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Higher-order poles and mass-shell singularities in electron-hydrogen scattering
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The forward scattering amplitude for electron-hydrogen scattering is expected to be an analytic function of
the energy. However, when calculated within the framework of nonrelativistic quantum mechanics and the
Born approximation, the exchange part has double and triple left-hand poles. From the viewpoint of field
theory, such higher-order singularities are unexpected: One normally encounters only simple poles and branch
points. A simple nonrelativistic model, which interpolates between binding by short-range and long-range
forces, is used to show that these singularities are a direct consequence of the fact that the target system is
bound by Coulomb forces: If the binding is by short-range forces there is only a simple pole. The double and
triple poles emerge from a coalescence of simple poles and logarithmic branch points, in the limit of long-
range binding. In the same framework, the direct amplitude has both simple and double poles, regarded as a
function of the squared momentum transfer. Now even the simple pole is unexpected because the H atom is
neutral. Again, the existence of these singularities is shown to be a consequence of Coulomb binding. The
singularities are then studied within the framework of field theory. | show that if the H atom is treated as if it
were an elementary particle, described by a figld coupled to electron and proton fields and ¢, by a
Lagrangian density.,= fGO(¢e¢p)*¢H+ H.c., the location of the singularity of the exchange amplitude is
immediately obtained from a tree diagram, without the need to carry out any integrations. However, the nature
of the singularity found does not agree with the nonrelativistic theory: There is no free lunch. Further analysis
indicates that in full-fledged quantum electrodynamics, the vertex fundtiavhich describes the virtual
decomposition of the H atom into its constituents must itself be singular when all particles are on the mass
shell.
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| INTRODUCTION wherelk, ¢y =exp(k-r1) ¢(r5), [¢.k')= p(r)explk’ r5),
andr ,=|r,—r,|. Here,¢(r,) is the wave function of the H
The elastic scattering of electrons from hydrogen atoms isitom in the & state

one the most basic and venerable problems of atomic physics 3 1
[1]. Since the problem cannot be solved exactly, even in the @(rz) = (x>l m)"exp(— kr3), (1.2
framework of nonrelativistic quantum mechani¢¢RQM),
it has led to much theoretic effort, including work to derive
and test dispersion relatiol®R) for the forward-scattering

wherex=1/a is the inverse of the Bohr radius Evaluation
of Eq. (1.1) yields, fork’ =Kk,

amplitude, pioneered by Gerjuoy and Kridl] and later fur- BOM 12y = al e (K2/ k24 1)~ L+ co (K2 K2+ 1) 2
ther developed3,4]. Recently, there has been renewed inter- 912 (K)=alea(kx ) 2K x )
est and progress in the nature of the DR for both the forward +c3(K? k?+1) 73], 1.3

and the partial-wave amplitud¢s].
For the application of DR methods, one needs knowledgavith ¢;=—2, c,= —8/3, andcz=—16/3.

of the analyticity properties of the scattering amplituge The surprise here is the presence of the second- and third-

=F(k’,k), especially the location and nature of its singu-order poles ak?= — «?. They are present not only in Born

larities in a complexk? plane. With regard to the forward approximation but survive, as one would expect, in analyses

amplitude F (k%) =F(k,k) one expects, by analogy with po- Which attempt to go beyond this, including the so-called

tential scattering, a branch point B#=0 and a left-hand static exchange approximation used by Blum and Biite

pole determined by the energy of the weakly bounddtate. ~ and the summation of some higher-order exchange effects by

One also expects left-hand singularities arising from exAmusia and Kuchie4]. (In the literature, the sung7*™

change. However, from the viewpoint of amplitudes encoun-+g53™, whereg®°™ is defined by the replacement ef/r,

tered in particle physics there is a surprise in store. by V,=—e?/r; in Eq. (1.1), is usually called the Born ap-

With spin-dependent forces neglected, the amplitéde proximation to the exchange amplitude. Discussiog 5",

can be written as a linear combination of a “direct ampli- the so-called core term, is deferred to Seg¢.Ahother sur-

tude” f and an “exchange amplitudeg, with F=f*g, the  prise is provided by the direct amplitude in the Born approxi-

plus and minus signs corresponding to singlet and tripletation, which has a single and a double pole in the squared

initial spin states, respectively. The lowest-order contributioormomentum transfer; even the single pole is unexpected, be-

of the electron-electron interaction,=e?/r;,to g is given  cause the H atom is neutral.

by In the context of particle physics, transition amplitudes

Bormn (s ) _ can usually be regarded as analytic functions of the relevant

912 (K" K)=—(mg2mhi%)(p.k'[€“/r1 ]k, ¢), (1D variables, such as energy and momentum transfer, with sin-
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gularities which are either branch points or poles. The physi- Il. NONRELATIVISTIC SCENARIO
cal interpretation of such poles is particularly simple: They

correspond to stable particles which the scattering particIeBy short-range forces, the singularity structure of both the

can exchange or into which they cawirtually) combine. o3 pange and direct Born amplitudes is the one naively ex-
However, such processes normally lead only to simple pOIe%ected from particle theory arid) to examine in detail how

The purpose of this paper is to explain the origin of thesgne higher-order poles arise when the forces become long
singularities within the framework of NRQM and to see what gpge.

light can be shed on it in the context of relativistic quantum
field theory (RQFT). It turns out that there are lessons here
for both atomic and particle physics. On the one hand, by _
regarding the H atom in its ground state as an ordinary, albeit We replace the hydrogen wave functiah by the so-
composite, particle, one can understand the existence arf@lled Hulthe wave-functiony, familiar from its use as an
location of the singularity from a single Feynman-like dia- @PProximation to the deuteron wave function

gram, without the need to evaluate any integrals, such as that P = Nk M Texnl — kT-)— extl — Nr-)1/r 21
occuring in Eq.(1.1). On the other hand, analysis of the X(r2) = NG M[exp(— «Ta) = exp(=Arz)Jirz, (2.0
NRQM calculation reveals that the higher-order poles ar%vhereN(K,A) is a normalization constant, given by
solely a consequence of the long-range character of the in-

terfac_tion which binds the target electron to _the core proton. N(i, ) =[ KA (k4 N)2ar( k= N)2] M2 2.2
This in turn leads to an unexpected conclusion regarding the

analytic beh_awor of the vertex funct|lo_ﬁ, which in fleld. For\>«, x has the asymptotic form of a bound-state wave
theory describes the virtual decomposition of the H atom intqynction appropriate for an interaction which decreases more
its constituents: As will be seen, Consistency with the NRQMrap|d|y than 1V2! with associated b|nd|ng energ.yKZ/Zme.
result requires thalf' itself is singular when all the four mo-  The advantage of this choice is that, as is readily verified,
menta go on the mass shell. reduces tog for A— «, so that one can hope to follow the

In Sec. Il below, | consider a simple nonrelativistic sce-emergence of the higher-order poles. The Fourier transforms
nario which shows how the singularity structure @gfS™  of ¢ and y are
would be altered if the core electron were bound by a short-
range force: There are then ongimple poles. However, ~ .
these are accompanied by branch points and in the limit of ¢(p)=(1/27r)3f dryexp(—ip-r2)é(r2)
long-range binding, the singularities coalesce to form the
higher-order poles.

A similar study shows that both the single and the double
pole in the direct Born amplitude, considered as a function of . 3 s
the squared three-momentum transfer with the energy fixed, X(p)=(1/2m) J drz exp=ip-r2)x(r2)
are also consequences of the long-range binding.

In Sec. Ill, the problem is examined from the viewpoint of
Feynman diagrams and field theory, within the framework of (2.9
an extemely simple model: The H atom is treated as if it
were an elementary particle, described by a spin-zero fielflote that whilex(p) has only simple poles a*=— «* and
¢y, coupled to electron and proton fieds and ¢, by a p?=—\2, ¢(p) has a double pole. It is the latter which is
trilinear Lagrangian density,=—Go(¢e¢p)T¢H+ H.c. The ultimately responsible for the double and triple poles in
existence of a singularity a2~ — 2 of what appears to be 915"(k?).
the QFT counterpart of59™ is then immediately manifest ~ On usingx(r) instead of¢(ry) in Eq. (1.1), writing
from a tree diagram, without the need to carry out any inte-
grations. _ 2.2 ; _

In Sec. 1V, | show that the model used in Sec. lll is too 1/r12—f da(l/2mqr)expiq- (ry = r2), @9
simple to tell the full story: The nature of the singularity does
not agree with that of théCoulombig NR theory-the tree Settingk’ =Kk, and integrating over the coordinates, one gets
graph has only a simple pole. Moreover, the counterpart of Bormy 1 2 ) ,
the direct amplitude has no pole at all in the square of the 915 (k%) =—(2/am) kN(k+N)F(K;x,N)/(k=N\)%,
three-momentum transfer-there is a singularity at the appro- (2.6
priate point, but it is a branch point, rather than a pole: There
is no free lunch. An analysis is given which indicates that thewvhere
vertex functionl” must itself be singular when all particles
are on the mass shell. Further aspects of the problem, from F(k; e, M) =1(K; e, 6) KN N) =21 (K M) (2.7)
the view point of both NRQM and RQFT, are discussed in
the final Sec. V. with

The aim of this section i§) to show that if the binding is

A. Exchange amplitude

= (klm)*qp*+ k%) 72, 2.3

=[N(x,\)272][p?+ k) 1= (p?+ 12 71].
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V. In the Appendix, | show that, as one would expect, the
|(k;K,>\)=J dg(1/9®)[(q+k)? absence of higher-order poles for short-range binding is quite
general.
+ 2 (g+k)2+N2 7L (2.9

After combining the denominators in E@2.8 with a B. The direct amplitude

Feynman paramete®, one can do the angular integration It will be useful to also consider in this interpolating

and a contour integration overthen yields model the direct amplitudéin the Born approximation, but
this time as a function of the squared three-momentum
. 2t —1/L24 A2y-1 transfer
I(K;k,N\)=7°| daA™(k"+A%)"", (2.9
° Q2= (k—k")2. (2.16

where A?=ak?+(1—a)\%. Since AdA=(x>—\?)da,

the integration in Eq(2.9) is elementary, with the result that O the case of hydrogen, we haid

L(K: ko) = [272/K( k2= \?)] fBOM(k, k") = — (mg/2mh?)(k’, | —€?Iry
x[arctari x/k) —arctarin/k)]. (2.10 +e?/riglk, )
For\—«, A—« and Eq.(2.9) gives = (K'[Vg(rolk) (2.17
1(K; k., k) = 72 k(K2 + ), with
(kAN ) = 72\ (K24 M\ 2). 2.11) Vy(ry)=(p|—e*ri+e?/r )

2 _

On inspection of Eqs(2.6), (2.10, and (2.11) one sees e*(Liry+ Lajexp(—2«ry).  (2.18
that, regarded as a function & in a complexk plane, While the contribution from the firstYukawa-like term
F(k;x,\) has both a simple pole and a logarithmic branch;, Eq. (2.18 produces a simple pole, the secdpdre expo-

point atk=*ix as well as a}<= *iN. In the complexk2_ nentia) term produces a double pole, both@lt= — 4«2
plane, these correspond to simple poles and branch points at

k?=— k2 and atk?= —\? for g59"(k?). £BOM(k ' k)= (2/a)[(Q?+ B?) 1
The triple and double poles of atomic theory can now be o o oo
seen to arise from the coalescence of these singularities in +BAQ+B) ] (B=2k). (219

the limit A— «, as follows. On expanding(k; «, A) in

powers of\ — « about the pointc, viz While a double pole is again unexpected from the view-

point of field theory, in this case, even the single pole is a
F=FO4+FED\—k)+FA(N—k)%21+---, (212  consequence of the long-range binding. To see this, note that
on replacinge by x in Eq. (2.17) one gets
one finds that the first two terms in E€.12 vanish, F(®)
—FW=0, but that FEOM(k’ k) = (me/2m(R)?)(k' [V, (ry)|k),  (2.20

F?=72(3k*+ 10k2k2+ 15¢4)13x3 (K2 + k2)3. where
(2.13
. ) , V,(ry)={x|—€Ir +erlx). (2.2
This may be rewritten in the form
V,(ry) is not an elementary function, but its form is not

2)__ 2, -5 27,2 -1 27,2 -2
F= a2k LK% k2 + 1)+ (413) (K K+ 1) needed to evaluate’®™. Using the representatioi2.5), one

+(8/3)(K3 k2+1) 3. (2.14  finds
On using Eq(2.12 in Eq. (2.6), the (k—\)? factors are Bk’ k)= (2/a)F (Q%)/Q?, (2.22
seen to cancel and one gets, in the lilit «, the form(1.3) o
for g?grn with whereF, (Q) is the charge form factor
012_2, 02:_8/3, C3:_16/3, (215) F)((Qz):l_f drzexp(—iQ-rz)xz(rz). (223)

in agreement with the result of direct integration of EgJ).

It should be noted that the value of the coefficiegtdiffers  Integration yields

from that usually given in the literature. This is because the

amplitude defined by Eq1.1) includes only the interaction F(Q%)=1-4m(N?(k,\)/Q)[arctar Q/2«)

of the incoming electron with the core electron and not also

that with the proton, as emphasized by the subscript “12” on FarctariQ/2\) — 2 arctanQ/ (« + 1)1,
g. As mentioned, this point will be further discussed in Sec. (2.29
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which has no poles but does have logarithmic branch points
atQ?=—(2«)?, —(2\)?, and— (x+\)2. One readily veri-
fies that in the limit\ — «, these branch points coalesce and
that the single and double poles are regained.

Although the formulg2.19 for the direct Born amplitude
is presumably much more familiar than that for the forward _ .
exchange amplitudél.3), the fact that it displays poles in _F'G- 1. Symbolic Feynman graph for the amplitubi(s, t)
the squared momentum transfer does not seem to have dra\ﬁﬁscrlblnge - H.scatterlng. The solid lines represent the electron
any attention in the literature. and the double lines the H atom.

— 9m?2 2
C. Limit Aes oo S+t+u=2mg+2mg. (3.3
It is interesting to consider what happens in the limit  With spin ignored, as in the usual NRQM analysis, the
A—oo, This corresponds to extreme short-range bindingFeynman amplitude for the process
with
e +H—e +H (3.9
X(r2)— xo(r2) =Ngexp(—«r)/r,
may be regarded as a function ®&ndt only,
No=N(k,°)=(x/2m)*? (2.25
o o M=M(s,t), (3.5
the wave function in the zero-range-force approximation. In
this limit the second and third terms in E@.7) vanish, so  and represented by the symbolic Feynman diagram shown in
that Fig. 1. In this context, the analogs of the exchange and direct
Born amplitudes would appear to be represented by the sym-
. . .2 2 2
Flkik M= I(kir k) =me(k+&%). (220 pojic Feynman diagrams shown in Figs. 2 and 3, respec-

It follows from Eq. (2.6) that tively. These involve the vertex functiohi for the virtual
o process K-e~ +p and the vertex functior for the virtual
gfgmﬂ—(z/awz),d(k;,(l,():—2a(k2/K2+ 1), process H-+y+H. A discussion of these functions is de-

(2.27 ferred to Sec. IV. Let us first consider the problem within the

context of a very simple field theory model and see how far
which coincides with the first term in Eq1.2). This high- e can get.

lights the fact that it is precisely the second- and third-order
poles which are related to the long-range Coulomb binding.

. - . . A. Exchange Feynman amplitude
The first-order pole is presefwith the correct residyesven g y P

in the extreme short-range limit. Imagine that the H atom, in its ground state, can be
With regard to the direct Born amplitude in this limit, treated as if it were an elementary particle, described by a
from Egs.(2.24 and(2.22), one gets field described by a scalar fiel@,, and that this field is
coupled to complex scalar “electron” and “proton” fields,
fB"’”ﬂfo=(2/a)[1—(2K/Q)<’irC'EafﬁQ/2K)]/Q2-(2 2 and ¢, by a Lagrangian density
Li=—Go(¢edpp) ' dp+H.c. (3.6

Like the Coulomb resul{2.19, f, is singular only at
Q%= —4«?. However, the singularity is a branch point rather  This can be regarded as a mock-up for the virtual process

than the sum of first- and second-order poles. H«se™ + p, with the functionl” replaced by the consta.
The existence of an energy singularitykdt= — x? can then
ll. SIMPLE FIELD-THEORY MODEL be inferred immediately from the tree-type diagram shown in

Fig. 4, without the need to carry out any integrations.
4 To verify this assertion, note that the Feynman amplitude
corresponding to Fig. 4 is given by

In RQFT, the scattering of two particles is described by
Lorentz-invariant amplitude, the Feynman amplitidelLet
k, k" andK, K’ denote the initial and final four momenta of
the electron and hydrogen atom, respectively. The total four-

momentumP, the four momentum transfé&), and the “ex- K K
change four-momentum transfeR are defined by <
P
P=k+K, Q=k-k’', R=k—-K’. (3.1
k K
The squares of these four vectors define the so-called
Mandelstam variables, FIG. 2. Feynman-like graph associated with the simplest contri-
bution to the exchange amplitude én —H scattering. The dashed
s=P?, t=Q2, u=R?, (3.2 line represents the exchanged proton and the shaded circles denote
the amplitudes for the virtual dissociation or formation of the H
satisfying the following relation: atom into or from its constituents.
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FIG. 3. Feynman-like graph associated with the simplest contri-

bution to the direct amplitude ie~ —H scattering. The wavy line FIG. 5. (a), (b) Feynman graphs associated with the simplest
represents the exchanged photon and the shaded circle represegdsitribution to the direct amplitude & —H scattering, within the
the electromagnetic vertex function of the H atom. framework of the model defined by E€B.6) of the text.
M&(s,)=G§(u—mj) 1, (3.7  For the case at handy,>m,>€’, so thatse,—mj and
wherem, is the proton mass. On use of the relati@3), kgxﬁ_zmeef_ (3.15
one sees that far=0 (forward scatteringthe pole ofM (2 at
u=m§ corresponds to a pole=se,. with On approximatinge’ by the nonrelativistic valuee
5 ) ) = Kk?/2m,, we see that in the limit of infinite proton mass
Sex=2Mg+2mg—mp, (3.8 and weak binding, we indeed recover a pole singularity at

o ) —«?. If one includes the leading recoil correction
Thus, the contribution of Fig. 4 to the forward exchange;, Eq. (3.14 and to ' the singularity is shifted to

amplitude is — k?(1—2me/my). However, there is no sign of the higher-

rder poles.
M2(5,0)= G(s— 500 L (3.9 Orderpoles
To see what this corresponds to in termskdf the square B. Direct Feynman amplitude
of the three momentum of the electron in the center-of-mass Tne field theory analog of the direct Born term in NRQM
system, note that in this system is the amplitude for one-photon exchange, symbolized by

Fig. 3. Application of the Feynman rules for emission of a

k=(Ee k), Kk'=(Ee.k"), K=(En,—k), photon by a spin-zero charged particle gives

K'=(Ey,— k'), (3.10 —iM gi1,(S,0) = —ie(k+k)*(—ig,,/q?)(—iA?),

(3.1
where E.=(m2+k?)¥2, Ey=(mi+k?)¥2 Then s=(E,
+Ey)? and a little algebra yields whereq=k’ —k and A" is the vertex function for emission
) ) ) of a virtual photon by the H atom. The general formAdf is
ke=[s—(mg+my)“][s—(me—my)“]/4s. (3.1))
V_ + r\v + _WK'\V .
On using EQq.(3.8) in Eq. (3.11), one finds that the corre- A= (KAKDTF O+ (K=KDF-(), 319

. 2 . .
sponding value ok is given by where the F’'s are charge form factors. Sincek{k’)

(K=K")=(k+k")-(—k+k')=0 on the electron mass

2 _ - 22 2_m2
ke=[(me—my) mp][(me+ my) mp:|/45ex-(3 12 shell, we get

In terms of the physical binding energy, defined by Mair1,(S,t) = —e*(k+k’)- (K+K")F, (t)/t
— _ f2(c_
Eq. (3.12 takes the form The neutrality of the H atom requires thiat. (0)=0 so
there is no pole at=0, in agreement with Eq$2.22) and
kgxz(e’ —2my) €’ (2me—€’)(2My+2me— €') /4. (2.23. The singularities oM ., are therefore determined

(3.14 by those ofF, (t). In our model these are determined, to the
lowest order inGg, by the graphs shown in Figs(é and

K 5(b). The integrals associated with such triangle graphs are
analytic functions in a complekplane, with nearest branch
points att,>0 andt,>0, respectively. These would nor-
mally have the values associated with the threshold for pair
productiont,=4m2 andt,=4mZ, but because the H atom is

FIG. 4. Feynman graph associated with the simplest contribueakly bound these thresholds are anomaldjsand one
tion to the exchange amplitude i —H scattering. within the finds that, e.g.t,~4«?, in agreement with Eq2.24). But,
framework of the model defined by E(8.6) of the text. Thele, g again there are no poles for-0, i.e., for negative values of
H) vertex is associated with a facteriG,. the squared three-momentum transfer.
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IV. DEEPER ANALYSIS Thus, nearusz,
While the simple model defined by E¢3.6) correctly 1(2) —T2(u—m2) 1.
yields the location of the singularity &= — k? of the ex- Mex(s,1) =I'g(u—mp) “9

change amplitude and thattat 4«2 of the direct amplitude, gnq there is only a simple pole.
it does not yield the requisite analytic structure in the NR M
limit. The exchange amplitude has only a first-order pole an
the direct amplitude has no pole at all. As usual in such
cases, one suspects that the model is just too simple and t
something has been neglected. It is however good enough
give the structure found in NRQM when the binding is short a2 -1 2y
range. This suggests that we reexamine the amplitudes asso- F(w=a(u=my) “+b+c(u—mp)+ 4.10
ciated with Figs. 2 and 3 within the general context of RQFT.; h hborh 2 +h
By way of preparation, note that the amplitubBeor the in the neighborhood afn, then

1(2)(s,t) will have a singularity more complicated than

% simple pole if and only if'(u) is not analytic au m2 In

r%§rt|cular if"(u) itself has a simple pole at= m i.e., has
form

virtual decomposition of a spin-zero particle “3” into spin- M’<2)(s t)=a%(u—m ) 34 2ab(u—m?) 2
zero particles “1” and “2,” with four-momentap; (i P
=1,2,3) constrained bp;=p;+ p,, may be written in the +(2ac+b?)(u—mp) "t (41D
form
which has precisely the singularity structure obtained in the
I'=T(p1,p2)- (4.1)  nonrelativistic (Coulomb calculation. Thus, it seems that

consistency with the result of NRQM reqwres at a mini-

S]:nﬁeF is a Lorentz scala(rj it can be regardled Ias a functloq.num that the &p:H) vertex functlonF(me,pz,mH) has a
of the mvanantspl, p3, andpy- p, or, equivalentlyp?, p3, pole atps= m . As in the nonrelativistic scenario, the exis-

and ps=pi+p3+2py- P2 tence of this pole must arise from the long-range character of
' =T(p2,p2p?) 4.2 the electron-proton interaction. However, there is still a prob-
P1.P2:P3)- ' lem with this relativistic scenario, discussed in the next sec-

For the case at hand, identify particles 1, 2, and 3 with thdion-
electron, proton, and the H atom, respectively. Then the am-
plitude M’ associated with Fig. 2 is V. DISCUSSION

M2 (s,t) =T (K* p3;K'?)(p3—mp) T (k'%,p3:K?). T N
(4.3 The quantityg;s™" defined by Eq(1.1), considered in this
paper as the Born approximation to the exchange amplitude,
The superscript “2” now indicates thd¥’ is second or-  differs from that usually studied in the literature on electron-
der inI'. The electron and the H atom are on the mass shelhydrogen scattering, which includes the interaction of the
k?=k'Z=m?2 and K2=K'Z=m?, while p2=(K—k’)?=u as incoming electron with the core proton
in Eq. (3.2). On definingl"(p5) for arbitrary p, by GOk’ k)= — (my/2mt2)( .k’ | — €2t K, ). (5.1)
2\ _ 2 ~2.p92
F(p2)=T(me,pziMi), @4 The sum of Eqs(5.1) and(1.1) is often referred to as the
we have “Born-Oppenheimer approximation,” a sobriquet apparently
introduced by Mott and Massejt |

A. Comments on NR theory

1(2) _12 —_m2\—1
M4 (s,t)=T"“(u)(u mp) , (4.5 gBorn-Opp:g?orn_'_g?gm. (5.2

where now i ) )
A better name might be the “Oppenheimer-Born approxi-
F(u)zr(mg,u; Ma)- (4.6) mation.” It appears first in a 1928 paper of Oppenheifdr
and not in the famous paper of Born to which he makes
The discussion in the preceding subsection would need neeference. This would also avoid confusion with the univer-
elaboration if the H atom were either an “ordinary” elemen- sally known “Born-Oppenheimer approximation” for mol-
tary particle, or a composite particle bound by short-rangeecules. Evaluation of Ed5.1) yields

forces such as the deuteron. In either cdda)) will have
the form gfoMk?) =acy(k¥k?+1)7%, c4=16 (5.3

F(u)y=Ty+---, (4.7 and the addition of Eq$5.3) to (1.3) changes the coefficient
of the triple pole tacs;+c3= — 16/3+ 16=32/3, in agreement
where the dots denote terms which vanish when all the pamith what is stated in the literature for the sug?2) [4].

ticles are on the mass shell and Although the core term is not of direct interest for the
s o o purpose of this paper, it should be noted that this term was
Fo=T"(mg,m,M§). (4.8 long a source of controversy, associated with the so-called
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“post-prior discrepancy”’[1]. However, it was eventually
shown by Dayet al.[8] (see also Kang and Such@]) that
this discrepancy is “fictitious:” In an exact treatment, the
rearrangemen(or exchanggamplitude vanishes if the inter-
action between the incident and the bound particle is set
equal to zero. This property, which makes good physical
sense, is violated by the Oppenheimer-Born approximation. | FIG. 6. Feynman-like graph associated with a contribution to
have therefore omitted the core term in my analysis. the exchange amplitude involving both photon and proton ex-
In any case, according to Amusia and Kuchjdy, inclu-  change.
sion of some higher-order exchange effects changes the val- = ) ) ) )
ues of all thec; . In the context of dispersion theory, precise tude is likely to be obtained if the full’ is used in the
knowledge of these coefficients would allow a more physi_calc_:ulatlon_ of the form factoA. I_n a further study, it would _
cally meaningful assessment of the importance of the discor2€ Intéresting to test these conjectures. From a methodologi-
tinuities across the left-hand branch cuts. cal point of view, one might gain further insight into the
Incidentally, a short calculation shows that in NRQM, thenature of the the left-hand singularities, beyond the Born

inclusion of recoil changes the position of the poleskfn ~ @PProximation. _ _ _
from —x2 to —x?(1+7) where n=me/(me+my). Al- Finally, it is worthwhile noting that the problem of elastic

though such corrections are negligible for the case at hand€utron-deuteron scattering is conceptually very similar to
they would be significant for the analogous case of the lowihat of e”-H scattering. Instead of two electrons and a pro-
energy scattering of a negative muon froma (p) atom. ton, with one electron b'ound to the proton, one has two
A by-product of Sec. Il is the fact that only the second- neutrons and a proton, Wl_th one of the _neutrons bound to the
and third-order poles are a consequence of the long-rang¥©ton. The vertex function for the virtual proceds-n
binding; the first-order pole is there regardless of the nature” P iS expected to be well defined when all the nucleons are
of the binding. There has been some speculation in the [it0n the mass shell and its value there is simply regarded as
erature linking the existence of the higher-order poles to th&h® (.p;d) coupling constant. Because of the long-range
fact that in the static exchange approximation there are, iRinding, it seems that the analogous object, &p{H) cou-
some cases, unexpected solutions to the effective one partidl¥ing constant, does not exist. In future work, it would be
Schralinger equatiori3]. From the viewpoint of the present desw_a_blt_a to establish, Py direct calculat|or_1, thaF in a fully
paper such an association is misleading: In the absence &flativistic theory the ¢,p;H) vertex fg”Ct'on with only
binding by Coulomb forces the poles in the exchange amplithe proton off the mass shell,(mg, pz;myy), has the struc-
tude are first order. It should be noted that in the analysis ofure exhibited in Eq(4.10.
Sec. I, the interaction of the incoming electron with the core  In conclusion, it seems safe to say that in the ancient
proton plays no role; if one wishes, one may imagine thaproblem of electron-hydrogen scattering there are still les-
this Coulomb interaction may also be replaced by the samgons to be learned, for both atomic and particle physics.
short-range force which leads to the wave-functjofor the
bound electron, so as to be conceptually consistent with the ACKNOWLEDGMENTS
identity of the incoming and bound patrticles.
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) . . Anand Bhatia for their hospitality at the NASA Goddard
Independent of the nature of the singularities, there is angpace Flight Center. | also thank my colleagues Tom Cohen,

other problem with the simple field theory model of Sec. lll. wa|ly Greenberg, Xiangdong Ji, and Ching-Hung Woo for

This is the fact that the NR exchange amplitude, as define|;|6|pfu| conversations and Larry Spruch of New York Uni-
by Eq.(1.1), obviously vanishes if there is no direct interac- versity for his comments on the manuscript.
tion between the incoming and bound electrons, i.e., if

e?/r ,,—0. However, the graph of Fig. 2 ardfortiori that of APPENDIX

Fig. 3, does not involve any direct interaction between these

particles. It therefore seems likely that in a genuine field- In the text it was asserted that if the binding potential is
theoretic calculation the contribution of this graph vanishesshort range, i.e., decreases more rapidly thatfdr larger,

in the infinite mass limit and that the “true” exchange am- then the singularities of the Born terms are those expected
plitude, that is the one which agrees with NRQM in the NRfrom field theory. However, this was only illustrated by the
limit, comes from a graph in which Fig. 2 is modified by the simple example of the Hulfmewave function, which al-
insertion of the exchange of a single photon between théowed all the integrations to be carried out explicitly. It is
electron line, as shown in Fig. 6. Although such a graphstraightforward to see that the result is quite general.
normally has only branch-point singularities, nothing is nor- Consider the large class of wave functions which admit a
mal here. The expected pole in the vertex functlbmay  spectral representation of the form

convert a branch point into a pole in the overall amplitude, ~

by acting like a derivative with respect to an internal mass. _ _

Similarly, agreement with the NR theory of the direct ampli- (1) fo dup(p)exp(=pr). AD
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For p(u)=N6(u— «) (N — w), this reduces to Eq2.1) d(p)=d1(p)+ da(p), (A4)
of the text. In this special case, the correction to the leading

term at larger is itself exponential in form. Normally, one
would expect inverse power correctionsN@xp(—ur)/r. In-  Where, withg(u) = o(u)/2u,
deed, withp(u)=0(u— «)o(u) and o(u) differentiable at
Mu= kK, We get, on repeated integration by parts,

] $1(P)=g(R(P*+ 2, bo(p)= f " A (WP ).
d(r)=exp(—ut)[a(&)r+ o' (K)Ir?+o (k)r3+---], .
(A2) (A5)

corrections of the usual form. Assume theju) is bounded

for large u. Then the Fourier transform of EGAL) is given  ¢2(p) exhibits the pole associated with expgr)/r, while
by ¢,(p) is an analytic function ofp?, with a logarithmic

branch point ap?= — k2. On using the formA4) instead of
* Eq. (2.4 in the calculation of the exchange Born amplitude,
— 2 2\2
¢(p)—constL duo(u)/(p™+ %" (A3 5ne sees that the “1-1” term will yield the simple pole term
analogous td (k; «, «) in Eq. (2.11) while the “2-2" and the
This is manifestly an analytic function gf?, singular  mixed terms will yield only branch-point singularities; no

only at p?=— «2. Integration by parts yields higher-order poles appeatr.
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