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Asymptotically exact expression for the energies of the3Se Rydberg series in a two-electron system
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The 1sns3Se Rydberg series in a two-electron system with the charge of the nucleus,Z'1, is treated by
means of the quantum-defect theory. Comparison with configuration interaction calculations suggests that the
quantum-defect expression for the energy levels becomes asymptotically exact asZ→1. This provides an
analytic description of the disappearance of the 1sns3Se bound states whenZ approaches the critical value
of 1.
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I. INTRODUCTION

Critical phenomena, i.e., the question of when and ho
given physical system undergoes a change in its propertie
a question which, for a nontrivial system, is often difficult
answer. In quantum mechanics, one such example is the
appearance of bound states of a two-electron system, w
the chargeZ of the nucleus in the Hamiltonian
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becomes less than a certain critical value. The ground-s
eigenvalueE(Z) of this Hamiltonian and its properties a
function of parameterZ have been studied for a long time.
was rigorously proved by Kato@1# that E(Z) is an analytic
function of Z. It could be expected that the change in t
physical properties of the ground state, i.e., its disappeara
as a bound state for a certainZ5Zcrit is to be accompanied
by the singularity whichE(Z) has at the pointZ5Zcrit .

The position of this singularity can, in principle, be lo
cated by studying coefficients of the perturbation series
powers of 1/Z. This has been done using different metho
@2–5# such as the ratio test~i.e., the numerical analysis of th
sequence constructed from the ratio of two subsequent c
ficients of the perturbation series!, or using Pade analysis o
the perturbation expansion.

In the paper of Bakeret al. @6#, the authors performed
high-precision calculations of the coefficients of the pert
bation series for the ground state of the He-like ions. Up
analysis of the asymptotic behavior of these coefficien
they obtained the valueZcrit'0.911 029 as the position of th
singular point ofE(Z) for the ground state. These autho
also resolved a long-standing controversy by proving tha
is exactly at the singular pointZ5Zcrit that the ground state
ceases to be a bound state. Their value of the critical p
has been subsequently refined@7–9#.

Other properties ofE(Z) for the ground state of a two
electron system have been studied, such as possible exis
of other singular points in the complexZ plane @2,10#. In
Refs. @11,12#, a dispersion relation forE(Z) has been pro-
posed and verified by means of a complex rotation calc
tion.
1050-2947/2002/66~4!/042507~5!/$20.00 66 0425
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As far as excited states and their properties as function
Z are concerned, much less is known. It was conjectured
all the states belonging to a given Rydberg series cease t
bound states forZ51 @6#. The authors of Ref.@6# computed
the first 26 coefficients of the perturbation expansion in po
ers of 1/Z for the 1s2s 3Se state and performed the sam
analysis as that for the ground state. These results were
conclusive since only a relatively small number of the p
turbation coefficients were analyzed.

In the present paper an analytic model is proposed, wh
describes the 1sns3Se Rydberg series forZ sufficiently close
to 1. Configuration interaction calculations performed se
rately suggest that asZ→1, the energies the analytic mod
predicts for the levels of the Rydberg 1sns3Se series become
increasingly accurate, thus providing exact analytic expr
sions describing the triplet states of a two-electron system
Z→1.

II. THEORY

A simple model of a Rydberg state of a two-electron s
tem with a nucleus of chargeZ is a particle moving in a
combination of Coulomb and short-range potentials,

V~r !5Vsr~r !2
z

r
, ~2!

wherez5Z21 andVsr(r ) is a short-range interaction. W
present below arguments showing that despite its simplic
this model provides an asymptotically exact description
the Rydberg series of a two-electron system with its nucl
chargeZ→1.

The physical situation of a combination of short-ran
and Coulomb potentials is described naturally in terms of
quantum-defect~QD! approach@13#. The position of theT
matrix poles in QD theory is given by the solutions of th
following equation in the complexk plane@14#:

M ~k2!522zt~k!, ~3!

where the functionM (k2) could be found, in principle, if the
logarithmic derivative of the radial wave function is know
at some point where any inner short-range interaction dis
©2002 The American Physical Society07-1



n
nc

D

e
en
n
t

in
s

f
E

n
e

n

rder

w-

t
ns
yd-
so a
e.
not

a-

-
lar-

n

es

n

the
n
ron

eory.
w-

ug-
s of

the

on

I. A. IVANOV, M. W. J. BROMLEY, AND J. MITROY PHYSICAL REVIEW A 66, 042507 ~2002!
pears and only the Coulomb potential is present. The fu
tion t(k) can be expressed in terms of known special fu
tions @15#,

t~k!5 ln~k!1
1

2
@C~ ih!1C~2 ih!#1

ip

e2ph21
, ~4!

whereC(x) is the digamma function andh52z/k.
The key point in the standard development of the Q

procedure is the observation thatM (k2) is an analytic func-
tion of k2. This generally follows from the analycity of th
solutions of a differential equation as functions of a giv
parameter, provided the initial conditions do not depe
upon this parameter. From the same general statemen
follows that the functionM (k2,z) is also an analytic function
of z. As we shall see, this fact can be usefully exploited
describing the behavior of the levels of the Rydberg serie
the charge of the nucleusZ→1.

Introducing variablesk5 ik and u5z/k, expanding the
left-hand side of Eq.~3! in powers ofz, and using known
properties of the digamma function@15#, Eq. ~3! can be re-
written as

M0~k2!1zM1~k2!1 . . .

522zS ln z2 ln u1p cotpu1
1

2u
1C~u! D , ~5!

where Mi(k
2) are all analytic functions ofk2. To track z

dependences it is more convenient to recast Eq.~5! in a
slightly different form,

b~k2,z!

z
2 ln z52 ln u1p cotpu1

1

2u
1C~u!, ~6!

with b(k2,z)52M (k2,z)/2 being an analytic function o
both arguments. We shall be interested in the solutions of
~6! for which u→C, whereC is a positive constant, whe
z→0. As we shall see, forz→0 such solutions describe th
Rydberg series 1snsof a two-electron atom.

For z→0, the left-hand side of Eq.~6! is unbound, and
the only possibility of satisfying Eq.~6! is for u5n1e(z),
and thusk5z/(n1e), wheree→0 whenz→0. This gives
the Rydberg formula with the following explicit expressio
for e:

e5
pz

b~z!2z ln z
. ~7!

This equation is obtained in the assumption thatz is so small
that all the terms decaying faster than first power ofz ~when
z→0) can be neglected when solving Eq.~6!. In particular, it
implies that only the first two terms of thez expansion of the
function b(z) should be preserved. Thus,b(z) can be rep-
resented as

b~z!'b01b1z, ~8!
04250
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-
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whereb0 , b1 are both independent of energy~accounting
for their energy dependence introduces terms of higher o
in z).

Recalling that parameterz in our model is z5Z21,
whereZ is the charge of the nucleus, one obtains the follo
ing tentative expression for the energy levels of the 1sns
Rydberg series forZ→1:

E~Z!52
Z2

2
2

~Z21!2

2~n1e!2 , ~9!

with n51,2, . . . , and

e5
p~Z21!

b~Z!2~Z21!ln~Z21!
. ~10!

The functionb(Z) is analytic in the vicinity ofZ51 and has
an expansion

b~Z!5b01b1~Z21!1•••. ~11!

When deriving Eqs.~9! and ~10!, it is assumed that apar
from the Coulomb potential, only short-range interactio
are present. Strictly speaking, this is not the case for a R
berg state of a real two-electron system, since there is al
polarization interaction due to the polarizability of the cor

The presence of such a polarization interaction does
affect Eqs.~9! and ~10!. Indeed, when deriving these equ
tions we used the analycity of the functionsM0 and M1 in
Eq. ~5! as functions ofk2 and retained only the leading con
stant terms of the corresponding expansions. When a po
ization potential is present, the functionsM0 andM1 in Eq.
~5! are no longer analytic functions ofk2, but can still be
represented as a power series ink, Mi(k)5a01a1k1•••

~wherek5 ik). Accounting of the terms of higher order tha
the linear term introduces terms of higher order thanZ21.
Sincek'Z21, accounting for the linear term only rescal
the Z21 coefficient (b1) in Eq. ~11!. We therefore recover
Eqs. ~9! and ~10!, even in the presence of the polarizatio
interaction.

One may expect that Eqs.~9! and ~10! provide an ad-
equate description of a two-electron system, given that
charge of the nucleusZ is close enough to 1. Indeed, o
physical grounds it is clear that the state of a two-elect
system withZ'1 is spatially extended~quantitative illustra-
tion of this statement is given in the following section!. Such
systems are natural candidates for the quantum-defect th
However, the numerical calculations described in the follo
ing section strongly suggest that Eqs.~9! and ~10! are more
than just a good approximation. The numerical evidence s
gests that these formulas actually give the leading term
the asymptotic behavior of the exact energy whenZ→1.

Further discussion of this premise is postponed for
presentation of the details of the numerical calculations.

III. CI METHOD

To numerically compute the energies of a two-electr
system withZ'1, the configuration interaction~CI! method
7-2
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was employed@16#. Only a brief description of the numerica
procedure is given here since the details closely follow t
of two-electron CI calculations~with model potentials! of the
1Se ground state and lowest1Po excited state of the group I
atoms@17#.

The nonrelativistic atomic wave function with goodL and
Squantum numbers (uC;LS&) is taken to be a linear combi
nation of antisymmetrized states created by multiplying t
single-particle electron orbitals with the usual Clebsc
Gordan coupling coefficients;

uC;LS&5(
i , j

ci , jA ^, imi, jmj uLML&

3K 1

2
m i

1

2
m jUSMSL f i~r1!f j~r2!, ~12!

where the radial form of the single-particle orbitalsf j (r )
was constructed from a Laguerre-type orbital~LTO! basis.
The method for computing the LTO radial basis functions,
well as the details of numerically computing the matrix e
ments have been discussed elsewhere@18#. The Hamiltonian
of Eq. ~1! was diagonalized in a purely LTO basis, since t
dimension of such a basis can be made arbitrarily large w
out any linear dependence problems arising. Two series o
calculations were performed to ensure convergence, with
lowest energy of the two being reported.

The smallerLmax52 calculation included 40s, 20p, and
20d single-particle states~with Lmax denoting the maximum
angular momentum of the single-particle orbitals, and
total number of configurations included,NCI51240). The
Laguerre exponent for all of thes, p, andd LTOs was set to
l50.2 to represent the two-electron states located at la
distances from the nucleus.

The larger Lmax510 calculation included 35s orbitals
with 20 orbitals for each of the other partial waves, w
NCI51955. The Laguerre exponents of single-particle sta
for each partial wave were fixed atl50.5, providing an
improved basis for the more tightly bound states.

With these two contrasting LTO basis sets, no optimi
tion of l for each partial wave for each 1sns3Se state for
eachZ was required. Since the partial-wave convergence
two-electron3Se states in a CI-type expansion is faster th
that of the 1Se series@19#, no extrapolations to account fo
the Lmax→` partial waves were required.

IV. RESULTS

Once the energies of the few low-lying Rydberg levels
3Se symmetry for a sequence ofZ values in the vicinity of
Z'1 were obtained from the CI calculations, the next ta
was to use the energy of the lowest 1s2s 3Se state to deter-
mine the parametersb0 , b1 in Eq. ~10!. The exact function
b(Z) was determined using Eqs.~9! and ~10! and the com-
puted energies of the lowest3Se level. The results are pre
sented in Table I~fourth column!.

The second and third columns represent successive
proximations to the first two terms of the series in Eq.~11!.
These approximations have been defined as follows. For
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sequenceZi of Z values, the sequenceb1(Z)5@b(Zi)
2b(Zi 21)#/(Zi2Zi 21), has been formed. The limit of thi
sequence whenZ→1 is equal to the coefficientb1 in Eq.
~11!. The third column of Table I shows thatb1(Z) is nearly
constant. From this a number of conclusions can be dra
First, this confirms the overall validity of Eqs.~9!–~11!. Fur-
ther, it signifies that for theZ values considered here, highe
order terms~in powers ofZ21) are insignificant. Finally,
near constancy ofb1(Z) allows accurate determination o
the coefficientb1 in Eq. ~8! by extrapolating values ofb1(Z)
given in Table I toZ51. The value forb1 obtained as a
result of such extrapolation wasb1'3.10. Having deter-
mined b1, the sequenceb0(Z) defined asb0(Z)5b(Z)
2b1(Z)(Z21) has been formed. The results from the Tab
I ~second column! show thatb0(Z) is an almost constan
function, which can thus be reliably extrapolated toZ51,
giving b0'0.87. Thus the ‘‘exact’’ functionb(Z) is ap-
proximately given by

b~Z!'0.8713.10~Z21!. ~13!

That this approximation accurately represents the ex
b(Z) can be seen from Table I~columns four and five!,
where the exactb(Z) as well as the results given by th
approximation in Eq.~13! are presented. Even forZ as large
as 1.3, the error remains at about 1%.

Besides the lowest3Se level, the energies of the next few
members of the Rydberg series have been computed.
results for the quantum defects for these levels@determined
using Eq.~9!# are presented in Table II. Quantum defec
predicted by Eq.~10! with b(Z) given by Eq.~13! are also
shown. Not all the entries in Table II are filled since th
higher-lying members of the Rydberg series are difficult

TABLE I. Sequencesb0(Z) and b1(Z), calculated value of
b(Z), and approximation given by Eq.~13! for different values of
Z.

Z b0(Z) b1(Z) b(Z) Eq. ~13!

1.05 0.8745 3.1300 1.02808 1.025
1.10 0.8777 3.1639 1.18458 1.180
1.15 0.8843 3.2309 1.34278 1.335
1.20 0.8947 3.3089 1.50433 1.490
1.25 0.9092 3.3891 1.66978 1.645

TABLE II. Quantum defects for the first few levels of3Se sym-
metry for Z values close to 1.

Z
Level 1.05 1.10 1.15 1.20 1.25 1.30

1 0.1333 0.2220 0.2895 0.3440 0.3895 0.42
2 0.1351 0.2252 0.2942 0.3497 0.3960 0.43
3 0.2262 0.2953 0.3511 0.3977 0.437
4 0.2964 0.3517 0.3984 0.4381
5 0.3557 0.3987 0.4385
6 0.4395
Eqs.~13,10! 0.1337 0.2228 0.2909 0.3468 0.3944 0.436
7-3
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treat computationally, especially forZ very close to 1. The
energies for which the error in the CI calculations beca
significant were omitted.

Two important observations follow from the data pr
sented in Table II. First, the predicted quantum defects ag
closely with the calculated values. Second, the compu
quantum defects for the different levels for a givenZ reveal
remarkable constancy, thus confirming the overall validity
the quantum-defect description for the Rydberg series
1sns3Se whenZ→1.

Tables III and IV present results for the energies b
computed and predicted by the QD Eqs.~9!, ~10!, and~13! of
the first few levels of 1sns3Se Rydberg series for differen
Z-values. The energies in Table III are given relative to
threshold, i.e., are presented asE1Z2/2. The overall agree-
ment between the numerically calculated and predicted
ues is generally of the order of 1% or better. As expected,
agreement deteriorates for the higher-lying members of
Rydberg series, as the CI calculated energies are inhere
less accurate than the CI calculated lower-lying st
energies.

Primarily for reference purposes, we give in Table IV t
full energies of the 1sns3Se states, both numerically calcu
lated and those predicted by Eqs.~9!, ~10!, and~13!. Agree-
ment is again excellent, but keep in mind that forZ very
close to 1, the energy is largely dominated by the first term
Eq. ~9!. The true level of accuracy that the QD approa

TABLE III. Quantity E1Z2/2, computed and given by QD for
mula ~9! for the first few levels of3Se symmetry forZ values close
to 1.

CI QD CI QD

Z51.05 Z51.1
-0.0009731 -0.0009725 -0.0033481 -0.0033441
-0.0002741 -0.0002745 -0.0010097 -0.0010120
-0.0001088 -0.0001272 -0.0004803 -0.0004814

-0.0000731 -0.0002676 -0.0002803
-0.0000474 -0.0000699 -0.0001833
-0.0000332 -0.0001291
-0.0000245 -0.0000958

Z51.15 Z51.2
-0.0067648 -0.0067502 -0.0110712 -0.0110265
-0.0021373 -0.0021434 -0.0036221 -0.0036315
-0.0010359 -0.0010387 -0.0017808 -0.0017855
-0.0006094 -0.0006110 -0.0010560 -0.0010585
-0.0003830 -0.0004018 -0.0006972 -0.0006995
-0.0001483 -0.0002842 -0.0004608 -0.0004965

-0.0002116 -0.0001818 -0.0003705
Z51.25 Z51.3

-0.0161854 -0.0160731 -0.0220579 -0.0218196
-0.0054430 -0.0054509 -0.0075861 -0.0075827
-0.0027068 -0.0027122 -0.0038084 -0.0038113
-0.0016153 -0.0016182 -0.0022845 -0.0022867
-0.0010721 -0.0010739 -0.0015214 -0.0015227
-0.0007586 -0.0007642 -0.0010851 -0.0010863
-0.0005007 -0.0005715 -0.0007961 -0.0008138
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gives should be judged by Table III. Taking into accou
possible numerical inaccuracies in the computed energies
the high-lying states and the fact that Eqs.~9!, ~10!, and~13!
only require two free parameters, the overall agreemen
the present model is quite acceptable.

V. CONCLUSION

The comparison of the energies calculated numeric
using the configuration-interaction method and those p
dicted by Eqs.~9!, ~10!, and ~13! strongly advocates the
claim that these formulas provide not just a good physi
approximation, but also describe the leading asymptotic
havior of the energies of 1sns3Se levels asZ→1. The con-
stancy of quantum defects for different members of the R
dberg series and the accuracy with which the quantum de
is reproduced by the two-parameter theory constitutes a c
sistent picture.

For the excited states of a two-electron system, it has b
suggested thatZcrit51 exactly @6#. This implies that the
bound states of the 1snl 3Se Rydberg series cease to exist
Z51. Equations~9!, ~10!, and ~13! are consistent with this
view, presenting an asymptotically exact~asZ→1) descrip-
tion of the 3Se two-electron system. This exactness of t
quantum-defect description could be due to the fact that
other channels of a two-electron system, neglected in
present single-channel approach, give contributions deca
for Z→1 faster than the right-hand side of Eq.~9!. By the

TABLE IV. Two-electron energies computed and given by Q
formula~9! for the first few levels of3Se symmetry forZ close to 1.
Energies given in units of hartree.

ECI EQD ECI EQD

Z51.05 Z51.1
-0.552223140 -0.552222538 -0.608348079 -0.6083441
-0.551524187 -0.551524561 -0.606009713 -0.6060120
-0.551358841 -0.551377290 -0.605480382 -0.6054814

-0.551323153 -0.605267629 -0.60528039
-0.551297429 -0.605183303
-0.551283225 -0.605129123
-0.551274563 -0.605095844

Z51.15 Z51.2
-0.668014878 -0.668000300 -0.731071242 -0.7310265
-0.663387381 -0.663393460 -0.723622187 -0.7236315
-0.662285996 -0.662288737 -0.721780862 -0.7217855
-0.661859451 -0.661861002 -0.721056094 -0.7210585
-0.661633088 -0.661651867 -0.720697255 -0.7206995

-0.661534261 -0.720460834 -0.72049650
-0.661461633 -0.720181872 -0.72037054

Z51.25 Z51.3
-0.797435430 -0.797323106 -0.867057915 -0.8668196
-0.786693047 -0.786700934 -0.852586126 -0.8525827
-0.783956865 -0.783962277 -0.848808463 -0.8488113
-0.782865319 -0.782868299 -0.847284580 -0.8472867
-0.782322156 -0.782323915 -0.846521415 -0.8465227
-0.782008663 -0.782014286 -0.846085178 -0.8460863
-0.781750768 -0.781821543 -0.845796105 -0.8458138
7-4
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same reasoning, it is quite possible that these channels
glected in the present formulation, could introduce singu
terms~i.e., exponentially decaying asZ→1) whose singular-
ity at Z→1 would be more complicated than the simp
logarithmic singularity given by Eqs.~9!, ~10!, and~13!.

A closely related but more complicated question rega
the analytic structure of the exact energies of a two-elec
atom in the vicinity ofZcrit . This has been studied exten
sively for the 1Se ground state of a two-electron system. T
point at which the bound state ceases to exist,Zcrit
'0.911 028 225, is an essential singularity having a v
complicated nature@6#. The approach in the present pap
indicates that exact energies of the3Se Rydberg series have
singular points atZ51. The nature of these singular poin
~in the sense of a theory of analytic functions! cannot be
studied by means of the present method. As mentio
above, the contributions to the energy due to the chan
neglected in the present treatment,though being small c
ed

m

s
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pared to the leading term whenZ→1, could introduce more
complicated singularity than that given by Eqs.~9!, ~10!, and
~13!.

The simple properties of the singly excited3Se levels
considered in the present paper are due to their hydrog
character. The1Se levels could also be similarly considere
given modifications involving the presence of a bound st
~and noting that correlations play a predominant role in
formation of the1Se ground stateH2). This and issues re
garding states with nonzero angular momenta will be inv
tigated separately.
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