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Calculation of the Lamb shift in neutral alkali metals
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The one-loop Lamb shift is calculated for the ground state of the neutral alkali metals lithium through
francium. The method used is Furry representation QED, defined in terms of a variety of local potentials. The
method is exact in binding corrections, but is potential dependent. Significant differences with known Lamb
shift results for lithium are found, and it is shown that large corrections result from a partial set of screening
corrections. Comparison with other calculations is made.
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I. INTRODUCTION

The problem of how to evaluate energy shifts from rad
tive corrections in neutral atoms is usually overshadowed
the fact that the precision available from modern many-bo
methods@1# has not yet reached the level of these sm
corrections. The exceptions are hydrogen, helium,
lithium, where the wave functions are either known analy
cally or else have been determined with high accuracy w
variational methods. However, variational methods rapi
become difficult to apply as one treats atoms further up
Periodic Table. As progress is made in the accurate solu
of the Schro¨dinger equation, and the part per million level
reached, discrepancies with measured energies attributab
radiative corrections will begin to appear, and methods
accurately calculate the Lamb shift in heavier neutral ato
will have to be developed.

There has been considerable progress recently in the
lated problem of calculating the spectra of highly charg
ions @2,3#. Here the structure problem is made tractable
the rapid convergence of the 1/Z expansion, and in addition
the radiative corrections are enhanced by a factor ofZ4, so
the accurate evaluation of these corrections is essentia
understanding the spectra. In a recent paper@2# we have
shown that the inclusion of a set of one- and two-pho
diagrams allows a solution of the problem for lithiumlik
bismuth so accurate that even the two-loop Lamb shift@4#
can be discerned.

While the rapid convergence of the perturbation series
highly charged ions is not present for neutral systems, i
known that the properties of alkali metals can be calcula
with better than 10% precision in low-order many-body p
turbation theory~MBPT! @5#. While this is not adequate fo
binding energies, which require all-orders methods such
coupled cluster or configuration interaction~CI! @1#, a 10%
calculation of the Lamb shiftis adequate for this alread
very small effect in heavy atoms. We do not, however, cla
this accuracy for the calculations presented here, which, w
the exception of lithium, are lowest-order results. We w
discuss the prospects for obtaining higher accuracy throu
combination of MBPT and quantum electrodynamics~QED!
in the final section.
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In the hydrogenic case, the one-loop Lamb shift of a st
v with principal quantum numbern can be written in terms
of two functions ofZa, one accounting for self-energy,

DEv~SE!5
a

p

~Za!4

n3 Fv~Za!mec
2, ~1!

and the other for vacuum polarization,

DEv~VP!5
a

p

~Za!4

n3 Hv~Za!mec
2. ~2!

We will follow this notation in the nonhydrogenic cases co
sidered here, and tabulate the functionsF andH for the va-
lence shell statesns1/2, n52 –7 for the neutral alkali metals
No expansions inZa will be made, but the results will de
pend on the local potential. In the following, natural un
with \5c51 will be used.

II. CHOICE OF POTENTIALS

In this paper we use five local potentials, defined in ter
of the charge density of the valence state,

rv~r !5gv
2~r !1 f v

2~r ! ~3!

and the charge density of the core,

rc~r !5(
a

~2 j a11!@ga
2~r !1 f a

2~r !#. ~4!

Hereg(r ) and f (r ) are the upper and lower components
Dirac wave functions, determined self-consistently in the
cal potentialU(r ), which is in turn defined in terms of an
effective chargeZe f f(r ) through

U~r !52
Ze f f~r !a

r
. ~5!

The core-Hartree potential used here has an effective ch
defined through
©2002 The American Physical Society01-1
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TABLE I. Valence removal energies in atomic units of the alkali metals in different potentials.

Atom Expt. CH xa50 xa51/3 xa52/3 xa51

Li 2s1/2 20.198 14 20.183 097 20.177 895 20.185 737 20.193 504 20.201 951
Na 3s1/2 20.188 86 20.173 341 20.167 970 20.172 243 20.178 764 20.189 192
K 4s1/2 20.159 52 20.139 522 20.133 925 20.137 752 20.144 032 20.154 929
Rb 5s1/2 20.153 51 20.131 786 20.125 609 20.129 382 20.135 854 20.147 618
Cs 6s1/2 20.143 10 20.120 056 20.113 986 20.117 668 20.124 015 20.135 835
Fr 7s1/2 20.149 67 20.122 284 20.114 174 20.118 154 20.125 431 20.139 670
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Ze f f
CH~r !5Znuc~r !2r E dr8

1

r .
rc~r 8!, ~6!

and the other potentials have the effective charge, der
from local density theory@6#,

Ze f f
LD~r !5Znuc~r !2r E dr8

1

r .
r t~r 8!

1xaF 81

32p2rr t~r !G1/3

, ~7!

where r t(r )5rv(r )1rc(r ) is the total charge density. W
will use effective potentials withxa50, 1/3, 2/3 and 1. In
particular, xa50 is the Dirac-Hartree~DH! potential, xa
52/3 is the Kohn-Sham~KS! potential, andxa51 is the
Dirac-Slater~DS! potential.

The physically natural larger limit Ze f f(r )→1 is built
into the definition of the core-Hartree potential, but has to
enforced for the other fourxa potentials using the Latte
correction @7#. It has been our experience that an optim
choice is the Kohn-Sham potential withxa52/3 @8#, but that
the core-Hartree potential is also favored because it can
shown that it accounts exactly for the screening of vale
electron radiative corrections when exchange diagrams
neglected@9#. None of them, however, account for the im
portant effect of the valence electron on radiative correcti
in the core, which will be treated in Sec. V. In Table I w
collect the valence removal energies for the alkali me
considered here for the five potentials, along with the exp
mental values.

III. VACUUM POLARIZATION

For neutral atoms the effect of vacuum polarization
dominated by the Uehling potential,
04250
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DEv~VP!5E d3r c̄v~rW !g0UUeh~r !cv~rW !, ~8!

where

UUeh~r !5
a2

4p2E
0

1

dy
y2~12y2/3!

12y2

3E d3x
e22muxW2rWu/A12y2

ux2rWu
¹x

2FZe f f~x!

x G . ~9!

WhenZe f f(x) is spherically symmetric, this simplifies, afte
a change of variable, to

UUeh~r !5
a2

12pmrE0

1

dzA12z2~21z2!

3H E
0

r

dxZe f f9 ~x!@e22m(r 2x)/z2e22m(r 1x)/z#

1E
r

`

dxZe f f9 ~x!@e22m(x2r )/z2e22m(r 1x)/z#J .

~10!

Series expansions tabulated by Fullerton and Rinker@10# al-
low the accurate evaluation of the Uehling potential. We n
that for light atoms where the Uehling potential acts ve
much like ad function, a very fine radial grid is needed. I
Table II we present vacuum polarization results for the va
ous alkali metals for the five potentials chosen for this pap

It is of interest at this point to compare our results f
lithium with the much more accurate approach available
nonrelativistic atoms with known wave functions. If on
makes the approximation of neglecting binding correctio
of orderZa, the Lamb shift can be represented as the exp
TABLE II. The vacuum-polarization functionH(Za) for the alkali metals in different potentials.

Atom CH xa50 xa51/3 xa52/3 xa51

Li 2s1/2 20.050 443 20.053 423 20.050 598 20.048 959 20.051 143
Na 3s1/2 20.010 265 20.009 129 20.008 996 20.009 800 20.011 973
K 4s1/2 20.005 846 20.004 918 20.004 923 20.005 622 20.007 435
Rb 5s1/2 20.002 817 20.002 249 20.002 328 20.002 786 20.003 890
Cs 6s1/2 20.002 144 20.001 675 20.001 752 20.002 152 20.003 118
Fr 7s1/2 20.002 194 20.001 556 20.001 716 20.002 240 20.003 422
1-2
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tation value of a relatively simple operator. As mention
above, the Uehling potential is proportional to a kind of re
resentation of ad function, specifically

d3~r !5
15m2

4pr E0

1

dy
y2~12y2/3!

12y2 e22mr/A12y2
, ~11!

in terms of which the associated energy shift is the expe
tion value of the operator

SVP52
4Za2

15m2(
i 51

3

d3~r i !, ~12!

with Z53. The expectation value of thed functions is
known with high accuracy for the ground state of lithiu
@11,12#,

^d3~r 1!1d3~r 2!1d3~r 3!&2s1/2
513.842 609~ma!3.

~13!

To get ionization energies, we subtract from the above
analogous term for Li1,

^d3~r 1!1d3~r 2!&513.702 935~ma!3, ~14!

to get the variational value for vacuum polarization in neut
lithium of

H~Za!Z53520.034 671. ~15!

Comparison with the lithium results in Table II shows th
the lowest-order approach significantly overstates the ma
tude of vacuum polarization. This is primarily due to th
approximate character of the wave function, although
note that even if exact wave functions were used, small
agreements would be expected because the present app
includes binding corrections. We will show below that t
inclusion of a partial set of first-order screening effects le
to large corrections that understate the magnitude.

IV. SELF-ENERGY

The self-energy is significantly more difficult to calcula
than vacuum polarization. The renormalized energy shift
be written as

DEv~SE!5Svv~ev!

[E d3r E d3r 8c̄v~rW8!S~rW,rW8,ev!cv~rW !,

~16!

where

S~rW,rW8,E![2 ie2E dnk

~2p!n

eikW•(rW2rW8)

k2
gmSF~rW,rW8,E2k0!gm

2dm(2)d~rW2rW8!. ~17!
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Here the integration over the photon momentumk is carried
out in n542e dimensions so as to regularize ultraviol
divergences. The self-mass countertermdm(2) is

dm(2)5
ma

p S 3C

2e
11D , ~18!

with

C5~4p!e/2G~11e/2!. ~19!

As described in more detail in Ref.@13#, we use an approach
in which the electron propagator in the external field,SF , is
rearranged in terms of the free propagatorS0 as

SF~rW,rW8,E!5FSF~rW,rW8,E!2S0~rW,rW8,E!

2E d3zS0~rW,zW,E!V~z!S0~zW,rW8,E!G
1S0~rW,rW8,E!

1E d3zS0~rW,zW,E!V~z!S0~zW,rW8,E!. ~20!

The terms inside the square brackets are ultraviolet divig
individually but combine to give an ultraviolet finite contr
bution to the self-energy. We note that the combined term
in a schematic notation, equivalent to the ‘‘many-potentia
termS0VSFVS0 used by other groups, for example by Blu
dell and Snyderman@14#. Here, these three terms are eva
ated separately in coordinate space with partial wave exp
sions. In each case, a Wick rotation withk0→ iv is made.
The d3k integration and the angular integrations ind3r and
d3r 8 are then carried out analytically, leaving a thre
dimensional integral indvdrdr8 that is evaluated numeri
cally. The Wick rotation in theSF term also passes bound
state poles. Details of these pole terms are given in Ref.@13#.

The last two terms in Eq.~20! give rise to ultraviolet
divergences. These divergences cancel with thedm(2) term,
leaving an ultraviolet finite result that is evaluated in m
mentum space. The two terms involved here areS0 and
S0VS0. They are referred to as the zero-potential~0-pot! and
one-potential~1-pot! terms, respectively, and are given by

DE02pot52
a

pE d3pc̄v~pW !~p”2m!cv~pW !

2
a

2pE d3pE
0

1

dx
12ev

21pW 2/m2

12ev
2~12x!1~12x!pW 2/m2

3c̄v~pW !@2m2p” ~12x/2!#cv~pW ! ~21!

and
1-3
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TABLE III. The self-energy functionF(Za) for the alkali metals in different potentials.

Atom CH xa50 xa51/3 xa52/3 xa51

Li 2s1/2 1.481 1.558 1.490 1.440 1.506
Na 3s1/2 0.190 8 0.169 3 0.167 4 0.181 4 0.223 3
K 4s1/2 0.085 60 0.072 02 0.072 05 0.082 86 0.109 66
Rb 5s1/2 0.028 60 0.022 82 0.023 59 0.028 34 0.039 59
Cs 6s1/2 0.016 16 0.012 63 0.013 21 0.016 21 0.023 49
Fr 7s1/2 0.009 646 0.006 837 0.007 543 0.009 839 0.015 02
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DE12pot5
a2

8p3E
0

1

rdrE
0

1

dxE d3pd3p8Ze f f~ upW 2pW 8u!

upW 2pW 8u2

3F2c̄v~pW !g0cv~pW 8!ln
D

m2 1
N

DG , ~22!

whereZe f f(upW 2pW 8u)/2p2upW 2pW 8u2 is the Fourier transform o
Ze f f(r )/r . Expressions forD and N in the above can be
found in Ref.@13#.

Because we use Feynman gauge, a high degree of ca
lation between different contributions is encountered e
for the more tractable case of highly charged ions. For n
tral atoms this cancellation is much more severe, and
quires the use of very fine grids to control numerical err
Care is required in the integration overv, which becomes
unstable asv→0. Finally the 1/l 3 convergence of the partia
wave expansion does not set in until rather large valuesl.
Here, 50 partial waves are calculated, and residual higl
contributions are obtained by extrapolations. We present
sults for the ground-state self-energy of the alkali metals
Table III, with an estimated error of 1 in the fourth signifi
cant digit.

It is again of interest to compare the results for lithiu
with those coming from variational wave functions. Com
parison for the self-energy is, however, less straightforw
than for vacuum polarization. The difficulty is that our a
proach, while nonperturbative in the sense that no appr
mations on the electron propagator are made, neverthe
treats the electron as moving in a central potential. A go
choice of potential will account for a great deal of its inte
actions with other electrons, but ultimately the effect of tho
interactions will have to be taken into account through p
turbation theory or more powerful methods, as will be d
cussed in Sec. V. The variational approach, however, w
relying on nonrelativistic approximations, is exact in
treatment of the electron-electron interaction. We note in p
ticular the fact that terms of the same order ofa as the
self-energy also arise in many-electron atoms from diagra
involving the exchange of two photons, which form part, b
not all, of the term denotedDEL,2 in Ref. @12#. Thus even an
exact self-energy calculation would not be expected to ag
with the result

F~Za!Z5350.895 ~23!
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found in Ref. @12#. However, the contribution ofDEL,2 to
F(Za) is only 20.050, so clearly, as with vacuum polariz
tion, the significant overstatement of our approach is prim
rily due to the mean field approximation. We now turn to
calculation of leading corrections to our lowest-order resu
for lithium.

V. FIRST-ORDER CORRECTIONS FOR LITHIUM

Figure 1 shows Feynman diagrams of first-order scre
ing corrections to self-energy and vacuum polarization. T
complete calculation of these corrections, first carried out
highly charged lithiumlike ions in Refs.@2# and @3#, is quite
complex. However, a numerically dominant part of the c
culation is relatively straightforward to implement. It com
from Figs. 1~b!, 1~c!, 1~f!, and 1~g! which involve screening
corrections to bound-state wave functions. In this section
include these ‘‘side diagram’’ corrections for lithium. Th
formula for the shift in the self-energy is simply

DE5Svṽ~ev!1S ṽv~ev!1(
a

@Saã~ea!1S ãa~ea!#,

~24!

where

FIG. 1. Feynman diagrams of the first-order screening corr
tions to self-energy and vacuum polarization. Small circles wit
cross at the center represent interactions with the counterpoten
1-4
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TABLE IV. Perturbed orbital corrections to the vacuum-polarization functionH(Za) and the self-energy functionF(Za) for the 2s1/2

state of lithium in different potentials.

Term CH xa50 xa51/3 xa52/3 xa51

H(Za) 20.0504 20.0534 20.0506 20.0490 20.0511

ṽ 0.0197 0.0295 0.0202 0.0135 0.0153

ã 0.0109 0.0136 0.0104 0.0084 0.0076

Sum 20.0198 20.0103 20.0200 20.0271 20.0282
F(Za) 1.481 1.558 1.490 1.440 1.506

ṽ 20.592 20.836 20.586 20.389 20.412

ã 20.309 20.372 20.292 20.236 20.211

Sum 0.580 0.350 0.612 0.815 0.883
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c ṽ~yW ![a (
mÞv,a

E d3zd3w

uzW2wW u

cm~yW !

ev2em

3@c̄m~zW !gmcv~zW !c̄a~wW !gmca~wW !

2eiDEuzW2wW uc̄m~zW !gmca~zW !c̄a~wW !gmcv~wW !#

2 (
mÞv

E d3z
cm~yW !

ev2em
cm

† ~zW !U~z!cv~zW ! ~25!

is a valence orbital perturbed either by the exchange o
photon with the core electrons or else by a counterpoten
U(z)5(Znuc2Ze f f)a/z, and

c ã~yW ![a (
mÞa

E d3zd3w

uzW2wW u

cm~yW !

ea2em

3@c̄m~zW !gmca~zW !c̄v~wW !gmcv~wW !

2eiDEuzW2wW uc̄m~zW !gmcv~zW !c̄v~wW !gmca~wW !#

~26!

is a core orbital perturbed by the exchange of a photon w
the valence electron. In both cases,DE is the exchange en
ergy given byuev2eau. The shift in the vacuum-polarizatio
energy is given by a formula similar to Eq.~24!, but with the
self-energy operatorS replaced by the Uehling potential op
eratorUUeh.

In Table IV we present the perturbed valence- and co
orbital corrections for the different potentials considered
this paper to the vacuum polarization and self-energy of
2s state of lithium. In both cases the corrections are qu
large. For vacuum polarization, they act to bring the lowe
order results, which cluster about 50% in magnitude ab
the variational results, to a range of 20% to 40% below
magnitude, excluding for the moment thexa50 potential.
For the self-energy, again excluding that potential,
lowest-order results are 50% to 60% higher, and after fi
order corrections, 10% to 30% smaller. The excludedxa
50 case has much larger corrections which are likely du
poor convergence of the 1/Z expansion. This can also b
seen when MBPT is applied to the calculation of the vale
removal energy through second order: the CH andxa50,
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1/3, 2/3, and 1 energies differ from experiment by22.5%,
25.7%, 21.7%, 20.1%, and 0.6%, respectively. Give
that the CH andxa50 potentials have no exchange term
this indicates the importance of including exchange effect
setting up model potentials for MBPT and QED calculatio
of neutral alkali metals.

VI. COMPARISON WITH OTHER CALCULATIONS AND
DISCUSSION

Calculations similar to those presented in this paper h
been carried out by Labzowskyet al. using a different com-
putational method@15#. While local density potentials are
also used in that work, theirxa parameters are determined b
fitting to Dirac-Fock energies and to experiment, and an
act comparison with their results cannot be made. Howe
we find good qualitative agreement. For example, they fin
total Lamb shift for cesium ranging from 0.0018 eV
0.0033 eV, compared to our range of 0.0016 eV to 0.00
eV. In the case of francium their values range betwe
0.0046 eV and 0.0076 eV, compared to our 0.0030 eV
0.0065 eV.

We also note work in cesium@16# and francium@17# by
the Novosibirsk group, in which the Lamb shift is estimat
through arguments about the wave function at the orig
which is calculated with methods that sum infinite classes
diagrams. For cesium they find 0.0023 eV, which is cons
tent with the above ranges, but for francium they find 0.00
eV, which is somewhat larger than the above results. Ho
ever, given the large screening corrections found in lithiu
discussed above, it is possible that a more complete calc
tion would lead to better agreement. It is of interest that th
best value for the ionization energy of francium, using t
highly accurate many-body methods developed by t
group, is -0.14928 a.u., off by 0.00039 a.u.~0.01 eV! from
experiment. If their many-body method is indeed accurate
five figures, then the Lamb shift may actually have been s
in this heavy alkali metal.

The main result of the present paper is to demonstrate
the high-accuracy techniques that we have developed for
evaluation of radiative corrections, which are usually appl
to highly charged ions@2,13#, can be extended to treat neutr
atoms. An advantage of such techniques is the fact that
make no approximations to the electron propagator in
1-5
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self-energy case, which leads to the automatic accountin
all binding corrections, a vital attribute for highly charge
ions becauseZa is not small. It may also be necessary
include these binding corrections for neutral atoms like
sium and francium. However, before this can be verified
more accurate determination of the Lamb shift is necess
At present, while our propagators are exact, they are
defined in terms of a potential, and that potential is at b
only an approximation to the actual environment in whi
the electron propagates. This accounts for the signific
variation of our results as the potential is changed, and
for the disagreement with the known results for lithium.

A systematic way to undo this approximation is MPBT,
its S-matrix generalization. As mentioned in the Introductio
the latter approach@2,3# works very well for the treatment o
radiative corrections in highly charged ions because of
rapid convergence of the 1/Z expansion. As our results fo
lithium make clear, the rapid convergence of the 1/Z series is
no longer present in neutral atoms, and a merging of ma
y J

,
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body techniques@1# with QED will have to be explored.
Inasmuch as the entire Uehling potential and a large par
the self-energy involve the expectation value ofd functions,
it seems likely that at least this part of the problem f
lithium could be accurately treated with CI techniques@18#.
These same techniques may be applicable to heavier a
metals. However, a simpler approach, which we are
present investigating, is to generalize the second-or
MBPT corrections that are known to provide a 10% level
convergence for matrix elements such as hyperfine split
and oscillator strengths@5# to the Lamb shift.
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