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Calculation of the Lamb shift in neutral alkali metals
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The one-loop Lamb shift is calculated for the ground state of the neutral alkali metals lithium through
francium. The method used is Furry representation QED, defined in terms of a variety of local potentials. The
method is exact in binding corrections, but is potential dependent. Significant differences with known Lamb
shift results for lithium are found, and it is shown that large corrections result from a partial set of screening
corrections. Comparison with other calculations is made.
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[. INTRODUCTION In the hydrogenic case, the one-loop Lamb shift of a state
v with principal quantum numbear can be written in terms
The problem of how to evaluate energy shifts from radia-of two functions ofZa, one accounting for self-energy,
tive corrections in neutral atoms is usually overshadowed by Za)*
the fact that the precision available from modern many-body _alla 2
methods[1] has not yet reached the level of these small AB(SB= 7 n3 Fo(Za)mec?, @)
corrections. The exceptions are hydrogen, helium, and
lithium, where the wave functions are either known analyti-and the other for vacuum polarization,
cally or else have been determined with high accuracy with
variational methods. However, variational methods rapidly a (Za)* 5
become difficult to apply as one treats atoms further up the AE,(VP)= T nd H,(Za)mec®. @
Periodic Table. As progress is made in the accurate solution

of the Schrdinger equation, and the part per million level is \yg will follow this notation in the nonhydrogenic cases con-
reached, discrepancies with measured energies attributable dpjered here, and tabulate the functidhandH for the va-

radiative corrections will begin to appear, and methods tqence shell statess,j,, n=2-7 for the neutral alkali metals.
accurately calculate the Lamb shift in heavier neutral atomg, expansions iZa will be made, but the results will de-

will have to be developed. _ pend on the local potential. In the following, natural units
There has been consu_jerable progress rec_ently in the reGitn 4 =c=1 will be used.
lated problem of calculating the spectra of highly charged
ions [2,3]. Here the structure problem is made tractable by
the rapid convergence of theZLéxpansion, and in addition
the radiative corrections are enhanced by a factaZofso In this paper we use five local potentials, defined in terms
the accurate evaluation of these corrections is essential i the charge density of the valence state,
understanding the spectra. In a recent pd@@rwe have
shown that the inclusion_ of a set of one- and t_vvq-ph(_)ton pv(r):gg(r)_{_fl%(r) 3
diagrams allows a solution of the problem for lithiumlike
bismuth so accurate that even the two-loop Lamb dHift  and the charge density of the core,
can be discerned.
While the rapid convergence of the perturbation series for
highly charged ions is not present for neutral systems, it is pe(r) =2, (2ja+D[GA(r)+FaN)]. 4
known that the properties of alkali metals can be calculated a
with better than 10% precision in low-order many-body per-
turbation theoryMBPT) [5]. While this is not adequate for Hered(r) andf(r) are the upper and lower components of
binding energies, which require all-orders methods such aSirac wave functions, determined self-consistently in the lo-
coupled cluster or configuration interactié@l) [1], a 10% cal p(_)tentlaIU(r), which is in turn defined in terms of an
calculation of the Lamb shifts adequate for this already €ffective chargee(r) through
very small effect in heavy atoms. We do not, however, claim
this accuracy for the calculations presented here, which, with u(r)=— Zeti(N) e _ (5)
the exception of lithium, are lowest-order results. We will r
discuss the prospects for obtaining higher accuracy through a
combination of MBPT and quantum electrodynami@ED)  The core-Hartree potential used here has an effective charge
in the final section. defined through

II. CHOICE OF POTENTIALS
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TABLE |. Valence removal energies in atomic units of the alkali metals in different potentials.

Atom Expt. CH Xo=0 Xo=1/3 Xo=2/3 X,=1
Li 25y —0.198 14 —0.183 097 —0.177 895 —0.185 737 —0.193 504 —0.201 951
Na 3sy» —0.188 86 —-0.173 341 —0.167 970 —0.172 243 —0.178 764 —0.189 192
K 4sy, —0.159 52 —0.139 522 —0.133 925 —0.137 752 —0.144 032 —0.154 929
Rb 5s/» —0.153 51 —0.131 786 —0.125 609 —0.129 382 —0.135 854 —0.147 618
Cs 6sy)» —0.143 10 —0.120 056 —0.113 986 —0.117 668 —0.124 015 —0.135 835
Fr 7sy —0.149 67 —0.122 284 —0.114 174 —0.118 154 —0.125 431 —0.139 670
CH ’ 1 ' — 3¢ (v g
Zeff(r)=Znuc(r)—rJdr ch(r ), (6) AEU(VP)—fd F by (1) YoUuer(1) ¢, (1), ®

and the other potentials have the effective charge, derive@here
from local density theory6],
b theorts] o? (1 yH1-yR3)
1 UUeh(f)=ﬁf dy—— 72—
LD ’ i mJo y
Zeff(r):ZnuC(r)_rJ' dr r_Pt(r )
>

1/3

: ()

Ze1(X)
X

2
X

efzmbzfr»l/\/lfy2
81 X f d3x

. (9
392" pi(r)

+Xq x|

) . WhenZ.¢¢(x) is spherically symmetric, this simplifies, after
Wherept(r)zgv(r)erc(r_) is t_he total charge density. We 5 change of variable, to
will use effective potentials witkx,=0, 1/3, 2/3 and 1. In
particular, x,=0 is the Dirac-Hartreg DH) potential, x,, a2
=2/3 is the Kohn-ShanfKS) potential, andx,=1 is the Uyed) =
Dirac-Slater(DS) potential.
The physically natural large limit Zgs(r)—1 is built r
into the definition of the core-Hartree potential, but has to be ><| j dngff(x)[e—Zm(f—X)/Z_ g~ 2m(r+x)/z)
enforced for the other fouk, potentials using the Latter 0
correction[7]. It has been our experience that an optimal o
choice is the Kohn-Sham potential wit = 2/3[8], but that +f dxZg(x)[@ 2MX-D/z—gmamrtxlz) |
the core-Hartree potential is also favored because it can be '
shown that it accounts exactly for the screening of valence (10
electron radiative corrections when exchange diagrams are
neglected9]. None of them, however, account for the im- Series expansions tabulated by Fullerton and Rifkef al-
portant effect of the valence electron on radiative correction$ow the accurate evaluation of the Uehling potential. We note
in the core, which will be treated in Sec. V. In Table | we that for light atoms where the Uehling potential acts very
collect the valence removal energies for the alkali metalgnuch like aé function, a very fine radial grid is needed. In
considered here for the five potentials, along with the experiTable Il we present vacuum polarization results for the vari-
mental values. ous alkali metals for the five potentials chosen for this paper.
It is of interest at this point to compare our results for
Il VACUUM POLARIZATION lithium vyith Fhe much more accurate approach. available for
nonrelativistic atoms with known wave functions. If one
For neutral atoms the effect of vacuum polarization ismakes the approximation of neglecting binding corrections
dominated by the Uehling potential, of orderZ«, the Lamb shift can be represented as the expec-

fldz\/1—22(2+22)
0

127mr

TABLE Il. The vacuum-polarization functioll (Z«) for the alkali metals in different potentials.

Atom CH Xo=0 X,=1/3 Xo=2/3 Xo=1

Li 2sy0 —0.050 443 —0.053 423 —0.050 598 —0.048 959 —0.051 143
Na 3sy, —0.010 265 —0.009 129 —0.008 996 —0.009 800 —0.011 973
K 4sy, —0.005 846 —0.004 918 —0.004 923 —0.005 622 —0.007 435
Rb 5sy/» —0.002 817 —0.002 249 —0.002 328 —0.002 786 —0.003 890
Cs 65¢)» —0.002 144 —0.001 675 —0.001 752 —0.002 152 —0.003 118
Fr 7sy, —0.002 194 —0.001 556 —0.001 716 —0.002 240 —0.003 422
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tation value of a relatively simple operator. As mentionedHere the integration over the photon momentkis carried
above, the Uehling potential is proportional to a kind of rep-out in n=4— € dimensions so as to regularize ultraviolet

resentation of & function, specifically divergences. The self-mass countertetm® is
15m2 y2(1— y2/3) —
— 72mr/ 17y2 m 3C
)= f dy—1-y2 @ Sm?= “( ) (18)
26
in terms of which the associated energy shift is the expecta-
tion value of the operator with
4Za — €l2
Sup E S(ry), (12) C=(4m) T (1+€l2). (19

As described in more detail in R€fL3], we use an approach
in which the electron propagator in the external fid, is
rearranged in terms of the free propaga®gras

with Z=3. The expectation value of thé functions is
known with high accuracy for the ground state of lithium

[11,12,
3 - 3 - - -
(P S0+ S, ~13842 SO0’ ST )= SuT )= ST )
To get ionization energies, we subtract from the above the _J d3z2S,(r,2,E)V(2)Sy(Z, ', E)
analogous term for L,
(8%(r1)+ 8%(r,))=13.702 936ma)?, (14) +So(r.r",E)
to get the variational value for vacuum polarization in neutral + J d*2S(r,Z,E)\V(2)Se(z, E). (20)
lithium of
H(Za),_3=—0.034671. (15)  The terms inside the square brackets are ultraviolet divigent

individually but combine to give an ultraviolet finite contri-

Comparison with the lithium results in Table Il shows that bution to the self-energy. We note that the combined term is,
the lowest-order approach significantly overstates the magnin a schematic notation, equivalent to the “many-potential”
tude of vacuum polarization. This is primarily due to the termS,VS:VS, used by other groups, for example by Blun-
approximate character of the wave function, although wedell and Snydermafil4]. Here, these three terms are evalu-
note that even if exact wave functions were used, small disated separately in coordinate space with partial wave expan-
agreements would be expected because the present appro&idns. In each case, a Wick rotation with—iw is made.
includes binding corrections. We will show below that the The d®k integration and the angular integrationsdfr and
inclusion of a partial set of first-order screening effects leadsi®r’ are then carried out analytically, leaving a three-

to large corrections that understate the magnitude. dimensional integral irdwdrdr’ that is evaluated numeri-
cally. The Wick rotation in theSg term also passes bound-
IV. SELE-ENERGY state poles. Details of these pole terms are given in[R&f.

The last two terms in Eq(20) give rise to ultraviolet
The self-energy is significantly more difficult to calculate divergences. These divergences cancel with&mé? term,
than vacuum polarization. The renormalized energy shift caleaving an ultraviolet finite result that is evaluated in mo-

be written as mentum space. The two terms involved here &peand
SyVS,. They are referred to as the zero-potentizpot and
AE,(SB=%,,(€,) one-potential1-pot terms, respectively, and are given by

Efdsrfd3r'ZU(F'>E<F,F',eU>¢U(F>. ol i
AEo_pm=—;f d*pip,(P) (D= M) ,(P)

(16)
where dapf 1-ej+p?im?
i 1-€2(1—x)+(1—x)p?/m?
o d"k el r—r o R
E(r,r',E)E—ieZJ Za k—VuSF(r r'E— ko) v* X, (p)[2m—p(1—x/2)]4,(p) (21
—sm@s(r—r"). (17)  and
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TABLE lll. The self-energy functiorF(Z«) for the alkali metals in different potentials.

Atom CH Xo,=0 Xo=1/3 Xo=2/3 Xo=1
Li 25y 1.481 1.558 1.490 1.440 1.506
Na 3sy/, 0.190 8 0.169 3 0.167 4 0.181 4 0.223 3
K 4s,), 0.085 60 0.072 02 0.072 05 0.082 86 0.109 66
Rb 5s/, 0.028 60 0.022 82 0.023 59 0.028 34 0.039 59
Cs 6sypp 0.016 16 0.012 63 0.013 21 0.016 21 0.023 49
Fr 7sq.» 0.009 646 0.006 837 0.007 543 0.009 839 0.015 02
- o2 (1 1 RPpd®p’ Z|p—p']) found i!’] Ref.[12]. However, the contr?bution oAE , to
AEl,pot—F pdp | dx = F(Za) is only —0.050, so clearly, as with vacuum polariza-
T Jo 0 lp—p’ tion, the significant overstatement of our approach is prima-

rily due to the mean field approximation. We now turn to a

. - A N
Z'ﬁv(p)Yoiﬁu(p')an"‘ K

X , (22)  calculation of leading corrections to our lowest-order results
for lithium.
whereZe(|p—p’|)/2m*|p—p’|? is the Fourier transform of V. FIRST-ORDER CORRECTIONS FOR LITHIUM
Zes(r)/r. Expressions forA and N in the above can be _ _ _
found in Ref.[13]. Figure 1 shows Feynman diagrams of first-order screen-

Because we use Feynman gauge, a high degree of canc#lg corrections to self-energy and vacuum polarization. The
lation between different contributions is encountered evergomplete calculation of these corrections, first carried out for
for the more tractable case of highly charged ions. For neubighly charged lithiumlike ions in Ref$2] and[3], is quite
tral atoms this cancellation is much more severe, and recomplex. However, a numerically dominant part of the cal-
quires the use of very fine grids to control numerical error.culation is relatively straightforward to implement. It comes
Care is required in the integration over, which becomes from Figs. 1b), 1(c), 1(f), and Xg) which involve screening
unstable aso— 0. Finally the 1/° convergence of the partial corrections to bound-state wave functions. In this section we
wave expansion does not set in until rather large valuds of include these “side diagram” corrections for lithium. The
Here, 50 partial waves are calculated, and residual high-formula for the shift in the self-energy is simply
contributions are obtained by extrapolations. We present re-
sults for the ground-state self-energy of the alkali metals in
Table 1Il, with an estimated error of 1 in the fourth signifi- ~ AE=3,3(&,) +35,(€,)+ > [Saa(€a) +Szal€a)],
cant digit. a (24)

It is again of interest to compare the results for lithium
with those coming from variational wave functions. Com-
parison for the self-energy is, however, less straightforwardvhere
than for vacuum polarization. The difficulty is that our ap-
proach, while nonperturbative in the sense that no approxi-
mations on the electron propagator are made, nevertheless
treats the electron as moving in a central potential. A good
choice of potential will account for a great deal of its inter-
actions with other electrons, but ultimately the effect of those
interactions will have to be taken into account through per-
turbation theory or more powerful methods, as will be dis- a b ¢ d
cussed in Sec. V. The variational approach, however, while
relying on nonrelativistic approximations, is exact in its
treatment of the electron-electron interaction. We note in par-
ticular the fact that terms of the same order ®@fas the
self-energy also arise in many-electron atoms from diagrams
involving the exchange of two photons, which form part, but
not all, of the term denotedE_ , in Ref.[12]. Thus even an
exact self-energy calculation would not be expected to agree e f g

with the result . , .
FIG. 1. Feynman diagrams of the first-order screening correc-

tions to self-energy and vacuum polarization. Small circles with a
F(Za);-3=0.895 (23 cross at the center represent interactions with the counterpotential.
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TABLE IV. Perturbed orbital corrections to the vacuum-polarization funchidZ«) and the self-energy functioR(Z«) for the 25/,
state of lithium in different potentials.

Term CH X,=0 X,=1/3 X,=2I3 X,=1
H(Za) —0.0504 —0.0534 —0.0506 —0.0490 —0.0511
7 0.0197 0.0295 0.0202 0.0135 0.0153
a 0.0109 0.0136 0.0104 0.0084 0.0076
Sum —0.0198 —0.0103 —0.0200 —0.0271 —0.0282
F(Za) 1.481 1.558 1.490 1.440 1.506
7 —0.592 —0.836 —0.586 —0.389 —0.412
a —0.309 —-0.372 —0.292 —0.236 —-0.211
Sum 0.580 0.350 0.612 0.815 0.883
R d3zdBw wm(g) 1/3, 2/3, and 1 energies differ from experimen_t b32.5%,
r(y)=a 2, f e —— —5.7%, —1.7%, —0.1%, and 0.6%, respectively. Given
m#v,a |z—w| €~ €m that the CH andk,=0 potentials have no exchange terms,
X[Em(f)y " (E)E o) V(W) thls_|nd|cates the importance of including exchange eﬁeqts in
u¥v a a setting up model potentials for MBPT and QED calculations
_eiAE\Z—MJm(Z) mwa(i)%(w) yﬂ%(\m] of neutral alkali metals.

VI. COMPARISON WITH OTHER CALCULATIONS AND

nY) .o :
-> d%%%(Z)U(Z)%(Z) (25 DISCUSSION

m#v
Calculations similar to those presented in this paper have

is a valence orbital perturbed either by the exchange of . . .
P y g een carried out by Labzowslet al. using a different com-

photon with the core electrons or else by a counterpotenti

_ _ putational method15]. While local density potentials are

U(2)=(Znue™ Zer) /2, and also used in that work, thex,, parameters are determined by
) dezdPw ()7) fitting to Dirac-Fock energies and to experiment, and an ex-
y(Y)=a 2, . L act comparison with their results cannot be made. However,
m#a |z—w| €a= €m we find good qualitative agreement. For example, they find a

- . — . R total Lamb shift for cesium ranging from 0.0018 eV to
X[ m(2) ypiba(2) th, (W) ¥, (W) 0.0033 eV, compared to our range of 0.0016 eV to 0.0029
BT (3 TN eV. In the case of francium their values range between
€ Un(2) Y uth(2) o (W) y* ha(W) ] 0.0046 eV and 0.0076 eV, compared to our 0.0030 eV to

(26)  0.0065 eV.
We also note work in cesiurfil6] and francium[17] by

is a core orbital perturbed by the exchange of a photon withhe Novosibirsk group, in which the Lamb shift is estimated
the valence electron. In both casé<: is the exchange en- through arguments about the wave function at the origin,
ergy given byle, — €,|. The shift in the vacuum-polarization which is calculated with methods that sum infinite classes of
energy is given by a formula similar to E@4), but with the  diagrams. For cesium they find 0.0023 eV, which is consis-
self-energy operatat replaced by the Uehling potential op- tent with the above ranges, but for francium they find 0.0096
eratorU yep- eV, which is somewhat larger than the above results. How-

In Table IV we present the perturbed valence- and coreever, given the large screening corrections found in lithium
orbital corrections for the different potentials considered indiscussed above, it is possible that a more complete calcula-
this paper to the vacuum polarization and self-energy of theion would lead to better agreement. It is of interest that their
2s state of lithium. In both cases the corrections are quitebest value for the ionization energy of francium, using the
large. For vacuum polarization, they act to bring the lowesthighly accurate many-body methods developed by that
order results, which cluster about 50% in magnitude abovgroup, is -0.14928 a.u., off by 0.00039 a(0.01 eV} from
the variational results, to a range of 20% to 40% below inexperiment. If their many-body method is indeed accurate to
magnitude, excluding for the moment tlkg=0 potential.  five figures, then the Lamb shift may actually have been seen
For the self-energy, again excluding that potential, thein this heavy alkali metal.
lowest-order results are 50% to 60% higher, and after first- The main result of the present paper is to demonstrate that
order corrections, 10% to 30% smaller. The excludgd the high-accuracy techniques that we have developed for the
=0 case has much larger corrections which are likely due t@valuation of radiative corrections, which are usually applied
poor convergence of the Z/expansion. This can also be to highly charged ionf2,13], can be extended to treat neutral
seen when MBPT is applied to the calculation of the valenceatoms. An advantage of such techniques is the fact that they
removal energy through second order: the CH ape-0, make no approximations to the electron propagator in the
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self-energy case, which leads to the automatic accounting dfody techniqueg1] with QED will have to be explored.

all binding corrections, a vital attribute for highly charged Inasmuch as the entire Uehling potential and a large part of
ions becaus&«a is not small. It may also be necessary to the self-energy involve the expectation valuesofunctions,
include these binding corrections for neutral atoms like ceit seems likely that at least this part of the problem for
sium and francium. However, before this can be verified, dithium could be accurately treated with CI techniqui&8].
more accurate determination of the Lamb shift is necessarf’hese same techniques may be applicable to heavier alkali
At present, while our propagators are exact, they are alsmetals. However, a simpler approach, which we are at
defined in terms of a potential, and that potential is at bespresent investigating, is to generalize the second-order
only an approximation to the actual environment in whichMBPT corrections that are known to provide a 10% level of
the electron propagates. This accounts for the significamtonvergence for matrix elements such as hyperfine splitting
variation of our results as the potential is changed, and alsand oscillator strengthi$] to the Lamb shift.

for the disagreement with the known results for lithium.

A systematic way to undo this approximation is MPBT, or
its Smatrix generalization. As mentioned in the Introduction,
the latter approac,3] works very well for the treatment of The work of J.S. was supported in part by NSF Grant No.
radiative corrections in highly charged ions because of th&HY-0097641. The work of K.T.C. was performed under the
rapid convergence of the Z/expansion. As our results for auspices of the U.S. Department of Energy by the University
lithium make clear, the rapid convergence of the 4éries is  of California, Lawrence Livermore National Laboratory un-
no longer present in neutral atoms, and a merging of manyder Contract No. W-7405-ENG-48.
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