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Asymptotically exact expression for the energies of théS® Rydberg series in a two-electron system
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The 1sns3S® Rydberg series in a two-electron system with the charge of the nudeus, is treated by
means of the quantum-defect theory. Comparison with configuration interaction calculations suggests that the
guantum-defect expression for the energy levels becomes asymptotically exaet s This provides an
analytic description of the disappearance of ttsn43S® bound states wheH approaches the critical value
of 1.
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[. INTRODUCTION As far as excited states and their properties as functions of
Z are concerned, much less is known. It was conjectured that
Critical phenomena, i.e., the question of when and how all the states belonging to a given Rydberg series cease to be
given physical system undergoes a change in its properties, Bound states fof =1 [6]. The authors of Ref.6] computed
a question which, for a nontrivial system, is often difficult to the first 26 coefficients of the perturbation expansion in pow-
answer. In quantum mechanics, one such example is the disfs of 1Z for the 1s2s3S° state and performed the same
appearance of bound states of a two-electron system, whemalysis as that for the ground state. These results were not

the chargeZ of the nucleus in the Hamiltonian conclusive since only a relatively small number of the per-
turbation coefficients were analyzed.
A 1,1, 2z z 1 In t_he present rg)aper an analytip model is.p.roposed, which
H=-— Evl_ EVZ— —— — 4 — (1) describes the dns°S® Rydberg series foz sufficiently close
f1 T2 T to 1. Configuration interaction calculations performed sepa-

rately suggest that a8— 1, the energies the analytic model
becomes less than a certain critical value. The ground-stajgredicts for the levels of the Rydbergis*S® series become
eigenvalueE(Z) of this Hamiltonian and its properties as increasingly accurate, thus providing exact analytic expres-
function of parametez have been studied for a long time. It sions describing the triplet states of a two-electron system as
was rigorously proved by Katfl] that E(Z) is an analytic Z—1.
function of Z. It could be expected that the change in the
physical properties of the ground state, i.e., its disappearance
as a bound state for a certath=Z;; is to be accompanied
by the singularity whichE(Z) has at the poinE=2;. A simple model of a Rydberg state of a two-electron sys-

The position of this singularity can, in principle, be lo- tem with a nucleus of chargg is a particle moving in a
cated by studying coefficients of the perturbation series ircombination of Coulomb and short-range potentials,
powers of 1Z. This has been done using different methods
[2-5] such as the ratio te§te., the numerical analysis of the 7
sequence constructed from the ratio of two subsequent coef- V(r)=Vg(r)— o (2
ficients of the perturbation serje®r using Pade analysis of
the perturbation expansion. . . .

In the paper of Bakeet al. [6], the authors performed Wherez=Z—1 andV(r) is a short-range interaction. We
high-precision calculations of the coefficients of the pertur-Présent below arguments showing that despite its simplicity,
bation series for the ground state of the He-like ions. Uporjhis model provides an asymptotically exact description of
analysis of the asymptotic behavior of these coefficientst® Rydberg series of a two-electron system with its nuclear
they obtained the valtg,;~0.911 029 as the position of the chargez—1. o o
singular point ofE(Z) for the ground state. These authors 1N€ Physical situation of a combination of short-range
also resolved a long-standing controversy by proving that ifind Coulomb potentials is described naturallly in terms of the
is exactly at the singular poit=Z,; that the ground state duantum-defectQD) approach[13]. The position of theT

ceases to be a bound state. Their value of the critical poiff’@riX poles in QD theory is given by the solutions of the
has been subsequently refingd-9]. following equation in the complek plane[14]:

Other properties oE(Z) for the ground state of a two-
electron system have been studied, such as possible existence M (k?)=—2z7(k), ()
of other singular points in the complex plane[2,10]. In
Refs.[11,12, a dispersion relation foE(Z) has been pro- where the functioM (k?) could be found, in principle, if the
posed and verified by means of a complex rotation calculalogarithmic derivative of the radial wave function is known
tion. at some point where any inner short-range interaction disap-
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pears and only the Coulomb potential is present. The funcwhere 85, B1 are both independent of energgccounting
tion 7(k) can be expressed in terms of known special funcfor their energy dependence introduces terms of higher order
tions[15], in z).

Recalling that parameter in our model isz=2Z-1,

1 whereZ is the charge of the nucleus, one obtains the follow-
(k) =In(k) + S[W(in)+V(=in]+ — , (4 ing tentative expression for the energy levels of treng
erm—1 Rydberg series for —1:

whereWV (x) is the digamma function ang= —z/k. Z2 (Z-1)°

The key point in the standard development of the QD E(Z)=—-5~— 20T e’ 9
procedure is the observation tHdt(k?) is an analytic func-
tion of k?. This generally follows from the analycity of the with n=1.2 and
solutions of a differential equation as functions of a given R
parameter, provided the initial conditions do not depend m(Z—1)
upon this parameter. From the same general statement, it €= (10

follows that the functiorM (k?,z) is also an analytic function A(Z)=(Z=1)n(Z-1)

of z. As we shall see, this fact can be usefully exploited in

describing the behavior of the levels of the Rydberg series Ihe function5(Z) is analytic in the vicinity oZ=1 and has

a .
gn expansion

the charge of the nucleus— 1.

Introducing variablek=ix and u=z/«, expanding the
left-hand side of Eq(3) in powers ofz, and using known
properties of the digamma functigd5], Eq. (3) can be re-
written as

Mo(k?)+zM (k%) + . ..

1
=—-2zlInz—1In u+wcotwu+z+‘lf(u) ,

5
where M;(k?) are all analytic functions ok?. To track z
dependences it is more convenient to recast Gy.in a
slightly different form,

B(k?,2) 1
z —Inz=—Inu+ 7 cotmu+ — +V¥(u),

2u ©

with B(k?,z2)=—M(k? z)/2 being an analytic function of

B(Z)=Bo+ Br(Z=1)+- . 1y
When deriving Egs(9) and (10), it is assumed that apart
from the Coulomb potential, only short-range interactions
are present. Strictly speaking, this is not the case for a Ryd-
berg state of a real two-electron system, since there is also a
polarization interaction due to the polarizability of the core.
The presence of such a polarization interaction does not
affect Egs.(9) and (10). Indeed, when deriving these equa-
tions we used the analycity of the functios, and M in
Eq. (5) as functions ok? and retained only the leading con-
stant terms of the corresponding expansions. When a polar-
ization potential is present, the functiok, andM in Eq.
(5) are no longer analytic functions &, but can still be
represented as a power serieskinM;(k)=apg+a;x+---
(wherek=i«). Accounting of the terms of higher order than
the linear term introduces terms of higher order t@anl.
Sincek~Z—1, accounting for the linear term only rescales

both arguments. We shall be interested in the solutions of Eghe Z— 1 coefficient (8,) in Eq. (11). We therefore recover
(6) for which u—C, whereC is a positive constant, when EGs.(9) and(10), even in the presence of the polarization
z—0. As we shall see, foz—0 such solutions describe the Intéraction.

Rydberg series dnsof a two-electron atom.

For z—0, the left-hand side of Eq6) is unbound, and
the only possibility of satisfying Eq6) is for u=n+€(2),
and thusk=2z/(n+¢€), wheree—0 whenz—0. This gives

One may expect that Eq$9) and (10) provide an ad-
equate description of a two-electron system, given that the
charge of the nucleug is close enough to 1. Indeed, on
physical grounds it is clear that the state of a two-electron

the Rydberg formula with the following explicit expression System withZ~1is spatially extendedjuantitative illustra-

for e:

B 7z 7
€= m ( )
This equation is obtained in the assumption thistso small
that all the terms decaying faster than first poweg 6ivhen
z—0) can be neglected when solving E6). In particular, it
implies that only the first two terms of tteexpansion of the
function 8(z) should be preserved. Thug(z) can be rep-
resented as

B(2)~Bot B1z, 8

tion of this statement is given in the following sectioBuch
systems are natural candidates for the quantum-defect theory.
However, the numerical calculations described in the follow-
ing section strongly suggest that E48) and (10) are more
than just a good approximation. The numerical evidence sug-
gests that these formulas actually give the leading terms of
the asymptotic behavior of the exact energy wizen 1.

Further discussion of this premise is postponed for the
presentation of the details of the numerical calculations.

lll. CI METHOD

To numerically compute the energies of a two-electron
system withZ~1, the configuration interactiofCl) method
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was employedi16]. Only a brief description of the numerical =~ TABLE |. Sequences8y(Z) and 8,(Z), calculated value of
procedure is given here since the details closely follow tha(Z), and approximation given by E@13) for different values of
of two-electron ClI calculationgvith model potentialsof the — Z.

138 ground state and lowesP° excited state of the group I

atoms[17]. z Bo(Z) B1(Z) B(2) Eq. (13
The nonrelativistic a.tomlc wave function W|Fh gobcand . 1.05 0.8745 3.1300 1.02808 1025
Squantum numbers ¥;LS)) is taken to be a linear combi- 1.10 0.8777 3.1639 118458 1.180

nation of antisymmetrized states created by multiplying two

e e e PYo e 115 0.8843 3.2309 1.34278 1.335
Z'g? d‘;‘ﬁirof ?ine igé?f?ci:r:tsl-as with the usual tlebsch- ) 54 0.8947 3.3089 150433 1.490
piing ' 1.25 0.9092 3.3891 1.66978 1.645

VL) .EJ CipACGmiC LM, ) sequenceZ; of Z values, the sequencg,(Z)=[B(Z)

1 1 —B(Zi,l)]/(rZ]i—Zi,l), has bleen LormedﬁThe limit of this
I _ _ sequence wheZ—1 is equal to the coefficien8; in Eq.

X< 2ok SMS> Prgra), (12 (12). The third column of Table | shows thgt(Z) is nearly

] . i ] constant. From this a number of conclusions can be drawn.

where the radial form of the single-particle orbital§(r)  First, this confirms the overall validity of Eq9)—(11). Fur-

was constructed from a Laguerre-type orbitaTO) basis.  ther, it signifies that for th& values considered here, higher-

The method for computing the LTO radial basis functions, ag, der terms(in powers ofZ—1) are insignificant. Finally,

well as the details c_)f numerically computing the matrix ele-near constancy oB,(Z) allows accurate determination of
ments have been discussed elsewh&8}. The Hamiltonian {4 coefficient3, in Eq. (8) by extrapolating values ¢8,(Z)

of Eqg. (1) was diagonalized in a purely LTO basis, since thegiven in Table | toz=1. The value forg, obtained as a
dimension of such a basis can be made arbitrarily large Withzag 1t of such extrapolation wag;~3.10. Having deter-
out any linear dependence problems arising. Two series of Glinaq B,, the sequenceBy(Z) defined asBy(Z)=B(Z)
calculations were performed to ensure convergence, with the 8,(Z)(Z—1) has been formed. The results from the Table

lowest energy of the two being reported. | (second columnshow thatBy(Z) is an almost constant

Thg smalleﬂTmaX=Z calf:ulation includ_ed ) 20p, .and function, which can thus be reliably extrapolatedze 1,
20d single-particle state@with L, denoting the maximum giving B,~0.87. Thus the “exact’ function3(Z) is ap-
angular momentum of the single-particle orbitals, and th roximately given by

total number of configurations includedllc,;=1240). The

Laguerre exponent for all of thg p, andd LTOs was set to B(Z2)~0.87+3.10Z—-1). (13
A=0.2 to represent the two-electron states located at large ) o
distances from the nucleus. That this approximation accurately represents the exact

The largerL na,=10 calculation included 35orbitals B(Z) can be seen from Table (columns four and five
with 20 orbitals for each of the other partial waves, with Where the exacp(Z) as well as the results given by the
Nc,=1955. The Laguerre exponents of single-particle statedPProximation in Eq(13) are presented. Even faras large
for each partial wave were fixed at=0.5, providing an @s 1.3, the error remains at about 1%.
improved basis for the more t|ght|y bound states. Besides the |0W95%Se level, the energles of the next few
With these two contrasting LTO basis sets, no optimizamembers of the Rydberg series have been computed. The
tion of A for each partial wave for eachshs®s® state for ~ results for the quantum defects for these leVelstermined
eachZ was required. Since the partial-wave convergence foHSing Eg.(9)] are presented in Table Il. Quantum defects
two-electron3S® states in a Cl-type expansion is faster thatPredicted by Eq(10) with 5(Z) given by Eq.(13) are also
that of the 1S® series[19], no extrapolations to account for Shown. Not all the entries in Table Il are filled since the

TABLE II. Quantum defects for the first few levels 88° sym-
IV. RESULTS metry for Z values close to 1.
Once the energies of the few low-lying Rydberg levels of i

33® symmetry for a sequence @f values in the vicinity of

- . Level 1.05 1.10 1.15 1.20 1.25 1.30
Z~1 were obtained from the CI calculations, the next task
was to use the energy of the lowest2k 3S°® state to deter- 1 0.1333 0.2220 0.2895 0.3440 0.3895 0.4283
mine the parameter8,, B4 in Eq. (10). The exact function 2 0.1351 0.2252 0.2942 0.3497 0.3960 0.4355
B(Z) was determined using Eq&®) and (10) and the com- 3 0.2262 0.2953 0.3511 0.3977 0.4374
puted energies of the lowesg® level. The results are pre- 4 0.2964 0.3517 0.3984 0.4381
sented in Table {fourth column. 5 0.3557 0.3987 0.4385

The second and third columns represent successive ap- 0.4395

proximations to the first two terms of the series in Etl).  Egs.(13,10 0.1337 0.2228 0.2909 0.3468 0.3944 0.4361
These approximations have been defined as follows. For the
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TABLE lIl. Quantity E+Z2/2, computed and given by QD for-
mula (9) for the first few levels offS® symmetry forZ values close
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TABLE IV. Two-electron energies computed and given by QD
formula(9) for the first few levels ofS® symmetry forZ close to 1.

to 1. Energies given in units of hartree.
Cl QD Cl QD Ec Eop Ec Eaop
Z=1.05 Z=11 Z=1.05 Z=1.1
-0.0009731 -0.0009725 -0.0033481 -0.0033441 -0.552223140  -0.552222538 -0.608348079 -0.608344125
-0.0002741 -0.0002745 -0.0010097 -0.0010120 -0.551524187  -0.551524561 -0.606009713 -0.606012004
-0.0001088 -0.0001272 -0.0004803 -0.0004814 -0.551358841  -0.551377290 -0.605480382 -0.605481407
-0.0000731 -0.0002676 -0.0002803 -0.551323153 -0.605267629 -0.605280399
-0.0000474 -0.0000699 -0.0001833 -0.551297429 -0.605183303
-0.0000332 -0.0001291 -0.551283225 -0.605129123
-0.0000245 -0.0000958 -0.551274563 -0.605095844
Z=1.15 Z=12 Z=1.15 Z=1.2
-0.0067648 -0.0067502 -0.0110712 -0.0110265 -0.668014878  -0.668000300 -0.731071242 -0.731026545
-0.0021373 -0.0021434 -0.0036221 -0.0036315 -0.663387381  -0.663393460 -0.723622187 -0.723631507
-0.0010359 -0.0010387 -0.0017808 -0.0017855 -0.662285996  -0.662288737 -0.721780862 -0.721785570
-0.0006094 -0.0006110 -0.0010560 -0.0010585 -0.661859451  -0.661861002 -0.721056094 -0.721058511
-0.0003830 -0.0004018 -0.0006972 -0.0006995 -0.661633088  -0.661651867 -0.720697255 -0.720699594
-0.0001483 -0.0002842 -0.0004608 -0.0004965 -0.661534261 -0.720460834 -0.720496505
-0.0002116 -0.0001818 -0.0003705 -0.661461633 -0.720181872 -0.720370541
Z=1.25 Z=13 Z=1.25 Z=13
-0.0161854 -0.0160731 -0.0220579 -0.0218196 -0.797435430  -0.797323106 -0.867057915 -0.866819670
-0.0054430 -0.0054509 -0.0075861 -0.0075827 -0.786693047  -0.786700934 -0.852586126 -0.852582724
-0.0027068 -0.0027122 -0.0038084 -0.0038113 -0.783956865  -0.783962277 -0.848808463 -0.848811387
-0.0016153 -0.0016182 -0.0022845 -0.0022867 -0.782865319  -0.782868299 -0.847284580 -0.847286712
-0.0010721 -0.0010739 -0.0015214 -0.0015227 -0.782322156  -0.782323915 -0.846521415 -0.846522786
-0.0007586 -0.0007642 -0.0010851 -0.0010863 -0.782008663  -0.782014286 -0.846085178 -0.846086346
-0.0005007 -0.0005715 -0.0007961 -0.0008138 -0.781750768  -0.781821543 -0.845796105 -0.845813810

treat computationally, especially fat very close to 1. The gives should be judged by Table Ill. Taking into account
energies for which the error in the CI calculations becamepossible numerical inaccuracies in the computed energies for
significant were omitted. the high-lying states and the fact that E(®, (10), and(13)

Two important observations follow from the data pre- only require two free parameters, the overall agreement of
sented in Table II. First, the predicted quantum defects agre®€ present model is quite acceptable.
closely with the calculated values. Second, the computed
guantum defects for the different levels for a givémeveal
remarkable constancy, thus confirming the overall validity of  The comparison of the energies calculated numerically
the quantum-defect description for the Rydberg series ofising the configuration-interaction method and those pre-
1sns®S® whenzZz—1. dicted by Egs.(9), (10), and (13) strongly advocates the

Tables Il and IV present results for the energies bothclaim that these formulas provide not just a good physical
computed and predicted by the QD E(®, (10), and(13) of = approximation, but also describe the leading asymptotic be-
the first few levels of $ns®S® Rydberg series for different havior of the energies ofsins3S? levels asZ— 1. The con-
Z-values. The energies in Table Il are given relative to thestancy of quantum defects for different members of the Ry-
threshold, i.e., are presentedBs Z%/2. The overall agree- dberg series and the accuracy with which the quantum defect
ment between the numerically calculated and predicted valis reproduced by the two-parameter theory constitutes a con-
ues is generally of the order of 1% or better. As expected, theistent picture.
agreement deteriorates for the higher-lying members of the For the excited states of a two-electron system, it has been
Rydberg series, as the Cl calculated energies are inherentsuggested thaZ.;=1 exactly [6]. This implies that the
less accurate than the Cl calculated lower-lying statébound states of thesh|3S® Rydberg series cease to exist at
energies. Z=1. Equationg9), (10), and(13) are consistent with this

Primarily for reference purposes, we give in Table IV theview, presenting an asymptotically exdasZ—1) descrip-
full energies of the §ns3S? states, both numerically calcu- tion of the 3S° two-electron system. This exactness of the
lated and those predicted by E@8), (10), and(13). Agree-  quantum-defect description could be due to the fact that the
ment is again excellent, but keep in mind that #bvery  other channels of a two-electron system, neglected in the
close to 1, the energy is largely dominated by the first term opresent single-channel approach, give contributions decaying
Eg. (9). The true level of accuracy that the QD approachfor Z— 1 faster than the right-hand side of E§). By the

V. CONCLUSION
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same reasoning, it is quite possible that these channels, npared to the leading term wheét- 1, could introduce more
glected in the present formulation, could introduce singularomplicated singularity than that given by E¢®), (10), and
terms(i.e., exponentially decaying a— 1) whose singular-  (13).
ity at Z—1 would be more complicated than the simple The simple properties of the singly excitet&® levels
logarithmic singularity given by Eqg9), (10), and(13). considered in the present paper are due to their hydrogenic
A closely related but more complicated question regardsharacter. Thé'S® levels could also be similarly considered,
the analytic structure of the exact energies of a two-electrogiven modifications involving the presence of a bound state
atom in the vicinity ofZ.;;. This has been studied exten- (and noting that correlations play a predominant role in the
sively for the 1S® ground state of a two-electron system. Theformation of the'S® ground stateH ™). This and issues re-
point at which the bound state ceases to exif;  garding states with nonzero angular momenta will be inves-
~0.911 028225, is an essential singularity having a ventigated separately.
complicated naturg¢6]. The approach in the present paper
indicates that exact energies of tA8° Rydberg series have
singular points aZ=1. The nature of these singular points
(in the sense of a theory of analytic functiprsannot be This work was supported by a research grant from the
studied by means of the present method. As mentionedustralian Research Council. Thanks also to Corey Hoffman
above, the contributions to the energy due to the channelsnd Jean-Claude Nou for maintaining our computing re-
neglected in the present treatment,though being small consources.
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