm~k!, ~19!

in terms of the function

Hm~k!5
pk

2

12gm~ka!

I m~ka!Km~ka!
, ~20!

with

gm~x!511
1

xIm~x!Km8 ~x!
, ~21!

where the Wronskian property,I m
8 (x)Km(x)2I m(x)Km

8 (x)
51/x, has been used@26#. Whenv.uE6

2 ( l ,m,k)u, one can
expand the left-hand side of Eq.~19! to the first order in
large v2 and obtain the dispersion relation for a tubule
follows:

v2'vm
2 ~k!5

4I m~ka!Km~ka!

pa2@12gm~ka!#

3 (
l 52mmax

mmax

~k2a21m212ml!kF~ l !. ~22!

It is evident from Eq.~22! that the dispersion relation i
completely parametrized by the radius of the tubulea and the
surface electron-density parameterr s . In order to provide
realistic estimates for the ranges of values of these par
eters, we note that the radii of single-wall carbon nanotu
range from about 6.6 to almost 20. Using the atomic den
of a graphene sheet, 0.107, the surface electron density
single-wall carbon nanotube can be approximated bynS54
30.107 @27#, which yields r s50.86. In the following, we
will present results of our calculations with thea and r s
values close to, or within, such a parameter space. Figu
shows the dependences of the resonant frequency m
vm(k) on the longitudinal wave numberk for a tubule char-
acterized bya510 andr s50.86. It should be noticed from
the figure that, fork→0, one hasv0(0)50, but vm(0)
Þ0 for mÞ0, whereas, fork→`, vm(k) approach same
function for allm. Actually, them50 case is quite similar to
the plasma dispersion,v(k)5A2pnSk, in a planar 2D elec-
tron gas with the surface densitynS @28#.

In order to test how reliable is the modeling of the diele
tric function, presented in this section, we consider the
perimental data for the dispersion relation of thes1p plas-
mon ~the collective excitation of all valence electrons!,
04290
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obtained by Pichler and co-workers@3,29#. Those authors
have used the EELS technique to measure the loss func
Im@21/«(m,k,v)# in bulk samples of purified single-wal
nanotubes witha50.7 nm, which is then used to deduce t
plasmon dispersion relation. In this case, the resonance
dition is Re«(m,k,v)50, which, on using Eqs.~11!–~14!,
gives the approximate plasmon dispersion relation as
lows:

vm
2 ~k!5

4I m~ka!Km~ka!

pa2 (
l 52mmax

mmax

~k2a21m212ml!kF~ l !,

~23!

in analogy to Eq.~22!. Note that the dispersion relations i
Eqs. ~22! and ~23! are different because they were deriv
from resonance conditions being imposed on different fu
tions, Im@21/Zm(k,v)# in Eq. ~10!, and the loss function
Im@21/«(m,k,v)#, respectively. Figure 3 shows compar
son of our theoretical results forvm(k), Eq. ~23!, with the
experimental data of Pichler and coworkers for several e
tation modesm. Rather satisfactory qualitative agreement

FIG. 2. Dispersion curvesvm(k), Eq. ~22!, for the resonant
excitations with several angular-momentum modesm, for a tubule
with the radius a510 and the electron-density parameterr s

50.86.

FIG. 3. Comparison of the dispersion curves for the plasm
excitation modes, Eq.~23!, with the experimental data, Refs.@3,29#,
for a carbon nanotube with the radiusa50.7 nm and the electron
density parameterr s50.86.
4-4
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evident in Fig. 3, which lends confidence in the present m
eling of the dielectric function of carbon nanotubes, at le
when the collective electron excitations are considered.

Finally, we wish to discuss the relation of the prese
dielectric model to that used in modeling the cylindric
cavities in solids. Note that the dispersion relation for t
resonant mode of a cylindrical cavity in a solid can be d
duced from Eq.~18! by replacing the dielectric function
«(m,k,v) of the tubule with the bulk dielectric function o
the solid surrounding the cavity@2,14#. Adequate description
of a cavity has been achieved@2,14# by using the Drude
dielectric function, «(v)512vp

2/v(v1g), where vp

5A4pnV is the plasma frequency of the surrounding 3
electron gas with the volume densitynV , while g is the
damping constant, such thatg!vp . On using the Drude
dielectric function in Eq.~18!, one recovers the result of th
previous authors@2,14# for the plasmon dispersion in a cy
lindrical cavity of radiusa,

vm~k!5vpAkaIm~ka!uKm
8 ~ka!u. ~24!

We compare in Fig. 4 the resonant excitation modesm
50 and 1 on a cylindrical tubule and in a cylindrical cavi
with the equal radiia510, by showing the dispersion curve
vm(k) against the reduced longitudinal wave numberka,
obtained from Eqs.~22! and~24!, respectively. We note that
since the density parameters of the two systems are de
in different ways, i.e.,r s5(pnS)21/2 for the electron gas on
the tubule andr v5(4pnV/3)21/3 for the 3D electron gas
surrounding the cavity, we have setr s5r v50.86 in Fig. 4 in
order to make the physical parameters of the systems c
parable. One observes rather striking differences between
two sets of dispersion curves, which are the consequenc
the different dimensions of the electron-gas models use
represent the two systems. Consequently, significant di
ences are expected between the energy losses of cha
particles due to resonant excitations in tubules and cavit

FIG. 4. Comparison of the dispersion curves for the reson
excitation modesm50 and 1 for a cylindrical tubule, Eq.~22!, and
a cylindrical cavity, Eq.~24!, with equal radiia510. The electron-
density parameters are equal to 0.86 for both systems~see text!.
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IV. NUMERICAL RESULTS FOR ENERGY LOSS

Using the dielectric function given in Eq.~11!, the energy
loss, given by Eq.~10!, can be divided into two parts: on
coming from the single-particle excitations, in whic
Im «(m,k,v)Þ0, and the other corresponding to the res
nant, or collective, excitations in whichZm(k,v)50. For the
single-particle excitations, the energy loss can be calcula
directly from Eq.~10!, as follows:

Ssp5
Q2

p (
m52`

` E
2`

`

dkIm
2 ~kr0!

3
Xmi~k,kv !Zmr~k,kv !2Xmr„~k,kv !Zmi~k,kv !…

Zmr
2 ~k,kv !1Zmi

2 ~k,kv !
,

~25!

where the subscriptsr and i denote the real parts and th
imaginary parts, respectively, of the functionsXm(k,kv) and
Zm(k,kv). On the other hand, on using the limiting proc
dure

lim
uZmru→0

1

Zm~k,v!
5 lim

uZmru→0

1

Zmr~k,v!2 i uZmi~k,v!u

5P@1/Zmr~k,v!#1 ipd@Zmr~k,v!#,

~26!

one can obtain the resonant excitation part of the energy
as follows:

Sr5Q2 (
m52`

` E
2`

`

dkIm
2 ~kr0!Xmr~k,v!U]Zmr~k,v!

]v U21

3@d„v2vm~k!…2d„v1vm~k!…#, ~27!

where v5kv. Using the resonance conditionZmr(k,v)
50, along with the expressions for the functionsXmr(k,v)
and Zmr(k,v), Eqs.~8! and ~9!, we finally obtain the reso-
nant energy loss

Sr5Q2 (
m52`

`

km
2 I m

2 ~kmr0!
Km~kma!

I m~kma!
, ~28!

wherekm is a function of the speedv, which is determined
by solving the equationvm(k)5kv for eachv. The form of
Eq. ~28! is identical to that obtained by Arista and Fuent
@14#, where it represents the total stopping force, since
single-particle contributionSsp is absent due to their use o
the k-independent dielectric function«(v). In addition, the
resonant excitations in the two approaches, although
scribed by the same expression, Eq.~28!, will give different
contributions to the energy loss, owing to the fact that
equationvm(k)5kv is to be solved with different disper
sions, given by Eq.~22! or Eq. ~24!.

In the following calculations, we assume the charged p
ticle to be proton,Q51. The single-particle excitation par
Ssp , the resonant excitation partSr , and the total energy los
St5Ssp1Sr are shown in Figs. 5~a! and 5~b! versus the pro-
ton speedv, for two rather small values of the radius of th

nt
4-5
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tubule,a52 anda53, with the particle positionr050 and
the electron-gas density parameterr s50.86. It is clear that
the single-particle excitation partSsp is significant only in
the low-velocity regime, while the high-velocity regime
dominated by the resonant excitationsSr . It is also clear that
the relative participation of the single-particle partSsp in the
total energy lossSt decreases with increasing radiusa, so
that, for realistic values ofa, the stopping seems to be com
pletely dominated by the resonance excitations. Therefore
Fig. 6, we show the velocity dependence of the reson
stopping power of ions moving atr050 in tubules withr s
50.86 for several realistic values of the radius,a55, 10,
and 15. It is evident from both Fig. 5 and Fig. 6 that t
overall magnitude of the ion energy loss decreases, while
maximum of the stopping power shifts to higher speedsv,
with increasing radiusa of the tubule.

In Fig. 7, we show the influence of the charged parti
position r0 on the dependence of the total energy loss
speed, fora510 andr s50.86. For a fixed speed, the energ
loss is smallest when the particle moves along the tubule
and increases gradually when the particle position sh
closer to the surface of the tubule. One also observes

FIG. 5. Energy losses per unit path length versus the speed
proton that moves in the center,r050, of tubules with the electron
density parameterr s50.86, for two values of the radius:~a! a
52, ~b! a53. Ssp , Sr , andSt describe, respectively, the single
particle excitation part, the resonant excitation part, and the t
stopping power.
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each curve for the energy loss has a maximum, which sh
to a lower speed as the ion moves closer to the surfa
Moreover, the role of the single-particle excitations becom
increasingly noticeable at low speeds as the particle mo
closer to the surface, even in a tubule with a large rad
such asa510. Finally, we display in Fig. 8 the influence o
the density parameterr s on the dependence of the energ
loss on speed, fora55 andr050. It is observed that, with
the increasing density parameter, the positions of the max
in the energy-loss curves move towards lower speeds, w
the peak heights remaining almost unchanged, while
overall shapes of the energy-loss curves become narrow

V. CONCLUSIONS

We have used the dielectric formalism to study the ene
loss of charged particles moving parallel to the axis in cyl
drical tubules. On modeling the elementary excitations
the tubule by a free-electron gas confined to the surface
cylinder, the random-phase approximation gives a dielec

FIG. 7. Total energy loss per unit path length versus the sp
for a proton that moves at different positionsr0 away from the
center of a tubule with the radiusa510 and the density paramete
r s50.86.

r a

al

FIG. 6. Velocity dependence of the energy losses per unit p
length due to resonant excitations for a proton that moves in
center,r050, of tubules with the electron-density parameterr s

50.86, for several values of the radius:a55, 10, and 15.
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function that depends on the angular momentum, the w
number, the frequency, and the tubule geometry. Suc
model exhibits significant differences, most notably as
gards the dispersion of resonant excitation modes, w
compared to the model of a cylindrical cavity in a soli
described by a 3D electron gas with a dielectric function t
depends only on the frequency. It has been shown that
energy loss is dominated by the contribution from the coll
tive excitations, while the single-particle excitation contrib
tion is generally small and exists only in the low-veloci

FIG. 8. Total energy loss per unit path length versus the sp
for a proton that moves in the center,r050, of a tubule with the
radiusa55, for several values of the density parameterr s .
ds

d

-
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regimes. In addition, it has been demonstrated that the ra
of the tubule as well as the particle position strongly affe
the energy loss.

We believe that the results obtained illustrate the imp
tance of suitable modeling of the geometric~i.e., the dimen-
sionality! effects on the dielectric properties of carbon nan
tubes and, accordingly, on the energy losses of char
particles moving through them. However, one has to go
yond the free-electron gas model in further refinements
the dielectric formalism, in order to take into account t
electronic band structure and the exchange-correlation in
action among the electrons in real carbon nanotubes. A
first estimate, one should expect that such refinements
lead to the introduction of the effective Bohr radius and t
effective electron mass. In addition, while the present
proach only considers the single-wall nanotubes, it would
interesting to consider the energy loss of charged parti
moving through carbon nanotubes with multiple walls.
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