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Higher-order poles and mass-shell singularities in electron-hydrogen scattering

J. Sucher
Department of Physics, University of Maryland, College Park, Maryland 20742

~Received 12 April 2002; published 11 October 2002!

The forward scattering amplitude for electron-hydrogen scattering is expected to be an analytic function of
the energy. However, when calculated within the framework of nonrelativistic quantum mechanics and the
Born approximation, the exchange part has double and triple left-hand poles. From the viewpoint of field
theory, such higher-order singularities are unexpected: One normally encounters only simple poles and branch
points. A simple nonrelativistic model, which interpolates between binding by short-range and long-range
forces, is used to show that these singularities are a direct consequence of the fact that the target system is
bound by Coulomb forces: If the binding is by short-range forces there is only a simple pole. The double and
triple poles emerge from a coalescence of simple poles and logarithmic branch points, in the limit of long-
range binding. In the same framework, the direct amplitude has both simple and double poles, regarded as a
function of the squared momentum transfer. Now even the simple pole is unexpected because the H atom is
neutral. Again, the existence of these singularities is shown to be a consequence of Coulomb binding. The
singularities are then studied within the framework of field theory. I show that if the H atom is treated as if it
were an elementary particle, described by a fieldfH coupled to electron and proton fieldsfe and fp by a
Lagrangian densityLI52G0(fefp)†fH1H.c., the location of the singularity of the exchange amplitude is
immediately obtained from a tree diagram, without the need to carry out any integrations. However, the nature
of the singularity found does not agree with the nonrelativistic theory: There is no free lunch. Further analysis
indicates that in full-fledged quantum electrodynamics, the vertex functionG which describes the virtual
decomposition of the H atom into its constituents must itself be singular when all particles are on the mass
shell.

DOI: 10.1103/PhysRevA.66.042706 PACS number~s!: 34.80.Bm, 11.55.Bq
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I. INTRODUCTION

The elastic scattering of electrons from hydrogen atom
one the most basic and venerable problems of atomic phy
@1#. Since the problem cannot be solved exactly, even in
framework of nonrelativistic quantum mechanics~NRQM!,
it has led to much theoretic effort, including work to deriv
and test dispersion relations~DR! for the forward-scattering
amplitude, pioneered by Gerjuoy and Krall@2# and later fur-
ther developed@3,4#. Recently, there has been renewed int
est and progress in the nature of the DR for both the forw
and the partial-wave amplitudes@5#.

For the application of DR methods, one needs knowle
of the analyticity properties of the scattering amplitudeF
5F(k8,k), especially the location and nature of its sing
larities in a complexk2 plane. With regard to the forward
amplitude,F(k2)5F(k,k) one expects, by analogy with po
tential scattering, a branch point atk250 and a left-hand
pole determined by the energy of the weakly bound H2 state.
One also expects left-hand singularities arising from
change. However, from the viewpoint of amplitudes enco
tered in particle physics there is a surprise in store.

With spin-dependent forces neglected, the amplitudeF
can be written as a linear combination of a ‘‘direct amp
tude’’ f and an ‘‘exchange amplitude’’g, with F5 f 6g, the
plus and minus signs corresponding to singlet and trip
initial spin states, respectively. The lowest-order contribut
of the electron-electron interactionV125e2/r 12 to g is given
by

g12
Born~k8,k!52~me/2p\2!^f,k8ue2/r 12uk,f&, ~1.1!
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whereuk,f&5exp(ik•r1)f(r2), uf,k8&5f(r1)exp(ik8•r2),
andr 125ur12r2u. Here,f(r2) is the wave function of the H
atom in the 1s state

f~r2!5~k3/p!1/2exp~2kr 2!, ~1.2!

wherek51/a is the inverse of the Bohr radiusa. Evaluation
of Eq. ~1.1! yields, fork85k,

g12
Born~k2!5a@c1~k2/k211!211c2~k2/k211!22

1c3~k2/k211!23#, ~1.3!

with c1522, c2528/3, andc35216/3.
The surprise here is the presence of the second- and t

order poles atk252k2. They are present not only in Bor
approximation but survive, as one would expect, in analy
which attempt to go beyond this, including the so-call
static exchange approximation used by Blum and Burke@3#
and the summation of some higher-order exchange effect
Amusia and Kuchiev@4#. ~In the literature, the sumg1

Born

1g12
Born, whereg1

Born is defined by the replacement ofe2/r 12

by V152e2/r 1 in Eq. ~1.1!, is usually called the Born ap
proximation to the exchange amplitude. Discussion ofg1

Born,
the so-called core term, is deferred to Sec. V.! Another sur-
prise is provided by the direct amplitude in the Born appro
mation, which has a single and a double pole in the squa
momentum transfer; even the single pole is unexpected,
cause the H atom is neutral.

In the context of particle physics, transition amplitud
can usually be regarded as analytic functions of the relev
variables, such as energy and momentum transfer, with
©2002 The American Physical Society06-1
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gularities which are either branch points or poles. The ph
cal interpretation of such poles is particularly simple: Th
correspond to stable particles which the scattering parti
can exchange or into which they can~virtually! combine.
However, such processes normally lead only to simple po

The purpose of this paper is to explain the origin of the
singularities within the framework of NRQM and to see wh
light can be shed on it in the context of relativistic quantu
field theory~RQFT!. It turns out that there are lessons he
for both atomic and particle physics. On the one hand,
regarding the H atom in its ground state as an ordinary, al
composite, particle, one can understand the existence
location of the singularity from a single Feynman-like di
gram, without the need to evaluate any integrals, such as
occuring in Eq.~1.1!. On the other hand, analysis of th
NRQM calculation reveals that the higher-order poles
solely a consequence of the long-range character of the
teraction which binds the target electron to the core prot
This in turn leads to an unexpected conclusion regarding
analytic behavior of the vertex functionG, which in field
theory describes the virtual decomposition of the H atom i
its constituents: As will be seen, consistency with the NRQ
result requires thatG itself is singular when all the four mo
menta go on the mass shell.

In Sec. II below, I consider a simple nonrelativistic sc
nario which shows how the singularity structure ofg12

Born

would be altered if the core electron were bound by a sh
range force: There are then onlysimple poles. However,
these are accompanied by branch points and in the limi
long-range binding, the singularities coalesce to form
higher-order poles.

A similar study shows that both the single and the dou
pole in the direct Born amplitude, considered as a function
the squared three-momentum transfer with the energy fix
are also consequences of the long-range binding.

In Sec. III, the problem is examined from the viewpoint
Feynman diagrams and field theory, within the framework
an extemely simple model: The H atom is treated as i
were an elementary particle, described by a spin-zero fi
fH , coupled to electron and proton fiedsfe and fp by a
trilinear Lagrangian densityLI52G0(fefp)†fH1H.c. The
existence of a singularity atk2'2k2 of what appears to be
the QFT counterpart ofg12

Born is then immediately manifes
from a tree diagram, without the need to carry out any in
grations.

In Sec. IV, I show that the model used in Sec. III is to
simple to tell the full story: The nature of the singularity do
not agree with that of the~Coulombic! NR theory-the tree
graph has only a simple pole. Moreover, the counterpar
the direct amplitude has no pole at all in the square of
three-momentum transfer-there is a singularity at the ap
priate point, but it is a branch point, rather than a pole: Th
is no free lunch. An analysis is given which indicates that
vertex functionG must itself be singular when all particle
are on the mass shell. Further aspects of the problem, f
the view point of both NRQM and RQFT, are discussed
the final Sec. V.
04270
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II. NONRELATIVISTIC SCENARIO

The aim of this section is~i! to show that if the binding is
by short-range forces, the singularity structure of both
exchange and direct Born amplitudes is the one naively
pected from particle theory and~ii ! to examine in detail how
the higher-order poles arise when the forces become l
range.

A. Exchange amplitude

We replace the hydrogen wave functionf by the so-
called Hulthén wave-functionx, familiar from its use as an
approximation to the deuteron wave function

x~r2!5N~k,l!@exp~2kr 2!2exp~2lr 2!#/r 2 , ~2.1!

whereN(k,l) is a normalization constant, given by

N~k,l!5@kl~k1l!/2p~k2l!2#1/2. ~2.2!

For l.k, x has the asymptotic form of a bound-state wa
function appropriate for an interaction which decreases m
rapidly than 1/r 2 , with associated binding energy2k2/2me .
The advantage of this choice is that, as is readily verifiedx
reduces tof for l→k, so that one can hope to follow th
emergence of the higher-order poles. The Fourier transfo
of f andx are

f̃~p!5~1/2p!3E dr2 exp~2 ip•r2!f~r2!

5~k/p!5/2~p21k2!22, ~2.3!

x̃~p!5~1/2p!3E dr2 exp~2 ip•r2!x~r2!

5@N~k,l!/2p2#@p21k2!212~p21l2!21].

~2.4!

Note that whilex̃(p) has only simple poles atp252k2 and
p252l2, f̃(p) has a double pole. It is the latter which
ultimately responsible for the double and triple poles
g12

Born(k2).
On usingx(r2) instead off(r2) in Eq. ~1.1!, writing

1/r 125E dq~1/2p2q2!expiq•~r12r2!, ~2.5!

settingk85k, and integrating over the coordinates, one g

g12
Born~k2!52~2/ap2!kl~k1l!F~k;k,l!/~k2l!2,

~2.6!

where

F~k;k,l!5I ~k;k,k!1I ~k;l,l!22I ~k;k,l! ~2.7!

with
6-2
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I ~k;k,l!5E dq~1/q2!@~q1k!2

1k2#21@~q1k!21l2#21. ~2.8!

After combining the denominators in Eq.~2.8! with a
Feynman parametera, one can do the angular integratio
and a contour integration overq then yields

I ~k;k,l!5p2E
0

1

daA21~k21A2!21, ~2.9!

where A25ak21(12a)l2. Since 2AdA5(k22l2)da,
the integration in Eq.~2.9! is elementary, with the result tha

I ~k;k,l!5@2p2/k~k22l2!#

3@arctan~k/k!2arctan~l/k!#. ~2.10!

For l→k, A→k and Eq.~2.9! gives

I ~k;k,k!5p2/k~k21k2!,

I ~k;l,l!5p2/l~k21l2!. ~2.11!

On inspection of Eqs.~2.6!, ~2.10!, and ~2.11! one sees
that, regarded as a function ofk in a complex k plane,
F(k;k,l) has both a simple pole and a logarithmic bran
point at k56 ik as well as atk56 il. In the complexk2

plane, these correspond to simple poles and branch poin
k252k2 and atk252l2 for g12

Born(k2).
The triple and double poles of atomic theory can now

seen to arise from the coalescence of these singularitie
the limit l→k, as follows. On expandingF(k; k, l) in
powers ofl2k about the pointk, viz.

F5F ~0!1F ~1!~l2k!1F ~2!~l2k!2/2!1¯ , ~2.12!

one finds that the first two terms in Eq.~2.12! vanish,F (0)

5F (1)50, but that

F ~2!5p2~3k4110k2k2115k4!/3k3~k21k2!3.
~2.13!

This may be rewritten in the form

F ~2!5p2k25@~k2/k211!211~4/3!~k2/k211!22

1~8/3!~k2/k211!23#. ~2.14!

On using Eq.~2.12! in Eq. ~2.6!, the (k2l)2 factors are
seen to cancel and one gets, in the limitl→k, the form~1.3!
for g12

Born with

c1522, c2528/3, c35216/3, ~2.15!

in agreement with the result of direct integration of Eq.~1.1!.
It should be noted that the value of the coefficientc3 differs
from that usually given in the literature. This is because
amplitude defined by Eq.~1.1! includes only the interaction
of the incoming electron with the core electron and not a
that with the proton, as emphasized by the subscript ‘‘12’’
g. As mentioned, this point will be further discussed in S
04270
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V. In the Appendix, I show that, as one would expect, t
absence of higher-order poles for short-range binding is q
general.

B. The direct amplitude

It will be useful to also consider in this interpolatin
model the direct amplitudef in the Born approximation, bu
this time as a function of the squared three-moment
transfer

Q25~k2k8!2. ~2.16!

For the case of hydrogen, we have@1#

f Born~k,k8!52~me/2p\2!^k8,fu2e2/r 1

1e2/r 12uk,f&

5^k8uVf~r 1!uk& ~2.17!

with

Vf~r 1!5^fu2e2/r 11e2/r 12uf&

52e2~1/r 111/a!exp~22kr 1!. ~2.18!

While the contribution from the first~Yukawa-like! term
in Eq. ~2.18! produces a simple pole, the second~pure expo-
nential! term produces a double pole, both atQ2524k2

f Born~k8,k!5~2/a!@~Q21b2!21

1b2~Q21b2!22# ~b52k!. ~2.19!

While a double pole is again unexpected from the vie
point of field theory, in this case, even the single pole is
consequence of the long-range binding. To see this, note
on replacingf by x in Eq. ~2.17! one gets

f Born~k8,k!5~me/2p~\!2!^k8uVx~r 1!uk&, ~2.20!

where

Vx~r 1!5^xu2e2/r 11e2/r 12ux&. ~2.21!

Vx(r 1) is not an elementary function, but its form is n
needed to evaluatef Born. Using the representation~2.5!, one
finds

f Born~k8,k!5~2/a!Fx~Q2!/Q2, ~2.22!

whereFx(Q2) is the charge form factor

Fx~Q2!512E dr2 exp~2 iQ•r2!x2~r2!. ~2.23!

Integration yields

Fx~Q2!5124p~N2~k,l!/Q!@arctan~Q/2k!

1arctan~Q/2l!22 arctan~Q/~k1l!#,

~2.24!
6-3
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which has no poles but does have logarithmic branch po
at Q252(2k)2, 2(2l)2, and2(k1l)2. One readily veri-
fies that in the limitl→k, these branch points coalesce a
that the single and double poles are regained.

Although the formula~2.19! for the direct Born amplitude
is presumably much more familiar than that for the forwa
exchange amplitude~1.3!, the fact that it displays poles in
the squared momentum transfer does not seem to have d
any attention in the literature.

C. Limit l\`

It is interesting to consider what happens in the lim
l→`. This corresponds to extreme short-range bindi
with

x~r2!→x0~r2!5N0 exp~2kr 2!/r 2 ,

N05N~k,`!5~k/2p!1/2, ~2.25!

the wave function in the zero-range-force approximation.
this limit the second and third terms in Eq.~2.7! vanish, so
that

F~k;k,l!→I ~k;k,k!5p2/k~k21k2!. ~2.26!

It follows from Eq. ~2.6! that

g12
Born→2~2/ap2!kI ~k;k,k!522a~k2/k211!,

~2.27!

which coincides with the first term in Eq.~1.2!. This high-
lights the fact that it is precisely the second- and third-or
poles which are related to the long-range Coulomb bindi
The first-order pole is present~with the correct residue! even
in the extreme short-range limit.

With regard to the direct Born amplitude in this limi
from Eqs.~2.24! and ~2.22!, one gets

f Born→ f 05~2/a!@12~2k/Q!arctan~Q/2k!#/Q2.
~2.28!

Like the Coulomb result~2.19!, f 0 is singular only at
Q2524k2. However, the singularity is a branch point rath
than the sum of first- and second-order poles.

III. SIMPLE FIELD-THEORY MODEL

In RQFT, the scattering of two particles is described b
Lorentz-invariant amplitude, the Feynman amplitudeM. Let
k, k8 andK, K8 denote the initial and final four momenta o
the electron and hydrogen atom, respectively. The total fo
momentumP, the four momentum transferQ, and the ‘‘ex-
change four-momentum transfer’’R are defined by

P5k1K, Q5k2k8, R5k2K8. ~3.1!

The squares of these four vectors define the so-ca
Mandelstam variables,

s5P2, t5Q2, u5R2, ~3.2!

satisfying the following relation:
04270
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s1t1u52me
212mH

2 . ~3.3!

With spin ignored, as in the usual NRQM analysis, t
Feynman amplitude for the process

e21H→e21H ~3.4!

may be regarded as a function ofs and t only,

M5M ~s,t !, ~3.5!

and represented by the symbolic Feynman diagram show
Fig. 1. In this context, the analogs of the exchange and di
Born amplitudes would appear to be represented by the s
bolic Feynman diagrams shown in Figs. 2 and 3, resp
tively. These involve the vertex functionG for the virtual
process H↔e21p and the vertex functionL for the virtual
process H↔g1H. A discussion of these functions is de
ferred to Sec. IV. Let us first consider the problem within t
context of a very simple field theory model and see how
we can get.

A. Exchange Feynman amplitude

Imagine that the H atom, in its ground state, can
treated as if it were an elementary particle, described b
field described by a scalar fieldfH , and that this field is
coupled to complex scalar ‘‘electron’’ and ‘‘proton’’ fieldsfe
andfp by a Lagrangian density

LI52G0~fefp!†fH1H.c. ~3.6!

This can be regarded as a mock-up for the virtual proc
H↔e21p, with the functionG replaced by the constantG0 .
The existence of an energy singularity atk2'2k2 can then
be inferred immediately from the tree-type diagram shown
Fig. 4, without the need to carry out any integrations.

To verify this assertion, note that the Feynman amplitu
corresponding to Fig. 4 is given by

FIG. 1. Symbolic Feynman graph for the amplitudeM (s, t)
describinge22H scattering. The solid lines represent the electr
and the double lines the H atom.

FIG. 2. Feynman-like graph associated with the simplest con
bution to the exchange amplitude ine22H scattering. The dashed
line represents the exchanged proton and the shaded circles d
the amplitudes for the virtual dissociation or formation of the
atom into or from its constituents.
6-4
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Mex
~2!~s,t !5G0

2~u2mp
2!21, ~3.7!

wheremp is the proton mass. On use of the relation~3.3!,
one sees that fort50 ~forward scattering! the pole ofMex

(2) at
u5mp

2 corresponds to a poles5sex. with

sex52me
212mH

2 2mp
2, ~3.8!

Thus, the contribution of Fig. 4 to the forward exchan
amplitude is

Mex
~2!~s,0!5G0

2~s2sex!
21. ~3.9!

To see what this corresponds to in terms ofk2, the square
of the three momentum of the electron in the center-of-m
system, note that in this system

k5~Ee ,k!, k85~Ee ,k8!, K5~EH ,2k!,

K85~EH ,2k8!, ~3.10!

where Ee5(me
21k2)1/2, EH5(mH

2 1k2)1/2. Then s5(Ee

1EH)2 and a little algebra yields

k25@s2~me1mH!2#@s2~me2mH!2#/4s. ~3.11!

On using Eq.~3.8! in Eq. ~3.11!, one finds that the corre
sponding value ofk2 is given by

kex
2 5@~me2mH!22mp

2#@~me1mH!22mp
2#/4sex.

~3.12!

In terms of the physical binding energye8, defined by

e85me1mp2mH ~3.13!

Eq. ~3.12! takes the form

kex
2 5~e822mp!e8~2me2e8!~2mp12me2e8!/4sex.

~3.14!

FIG. 3. Feynman-like graph associated with the simplest con
bution to the direct amplitude ine22H scattering. The wavy line
represents the exchanged photon and the shaded circle repre
the electromagnetic vertex function of the H atom.

FIG. 4. Feynman graph associated with the simplest contr
tion to the exchange amplitude ine22H scattering. within the
framework of the model defined by Eq.~3.6! of the text. The~e, p;
H! vertex is associated with a factor2 iG0 .
04270
s

For the case at hand,mp@me@e8, so thatsex→mp
2 and

kex
2 →22mee8. ~3.15!

On approximatinge8 by the nonrelativistic valuee
5k2/2me , we see that in the limit of infinite proton mas
and weak binding, we indeed recover a pole singularity
2k2. If one includes the leading recoil correctio
in Eq. ~3.14! and to e8 the singularity is shifted to
2k2(122me /mp). However, there is no sign of the highe
order poles.

B. Direct Feynman amplitude

The field theory analog of the direct Born term in NRQ
is the amplitude for one-photon exchange, symbolized
Fig. 3. Application of the Feynman rules for emission of
photon by a spin-zero charged particle gives

2 iM dir;1g~s,t !52 ie~k1k8!m~2 igmn /q2!~2 iLn!,
~3.16!

whereq5k82k andLn is the vertex function for emission
of a virtual photon by the H atom. The general form ofLn is

Ln5~K1K8!nF1~ t !1~K2K8!nF2~ t !, ~3.17!

where the F ’s are charge form factors. Since (k1k8)
•(K2K8)5(k1k8)•(2k1k8)50 on the electron mas
shell, we get

Mdir;1g~s,t !52e2~k1k8!•~K1K8!F1~ t !/t

52e2~s2u!F1~ t !/t. ~3.18!

The neutrality of the H atom requires thatF1(0)50 so
there is no pole att50, in agreement with Eqs.~2.22! and
~2.23!. The singularities ofMdir;1g are therefore determine
by those ofF1(t). In our model these are determined, to t
lowest order inG0 , by the graphs shown in Figs. 5~a! and
5~b!. The integrals associated with such triangle graphs
analytic functions in a complext plane, with nearest branc
points at ta.0 and tb.0, respectively. These would nor
mally have the values associated with the threshold for p
production,ta54me

2 andtb54mb
2, but because the H atom i

weakly bound these thresholds are anomalous@6# and one
finds that, e.g.,ta'4k2, in agreement with Eq.~2.24!. But,
again there are no poles fort.0, i.e., for negative values o
the squared three-momentum transfer.

i-

ents

-

FIG. 5. ~a!, ~b! Feynman graphs associated with the simpl
contribution to the direct amplitude ine22H scattering, within the
framework of the model defined by Eq.~3.6! of the text.
6-5
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IV. DEEPER ANALYSIS

While the simple model defined by Eq.~3.6! correctly
yields the location of the singularity atk252k2 of the ex-
change amplitude and that att54k2 of the direct amplitude,
it does not yield the requisite analytic structure in the N
limit. The exchange amplitude has only a first-order pole a
the direct amplitude has no pole at all. As usual in su
cases, one suspects that the model is just too simple and
something has been neglected. It is however good enoug
give the structure found in NRQM when the binding is sh
range. This suggests that we reexamine the amplitudes a
ciated with Figs. 2 and 3 within the general context of RQF

By way of preparation, note that the amplitudeG for the
virtual decomposition of a spin-zero particle ‘‘3’’ into spin
zero particles ‘‘1’’ and ‘‘2,’’ with four-momenta pi ( i
51,2,3) constrained byp35p11p2 , may be written in the
form

G5G~p1 ,p2!. ~4.1!

SinceG is a Lorentz scalar, it can be regarded as a funct
of the invariantsp1

2, p2
2, andp1•p2 or, equivalently,p1

2, p2
2,

andp3
25p1

21p2
212p1•p2

G5G~p1
2,p2

2;p3
2!. ~4.2!

For the case at hand, identify particles 1, 2, and 3 with
electron, proton, and the H atom, respectively. Then the
plitude M 8 associated with Fig. 2 is

Mex8
~2!~s,t !5G~k2,p2

2;K82!~p2
22mp

2!21G~k82,p2
2;K2!.

~4.3!

The superscript ‘‘2’’ now indicates thatM 8 is second or-
der inG. The electron and the H atom are on the mass sh
k25k825me

2 and K25K825mH
2 , while p2

25(K2k8)25u as
in Eq. ~3.2!. On definingG(p2

2) for arbitraryp2 by

G~p2
2!5G~me

2,p2
2;MH

2 !, ~4.4!

we have

Mex8
~2!~s,t !5G2~u!~u2mp

2!21, ~4.5!

where now

G~u!5G~me
2,u;MH

2 !. ~4.6!

The discussion in the preceding subsection would need
elaboration if the H atom were either an ‘‘ordinary’’ eleme
tary particle, or a composite particle bound by short-ran
forces such as the deuteron. In either case,G(u) will have
the form

G~u!5G01¯ , ~4.7!

where the dots denote terms which vanish when all the
ticles are on the mass shell and

G05G~me
2,mp

2,MH
2 !. ~4.8!
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Thus, nearu5mp
2

Mex8
~2!~s,t !5G0

2~u2mp
2!211¯ ~4.9!

and there is only a simple pole.
Mex8

(2)(s,t) will have a singularity more complicated tha
a simple pole if and only ifG(u) is not analytic atu5mp

2. In
particular, ifG(u) itself has a simple pole atu5mp

2, i.e., has
the form

G~u!5a~u2mp
2!211b1c~u2mp

2!1¯ ~4.10!

in the neighborhood ofmp
2, then

Mex8
~2!~s,t !5a2~u2mp

2!2312ab~u2mp
2!22

1~2ac1b2!~u2mp
2!211¯ , ~4.11!

which has precisely the singularity structure obtained in
nonrelativistic ~Coulomb! calculation. Thus, it seems tha
consistency with the result of NRQM requires, at a min
mum, that the (e,p;H) vertex functionG(me

2,p2
2;mH

2) has a
pole atp2

25mp
2. As in the nonrelativistic scenario, the exi

tence of this pole must arise from the long-range characte
the electron-proton interaction. However, there is still a pro
lem with this relativistic scenario, discussed in the next s
tion.

V. DISCUSSION

A. Comments on NR theory

The quantityg12
Born defined by Eq.~1.1!, considered in this

paper as the Born approximation to the exchange amplitu
differs from that usually studied in the literature on electro
hydrogen scattering, which includes the interaction of
incoming electron with the core proton

g1
Born~k8,k!52~me/2p\2!^f,k8u2e2/r 1uk,f&. ~5.1!

The sum of Eqs.~5.1! and~1.1! is often referred to as the
‘‘Born-Oppenheimer approximation,’’ a sobriquet apparen
introduced by Mott and Massey@1#

gBorn-Opp5g1
Born1g12

Born. ~5.2!

A better name might be the ‘‘Oppenheimer-Born appro
mation.’’ It appears first in a 1928 paper of Oppenheimer@7#
and not in the famous paper of Born to which he mak
reference. This would also avoid confusion with the univ
sally known ‘‘Born-Oppenheimer approximation’’ for mol
ecules. Evaluation of Eq.~5.1! yields

g1
Born~k2!5ac38~k2/k211!23, c38516 ~5.3!

and the addition of Eqs.~5.3! to ~1.3! changes the coefficien
of the triple pole toc31c385216/3116532/3, in agreement
with what is stated in the literature for the sum~5.2! @4#.

Although the core term is not of direct interest for th
purpose of this paper, it should be noted that this term w
long a source of controversy, associated with the so-ca
6-6
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‘‘post-prior discrepancy’’@1#. However, it was eventually
shown by Dayet al. @8# ~see also Kang and Sucher@9#! that
this discrepancy is ‘‘fictitious:’’ In an exact treatment, th
rearrangement~or exchange! amplitude vanishes if the inter
action between the incident and the bound particle is
equal to zero. This property, which makes good phys
sense, is violated by the Oppenheimer-Born approximatio
have therefore omitted the core term in my analysis.

In any case, according to Amusia and Kuchiev@4#, inclu-
sion of some higher-order exchange effects changes the
ues of all theci . In the context of dispersion theory, preci
knowledge of these coefficients would allow a more phy
cally meaningful assessment of the importance of the disc
tinuities across the left-hand branch cuts.

Incidentally, a short calculation shows that in NRQM, t
inclusion of recoil changes the position of the poles ink2

from 2k2 to 2k2(11h) where h5me /(me1mp). Al-
though such corrections are negligible for the case at ha
they would be significant for the analogous case of the lo
energy scattering of a negative muon from a (m2,p) atom.

A by-product of Sec. II is the fact that only the secon
and third-order poles are a consequence of the long-ra
binding; the first-order pole is there regardless of the na
of the binding. There has been some speculation in the
erature linking the existence of the higher-order poles to
fact that in the static exchange approximation there are
some cases, unexpected solutions to the effective one pa
Schrödinger equation@3#. From the viewpoint of the presen
paper such an association is misleading: In the absenc
binding by Coulomb forces the poles in the exchange am
tude are first order. It should be noted that in the analysi
Sec. II, the interaction of the incoming electron with the co
proton plays no role; if one wishes, one may imagine t
this Coulomb interaction may also be replaced by the sa
short-range force which leads to the wave-functionx for the
bound electron, so as to be conceptually consistent with
identity of the incoming and bound particles.

B. Field-theoretic aspects

Independent of the nature of the singularities, there is
other problem with the simple field theory model of Sec. I
This is the fact that the NR exchange amplitude, as defi
by Eq. ~1.1!, obviously vanishes if there is no direct intera
tion between the incoming and bound electrons, i.e.
e2/r 12→0. However, the graph of Fig. 2 anda fortiori that of
Fig. 3, does not involve any direct interaction between th
particles. It therefore seems likely that in a genuine fie
theoretic calculation the contribution of this graph vanish
in the infinite mass limit and that the ‘‘true’’ exchange am
plitude, that is the one which agrees with NRQM in the N
limit, comes from a graph in which Fig. 2 is modified by th
insertion of the exchange of a single photon between
electron line, as shown in Fig. 6. Although such a gra
normally has only branch-point singularities, nothing is n
mal here. The expected pole in the vertex functionG may
convert a branch point into a pole in the overall amplitud
by acting like a derivative with respect to an internal ma
Similarly, agreement with the NR theory of the direct amp
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tude is likely to be obtained if the fullG is used in the
calculation of the form factorL. In a further study, it would
be interesting to test these conjectures. From a methodo
cal point of view, one might gain further insight into th
nature of the the left-hand singularities, beyond the Bo
approximation.

Finally, it is worthwhile noting that the problem of elast
neutron-deuteron scattering is conceptually very similar
that of e2-H scattering. Instead of two electrons and a p
ton, with one electron bound to the proton, one has t
neutrons and a proton, with one of the neutrons bound to
proton. The vertex function for the virtual processd→n
1p is expected to be well defined when all the nucleons
on the mass shell and its value there is simply regarded
the (n,p;d) coupling constant. Because of the long-ran
binding, it seems that the analogous object, an (e,p;H) cou-
pling constant, does not exist. In future work, it would b
desirable to establish, by direct calculation, that in a fu
relativistic theory the (e2,p;H) vertex function with only
the proton off the mass shell,G(me

2,p2
2;mH

2), has the struc-
ture exhibited in Eq.~4.10!.

In conclusion, it seems safe to say that in the anci
problem of electron-hydrogen scattering there are still l
sons to be learned, for both atomic and particle physics.
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APPENDIX

In the text it was asserted that if the binding potential
short range, i.e., decreases more rapidly that 1/r for large r,
then the singularities of the Born terms are those expec
from field theory. However, this was only illustrated by th
simple example of the Hulthe´n wave function, which al-
lowed all the integrations to be carried out explicitly. It
straightforward to see that the result is quite general.

Consider the large class of wave functions which adm
spectral representation of the form

f~r !5E
0

`

dmr~m!exp~2mr !. ~A1!

FIG. 6. Feynman-like graph associated with a contribution
the exchange amplitude involving both photon and proton
change.
6-7
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For r(m)5Nu(m2k)u(l2m), this reduces to Eq.~2.1!
of the text. In this special case, the correction to the lead
term at larger is itself exponential in form. Normally, one
would expect inverse power corrections toN exp(2mr)/r. In-
deed, withr(m)5u(m2k)s(m) ands~m! differentiable at
m5k, we get, on repeated integration by parts,

f~r !5exp~2mr !@s~k!/r 1s8~k!/r 21s9~k!/r 31¯#,
~A2!

corrections of the usual form. Assume thats~m! is bounded
for largem. Then the Fourier transform of Eq.~A1! is given
by

f~p!5constE
k

`

dms~m!/~p21m2!2. ~A3!

This is manifestly an analytic function ofp2, singular
only at p252k2. Integration by parts yields
ys

04270
g
f~p!5f1~p!1f2~p!, ~A4!

where, withg(m)5s(m)/2m,

f1~p!}g~k!/~p21k2!, f2~p!}E
k

`

dmg8~m!/~p21m2!.

~A5!

f2(p) exhibits the pole associated with exp(2mr)/r, while
f2(p) is an analytic function ofp2, with a logarithmic
branch point atp252k2. On using the form~A4! instead of
Eq. ~2.4! in the calculation of the exchange Born amplitud
one sees that the ‘‘1-1’’ term will yield the simple pole ter
analogous toI (k;k,k) in Eq. ~2.11! while the ‘‘2-2’’ and the
mixed terms will yield only branch-point singularities; n
higher-order poles appear.
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