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Adiabatic energy levels and electric dipole moments of Rydberg states of Rland Cs, dimers
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We calculate potential energy curves for heavy alkali-metal dimersaRt Cs in which one of the atoms
is in a highly excited Rydberg states. The method combines numerical integration of coupled equations,
describing interaction of electron with the ground-state atom in the field of the Coulomb core of the Rydberg
atom, with subsequent matching of the obtained wave function with the Coulomb Green’s function in the form
of the Kirchhoff integral. The spin-orbit interaction for the Rydberg electron is also included. The results show
the existence of several groups of states. Most interesting of them are dominated either’Bysyimemetry
near the ground-state atom or by thie; symmetry,J=0,1,2. All states, except th&P; state, exhibit oscil-
latory dependence of energy on the internuclear distance that can support long-range molecular Rydberg states
[e.g., “trilobite states” for the®S symmetry, Greenet al, Phys. Rev. Lett85, 2458 (2000]. These states
possess large diagonal and transition dipole moments which are expressed analytically in terms of the Coulomb
wave functions and calculated in a broad range of internuclear separations.
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[. INTRODUCTION to specific shapes of their wave functions. THe-dominated
states also exhibit oscillatiofi$4,15. The oscillatory behav-
Molecular Rydberg states play an important role in a vador of the potential curves can be well underst¢a#] in the
riety of collision processes such as inelastic collisions offramework of the Fermi pseudopotential appro@th]. The
Rydberg atoms with ground-state atoms, particularly colli-approach is valid when the interaction between the Rydberg
sional broadening of Rydberg stafds-3], charge transfer in electron and the neutral atoBican be described by a delta
ion-atom and atom-atom collisiof4], dissociative recombi- potential containing a single parametes;B scattering
nation[5]. Recently the interest to molecular Rydberg statedength. Several generalizatiofi$8] of the Fermi approach
has increased due to theoretical predicfi6hthat a certain introduce an energy-dependent scattering length. Another
class of molecular Rydberg states formed by interaction of generalization proposed by Omofit9] introduces energy-
Rydberg atom with a ground-state Rb atom can be stable atependent potential describifiywave scattering. However,
very large internuclear separation, comparable to the size af the resonance region the pseudopotential is singular, and it
the Rydberg atoms. Even though the binding energies of not clear how to avoid ambiguity in the treatment of this
these states are very smédf the order of 100 MHEg, they  singularity. A more traditional approach to the potential
are characterized by huge permanent dipole moments, whiaturve calculation, based on the two-center expansion for the
makes it possible to produce and manipulate these states lejectron wave function, suffers from a poor convergence due
external fields in Bose-Einstein condensates. to a very large number of coupled Rydberg states.
Low-energy electron scattering by alkali-metal atoms has An alternative approach to the problem of a Rydberg elec-
two distinctive features: a virtualS state and &P shape tron interacting with a neutral atom was developed by Boro-
resonancd1,7,8. The 3P shape resonance occurs at verydin and Kazansky3]. It is based on solving the Lippman-
low energies(in meV energy range and it is very hard to Schwinger equation for the electron wave function
detect it experimentally9]. An indirect information about containing the Coulomb Green's function of Hostler and
the 3P resonance can be obtained from experimental studieBratt[20] and modified by Davydkiret al.[21], to take into
[10,11 of collisions of Rydberg atomA(nl) with ground- account the quantum defect of the Rydberg state. The
state atomdB. In particular the resonance increases substanGreen’s function incorporates the coupling of many degen-
tially cross sections for inelastic transitionsAnl)-B col-  erate Rydberg states leading to formation of so-called qua-
lisions and causes oscillatory behavior of the inelastic crossiadiabatic energy curvg8]. Assuming that the-B interac-
section as a function of the principal quantum number of thdion is dominated by the’P resonance and the electron’s
Rydberg state. These features allowed a predidtigp] of = wave length is large compared to the effective radius of the
the 3P resonance ire-Cs scattering whose existence wase-B interaction, one can obtain a simple expression for the
later confirmed byab initio calculations[12] and a direct quasiadiabatic energy curvéstomic units are used through-
photodetachment experime[rit3]. out the paper[2,3]
The 3S and 3P features in the electron scattering by
alkali-metal atoms are crucial for formation of long-range Eio=—1[2(v12)]% (1)
molecular Rydberg states. They lead to oscillatory behavior
of potential curves as functions of internuclear distances an#herev; , are effective principal quantum numbers given by
local minima supporting localized vibrational stafé$. The ;
3S-dominated states were dubbed “trilobite staté8] due vi=N—ug, v2=n=38(p(R))/m, 2
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Where,ug is the fractional part of the quantum defect of the Cs* (n=30)+ Cs(6s) [6]. This is important for understand-
Rydberg stateg(p) is the scattering phase shift in th#® ing of how molecular Rydberg states interact with electro-
symmetry, andp(R)=(2/R—1/v?)¥? is the classical mo- magnetic field, either by spontaneous emission or by cou-
mentum of the electron in the Coulomb field Af . pling with a laser radiation. For example, the trilobite state
The first solution in Eq(2) gives a covalent Rydberg state discussed in Ref6] is dominated by theéS symmetry near
whose energy, in the first approximation, is independent othe perturbing(ground-state Rbatom. However, the state
the internuclear distand®, whereas the second solution re- dominated by the*P symmetry is coupled by the dipole
sults from the interaction between th#® resonance state interaction with the®S-dominated state leading to the de-
and a degenerate manifold of Rydberg states. The interactiastruction of the latter.
between these quasiadiabatic states leads to formation of The rest of the paper is organized as follows. In Sec. Il we
adiabatic energy curves. Since the coupling between the qudescribe our method of potential curve calculations. Sec. Ill
siadiabatic states oscillates with this produces an oscilla- discusses a simplified approach based on the zero-range-
tory dependence of the inelastic collision cross sectiom.on potential model. Section IV discusses an analytical approach
In another case of scattering by an atom with a very low bugllowing us to obtain expressions for the wave functions out-
positive electron affinity the coupling parameter depends oide the range oé-B interaction and dipole moments of the
n exponentially, and this produces a sharp peak in the inelasystems. Presentation of results given in Sec. V followed by
tic cross sectiof22]. Conclusion, Sec. VI.
The Borodin-Kazansky mode]3], while providing a
qualitative and semiquantitative understanding of the influ- || SOLUTION OF THE ADIABATIC SCHRO DINGER
ence of the3P resonance on interaction between Rydberg EQUATION BASED ON THE KIRCHHOFF-INTEGRAL

atoms and ground-state alkali-metal atoms, contains several APPROACH

approximations which limit significantly the accuracy of the )

results. The most severe approximation is the assumption A. Formulation

about the small radius of the-B interaction which is not The Hamiltonian of the systes(nl) + B(nys) reduces in

well justified because of hlgh polarizabilities of alkali-metal the adiabatic approximation to the Hamiltonian of an elec-
atoms. Another drawback of previous calculations for alkali-tron in the presence of the neutral at@&n,s) and the Cou-

metal containing Rydberg systems is that they do not includgomb centerA*. The corresponding Schiimger equation is
spin-orbit interaction that appears to be important in heavier

alkali-metal atoms, Rb and Cs. The spin-orbit interaction 1 o 1 . . ag-R
leads to the fine-structure splitting of th&P resonance _§V2+V(r)_T+qu(r_R)_?
[12,23 of the order of few meV which is a substantial en- r=R R
ergy for this problem.

In the present paper, we extend the approach of Borodin —E5 (R)
and Kazansky by lifting the restriction on the radius of the J
e-B interaction. This can be accomplished by using the L
Kirchhoff-integral method[24] for matching the electron where V(r) is a nonlocal short-range potential for the
wave function in two regions of space: the region dominatedc™-B(ngs) interaction,ay is the polarizability of the atorB.

by thee-B interaction and the region dominated by W™ vector R is directed from the neutral centér to the Cou-
interaction. Thee-A™ interaction can be taken into account |omb centerA™. V44 is a short-range correction to the Cou-

exactly, using the Coulomb’s Green function including the|omb potentiaj which can be described by the guantum de-
quantum defedf21]. Interaction of an electron with a neutral fect. We do not need the explicit form Of 4q if it is

atom is presented by a pseudopotential, which reproducesegligible outside the atomic co®™. The coordinate sys-
correct phase shifts from the Dir&ematrix calculation$23]  tem employed in this paper is presented in Fig. 1.

and binding energies for corresponding negative ion. The The fifth term in Eq(3) describes three-body polarization
obtained potential-energy curves can be employed for calcynteraction, that i-B interaction due to polarization & by
|ati0n Of inelaStiC processes R-B CO||iSi0nS and fOI’ CaICU' A+ p|us A+_B interaction due to po'arization (B by e
lations of properties of long-range molecular Rydberg stateszina|ly, the energy of th&(n,s)+A* molecule is given by
One of their most important features are dipole moments that

appear due to orientation of the Rydberg atarnm the pres-

ence of a perturbeB. This problem is similar to orientation Ew,(R)= Ey .(R) —
of a hydrogenlike atom in the presence of an external static ’ 2R

field, and can be solved in a similar way. Specifically, we can ] o
construct the zero-order wave function for the systerg ~ Where the last term describes the -B(nos) polarization
using unperturbed Coulomb wave functions describing thantéraction. _ _ o _
e-A" interaction[25]. For the purpose of studying of a more The pseudopotential for the-B interaction is chosen in
general problem of collisions of Rydberg ions with neutrals,the form

we discuss wave functions and dipole moments of atomic

Rydberg stated* >~ 1" (n) perturbed by a neutral atoB V() =3 g.sn)a)al )
We apply results to the systems Rib=30)+ Rb(5s) and - oS ’

Wy, (RN=0, 3

aq
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where
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adl’~R
-+
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R Daa,(r,R)=<LSJMJ L’S’J’MJ>
FIG. 1. Coordinate system employed in the papeis a vector
directed from neutral atorB to the coreA™ of Rydberg atomr is

; . nd
a vector pointed from neutral atoBito the valance electromg is
the radius of the sphere within which we perform analytical Dirac

calculationr, is the radius of the sphere outside which short-range
interaction is negligible. Using Eq.(6) and the expansion

where 1 r! 4w .
|;_§|:E| i Varage) (<R @

Boa =(LSIM|I-S|L'S'I'M,).

dVis = -

gus(r)=Vis(r)+ PYCRET: (I-s), (5 and choosing axis alongR, we obtain
(_ 1)87MJ
> > . Daa’(r!R):5$ST
andl - s operator acts only on the Rydberg electron, since we
assume that the valence electron is indlstate.« in Eq. (4) Y2+ (2 + DL+ 2L +1
stands for{L,S,J}, quantum numbers of the orbital angular Ve 3 ! ! )
momentum, spin, and total angular momentum of two elec- L+’ oo L | L’
trons relative to the neutral atofar) is a two-electron spinor X (—) + -2 O1 ( )
|:|L—L/| R r2R 0 0 0
|a@)=|LSIM;) J ¥ L L |
X , . 9
s o | >2 swe 1> M; 0 —My/(J J S
= C LM C M
Mg SMLSMs L S T (2)ug (12| 2 T Symbols in parenthesis and braces dengteadd 6 coeffi-
1 cients, respectively.
X §M2>’ (6) For B, we obtain
Baar:(_l)LéjjrﬁLLrL(L'f' 1)
whereC’MI _  are Clebsch-Gordon coefficientt,M, ) are L+ {12 ,
st T T e ) xV(2S+1)(2S'+1) >, (-1)i7t*0P
spherical harmonics$g u.), |3 1) identify spin states of the j=L=(1/2)
Rydberg and the valence electrons, &gl is the conserved ,
= : L S J(L s J
projection of the total angular momentum on the quantiza-
tion axis. X E ) l E ) E
The nonlocal potential4) describinge™ -B(ngs) interac- 2 J 2 2 J 2

tion has a local componentS) for certain angular momen-
tum L and spinSof e -B(nys) system. Therefore, to find a ~ The sum in Eq(7) converges fast, and can be truncated at
solution to Eq.(3), we expand the wave functioi, (ﬁ,F) a relatively low L4 In our c_:alculatioanaXZZ gives
in two-electron spinors, Eq6) J stable results. A ggneral _solutlon pf thg syg,tem dlfmgx_
' + 2 second-order differential equations is a linear combina-

tion of 4L .t 2 linear-independent solutions regular at the

.- 1 origin
Yy (RN=2 Tuy(rR)a’). (7)

ua(riR):E Aa’vaa’(rlR)! (10)

After substituting Eq(7) into Eq. (3), neglectingV4, and
projecting on{«|, we obtain the following system of differ- where @’ enumerates independent solutions, akg are
ential equations constants.
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TABLE |. Approximate mean values of quantum defegtsor I, d .
n>10[35,36. jg (G(r— R =REy (R)g-¥u,(RrI)
S

L 0 1 2 3 4 5

.. d e e o o
_ I _ r__ e
Cs 405 360 250 003 0011  0.002 W, (R1) g Gr—Rr'=REy (R)]ds

Rb 3.13 2.65 1.34 0.02 0.004 0.001

+ [ UOGE-RI - REG RV (RN =0,
\

To find the energy of the system and coefficiefjs , we (14)
use the Kirchhoff-integral methd@4]. Green'’s function for
the Coulomb field with quantum defect satisfies the follow-whereV is the volume outside the sphere of radiysaround

ing equation: the neutral centeB and S is the surface enclosing this vol-
ume. Here we use transformation of volume integral to the
1 1 o o surface integral for the part which contains kinetic energy
- =V2- ——= +Vq(r—R)—E}y (R) |G(r—R,r’ operator and take’—r,,—0 which gives zero contribution
2 Ir=R] ’ from the delta function.

The integrand in the volume integral contains the short-
range potentia‘f/. Therefore, if the radius of the sphere is big
enough, its contribution is smal. outside the atom behaves
where G(r,r',E)=Go(r,r',E)+ Ggq(r,r",E). Go(r,r',E) like ag/2r*. Thereforer,, can be determined from the con-
is the Green's function for a pure Coulomb field anddition aq/2rs,<1/(R+r.). Thus only the surface integral
Gqa(r.r',E) is a correction due to the quantum defect. Thecontributes to the left-hand side. of Ed4). This gives us a
Coulomb Green’s function ig20] matching condition for the wave function. In order to deter-
mine the energy, we have to substitute expansion for the
wave function, Egs(7) and(10), into Eq.(14) and project on

~REp (R)=—a(r—r"), (12)

- > F(l_ V) , .
Go(r, 1" E)= ———=—=—-[W,1 )M ,(y) (a|. We obtain
2m|r—r’|
e —
—W,1,()0M 1Y) ], (12 ; AeM gor(Ey ) =0, (15)
where where

e IMy "My
. o Mm,,(EMJ)—E Ssg 2, CLMLSMSCL’MLSMS
X:—(I’+I’/+|r_r,|), a' M Mg
v
l)a/a//

r

dGL’M
ar |t M )

We have taken into account that Green’s function depends
only on difference of azimuthal angles— ¢’ of r andr’

X

d
(LMUGIL'MY) o

Ua/a// LM
r L

_1 +r’ C
y=(r+r'=|r=r’)

andW andM are Whittaker’s functions. The quantum defect
correction has the following forr21]:

_ vectors and therefore, (LM_|G|L'M])
G 1 E)= v=1 g FA+I=p)sina(pm+D(2I+1) =6y m(LM_|G|L’M ). Equation(15) is a homogeneous
qd(r,r',E)= 2 - LML ] ) o
rer T T(A+I+v)sina(u +v)dm system of algebraic equations. It can have a nontrivial solu-
o o tion only if the determinant o MV(E‘,f,lJ) is zero. This gives
><WV,+1,2<7) WV,+1,2( 7) P,(cosy), us an equation for determination of the energy. To determine

A, coefficients one additional condition is required, which is
(13 normalization. Some details of those calculation can be
found in the Appendix.
wherey, are quantum defects given in Tableyljs the angle
betweenr andr’ and P,(x) are Legendre polynomials.
We now multiply Eq.(3) by G(r —R,r’ — FE,E&J(R)), Eq. There are basically two methods for the description of the
effective interaction between an electron and a many-
R electron aton{26]: in the model-potential approach the ef-
overr. Then we obtain fective interaction is attractive and leads to unphysical states

B. Pseudopotentials fore-Rb and e-Cs interaction

(1) by WMJ(ﬁ,F), subtract one from another, and integrate
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arising from the presence of filled atomic subshells. In this TABLE Il. The fit parameters for the pseudopotentials used to
case, the scattering wave function contains the correct nunteproduce the scattering phase shifts by the DRapatrix calcu-
ber of nodes, and the phase-shifts satisfy the generalizédtion[8]

Levinson theorem27]. In the alternative pseudopotential de-

scription the states corresponding to the inner-shell electrons o @ A state A Y e
are excludedhby mr;[ro?éjglng a stronghrepul_swe g@@ For _ Rb 001 319.2 7.4975 'S 45642 1.3438 1.8883
a treatment that should incorporate the spin-orbit interaction, 35 68576 99898 23813

the second method is not acceptable, because the spin-orbit
interaction effects are most important at short distances,
where the electron accelerates to high velocity due to theCS
large nuclear charge. Therefore in the present paper, we usé
the model-potential method. However, we introduce a sepa-
rate local potential for each scattering symmeiey. Thus
the effective electron-atom interaction, B¢), still can be
called a pseudopotential.

For theSstate ofB™ (nys) we adopted the following form )
for Vs in Eq. (5) [29]( o ’ ’ where s= \k®—(Zc/c%), y=B8Zcr and Ji(y) is Bessel
function. Finally, we transform the obtained function into the

P —4.2625 1.0055 1.8869
Sp  —1.4523 4.8733 1.8160
0.01 402.2 7.2443 s 45396 1.3304 1.6848
S  93.936 7.5397 2.6856
P —-3.6681 1.3195 1.8031
3p 41271 2.2329 2.1294

A o LS representation

ey & (i )®
Vos(r)=——e "= — (1-e ("), (16)
r 2r ULSJ:(_1)1+J7L\ 28+l
while for the P-state we took L+(1/2) L J S
X > Up\2j+1y1 1 (19)
Ze —\r -y @ —(riro)® j=L-(112) 2 9
Vls(r)=—Te —Ae y—F(l—e 7). (17) 2 2
r

. . . All coefficients for the potentials are given in Table Il and
The nuclear charge ¢, and\ is the nuclear screening ¢qrresponding phase shifts for different states for Rb an Cs
parameter. Except fox, all other parameters depend &N 4ioms are given in Figs. 2 and 3. In cakel we present the
and S, and are dete_rmlned from a fit repro_ducmg the IOW'Iargest eigenphase of the two-channel problegris chosen
energy scattering eigenphases &2 obtained from the iy "gych way that the nuclear screening is negligible at
Dirac Rematrix calculations8,23] and binding energies of | ~anq at the same time the Coulomb electron-nuclear
negative ions. We ignore the-B interaction forL>1. In jneraction is small compared to the electron rest energy at
fitting procedure we take into account bound-states COI& ~  An order of magnitude estimate fog, is 0.01 a.u.
sponding to complete subshells which are filled by innenp, e 3p case the relativistic effectenainly, spin-orbit in-
electrons. Coefficients for theCs potential were calculated teraction are important. Therefore, we start numerical inte-

by Bahrimet al.[29]. _ gration with the function given by Eqé18) and(19). For the
The spin-orbit interaction calculated according t0 ES). g gtates and for the singlét state, we start with the nonrel-

has an unphysical §ingulgrityrf/at the origin. To fix this  agvistic Coulomb wave function regular at the origin. To
problem of the Pauli Hamiltonian we used the method intro-

duced in Ref[29]. In the region close to the origin, where

the spin-orbit term diverges, we employ the big component
G,(r) of the Dirac wave function for the pure Coulomb field 2
in the jj representation, and then transform it into the Pauli
wave function at =r using the following equation:

e-Rb

N U P LA B G g’
j,(r)— r ﬁ"‘ ra a-i-—r ;
df & 0
—Kgr| Gxl1), (18)
where k is the relativistic quantum number of the Dirac -1

theory andf(r)={8c?[1—(V/2c?)]?} 1. G,(r) with a very
good accuracy is given by the solution of the Dirac equation . L . L . L . L

N 0.00 0.05 0.10 0.15 0.20 0.25
for the zero nonrelativistic energy Energy (eV)

y FIG. 2. Phase shifts for low-energy andp-wave electron scat-
G(r)=(k—3)Jos(y)+ 5J : < gyandp
(1) = (1=8)Jas(y) 2728t () tering from Rb atom as a function of energy.

042709-5



KHUSKIVADZE, CHIBISOV, AND FABRIKANT PHYSICAL REVIEW A 66, 042709 (2002

3 T T v T v T v T v ZF(l— V) 1 14
e-Cs Go(RRRE)= —— (Z_ ;) M, 1/2(X) W, 1/2(X)
=M (X)W, 5(X) |,

wherex=2ZR/v. Equation(20) is the exact solution for the
delta potential which takes into account only s wave. The
correction due tg scattering can be incorporated using a
generalization of the Fermi method proposed by On8t.

The energy of a state with a large quantum defect is given by

Phase (radians)

Em(R)=Ep+ 27AK(R)| ¥ yim(R)|2

0.00 0.05 0.10 0.15 0.20 0.25 +67ALK(R)| VY yim(R)?,
Energy (ev)
where A,=—tan 5p/k3. In case of degenerate states, we
FIG. 3. Phase shifts for low-energy andp-wave electron scat- pave to diagonalize matri@m,(R):
tering from Cs atom as a function of energy. I

QM(R)=27AK(R)W (R m(R)
take into account a deviation from the pure Coulomb field,

we expand potential€l6) and(17) atr —0, introduce effec- +6mALKR)IVIE(RIVY 1 (R), (21)
tive chargez? and effective energf*, and write the regu-
lar function as wherel=1pin, ..., (0—=1) andl’ =y, ... ,(0=1). iy
is the minimal angular momentum for which quantum defect
Ue=M %1 5(1/2)(Y), is negligible.

To calculate gradients in ER1), we use the formul31]

wherev* =Z%/\2E* andy=8E*r,. For SstatesZy =A _ I+1 [dR, | _
and E*=Avy, and for the singleP-stateZ* =7, and E* VWam(MD== N7l ar ~ FRnI)YIm (0,0)
=ZA—A. M, (r) is the Whittaker's function regular at the

origin. As the initial condition for the states with greater [ /dRm [+1
+
2l+1

-
than 1, we take " *. \Tar Ty Rnl)Y|m1(9.¢>),

1. ZERO-RANGE-POTENTIAL AND FERMI POTENTIAL where W m(r) =R (1) Yim(6,¢) and Yim(6,¢) are vector
WITH P-WAVE CONTRIBUTION angular harmonics.

For comparison we also perform calculation in the zero-
range-potential approximatiof80] wherebye™-B interac-
tion is modeled by a delta potential with the energy-

IV. WAVE FUNCTION AND DIPOLE MOMENT OF
RYDBERG ELECTRON PERTURBED BY NEUTRAL ATOM

dependent scattering parameter. Adiabatic energy levels of A. General equations for the wave function
é(or}I)JrB(nos) system can be found by solving the equation In this section we use an analytical method to construct

adiabatic wave functions of hydrogenlike Rydberg atom, per-

turbed by a neutral atorB. A free Rydberg atom can be
+2m(Gor(RR,E(R)) + Ggq(R,R,E(R))=0, described, for example, by Coulomb spherical wave func-
tions ¢, m(r). However, if this atom is perturbed by a neu-
tral atom, the adiabatic Rydberg wave functions are signifi-
cantly changed. Energy levels of excited states of
where Ag(k(R))=—tandy(k)/k is the effective triplet hydrogenlike ions(H, He", Li**, etc) are degenerate,
s-wave scattering length for electron collision with the therefore outside the perturbing atdBnthe adiabatic Ryd-
ground-stateB(nos) atom expressed through the scatteringperg wave functions are significantly different from any
phase shifbs. k(R) is defined as the classical momentum Ofsingle spherical functiord/n|m(F). These functions are equal

the Rydberg electron to linear combinations of functiong,,(r). For the solution
2 of this problem we use the approach developed in Refs.
kR _ 1 25 33
2 R’ We will neglect the quantum defect associated with the
non-Coulomb part of the-A™ interaction and the spin-orbit
wheree is the Rydberg electron energy. Expression @y interaction effects described in the previous section. On the
in case of equal arguments has the following form: other hand, we will add some generality by considering in-

As(k(R)) 0
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teraction of Rydbergons A>~1 with the neutral atomB.  nant term in the spectral representation of the Coulomb
Since the range of the-B interaction is very small compared Green’s function. FoiL=0 this function is, therefore, re-
to the size of the Rydberg atom our analytical expressions foduced to a sum of products of Coulomb wave functions
the wave functions turn out to be very close to numericaly, (r) over the degenerate manifold, ¥ (R,r)
wave functions obtained from the Kirchhoff-integral method. =3, (F)w (ﬁ)
However, the Kirchhoff-integral method is necessary for,. o5 pim'/=nim
matching and obtaining adiabatic energy curves.

We start with the equation for the adiabatic wave function
(25,32

This sum has been expressed
[25,32 through a quadratic form of only one wave function
with zero angular momenturi=m=0. The wave function
of the Rydberg electron for the=0 dominated state and for
an arbitrary principal qguantum numbeiis [25,32]

VR = [ G BRI - R)WR i S vt Eunr(R)
I,m

(22 V(R )=
Wg will use the spectral representation @fwhich can be Qn(R)
s _ 4_22 Bno(Y) Pro(X) — DoY) dro(X)
o (D Paim(T) n? (x=y)VQn(R) ’
G(r,r ,E)—% —E-E, (23 7

where the sum denotes summation over the discreterhere the inverse square of the normalization constant is

negative-energy states and integration over continuum. debro(R)
If the wavelength of the Rydberg electron is large com-Q (R)= 2 | aim(R |2:(% +2 ¢n0(R)
pared to the effective range VKr) potentlal we can expand (28

the Green’s function in powers of( R)

and x,y=(Z/n)(r +R=|r—R|), where ¢no(X)=Xt/no(X)

G(r'.r.E)=GRI.E)+(r'=R)-V'G(r'..E)|r g+, are wave functions for zero angular momentlbsm=0.

(24 Using functiong27) we can rewrite the spectral represen-
and for the first nonvanishing term in expansion\Io(Ii,F) ]'Eat|on(23) of the Coulomb Green’s function in the following
we obtain orm

3 R . RV \(R,F
T, _o(R,r)=NyG(E,r,R), L=0, (25 G(R,r,E)=, (Q@n(R)™W o ), (29)
n E- En
- - J
v (RN)= NlM|F’=F}v L=1, (26)  where for every principal quantum numbepnly one wave
: function W, out of n? functions of the degenerate manifold
wherex, ,k=1,2,3 are Cartesian coordinatesrofx; axis is IS present.
directed alongi andNg 4 are normalization factord. is the _
. ' . C. The caseL=1
orbital momentum corresponding to the symmetry of the
electron wave function near the cen®rAs in the previous In this case we have three possible covalent wave func-
section, we concentrate on two casks;0 andL=1 rel- tions:
evant to the3S and °P e-B scattering. G
Expansion(25) is valid if the electric field &£Z/R?) of PR=""|- &, (30)
the atomic Rydberg core does not perturb significantly the Xy,

potential well of the atonB. For the systenRb* (n=30)
+Rb(5s) this is valid at the internuclear distancés  where the derivatives of the Coulomb Green’s function are

=100a, whereas the size of Rydberg orbit with=30 is (X T(1=2Zv) F{M,W}
_\2bJk - ) k '

180G, © WM.\
My 27 |r—R|

Xy,

: (31

ISR
B. The caseL=0
If the stable negative ionB~ exists, the Born- where rp,=r—R. If X3 axis is directed along vectoR,

Oppenheimer potential curves of the systagml)-B can be «{M.W} are given by the equations
separated into two classes: ionic and covalent curves. Each

' : ; 2 1 Zv R-r
adiabatic curve of the system changes its character from F (M W}=-WM'+| - —+ —- WM
ionic to covalent near the avoided crossing. The energy of v 2v. R R-—Xx3
the covalent state with negligible quantum defect is close to , ,
the energy of the hydrogenlike atoB,=—2Z2/2n?, there- _ WM:\{V M , (32)
fore, the wave function§25) are given mainly by the reso- |R—r|
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Zv

r+R
r+x3

WM

2 1
FrdMWj= WM+ = o+ 2

WM'—=W'M

— 33
Ao (33

¥ represents the state with zero projection of the orbital

angular momentunL on the internuclear axisn=0 (X
statd, whereasW(*? represent therea) states with|m|
=1 (IT states.

After taking the limitE—E,, in Egs.(31), (32), and(33)
we obtain the wave function of thHe=1 dominated state of
3, (m=0) symmetry[25]

TR,

G0 dinim(R)
dR

R RNCIRIG)
472 cosb,
n?r = RIVQP(R)
o ®r0(Y) Pno(X) = bno(Y) dno(X)

y—x + Pno(X) dho(y)
1 n? R-r
+ _Z+ﬁRTx3 Dno(X) dro(Y) | (34

where the inverse square of the normalization constant is

nim R Z
APR)=3 LB 2 e+ &) Qu(R
ZZ 2 ’
+?[(ﬁno(R)_ZRQBnO(R)d)nO(R)] (35
and for|m|=
TR,
o 'ﬁ:lm(r_)) &‘//nlm(ﬁ)
T VOIFI(R) d{X1.%ab 1/
~ (Xp)k 472
'y n?|r—RIVQI(R)
10(Y) Dno(X) = dno(Y) Ppo(X)
x[‘ﬁ oY) oo y_f WG | e (X))
1 n%(r+R)
+ 4+m bno(X) DoY) |, (36)

PHYSICAL REVIEW A 66, 042709 (2002

ﬂ‘ﬂnlm(ﬁ) ?

QAP(R)= 0

1
o

Im

Z
- ﬁwﬁo(m +Reno(R) dro(R)1. (37)

Functions¥ ,(R,r), Eq. (27), and ¥ (R,r), Egs.(34)
and (36) are wave functions of atomic Rydberg states
AZ=D*(n) perturbed by neutral atoB. They correspond to
the reconstructed basis of degenerate states. These functions
are correct outside the atoBhand should be joined with the
exact solution near the atoBas described in the previous
section.

In Fermi approach19] the potential energies of Rydberg
electron interaction with atorB are equal to

Ess(R)=2mA(K(R)| W (R,1)[?_z=27ALK(R)Qu(R),

(39)
dv (R, N)|?
Ees(R)=67ApK(R)| —5——|
=6mALK(R)QV(R). (39)

D. Dipole moments

Since the constructed wave functions are linear combina-
tions of states with differert they generate a nonzero dipole
momentd,(R):

R,r)|2dr,
(40

do(R) = (W |r cosa|\1fn)=f r cosf| W

where @ is the polar angle of the electron vectorlt can be
expressed through the radial matrix elements [33]:

S R 2dr=— 2T (n=1)

(41)

wheref, (r) are Coulomb radial wave functions. The dipole
moment(40) depends on the polar angﬂa of the vectorR.

If x5 axis is directed along vectdRr, then 0z=0 and the
dipole moment(40) is expressed thrugh the products of the
associated Legendre functionB|™(0)P|™,(0) with the
same quantum numbens which are not equal to zero only
for |/m|=0. The dipole moments of the states described by
functions(27) and(34) are

n-1

Ifn,I(R)fn,l—l(R)

(0) -

R T gm0 @
n-1 ’

(3) Z Int(R)f = 1(R), (43)

2mQPY(R)
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where the upper index 0 stands for théS state and 3 for Nondiagonal matrix elements of the dipole moment for
the> 3P state. The dipole moments of tlk states described transitions between different Rydberg states are
by function (36) are

n—-1 ’
n-1 2 I[f1-1(R)fn (R g
[ =D fa (R —1(R) dOIR)=> r ’ ’ (45)
dY(R)= . , 44 n < Inl )
WR)= 2 T 2 R0D(R) (44 =0 ™ 47 Qu(RIQPA(R)
Note that this dipole moment is zero for=2 since there is n-1 1f,1_1(R)f, (R)
the term containingy,s(r) in the linear combinatior(36) dOYR)== > 1, ' = (46
turns to zero in this case. 1=0 47TR\/QH(R)Qn “(R)
|
n—-1
I—D)f (R, «(R—(+D)f, (Rf,_(R
e R=S: 1r. DR 1<3> ( 1)2 (R 2(R) w
=" 87RVQIP(R)Q(R)
|
where dCDR)=(¥3)x,| ¥y =dB2(R) 3n(n—1)
(WO WDy, T dy(R)=———, R, (50)

For investigation of behavior of wave functions of active
states and their dipole moments in the lirRit>, we ex- .
press the Cartesian coordinatgsx, through the elliptic co- The dipole moments of Stark states ade=3n(n,
ordinates¢, 7: x;=ZR(1+€)/n, x,=ZR(1+ n)/n, where — —N2)/2Z [34]. At R— the state¥ (R,r) has the maxi-
¢&7=(r=|R—r|)/R, and we use the determination of the MUM dipole moment among states with a given principal
function ¢o: quantum nL_lmben. In this I|m|t the center of the electron
charge is displaced to the side of the neutral a®nThe

> _ function ¥((R,r) also has the limit(49) and the dipole
bno(T)= \/47”]7 exp( - 5) F(—n+1,27). moment(42) at R—o.

Stark states are eigenstates of hydrogenlike ions in a static
electric field. In our case atomic Rydberg electron interacts
At large R, near the Coulomb center, the elliptic coordinateswith a neutral atoni, and there is no electric field. However,
are close to the parabolic coordinatgs=r+xz, v=r Stark states are formed in the systé&i(n)+B at large
—X3: é=1-v/R+.--, p=—1+pu/R+---. Using the internuclear distanceR due to the special symmetry of the
asymptotic limit forQ,(R), Coulomb potential leading to degeneracy of the energy lev-
els. Consequently, wave functions of active states are equal
1 78 (ZZR) 2n-2 to sums of products of the Coulomb functions over degener-

ate manifolds. Dipole moments of these Stark states, formed
as limits of wave functions of active states, are parallel to the
27R internuclear axis and directed from perturbed at®rto the
><exp( — _> R (48)  nhucleus of Rydberg atomA* (n).

n In the limit R—o the wave function®*2(R,r), Eq.
(25), is

Qn(R)—nydy(R)=

(N2 7n2\ N

we obtain for theL = 0-dominated function?’ ,(R,r)

WEAARE) = oy (17, )

V(R z3%2 Z(ptv) . (
)= exp — —n V2(n—

n 27 2n b1 — 7512 2(n 1)\/56)(4_2(#;"'1/)

n3 n

Zu
+1;1,—], R—w. (49) Zu\{cose,sing}
XFl —n+2;2,—|————
n V7

This function describes a Stark state with parabolic quantum
numbersn, m=0, n;=n—1, n,=0 [34]. The limit of the (n,Im=1n;=n=2), R—ee. (5)

dipole moment(42) of the state¥ (R,r) is given by the
limits of the radial wave functions,(R) andf,_,(R) and This Stark state has the maximum dipole moment|fof
by the limit of Q,(R): =1, dyn-1=3n(n—2)/2Z,
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Energy(GHz)
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Energy(GHz)
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FIG. 6. The same as in Fig. 4. The region closente30 is

FIG. 4. Born-Oppenheimer potential curves for dber
PP P il g enlarged.

molecule. Full lines: calculation with Kirchhoff-integral approach;

Dashed lines: quasiclassical calculations with Borodin-Kazansky

model. The zero of the energy axis is taken to lie at the position of-:-rgly Ie\I/eIsf. l.hls splltrt]lng |sh eSSI;DpemaIIy crucial for the,Cs
the n=30 manifold with projection of total momentui ;=0. molecule(cf. I_Q. 5, where the’P resonance occurs at very
low energy which corresponds ®~ 1000 a.u. fom=30.

Note that only the curves correspondingde 0,2 sym-
metry oscillate as functions of internuclear distance. Indeed,

In Figs. 4—7 we present results of our calculations of thedue to properties of Clebsch-Gordan coefficients only the
energy curves of Rband Cs molecular Rydberg states with M ==*1 states contribute to the wave function of the
projection of total angular momem ;=0. The curves are =1 state, therefore the latter is in factkstate. The corre-
shown for the energy range lying betweer-29 andn sponding wave function is oriented perpendicular to the in-
=30. Each level is marked by the dominant symmetry neafernuclear axes. In this direction behavior of radial part is
the perturbeB. monotonic, and energy curves also behave monotonically. In

From each hydrogenic state we have six split levelscontrast the wave functions of tr?ePOVZ states contain thg
which correspond to théS,, *Py, 3S;, 3Py, 3P;, and 3P, component which reflects the oscillatory behavior of the ra-
symmetry of valence electron relative to the neutral atom. Irflial wave function along the internuclear axis. These oscil-
addition to that, the levels are marked by quantum numberkitions lead to the oscillatory behavior of the adiabatic en-
of Rydberg atomA corresponding to energy levels of sepa-€rgy curves. Recent calculations for RHL5| based on a
rated atoms. There are two distinctive features caused by tHgeneralization of the Fermi approach also confirm thatithe
presence of théP-dominated states. First, tiewave con-  curve does not oscillate
tribution significantly modifies energy spectra. Second, inter-

V. RESULTS AND DISCUSSION

action of the splitP levels with other pseudocrossed levels el Rb s " " J
causes enhancement of oscillations. L2 wsf {1
Spin-orbit interaction leads to the splitting of tH@ en- 78 %50 j\ /\J\J\ AR S
o 1.0 ¥ o2 = 1 1
-80 - 210 f -
— m-65.2
g 82 85.3 7
g -84 o4 60 R{s.u) 50 2000 —
5 86 | .
& I
2 88| -
w
-90 1 1 N 1 M
500 1000 1500 2000
R(a. u)
FIG. 7. The Born-Oppenheimer potential curve for the low-

500 * 7000 * 1500 * 2000 class of Rydberg states of the Rmolecule formed from 3d

Ra. u.) +5s states of separated atoms. Full line: Kirchhoff-integral ap-
proach whereM ;=0; dotted line: ZPR model calculation with
FIG. 5. The same as in Fig. 4 for Cmolecule. M_=0.
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0.0003

S wave
[ R=1075a.u.

0.0002

0.0001|

0.0000

-0.0001

¥ (R,r)

0.0002 P wave [ P wave
R=750 a. u. R=1075a. u.

Energy(GHz)

0.0001

0.0000

-0.0001

-0.0002

1} 500 1000 1500 2000 500 1000 1500 2000
r(a. u.)

500 1000 1500 2000

Ra.u) FIG. 9. The wave function® ,(R,r) for S and P-dominated

FIG. 8. RhS states. Full lines: calculation with the zero-range States, Eqs(27) and (34), plotted versus distance of Rydberg
potential model; dotted lines: the Fermi model with thevave  electron fromA* along the internuclear axiR, for internuclear
contribution; dashed lineEs (R) using formula(38); dash-dotted distanceR=750 a.u. andR=1075 a.u. for Rh
line: EPE(R) using formula(39).

. where 6(p(R)) is the scatterin hase shift ang(R

In Fig. 6 we present the same energy curves foy Wibh (p(R) gp m(R)

enlarged region close to the level=30 where the curves I_V(Z/R)—(l/vz)- The energy curves are roughly deter-
behavior becomes complicated due to the spin-orbit splittingnined by corresponding phase shifts for electron-neutral
and multiple pseudocrossings. The deepest minimum in thatom scattering, although the oscillations necessary for exis-
3S.dominated curve is destroyed by a pseudocrossing witftence of stable molecular states cannot be described by
the 3Py , curves, but local minima still exist with the po- simple Eq.(52). Behavior of the potential curves at relatively
tential barrier whose width is about 100 a.u. small internuclear distance is dominated by the polarization
In Fig. 7 we present energy curves corresponding to statesttraction betweerA™ and B. This means that the global
which originate from the 3d+5s state of separated atoms. minimum can exist only at very small distances where po-
The dotted line represents the result obtained using ZPRential curves turn up due to the repulsion betwAénandB.
model with the energy-dependent scattering length. The enThis region is not described by our mogel
ergy curves in the nested graph do not correspond to any |n Fig. 9 we present the electron wave functions

particular symmetry relative to the ground-state atom. Fory, (ﬁ F) E - :
i . o(R,r), Egs.(27) and(34), calculated for internuclear dis-
M ;=0 all curves are superposition &f andII states. More tanceR=750 a.u. andR=1075 and corresponding to tige

oscillatory energy curves are dominated®wgymmetry. The . ) -
energy curves are significantly modified due to interactiona.nd I?—dommated symmetries. The electron probability den-
with the 3P levels, but one important minimum at distance sity is mostly concentrated near the neutral atBmThe

R~1600 a.u., which supports several vibrational stads comparison of the analytical wave functioki,(R,r), Eq.

still exists. (27), with numerical results from the Kirchhoff-integral
Behavior of theS-dominated curves can be understood inmethod for the internuclear distan&=1230 a.u. are pre-

terms of the ZPR or the Fermi model with energy-dependensented in Fig. 10. Oscillatory behavior of the numerical wave

scattering lengtli6]. They reproduce energy curves close tofunction near the neutral atoBiis due to the complex struc-

exact calculation in the regions where there is no contributure of the pseudopotential, which supports energy levels

tion from theP-dominated levels. The levels, on the other corresponding to the closed subshells of the neutral atom.

hand, can be obtained employing the method developed byhe analytical wave function describes very well the actual

Omont[19], which is a generalization of the Fermi potential wave function in the region outside atdBn

model. Corresponding energy levels are shown in Fig. 8. The Dipole moments(42)—(47) are shown in Fig. 11. For

region close tR~700 a.u. is dominated by tHeresonance =1 andn= 30 the limiting value of dipole moment42) and

in e-Rb scatteringFig. 2), and here the Omont's formula is (43) is 1305 a.u. and the limiting value of the dipole moment

no longer valid, since it contains a divergent effective scat{44) is 1260 a.u. Nondiagonal matrix elements shown in Fig.

tering length. Analytical results obtained in the previous sec11(b) have different dependence &hand in the region of

tion [formula (38) and (39)] for the potentialsEsy (R) and  classically allowed motion of Rydberg electron they are

Ers(R) are also shown in Fig. 8. Overall behavior of energysmaller than the diagonal matrix element.

levels can be well described by the Borodin and Kazansky

model[3]
VI. CONCLUSION
E(R)=— ;2_ ﬁ, (52) We have calculated adiabatic energy curves for diatomic
ol n— 3(p(R)) 2R Rydberg Cs and R molecules. Our results confirm quali-
T tatively and semiquantitavely previous data obtained by
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seen from comparison of our calculations with the Borodin
and Kazansky moddl3]. At the same time our results are
more accurate than those obtained within the framework of
the Borodin-Kazansky model since the latter assumes the
small radius of the effective electron—atom interaction and
ignores the spin-orbit interaction.

The obtained results can be applied to designing Rydberg
molecules with huge dipole moment in the ultracold gas con-
ditions in Bose-Einstein condensates. The dipole moment of
the Rydberg states and transition dipole moments, calculated
in the present paper, would help to explore how the long-
range Rydberg states can be manipulated by laser radiation
and external static fields and to calculate their lifetimes with
respect to the spontaneous emission. On the other hand, stud-
ies of nonradiative nonadiabatic transitions between these
states would allow an accurate treatment of collisions of
Rydberg atoms with ground-state alkali-metal atoms.

FIG. 10. The comparison of the wave functidin,(R,r), Eq.
(27), with the results of numerical calculations; internuclear dis-
tanceR=1230 a.u. Full line corresponds to numerical result with-
out spin-orbit interaction and witM; =0 for Rb,.
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spin-orbit interaction modifies considerably energy levels.
Spin-orbit coupling is especially significant for the
3p-dominated states in the Cmolecule. At small distances
adiabatic energy curves are dominated by polarization inter-
actjon between the g_rqynd—stat_e atom and the Rydperg Core Green’s functionG, has singularity at=r'. In order to
which excludes possibility of existence of a global minimum 4,,iq problems with numerical integration, we extract the
in the energy curve at large internuclear distances. This,. . > o,
means that all equilibrium configurations supported by Iocaplvergmg part 1/&r|r —r'| as
minima are in fact metastable states whose lifetime is deter-
mined by the probability of tunneling into adjacent potential e I,
wells. Go(T—R,[" —R,Ef ) =Gor(r —R.I"~R,Ef; )~

The behavior of obtained energy curves is directly related
to the electron-atom scattering phase shifts, which is well
where G, is a regular part of the Green’s function. The
integrals of the singular part and its derivative are

APPENDIX: MATRIX ELEMENTS OF THE GREEN'’S
FUNCTION

2mr—r’|

26
-500 LL
LM | ——=—=|L'M_ )=
- < Homlr—r L> ro(2L+1)
< -1000
%;1500: and
1000
500 2
25/ (L+1)
] - LML - . > = L,ML :2LL—
dr 2z|r—r’| ra2L+1)

-500 [*

-1000 . . +
0 500 1000 1500 2000

R(a.u.)

Matrix elements of the regular Green’s function contain four-
dimensional integration. Using cylindrical symmetry of the
problem, they can be reduced to three-dimensional integrals.

states with wave function@7), (34), and(36) (n=230) as functions In the Gqq correction to the Green's function E'§I13)y
of internuclear distanc® for Rb,. (b) Nondiagonal dipole matrix ~arguments of the Whittaker’s functions,andr’, are inde-
elements(45)—(47) of Rydberg electron in states with wave func- pendent ofe. Therefore, integration ovep can be per-
tions (27), (34), and (36) (n=30) as functions of the internuclear formed analytically. For the matrix element Gf,4 we have
distancer. the following expression:

FIG. 11. (a) Dipole momentg42)—(44) of Rydberg electron in
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L JeLEnEL D= ML = M) T(1+1—v)sinm(u+1)(21+1)
(LML|GqglL"My)= \/ (L+[M DL+ M) VZ T(1+1+v)sinm(u —v)4
ZZr(x)) (22r’(x’)>
1 1 vl+1/2 vl+1/2 T
Xfflffl r(x)r’(x") F'ML(X’X’)PLML‘(X)P‘L'\fld(xr)d)(dxl

and for its derivative

dGyq| __\/(2L+1)(2L’+1)(L—|M,_|)!(L’—|M,_|)! ra+l-wv)sina(u+1)(21+1)
<LML ar |- ML>_ (L+[M DL+ M ]! VZ T(1+1+v)sinm(w—v)4
2r(x) 2r(x")
11 ) Wairae T)Wle/Z(T) Rx— 1,
Xf—lj—l 0T ) 002 F|ML(x,x )+ K(Xx,x )G|ML(x,x )
) 2r(x) 2r(x")
WV|+1/2<T)WV|+1/2<T) 2(RX =)
NG ) Hig (%X | = 0T O0) T (%) Fim (X,x") | dxdX,
where

1 (2n _
FIML(XrX’):ZfO Pi(cosy)eMtédg

[L/2] L—2n _aan .
_ 2 E ( 1) (2L 2n)' b(X,X,)ka(X,X/)L_Zn_k,

n=0 k=M ,k—M =even n!2k*L(L—n)!(L—2n—k)!(k_ML)' k+ML)!

2 ) 2

1 (2= .
G, 00x')= 5| Pitcosyyehsde

_[LE/Z] L_§_l (_l)n(ZL_zn)! b(X X/)ka(x Xl)L*anlfk
n=0 k=M k=M =even n!2k+"(L—n)!(L—2n—1—k)!(k_ML | k+M_ |

2 ) 2

1 (2= :
HIML(X,X’):ZJO P/ (cosy)cospe™Lede

1 tant (—1)"(2L—2n)!(k+1)
n=0 k=max(0OM —1)k—M —1=even n!2k+L+1(L—n)!(L—2n—1—k)!(k_'\gL+l ! k+|\/;|_+l !

X[b(x,x") ] [a(x,x")]- 217K,
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where ro Rx—ry f3
_ ’ ’ NIML(X’X,)= ’ 2 ’
cosy=a(x,x")+b(x,x")cose, rex)r(x’)  r(x)c r(x)r(x")
1 XAJ(1=x%)(1-x"?).

— 2 2 _ ’
a 2r(x)r(x’)[r(x) +r(X' ) =2ry+2roxx'],

Green’s function has poles at energies coinciding with
o undisturbed hydrogen levels. To avoid problem in numerical
=———J(1-x?)(1—x'?)

b= / search for zeros, it is useful to multiply all matrix elements
rxr(x’)
by the factor
r(x)=R?+r5—2Rrox,
roxX —RX > sina(u—v)
Kim (X,X") = ——— [
r(xr(x") —F(l—v) ,
RX—ro RZ=roRx—roRX +r3xx’
r(x)>? r(x)r(x") ’ which eliminates all energy poles in the matrix elements.
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