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Adiabatic energy levels and electric dipole moments of Rydberg states of Rb2 and Cs2 dimers

A. A. Khuskivadze,1 M. I. Chibisov,2 and I. I. Fabrikant1
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We calculate potential energy curves for heavy alkali-metal dimers, Rb2 and Cs2 in which one of the atoms
is in a highly excited Rydberg states. The method combines numerical integration of coupled equations,
describing interaction of electron with the ground-state atom in the field of the Coulomb core of the Rydberg
atom, with subsequent matching of the obtained wave function with the Coulomb Green’s function in the form
of the Kirchhoff integral. The spin-orbit interaction for the Rydberg electron is also included. The results show
the existence of several groups of states. Most interesting of them are dominated either by the3S symmetry
near the ground-state atom or by the3PJ symmetry,J50,1,2. All states, except the3P1 state, exhibit oscil-
latory dependence of energy on the internuclear distance that can support long-range molecular Rydberg states
@e.g., ‘‘trilobite states’’ for the3S symmetry, Greeneet al., Phys. Rev. Lett.85, 2458 ~2000!#. These states
possess large diagonal and transition dipole moments which are expressed analytically in terms of the Coulomb
wave functions and calculated in a broad range of internuclear separations.

DOI: 10.1103/PhysRevA.66.042709 PACS number~s!: 34.10.1x, 34.70.1e
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I. INTRODUCTION

Molecular Rydberg states play an important role in a
riety of collision processes such as inelastic collisions
Rydberg atoms with ground-state atoms, particularly co
sional broadening of Rydberg states@1–3#, charge transfer in
ion-atom and atom-atom collisions@4#, dissociative recombi-
nation@5#. Recently the interest to molecular Rydberg sta
has increased due to theoretical prediction@6# that a certain
class of molecular Rydberg states formed by interaction o
Rydberg atom with a ground-state Rb atom can be stab
very large internuclear separation, comparable to the siz
the Rydberg atoms. Even though the binding energies
these states are very small~of the order of 100 MHz!, they
are characterized by huge permanent dipole moments, w
makes it possible to produce and manipulate these state
external fields in Bose-Einstein condensates.

Low-energy electron scattering by alkali-metal atoms h
two distinctive features: a virtual3S state and a3P shape
resonance@1,7,8#. The 3P shape resonance occurs at ve
low energies~in meV energy range!, and it is very hard to
detect it experimentally@9#. An indirect information about
the 3P resonance can be obtained from experimental stu
@10,11# of collisions of Rydberg atomsA(nl) with ground-
state atomsB. In particular the resonance increases subs
tially cross sections for inelastic transitions inA(nl)-B col-
lisions and causes oscillatory behavior of the inelastic cr
section as a function of the principal quantum number of
Rydberg state. These features allowed a prediction@1,2# of
the 3P resonance ine-Cs scattering whose existence w
later confirmed byab initio calculations@12# and a direct
photodetachment experiment@13#.

The 3S and 3P features in the electron scattering b
alkali-metal atoms are crucial for formation of long-ran
molecular Rydberg states. They lead to oscillatory beha
of potential curves as functions of internuclear distances
local minima supporting localized vibrational states@6#. The
3S-dominated states were dubbed ‘‘trilobite states’’@6# due
1050-2947/2002/66~4!/042709~15!/$20.00 66 0427
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to specific shapes of their wave functions. The3P-dominated
states also exhibit oscillations@14,15#. The oscillatory behav-
ior of the potential curves can be well understood@16# in the
framework of the Fermi pseudopotential approach@17#. The
approach is valid when the interaction between the Rydb
electron and the neutral atomB can be described by a delt
potential containing a single parameter,e-B scattering
length. Several generalizations@18# of the Fermi approach
introduce an energy-dependent scattering length. Ano
generalization proposed by Omont@19# introduces energy-
dependent potential describingP-wave scattering. However
in the resonance region the pseudopotential is singular, a
is not clear how to avoid ambiguity in the treatment of th
singularity. A more traditional approach to the potent
curve calculation, based on the two-center expansion for
electron wave function, suffers from a poor convergence
to a very large number of coupled Rydberg states.

An alternative approach to the problem of a Rydberg el
tron interacting with a neutral atom was developed by Bo
din and Kazansky@3#. It is based on solving the Lippman
Schwinger equation for the electron wave functi
containing the Coulomb Green’s function of Hostler a
Pratt@20# and modified by Davydkinet al. @21#, to take into
account the quantum defect of the Rydberg state. T
Green’s function incorporates the coupling of many deg
erate Rydberg states leading to formation of so-called q
siadiabatic energy curves@3#. Assuming that thee-B interac-
tion is dominated by the3P resonance and the electron
wave length is large compared to the effective radius of
e-B interaction, one can obtain a simple expression for
quasiadiabatic energy curves~atomic units are used through
out the paper! @2,3#

E1,2521/@2~n1,2!#
2, ~1!

wheren1,2 are effective principal quantum numbers given

n15n2m0
f , n25n2d„p~R!…/p, ~2!
©2002 The American Physical Society09-1
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wherem0
f is the fractional part of the quantum defect of t

Rydberg state,d(p) is the scattering phase shift in the3P
symmetry, andp(R)5(2/R21/n2)1/2 is the classical mo-
mentum of the electron in the Coulomb field ofA1.

The first solution in Eq.~2! gives a covalent Rydberg sta
whose energy, in the first approximation, is independen
the internuclear distanceR, whereas the second solution r
sults from the interaction between the3P resonance state
and a degenerate manifold of Rydberg states. The interac
between these quasiadiabatic states leads to formatio
adiabatic energy curves. Since the coupling between the
siadiabatic states oscillates withn, this produces an oscilla
tory dependence of the inelastic collision cross section on.
In another case of scattering by an atom with a very low
positive electron affinity the coupling parameter depends
n exponentially, and this produces a sharp peak in the ine
tic cross section@22#.

The Borodin-Kazansky model@3#, while providing a
qualitative and semiquantitative understanding of the in
ence of the3P resonance on interaction between Rydbe
atoms and ground-state alkali-metal atoms, contains sev
approximations which limit significantly the accuracy of th
results. The most severe approximation is the assump
about the small radius of thee-B interaction which is not
well justified because of high polarizabilities of alkali-met
atoms. Another drawback of previous calculations for alka
metal containing Rydberg systems is that they do not incl
spin-orbit interaction that appears to be important in hea
alkali-metal atoms, Rb and Cs. The spin-orbit interact
leads to the fine-structure splitting of the3P resonance
@12,23# of the order of few meV which is a substantial e
ergy for this problem.

In the present paper, we extend the approach of Boro
and Kazansky by lifting the restriction on the radius of t
e-B interaction. This can be accomplished by using
Kirchhoff-integral method@24# for matching the electron
wave function in two regions of space: the region domina
by thee-B interaction and the region dominated by thee-A1

interaction. Thee-A1 interaction can be taken into accou
exactly, using the Coulomb’s Green function including t
quantum defect@21#. Interaction of an electron with a neutra
atom is presented by a pseudopotential, which reprodu
correct phase shifts from the DiracR-matrix calculations@23#
and binding energies for corresponding negative ion. T
obtained potential-energy curves can be employed for ca
lation of inelastic processes inA-B collisions and for calcu-
lations of properties of long-range molecular Rydberg sta
One of their most important features are dipole moments
appear due to orientation of the Rydberg atomA in the pres-
ence of a perturberB. This problem is similar to orientation
of a hydrogenlike atom in the presence of an external st
field, and can be solved in a similar way. Specifically, we c
construct the zero-order wave function for the systemA-B
using unperturbed Coulomb wave functions describing
e-A1 interaction@25#. For the purpose of studying of a mor
general problem of collisions of Rydberg ions with neutra
we discuss wave functions and dipole moments of ato
Rydberg statesA* ,(Z21)1(n) perturbed by a neutral atomB.
We apply results to the systems Rb* (n530)1Rb(5s) and
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Cs* (n530)1Cs(6s) @6#. This is important for understand
ing of how molecular Rydberg states interact with elect
magnetic field, either by spontaneous emission or by c
pling with a laser radiation. For example, the trilobite sta
discussed in Ref.@6# is dominated by the3S symmetry near
the perturbing~ground-state Rb! atom. However, the state
dominated by the3P symmetry is coupled by the dipol
interaction with the3S-dominated state leading to the d
struction of the latter.

The rest of the paper is organized as follows. In Sec. II
describe our method of potential curve calculations. Sec
discusses a simplified approach based on the zero-ra
potential model. Section IV discusses an analytical appro
allowing us to obtain expressions for the wave functions o
side the range ofe-B interaction and dipole moments of th
systems. Presentation of results given in Sec. V followed
Conclusion, Sec. VI.

II. SOLUTION OF THE ADIABATIC SCHRO ¨ DINGER
EQUATION BASED ON THE KIRCHHOFF-INTEGRAL

APPROACH

A. Formulation

The Hamiltonian of the systemA(nl)1B(n0s) reduces in
the adiabatic approximation to the Hamiltonian of an ele
tron in the presence of the neutral atomB(n0s) and the Cou-
lomb centerA1. The corresponding Schro¨dinger equation is

S 2
1

2
¹21V̂~rW !2

1

urW2RW u
1Vqd~rW2RW !2

adrW•RW

r 3R3

2EMJ

e ~R!D CMJ
~RW ,rW !50, ~3!

where V̂(rW) is a nonlocal short-range potential for th
e2-B(n0s) interaction,ad is the polarizability of the atomB.
Vector RW is directed from the neutral centerB to the Cou-
lomb centerA1. Vqd is a short-range correction to the Co
lomb potential which can be described by the quantum
fect. We do not need the explicit form ofVqd if it is
negligible outside the atomic coreA1. The coordinate sys-
tem employed in this paper is presented in Fig. 1.

The fifth term in Eq.~3! describes three-body polarizatio
interaction, that ise-B interaction due to polarization ofB by
A1 plus A1-B interaction due to polarization ofB by e.
Finally, the energy of theB(n0s)1A1 molecule is given by

EMJ
~R!5EMJ

e ~R!2
ad

2R4
,

where the last term describes theA1-B(n0s) polarization
interaction.

The pseudopotential for thee-B interaction is chosen in
the form

V̂~rW !5(
a

gLS~r !ua&^au, ~4!
9-2
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where

gLS~r !5VLS~r !1
1

2c2r

dVLS

dr
~ lW•sW !, ~5!

and lW•sW operator acts only on the Rydberg electron, since
assume that the valence electron is in thes state.a in Eq. ~4!
stands for$L,S,J%, quantum numbers of the orbital angul
momentum, spin, and total angular momentum of two el
trons relative to the neutral atom.ua& is a two-electron spinor

ua&5uLSJMJ&

5 (
ML ,MS

CLMLSMS

JMJ uLML& (
m1m2

C(1/2)m1(1/2)m2

SMS U12 m1L
3U12 m2L , ~6!

whereCLMLSMS

JMJ are Clebsch-Gordon coefficients,uLML& are

spherical harmonics,u 1
2 m1&, u 1

2 m2& identify spin states of the
Rydberg and the valence electrons, andMJ is the conserved
projection of the total angular momentum on the quanti
tion axis.

The nonlocal potential~4! describinge2-B(n0s) interac-
tion has a local components~5! for certain angular momen
tum L and spinS of e2-B(n0s) system. Therefore, to find
solution to Eq.~3!, we expand the wave functionCMJ

(RW ,rW)
in two-electron spinors, Eq.~6!

CMJ
~RW ,rW !5(

a8

1

r
ua8~r ,R!ua8&. ~7!

After substituting Eq.~7! into Eq. ~3!, neglectingVqd , and
projecting on^au, we obtain the following system of differ
ential equations

FIG. 1. Coordinate system employed in the paper.RW is a vector

directed from neutral atomB to the coreA1 of Rydberg atom.rW is
a vector pointed from neutral atomB to the valance electron.r 0 is
the radius of the sphere within which we perform analytical Dir
calculation.r m is the radius of the sphere outside which short-ran
interaction is negligible.
04270
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S 2
1

2

d2

dr2
2

L~L11!

2r 2
1VLS~r !2EMJ

e ~R!D ua~r ,R!

5(
a8

S Daa8~r ,R!2
1

2c2r

dVL8S8
dr

Baa8D ua8~r ,R!,

where

Daa8~r ,R!5K LSJMJU 1

urW2RW u
1

adrW•RW

r 3R3 UL8S8J8MJL
and

Baa85^LSJMJu lW•sWuL8S8J8MJ&.

Using Eq.~6! and the expansion

1

urW2RW u
5(

l

r l

Rl 11
A 4p

2l 11
Yl0~ r̂ ! ~r ,R! ~8!

and choosingz axis alongRW , we obtain

Daa8~r ,R!5dSS8

~21!S2MJ

R

3A~2J11!~2J811!~2L11!~2L811!

3 (
l 5uL2L8u

L1L8 F S r

RD l

1
ad

r 2R
d l1G S L l L 8

0 0 0 D
3S J l J8

MJ 0 2MJ
D H L L8 l

J8 J SJ . ~9!

Symbols in parenthesis and braces denote 3j and 6j coeffi-
cients, respectively.

For Baa8 we obtain

Baa85~21!LdJJ8dLL8L~L11!

3A~2S11!~2S811! (
j 5L2(1/2)

L1(1/2)

~21! j 2L1(1/2)

3H L S J

1

2
j

1

2
J H L S8 J

1

2
j

1

2
J .

The sum in Eq.~7! converges fast, and can be truncated
a relatively low Lmax. In our calculationLmax52 gives
stable results. A general solution of the system of 4Lmax
12 second-order differential equations is a linear combi
tion of 4Lmax12 linear-independent solutions regular at t
origin

ua~r ,R!5(
a8

Aa8vaa8~r ,R!, ~10!

where a8 enumerates independent solutions, andAa8 are
constants.

e

9-3
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To find the energy of the system and coefficientsAa8 , we
use the Kirchhoff-integral method@24#. Green’s function for
the Coulomb field with quantum defect satisfies the follo
ing equation:

S 2
1

2
¹22

1

urW2RW u
1Vqd~rW2RW !2EMJ

e ~R!D G„rW2RW ,rW8

2RW ,EMJ

e ~R!…52d~rW2rW8!, ~11!

where G(rW,rW8,E)5G0(rW,rW8,E)1Gqd(rW,rW8,E). G0(rW,rW8,E)
is the Green’s function for a pure Coulomb field a
Gqd(rW,rW8,E) is a correction due to the quantum defect. T
Coulomb Green’s function is@20#

G0~rW,rW8,E!5 2
G~12n!

2purW2rW8u
@Wn1/2~x!M n1/28 ~y!

2Wn1/28 ~x!M n1/2~y!#, ~12!

where

x5
1

n
~r 1r 81urW2rW8u!,

y5
1

n
~r 1r 82urW2rW8u!

andW andM are Whittaker’s functions. The quantum defe
correction has the following form@21#:

Gqd~rW,rW8,E!5
n21

rr 8
(

l

G~11 l 2n!sin p~m l1 l !~2l 11!

G~11 l 1n!sin p~m l1n!4p

3Wn l 11/2S 2r

n DWn l 11/2S 2r 8

n D Pl~cosg!,

~13!

wherem l are quantum defects given in Table I,g is the angle
betweenrW and r 8W andPl(x) are Legendre polynomials.

We now multiply Eq.~3! by G„rW2RW ,rW82RW ,EMJ

e (R)…, Eq.

~11! by CMJ
(RW ,rW), subtract one from another, and integra

over rW. Then we obtain

TABLE I. Approximate mean values of quantum defectsd l for
n.10 @35,36#.

L 0 1 2 3 4 5

Cs 4.05 3.60 2.50 0.03 0.011 0.002
Rb 3.13 2.65 1.34 0.02 0.004 0.001
04270
-

t

R
S
S G„rW2RW ,rW82RW ,EMJ

e ~R!…
d

dr
CMJ

~RW ,rW !

2CMJ
~RW ,rW !

d

dr
G„rW2RW ,rW82RW ,EMJ

e ~R!…Dds

1E
V
V̂~rW !G„rW2RW ,rW82RW ,EMJ

e ~R!…CMJ
~RW ,rW !drW50,

~14!

whereV is the volume outside the sphere of radiusr m around
the neutral centerB andS is the surface enclosing this vo
ume. Here we use transformation of volume integral to
surface integral for the part which contains kinetic ener
operator and taker 8→r m20 which gives zero contribution
from the delta function.

The integrand in the volume integral contains the sho
range potentialV̂. Therefore, if the radius of the sphere is b
enough, its contribution is small.V̂ outside the atom behave
like ad/2r 4. Thereforer m can be determined from the con
dition ad/2r m

4 !1/(R1r m). Thus only the surface integra
contributes to the left-hand side. of Eq.~14!. This gives us a
matching condition for the wave function. In order to dete
mine the energy, we have to substitute expansion for
wave function, Eqs.~7! and~10!, into Eq.~14! and project on
^au. We obtain

(
a

Aa9Maa9~EMJ

e !50, ~15!

where

Maa9~EMJ

e !5(
a8

dSS8 (
MLMS

CLMLSMS

JMJ C
L8MLSMS

J8MJ

3S ^LMLuGuL8ML&
d

dr

va8a9
r

2
va8a9

r K LMLU dG

dr UL8MLL D .

We have taken into account that Green’s function depe
only on difference of azimuthal anglesw2w8 of rW and rW8
vectors and therefore, ^LMLuGuL8ML8&
5dMLM

L8
^LMLuGuL8ML&. Equation~15! is a homogeneous

system of algebraic equations. It can have a nontrivial so
tion only if the determinant ofMaa8(EMJ

e ) is zero. This gives

us an equation for determination of the energy. To determ
Aa coefficients one additional condition is required, which
normalization. Some details of those calculation can
found in the Appendix.

B. Pseudopotentials fore-Rb and e-Cs interaction

There are basically two methods for the description of
effective interaction between an electron and a ma
electron atom@26#: in the model-potential approach the e
fective interaction is attractive and leads to unphysical sta
9-4
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arising from the presence of filled atomic subshells. In t
case, the scattering wave function contains the correct n
ber of nodes, and the phase-shifts satisfy the general
Levinson theorem@27#. In the alternative pseudopotential d
scription the states corresponding to the inner-shell elect
are excluded by introducing a strong repulsive core@28#. For
a treatment that should incorporate the spin-orbit interact
the second method is not acceptable, because the spin-
interaction effects are most important at short distanc
where the electron accelerates to high velocity due to
large nuclear charge. Therefore in the present paper, we
the model-potential method. However, we introduce a se
rate local potential for each scattering symmetryua&. Thus
the effective electron-atom interaction, Eq.~4!, still can be
called a pseudopotential.

For theSstate ofB2(n0s) we adopted the following form
for VLS in Eq. ~5! @29#

V0S~r !52
A

r
e2gr2

a

2r 4
~12e2(r /r c)6

!, ~16!

while for theP-state we took

V1S~r !52
Zc

r
e2lr2Ae2gr2

a

2r 4
~12e2(r /r c)6

!. ~17!

The nuclear charge isZc , andl is the nuclear screenin
parameter. Except forl, all other parameters depend onL
and S, and are determined from a fit reproducing the lo
energy scattering eigenphases forJ<2 obtained from the
Dirac R-matrix calculations@8,23# and binding energies o
negative ions. We ignore thee-B interaction forL.1. In
fitting procedure we take into account bound-states co
sponding to complete subshells which are filled by inn
electrons. Coefficients for thee-Cs potential were calculate
by Bahrimet al. @29#.

The spin-orbit interaction calculated according to Eq.~5!
has an unphysical singularity 1/r 3 at the origin. To fix this
problem of the Pauli Hamiltonian we used the method int
duced in Ref.@29#. In the region close to the origin, wher
the spin-orbit term diverges, we employ the big compon
Gk(r ) of the Dirac wave function for the pure Coulomb fie
in the j j representation, and then transform it into the Pa
wave function atr 5r 0 using the following equation:

U jl ~r !5F12r f
d2

dr2
1S f 2r

d f

dr D d

dr
1

k~k12!

r

2k
d f

drGGk~r !, ~18!

where k is the relativistic quantum number of the Dira
theory andf (r )5$8c2@12(V/2c2)#2%21. Gk(r ) with a very
good accuracy is given by the solution of the Dirac equat
for the zero nonrelativistic energy

Gk~r !5~k2s!J2s~y!1
y

2
J2s11~y!,
04270
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where s5Ak22(Zc
2/c2), y5A8Zcr and Js(y) is Bessel

function. Finally, we transform the obtained function into t
LS representation

uLSJ5~21!11J2LA2S11

3 (
j 5L2(1/2)

L1(1/2)

U jLA2 j 11H L J S

1

2

1

2
j J . ~19!

All coefficients for the potentials are given in Table II an
corresponding phase shifts for different states for Rb an
atoms are given in Figs. 2 and 3. In caseJ51 we present the
largest eigenphase of the two-channel problem.r 0 is chosen
in such way that the nuclear screening is negligible
r ,r 0, and at the same time the Coulomb electron-nucl
interaction is small compared to the electron rest energ
r .r 0. An order of magnitude estimate forr 0 is 0.01 a.u.
In the 3P case the relativistic effects~mainly, spin-orbit in-
teraction! are important. Therefore, we start numerical in
gration with the function given by Eqs.~18! and~19!. For the
S states and for the singletP state, we start with the nonrel
ativistic Coulomb wave function regular at the origin. T

TABLE II. The fit parameters for the pseudopotentials used
reproduce the scattering phase shifts by the DiracR-matrix calcu-
lation @8#

r 0 a l state A g r c

Rb 0.01 319.2 7.4975 1S 4.5642 1.3438 1.8883
3S 68.576 9.9898 2.3813
1P 24.2625 1.0055 1.8869
3P 21.4523 4.8733 1.8160

Cs 0.01 402.2 7.2443 1S 4.5396 1.3304 1.6848
3S 93.936 7.5397 2.6856
1P 23.6681 1.3195 1.8031
3P 4.1271 2.2329 2.1294

FIG. 2. Phase shifts for low-energys- andp-wave electron scat-
tering from Rb atom as a function of energy.
9-5
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KHUSKIVADZE, CHIBISOV, AND FABRIKANT PHYSICAL REVIEW A 66, 042709 ~2002!
take into account a deviation from the pure Coulomb fie
we expand potentials~16! and~17! at r→0, introduce effec-
tive chargeZc* and effective energyE* , and write the regu-
lar function as

ua5M n* l 1~1/2!~y!,

wheren* 5Zc* /A2E* andy5A8E* r 0. For S statesZc* 5A
and E* 5Ag, and for the singletP-stateZc* 5Zc and E*
5Zcl2A. M nm(r ) is the Whittaker’s function regular at th
origin. As the initial condition for the states withL greater
than 1, we taker 0

L11.

III. ZERO-RANGE-POTENTIAL AND FERMI POTENTIAL
WITH P-WAVE CONTRIBUTION

For comparison we also perform calculation in the ze
range-potential approximation@30# wherebye2-B interac-
tion is modeled by a delta potential with the energ
dependent scattering parameter. Adiabatic energy level
A(nl)1B(n0s) system can be found by solving the equati
@30#

21

As„k~R!…
12p„G0r~R,R,E~R!…1Gqd„R,R,E~R!…50,

~20!

where As„k(R)…52tands(k)/k is the effective triplet
s-wave scattering length for electron collision with t
ground-stateB(n0s) atom expressed through the scatteri
phase shiftds . k(R) is defined as the classical momentum
the Rydberg electron

@k~R!#2

2
5«1

1

R
,

where« is the Rydberg electron energy. Expression forG0r
in case of equal arguments has the following form:

FIG. 3. Phase shifts for low-energys- andp-wave electron scat-
tering from Cs atom as a function of energy.
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G0r~R,R,E!5
ZG~12n!

pn F S 1

4
2

n

xD M n1/2~x!Wn1/2~x!

2M n1/28 ~x!Wn1/28 ~x!G ,
wherex52ZR/n. Equation~20! is the exact solution for the
delta potential which takes into account only s wave. T
correction due top scattering can be incorporated using
generalization of the Fermi method proposed by Omont@19#.
The energy of a state with a large quantum defect is given

Em~R!5Enl12pAs„k~R!…uCnlm~RW !u2

16pAp„k~R!…u¹Cnlm~RW !u2,

where Ap52tandp /k3. In case of degenerate states, w
have to diagonalize matrixQll 8

m (R):

Qll 8
m

~R!52pAs„k~R!…Cnlm* ~RW !Cnl8m~RW !

16pAp„k~R!…¹Cnlm* ~RW !¹Cnl8m~RW !, ~21!

where l 5 l min , . . . ,(n21) and l 85 l min , . . . ,(n21). l min
is the minimal angular momentum for which quantum def
is negligible.

To calculate gradients in Eq.~21!, we use the formula@31#

¹Cnlm~rW !52A l 11

2l 11S dRnl

dr
2

l

r
RnlDYW lm

l 11~u,w!

1A l

2l 11S dRnl

dr
1

l 11

r
RnlDYW lm

l 21~u,w!,

where Cnlm(rW)5Rnl(r )Ylm(u,w) and YW lm
l 8 (u,w) are vector

angular harmonics.

IV. WAVE FUNCTION AND DIPOLE MOMENT OF
RYDBERG ELECTRON PERTURBED BY NEUTRAL ATOM

A. General equations for the wave function

In this section we use an analytical method to constr
adiabatic wave functions of hydrogenlike Rydberg atom, p
turbed by a neutral atomB. A free Rydberg atom can be
described, for example, by Coulomb spherical wave fu
tions cnlm(rW). However, if this atom is perturbed by a ne
tral atom, the adiabatic Rydberg wave functions are sign
cantly changed. Energy levels of excited states
hydrogenlike ions~H, He1, Li11, etc.! are degenerate
therefore outside the perturbing atomB the adiabatic Ryd-
berg wave functions are significantly different from an
single spherical functioncnlm(rW). These functions are equa
to linear combinations of functionscnlm(rW). For the solution
of this problem we use the approach developed in R
@25,32#.

We will neglect the quantum defect associated with
non-Coulomb part of thee-A1 interaction and the spin-orbi
interaction effects described in the previous section. On
other hand, we will add some generality by considering
9-6
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teraction of Rydbergions AZ21 with the neutral atomB.
Since the range of thee-B interaction is very small compare
to the size of the Rydberg atom our analytical expressions
the wave functions turn out to be very close to numeri
wave functions obtained from the Kirchhoff-integral metho
However, the Kirchhoff-integral method is necessary
matching and obtaining adiabatic energy curves.

We start with the equation for the adiabatic wave funct
@25,32#

C~RW ,rW !5E G~rW,rW8,E!V̂~rW !~ urW82RW u!C~RW ,rW8!drW8.

~22!

We will use the spectral representation ofG which can be
written as

G~rW,rW 8,E!5(
nlm

cnlm* ~rW !cnlm~rW8!

E2En
, ~23!

where the sum denotes summation over the disc
negative-energy states and integration over continuum.

If the wavelength of the Rydberg electron is large co
pared to the effective range ofV̂(rW) potential, we can expand
the Green’s function in powers of (rW82RW )

G~rW8,rW,E!.G~RW ,rW,E!1~rW82RW !•¹W 8G~rW8,rW,E!urW85RW 1•••,

~24!

and for the first nonvanishing term in expansion ofC(RW ,rW)
we obtain

CL50~RW ,rW !5N0G~E,rW,RW !, L50, ~25!

CL51
(k) ~RW ,rW !5N1

]G

]$xk%
urW85RW , L51, ~26!

wherexk ,k51,2,3 are Cartesian coordinates ofrW, x3 axis is
directed alongRW andN0,1 are normalization factors.L is the
orbital momentum corresponding to the symmetry of
electron wave function near the centerB. As in the previous
section, we concentrate on two cases,L50 and L51 rel-
evant to the3S and 3P e-B scattering.

Expansion~25! is valid if the electric field (.Z/R2) of
the atomic Rydberg core does not perturb significantly
potential well of the atomB. For the systemRb* (n530)
1Rb(5s) this is valid at the internuclear distancesR
>100a0 whereas the size of Rydberg orbit withn530 is
1800a0.

B. The caseLÄ0

If the stable negative ionB2 exists, the Born-
Oppenheimer potential curves of the systemA(nl)-B can be
separated into two classes: ionic and covalent curves. E
adiabatic curve of the system changes its character f
ionic to covalent near the avoided crossing. The energy
the covalent state with negligible quantum defect is close
the energy of the hydrogenlike atomEn52Z2/2n2, there-
fore, the wave functions~25! are given mainly by the reso
04270
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nant term in the spectral representation of the Coulo
Green’s function. ForL50 this function is, therefore, re
duced to a sum of products of Coulomb wave functio
cnlm(rW) over the degenerate manifold,Cn(RW ,rW)
>( l ,mcnlm* (rW)cnlm(RW ). This sum has been expresse
@25,32# through a quadratic form of only one wave functio
with zero angular momentuml 5m50. The wave function
of the Rydberg electron for theL50 dominated state and fo
an arbitrary principal quantum numbern is @25,32#

Cn~RW ,rW ![

(
l ,m

cnlm* ~rW !cnlm~RW !

AQn~R!

5S 4Z2

n2 D fn08 ~y!fn0~x!2fn0~y!fn08 ~x!

~x2y!AQn~R!
,

~27!

where the inverse square of the normalization constant i

Qn~R![(
l ,m

ucnlm~RW !u25S dfn0~R!

dR D 2

12S En1
Z

RDfn0
2 ~R!,

~28!

and x,y5(Z/n)(r 1R6urW2RW u), where fn0(x)5xcn0(x)
are wave functions for zero angular momentuml 5m50.

Using functions~27! we can rewrite the spectral represe
tation ~23! of the Coulomb Green’s function in the followin
form

G~RW ,rW,E!5(
n

„Qn~R!…1/2Cn~RW ,rW !

E2En
, ~29!

where for every principal quantum numbern only one wave
function Cn out of n2 functions of the degenerate manifo
is present.

C. The caseLÄ1

In this case we have three possible covalent wave fu
tions:

C (k).
]G

]xk8
urW8→RW , ~30!

where the derivatives of the Coulomb Green’s function a

]G

]xk8
U

rW8→RW

5
~xb!k

r b

G~12Zn!

2p
•

Fk$M ,W%

urW2RW u
, ~31!

where rWb[rW2RW . If x3 axis is directed along vectorRW ,
Fk$M ,W% are given by the equations

F3$M ,W%5
2

n
W8M 81S 2

1

2n
1

Zn

R
•

R2r

R2x3
DWM

2
WM82W8M

uRW 2rWu
, ~32!
9-7
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F1,2$M ,W%5
2

n
W8M 81S 2

1

2n
1

Zn

R
•

r 1R

r 1x3
DWM

2
WM82W8M

uRW 2rWu
. ~33!

C (3) represents the state with zero projection of the orb
angular momentumL on the internuclear axis,m50 (S
state!, whereasC (1,2) represent the~real! states withumu
51 (P states!.

After taking the limitE→En in Eqs.~31!, ~32!, and~33!
we obtain the wave function of theL51 dominated state o
S (m50) symmetry@25#

Cn
(3)~RW ,rW !

[(
l ,m

cnlm* ~rW !

AQn
(3)~R!

dcnlm~RW !

dR

52
4Z2 cosub

n2urW2RW uAQn
(3)~R!

3Ffn08 ~y!fn0~x!2fn0~y!fn08 ~x!

y2x
1fn08 ~x!fn08 ~y!

1S 2
1

4
1

n2

2ZR

R2r

R2x3
Dfn0~x!fn0~y!G , ~34!

where the inverse square of the normalization constant i

Qn
(3)~R!5(

lm
Udcnlm~RW !

dR
U2

5
2

3 S En1
Z

RDQn~R!

1
2Z

3R3
@fn0

2 ~R!22Rfn0~R!fn08 ~R!# ~35!

and for umu51

Cn
(1,2)~RW ,rW !

[(
l ,m

cnlm* ~rW !

AQn
(1,2)~R!

]cnlm~RW !

]$x1 ,x2%
U

rW85RW

52
~xb!k

r b

4Z2

n2urW2RW uAQn
(1)~R!

3Ffn08 ~y!fn0~x!2fn0~y!fn08 ~x!

y2x
1fn08 ~x!fn08 ~y!

1S 2
1

4
1

n2~r 1R!

2ZR~r 1x3! Dfn0~x!fn0~y!G , ~36!
04270
l

Qn
(1)~R!5

1

R2 (
lm

U]cnlm~RW !

]u
U

u50

2

5
2

3 S En1
Z

RDQn~R!

2
Z

3R3
@fn0

2 ~R!1Rfn0~R!fn08 ~R!#. ~37!

FunctionsCn(RW ,rW), Eq. ~27!, and Cn
(k)(RW ,rW), Eqs. ~34!

and ~36! are wave functions of atomic Rydberg stat
A(Z21)1(n) perturbed by neutral atomB. They correspond to
the reconstructed basis of degenerate states. These func
are correct outside the atomB and should be joined with the
exact solution near the atomB as described in the previou
section.

In Fermi approach@19# the potential energies of Rydber
electron interaction with atomB are equal to

ESS~R!52pAs„k~R!…uCn~RW ,rW !urW5RW
2

52pAs„k~R!…Qn~R!,
~38!

EPS~R!56pAp„k~R!…UdCn
(3)~RW ,rW !

dr
U

rW5RW

2

56pAp„k~R!…Qn
(3)~R!. ~39!

D. Dipole moments

Since the constructed wave functions are linear comb
tions of states with differentl, they generate a nonzero dipo
momentdn(R):

dn~R!5^Cnur cosuuCn&5E r cosuuCn~RW ,rW !u2d3r ,

~40!

whereu is the polar angle of the electron vectorrW. It can be
expressed through the radial matrix elements ofr @33#:

r nl[E r f nl21~r ! f nlr
2dr52

3n

2Z
An22 l 2 ~n>1!,

~41!

wheref nl(r ) are Coulomb radial wave functions. The dipo
moment~40! depends on the polar angleuR of the vectorRW .
If x3 axis is directed along vectorRW , then uR50 and the
dipole moment~40! is expressed thrugh the products of t

associated Legendre functionsPl
umu(0)Pl 21

umu (0) with the
same quantum numbersm which are not equal to zero onl
for umu50. The dipole moments of theS states described by
functions~27! and ~34! are

dn
(0)~R!5 (

l 50

n21

r n,l

l f n,l~R! f n,l 21~R!

2pQn~R!
, ~42!

dn
(3)~R!5 (

l 50

n21

r n,l

l f n,l8 ~R! f n,l 218 ~R!

2pQn
(3)~R!

, ~43!
9-8
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where the upper index 0 stands for theS3S state and 3 for
theS3P state. The dipole moments of theP states described
by function ~36! are

dn
(1)~R!5 (

l 50

n21

r nl

l ~ l 221! f nl~R! f n,l 21~R!

4pR2Qn
(1)~R!

, ~44!

Note that this dipole moment is zero forn52 since there is
the term containingc2S(r ) in the linear combination~36!
turns to zero in this case.
ve

e

te

tu

04270
Nondiagonal matrix elements of the dipole moment
transitions between different Rydberg states are

dn
(0,3)~R!5 (

l 50

n21

r n,l

l @ f n,l 21~R! f n,l~R!#R8

4pAQn~R!Qn
(3)~R!

, ~45!

dn
(0,1)~R!52 (

l 50

n21

r n,l

l f n,l 21~R! f n,l~R!

4pRAQn~R!Qn
(1,2)~R!

, ~46!
dn
(3,1)~R!5 (

l 50

n21

lr n,l

~ l 21! f n,l8 ~R! f n,l 21~R!2~ l 11! f n,l~R! f n,l 218 ~R!

8pRAQn
(3)~R!Qn

(1,2)~R!
, ~47!
pal
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where dn
(3,1)(R)[^Cn

(3)ux1uCn
(1)&5dn

(3,2)(R)
[^Cn

(3)ux2uCn
(1)&.

For investigation of behavior of wave functions of acti
states and their dipole moments in the limitR→`, we ex-
press the Cartesian coordinatesx1 ,x2 through the elliptic co-
ordinatesj,h: x15ZR(11j)/n, x25ZR(11h)/n, where
j,h5(r 6uRW 2rWu)/R, and we use the determination of th
function fn0:

fn0~t!5A Z

4pn
t expS 2

t

2DF~2n11,2,t!.

At large R, near the Coulomb center, the elliptic coordina
are close to the parabolic coordinatesm5r 1x3 , n5r
2x3 : j.12n/R1•••, h.211m/R1•••. Using the
asymptotic limit forQn(R),

Qn~R!→ncn0
2 ~R!.

1

~n! !2

Z3

pn2 S 2ZR

n D 2n22

3expS 2
2ZR

n D , R→` ~48!

we obtain for theL50-dominated functionCn(RW ,rW)

Cn~RW ,rW !.
Z3/2

n2Ap
expS 2

Z~m1n!

2n D 1F1S 2n

11;1;
Zm

n D , R→`. ~49!

This function describes a Stark state with parabolic quan
numbersn, m50, n15n21, n250 @34#. The limit of the
dipole moment~42! of the stateCn(RW ,rW) is given by the
limits of the radial wave functionsf nl(R) and f nl21(R) and
by the limit of Qn(R):
s

m

dn~R!.
3n~n21!

2Z
, R→`. ~50!

The dipole moments of Stark states ared53n(n1

2n2)/2Z @34#. At R→` the stateCn(RW ,rW) has the maxi-
mum dipole moment among states with a given princi
quantum numbern. In this limit the center of the electron
charge is displaced to the side of the neutral atomB. The
function Cn

(3)(RW ,rW) also has the limit~49! and the dipole
moment~42! at R→`.

Stark states are eigenstates of hydrogenlike ions in a s
electric field. In our case atomic Rydberg electron intera
with a neutral atomB, and there is no electric field. Howeve
Stark states are formed in the systemA* (n)1B at large
internuclear distancesR due to the special symmetry of th
Coulomb potential leading to degeneracy of the energy l
els. Consequently, wave functions of active states are e
to sums of products of the Coulomb functions over degen
ate manifolds. Dipole moments of these Stark states, form
as limits of wave functions of active states, are parallel to
internuclear axis and directed from perturbed atomB to the
nucleus of Rydberg atomA* (n).

In the limit R→` the wave functionCn
(1,2)(RW ,rW), Eq.

~25!, is

Cn
(1,2)~RW ,rW !→cn,umu,n1

~m,n,f!

5Z5/2
A2~n21!

n3
Amn expS 2

Z~m1n!

2n D
3FS 2n12;2;

Zm

n D $cosf,sinf%

Ap

~n,umu51,n15n22!, R→`. ~51!

This Stark state has the maximum dipole moment forumu
51, dn,umu51

max 53n(n22)/2Z.
9-9
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V. RESULTS AND DISCUSSION

In Figs. 4–7 we present results of our calculations of
energy curves of Rb2 and Cs2 molecular Rydberg states wit
projection of total angular momentMJ50. The curves are
shown for the energy range lying betweenn529 and n
530. Each level is marked by the dominant symmetry n
the perturberB.

From each hydrogenic state we have six split leve
which correspond to the1S0 , 1P1 , 3S1 , 3P0 , 3P1, and 3P2
symmetry of valence electron relative to the neutral atom
addition to that, the levels are marked by quantum numb
of Rydberg atomA corresponding to energy levels of sep
rated atoms. There are two distinctive features caused by
presence of the3P-dominated states. First, theP-wave con-
tribution significantly modifies energy spectra. Second, in
action of the splitP levels with other pseudocrossed leve
causes enhancement of oscillations.

Spin-orbit interaction leads to the splitting of the3P en-

FIG. 4. Born-Oppenheimer potential curves for Rb2 Rydberg
molecule. Full lines: calculation with Kirchhoff-integral approac
Dashed lines: quasiclassical calculations with Borodin-Kazan
model. The zero of the energy axis is taken to lie at the position
the n530 manifold with projection of total momentumMJ50.

FIG. 5. The same as in Fig. 4 for Cs2 molecule.
04270
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ergy levels. This splitting is especially crucial for the C2
molecule~cf. Fig. 5!, where the3P resonance occurs at ver
low energy which corresponds toR'1000 a.u. forn530.

Note that only the curves corresponding toJ50,2 sym-
metry oscillate as functions of internuclear distance. Inde
due to properties of Clebsch-Gordan coefficients only
ML561 states contribute to the wave function of theJ
51 state, therefore the latter is in fact aP state. The corre-
sponding wave function is oriented perpendicular to the
ternuclear axes. In this direction behavior of radial part
monotonic, and energy curves also behave monotonically
contrast the wave functions of the3P0,2 states contain theS
component which reflects the oscillatory behavior of the
dial wave function along the internuclear axis. These os
lations lead to the oscillatory behavior of the adiabatic e
ergy curves. Recent calculations for Rb2 @15# based on a
generalization of the Fermi approach also confirm that theP
curve does not oscillate

y
f

FIG. 6. The same as in Fig. 4. The region close ton530 is
enlarged.

FIG. 7. The Born-Oppenheimer potential curve for the lowl
class of Rydberg states of the Rb2 molecule formed from 31d
15s states of separated atoms. Full line: Kirchhoff-integral a
proach whereMJ50; dotted line: ZPR model calculation with
ML50.
9-10
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In Fig. 6 we present the same energy curves for Rb2 with
enlarged region close to the leveln530 where the curves
behavior becomes complicated due to the spin-orbit split
and multiple pseudocrossings. The deepest minimum in
3S-dominated curve is destroyed by a pseudocrossing w
the 3P0,1,2 curves, but local minima still exist with the po
tential barrier whose width is about 100 a.u.

In Fig. 7 we present energy curves corresponding to st
which originate from the 31d15s state of separated atom
The dotted line represents the result obtained using Z
model with the energy-dependent scattering length. The
ergy curves in the nested graph do not correspond to
particular symmetry relative to the ground-state atom.
MJ50 all curves are superposition ofS andP states. More
oscillatory energy curves are dominated byS symmetry. The
energy curves are significantly modified due to interact
with the 3P levels, but one important minimum at distan
R'1600 a.u., which supports several vibrational states@6#,
still exists.

Behavior of theS-dominated curves can be understood
terms of the ZPR or the Fermi model with energy-depend
scattering length@6#. They reproduce energy curves close
exact calculation in the regions where there is no contri
tion from theP-dominated levels. TheP levels, on the other
hand, can be obtained employing the method developed
Omont@19#, which is a generalization of the Fermi potenti
model. Corresponding energy levels are shown in Fig. 8.
region close toR'700 a.u. is dominated by theP resonance
in e-Rb scattering~Fig. 2!, and here the Omont’s formula i
no longer valid, since it contains a divergent effective sc
tering length. Analytical results obtained in the previous s
tion @formula ~38! and ~39!# for the potentialsESS (R) and
EPS(R) are also shown in Fig. 8. Overall behavior of ener
levels can be well described by the Borodin and Kazan
model @3#

E~R!52
1

2S n2
d„p~R!…

p D 2 2
ad

2R4
, ~52!

FIG. 8. Rb2S states. Full lines: calculation with the zero-ran
potential model; dotted lines: the Fermi model with thep-wave
contribution; dashed line:ESS

(R) using formula~38!; dash-dotted
line: EPS

(R) using formula~39!.
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where d„p(R)… is the scattering phase shift andp(R)

5A(2/R)2(1/n2). The energy curves are roughly dete
mined by corresponding phase shifts for electron-neu
atom scattering, although the oscillations necessary for e
tence of stable molecular states cannot be described
simple Eq.~52!. Behavior of the potential curves at relative
small internuclear distance is dominated by the polarizat
attraction betweenA1 and B. This means that the globa
minimum can exist only at very small distances where p
tential curves turn up due to the repulsion betweenA1 andB.
~This region is not described by our model!.

In Fig. 9 we present the electron wave functio
Cn(RW ,rW), Eqs.~27! and~34!, calculated for internuclear dis
tanceR5750 a.u. andR51075 and corresponding to theS-
and P-dominated symmetries. The electron probability de
sity is mostly concentrated near the neutral atomB. The
comparison of the analytical wave functionCn(RW ,rW), Eq.
~27!, with numerical results from the Kirchhoff-integra
method for the internuclear distanceR51230 a.u. are pre-
sented in Fig. 10. Oscillatory behavior of the numerical wa
function near the neutral atomB is due to the complex struc
ture of the pseudopotential, which supports energy lev
corresponding to the closed subshells of the neutral at
The analytical wave function describes very well the act
wave function in the region outside atomB.

Dipole moments~42!–~47! are shown in Fig. 11. ForZ
51 andn530 the limiting value of dipole moments~42! and
~43! is 1305 a.u. and the limiting value of the dipole mome
~44! is 1260 a.u. Nondiagonal matrix elements shown in F
11~b! have different dependence onR and in the region of
classically allowed motion of Rydberg electron they a
smaller than the diagonal matrix element.

VI. CONCLUSION

We have calculated adiabatic energy curves for diato
Rydberg Cs2 and Rb2 molecules. Our results confirm qual
tatively and semiquantitavely previous data obtained

FIG. 9. The wave functionsCn(RW ,rW) for S- and P-dominated
states, Eqs.~27! and ~34!, plotted versus distancer of Rydberg

electron fromA1 along the internuclear axisRW , for internuclear
distancesR5750 a.u. andR51075 a.u. for Rb2.
9-11
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Greeneet al. @6# for the 3S-dominated~trilobite! states and
predict a new class of3P-dominated states. Inclusion o
spin-orbit interaction modifies considerably energy leve
Spin-orbit coupling is especially significant for th
3P-dominated states in the Cs2 molecule. At small distance
adiabatic energy curves are dominated by polarization in
action between the ground-state atom and the Rydberg
which excludes possibility of existence of a global minimu
in the energy curve at large internuclear distances. T
means that all equilibrium configurations supported by lo
minima are in fact metastable states whose lifetime is de
mined by the probability of tunneling into adjacent potent
wells.

The behavior of obtained energy curves is directly rela
to the electron-atom scattering phase shifts, which is w

FIG. 10. The comparison of the wave functionCn(RW ,rW), Eq.
~27!, with the results of numerical calculations; internuclear d
tanceR51230 a.u. Full line corresponds to numerical result wi
out spin-orbit interaction and withML50 for Rb2.

FIG. 11. ~a! Dipole moments~42!–~44! of Rydberg electron in
states with wave functions~27!, ~34!, and~36! (n530) as functions
of internuclear distanceR for Rb2. ~b! Nondiagonal dipole matrix
elements~45!–~47! of Rydberg electron in states with wave fun
tions ~27!, ~34!, and ~36! (n530) as functions of the internuclea
distanceR.
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seen from comparison of our calculations with the Borod
and Kazansky model@3#. At the same time our results ar
more accurate than those obtained within the framework
the Borodin-Kazansky model since the latter assumes
small radius of the effective electron–atom interaction a
ignores the spin-orbit interaction.

The obtained results can be applied to designing Rydb
molecules with huge dipole moment in the ultracold gas c
ditions in Bose-Einstein condensates. The dipole momen
the Rydberg states and transition dipole moments, calcul
in the present paper, would help to explore how the lon
range Rydberg states can be manipulated by laser radia
and external static fields and to calculate their lifetimes w
respect to the spontaneous emission. On the other hand,
ies of nonradiative nonadiabatic transitions between th
states would allow an accurate treatment of collisions
Rydberg atoms with ground-state alkali-metal atoms.
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APPENDIX: MATRIX ELEMENTS OF THE GREEN’S
FUNCTION

Green’s functionG0 has singularity atrW5rW8. In order to
avoid problems with numerical integration, we extract t
diverging part 1/2purW2rW8u as

G0~rW2RW ,rW82RW ,EMJ

e !5G0r~rW2RW ,rW82RW ,EMJ

e !2
1

2purW2rW8u
,

where G0r is a regular part of the Green’s function. Th
integrals of the singular part and its derivative are

K LMLU 1

2purW2rW8u
UL8MLL 5

2dLL8

r 0~2L11!

and

2K LMLU d

dr

1

2purW2rW8u
UL8MLL 5

2dLL8 ~L11!

r 0
2~2L11!

.

Matrix elements of the regular Green’s function contain fo
dimensional integration. Using cylindrical symmetry of th
problem, they can be reduced to three-dimensional integ

In the Gqd correction to the Green’s function Eq.~13!,
arguments of the Whittaker’s functions,r and r 8, are inde-
pendent ofw. Therefore, integration overw can be per-
formed analytically. For the matrix element ofGqd we have
the following expression:

-
-

9-12
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^LMLuGqduL8ML&52A~2L11!~2L811!~L2uMLu!! ~L82uMLu!!

~L1uMLu!! ~L81uMLu!!
n (

l

G~11 l 2n!sinp~m1 l !~2l 11!

G~11 l 1n!sinp~m l2n!4

3E
21

1 E
21

1
Wn l 11/2S 2Zr~x!

n DWn l 11/2S 2Zr8~x8!

n D
r ~x!r 8~x8!

FlM L
~x,x8!PL

uMLu
~x!P

L8

uMLu
~x8!dxdx8

and for its derivative

K LMLU dGqd

dr UL8MLL 52A~2L11!~2L811!~L2uMLu!! ~L82uMLu!!

~L1uMLu!! ~L81uMLu!!
n (

l

G~11 l 2n!sinp~m1 l !~2l 11!

G~11 l 1n!sinp~m l2n!4

3E
21

1 E
21

1 H Wn l 11/2S 2r ~x!

n DWn l 11/2S 2r ~x8!

n D
r ~x!r ~x8!

FRx2r 0

r ~x!2
FlM L

~x,x8!1K~x,x8!GlM L
~x,x8!

1N~x,x8!HlM L
~x,x8!G2

Wn l 11/28 S 2r ~x!

n DWn l 11/2S 2r ~x8!

n D
r ~x!r ~x8!

2~Rx82r !

nr ~x!
FlM L

~x,x8!J dxdx8,

where

FlM L
~x,x8!5

1

2pE0

2p

Pl~cosg!eiM Lwdw

5 (
n50

[L/2]

(
k5ML ,k2ML5even

L22n
~21!n~2L22n!!

n!2k1L~L2n!! ~L22n2k!! S k2ML

2 D ! S k1ML

2 D !

b~x,x8!ka~x,x8!L22n2k,

GlM L
~x,x8!5

1

2pE0

2p

Pl8~cosg!eiM Lwdw

5 (
n50

[L/2]

(
k5MLk2ML5even

L22n21
~21!n~2L22n!!

n!2k1L~L2n!! ~L22n212k!! S k2ML

2 D ! S k1ML

2 D !

b~x,x8!ka~x,x8!L22n212k,

HlM L
~x,x8!5

1

2pE0

2p

Pl8~cosg!cosweiM Lwdw

5 (
n50

[L/2]

(
k5max(0,ML21),k2ML215even

L22n21
~21!n~2L22n!! ~k11!

n!2k1L11~L2n!! ~L22n212k!! S k2ML11

2 D ! S k1ML11

2 D !

3@b~x,x8!#k@a~x,x8!#L22n212k,
042709-13
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where

cosg5a~x,x8!1b~x,x8!cosw,

a5
1

2r ~x!r ~x8!
@r ~x!21r ~x8!222r 012r 0xx8#,

b5
r 0

r ~x!r ~x8!
A~12x2!~12x82!,

r ~x!5AR21r 0
222Rr0x,

KlM L
~x,x8!5

r 0xx82Rx

r ~x!r ~x8!

1
Rx2r 0

r ~x!2

R22r 0Rx2r 0Rx81r 0
2xx8

r ~x!r ~x8!
,

A

e
.

s
-

P.

B

s.

04270
NlM L
~x,x8!5S r 0

r ~x!r ~x8!
1

Rx2r 0

r ~x!2

r 0
2

r ~x!r ~x8!
D

3A~12x2!~12x82!.

Green’s function has poles at energies coinciding w
undisturbed hydrogen levels. To avoid problem in numeri
search for zeros, it is useful to multiply all matrix elemen
by the factor

(
l

sinp~m l2n!

G~12n!
,

which eliminates all energy poles in the matrix elements.
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