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Entanglement properties of the harmonic chain

K. Audenaert: J. Eisertl and M. B. Pleni
QOLS, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BW, United Kingdom

R. F. Werner®
Institut fr Mathematische Physik, TU Braunschweig, Mendelssohnstrae 3, 38106 Braunschweig, Germany
(Received 14 May 2002; published 30 October 2002

We study the entanglement properties of a closed chain of harmonic oscillators that are coupled via a
translationally invariant Hamiltonian, where the coupling acts only on the position operators. We consider the
ground state and thermal states of this system, which are Gaussian states. The entanglement properties of these
states can be completely characterized analytically when one uses the logarithmic negativity as a measure of
entanglement.
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I. INTRODUCTION spin systems, which, like most interacting systems, exhibit
Quantum entanglement is possibly the most intriguingthe natural occurrence of entanglement, i.e., the ground state
property of states of composite quantum systems. It maniis generally an entangled staf@-9]. It has, furthermore,
fests itself in correlations of measurement outcomes that areeen suspected that the study of the entanglement properties
stronger than attainable in any classical system. The reneweaf such systems may shed light on the nature of the structure
interest in a general theory of entanglement in recent years if classical and quantum phase transitipn$]. It has turned
largely due to the fact that entanglement is conceived as theut, however, that the theoretical analysis of infinite spin
key resource in protocols for quantum information processehains is very complicated and only very rare examples can
ing. Initial investigations focused on the properties of bipar-be solved analytically. Coupled harmonic oscillator systems
tite entanglement of finite-dimensional systems such as twaallow for a much better mathematical description of their
level systems. In fact, significant progress has been madentanglement properties than spin systems. Physical realiza-
and our understanding of the entanglement of such systemi®ns of such systems range from the vibrational degrees of
is quite well developedll]. A natural next step is the exten- freedom in lattices to the discrete version of free fields in
sion of these investigations to multipartite systems. Unfortuquantum-field theory. This motivates the approach that we
nately, the study of multipartite entanglement suffers from ehave taken in this work, namely to investigate the entangle-
proliferation of different types of entanglement already in thement structure of infinitely extended harmonic oscillator sys-
pure state casg?], and even less is known about the mixed tems.
state case. For example, necessary and sufficient criteria for In this paper we study a special case, namely, a set of
separability are still lacking. For other properties, such asharmonic oscillators arranged on a ring and furnished with a
distillability, no efficient decision methods are known, and itharmonic nearest-neighbor interaction, i.e., oscillators that
is even difficult to find meaningful entanglement measuresre connected to each other via springs. The paper is orga-
[3]. A direction that promises to lead to simpler structures isnized as follows. In Sec. Il we provide the basic mathemati-
that of infinite-dimensional subsystems, such as harmonical tools that are employed in the analysis following in the
oscillators or light modes, which are commonly denoted asemaining sections. We then move on to derive a simple
continuous-variable systeni4,5]. Indeed, for continuous- analytical expression for the ground state energy of the har-
variable systems the situation becomes much more transparnonic oscillator systems. Our main interest is the computa-
ent if one restricts attention to Gaussian stageg. coherent, tion of entanglement properties of the ground state of the
squeezed or thermal stateshich are, in any case, the states chain. In Sec. Ill we derive a general formula for the loga-
that are readily experimentally accessible. rithmic negativity[11,12 which we employ as our measure
Quite recently, it has been realized that it might be a veryof entanglement. In Sec. IV we present analytical results that
fruitful enterprise to apply the methods from the theory ofconcern the symmetrically bisected chain, that is, the situa-
entanglement not only to problems of quantum informationtion where the chain is subdivided into two equal contiguous
science, but also to the study of quantum systems that argarts and the entanglement is calculated between those parts.
typically regarded as belonging to statistical physics, systemg/e show how to construct a very simple lower bound on the
that consist of a large or infinite number of coupled sub-log negativity, in the form of a closed-form expression based
systems[7—-10. Examples of such systems are interactingon the coupling strengths; that is, no matrix calculations are
necessary. Furthermore, for nearest-neighbor interaction, we
show that the bound is sharp, i.e., gives the exact value of the

*Electronic address: k.audenaert@ic.ac.uk log negativity. Surprisingly, the value of the log negativity in
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the nontriviality of the physical system. We then move on toadopted here, the vect® of quadrature operators is given
Sec. VI, where we study general bisections of the chain nupy Ri:)‘(j andR, = |£>j , for 1<j=<n. The Hamiltonian is
merically. We demonstrate that entanglement is maximizeghen of the form

for the symmetrically bisected chain. Furthermore, and rather

counterintuitively, for asymmetric bisections where one . Vmw?/2 0

group of oscillators is very small, and especially when it H=R" 0 1./(2m) R,

consists of only one oscillator, we find that the entanglement n

decreases if the size of the other group is increased. We algghere thenx n matrix V contains the coupling coefficients.
demonstrate that for large numbers of oscillators the meafthe Hamiltonian is thus written as a quadratic form in the

energy of the ground state and the value of the negativity argyadrature operators; we will call the matrix corresponding

proportional qnd provide an interpretation for this result_._ln,[0 this form theHamiltonian matrix(as opposed tél. the

eI—|ami|tonianoperat0|). In the present case, the Hamiltonian

S'ecctggisthgteggcr):ﬁs \t/Se?‘});?/Iglgtttehr?] rtizu':gssltr:ui;rt]ﬁrgiﬁgesdcl)%%atrix is a direct sum of thkinetic matrixI,,/(2m) and the
: y P otential matrix Vnaw?/2.

times somewhat involved mathematics in such a way, th In this paper, we will consider a harmonic chain “con-
the _reader can skip it and extract the main phy3|cal resu'tﬁected" end-to-’end by a translationally invariant Hamil-
easily. We state at the beginning of each section what MalRnian. TheV matrix of the Hamiltonian is, therefore, a so-

result will be obtained. called circulant matrix[14]. This is a special case of a

Toeplitz matrix because not only do we havg,=v; ., but
Il. COVARIANCE MATRIX FOR GAUSSIAN STATES evenV; ,=u(j_iymom fOr 1=<j,k=n, due to the end-to-end

OF THE HARMONIC CHAIN connection. We can easily write the coefficientsin terms
In this section we derive an expression for the covariancé’f the coupling coefficients. For a nearest-neighbor coupling

matrix of the ground state and of the thermal states of a set c}[’f’ ith "Sp””él constant’K, the potential term of the Hamil-
harmonic oscillators that are coupled via a general interacontan reads

tion that is quadratic in the position operatdesg., oscilla- n 2
tors coupled by springsAs a byproduct we also give an 2 m_w>“<§+ KOA((kJrl)modw_)A(k)z-
expression for the energy of the ground state. k=1 2

Let us first consider the covariance matrix for the ground
state of a single uncoupled harmonic oscillator. The Hamil-Therefore, we have
tonian is given by(we have adopted units whefie=1) po=1+4K/(Mw?), 1= —2K/(Mw?).

1 mw?

A=—p2+ X2 More generally, includingkth nearest-neighbor couplings
2m 2 with spring constant&, , and defining
Denoting the quadrature operators as a column veRfor 2K,
with R;=X andR,=P, the Hamiltonian can be concisely RUSPY

rewritten as
we have

vo=1+2(as+ap+t---),

R mw?/2 0
H=R' R.

0 1/2m)

The covariance matriy of a general statg is given by vj=—a;, for j>0.

The calculation of the corresponding covariance matrix

Yk =Re Trlp(R—Tr [pRI)(R=Tr [pRD], can now proceed via a diagonalization of the Hamiltonian

) o matrix, which effectively results in a decoupling of oscilla-

for 1<k,|<2. Forp, thenth eigenstate of the Hamiltonian, (-5 since the commutation relations between the quadrature

pn=[n)(n|, itis a straightforward exercise to calculate that qnerators must be preserved, the diagonalization must be

based on asymplectic transformation SSp(2n,R). This

Ume) 0O means that we can only use equivalence transformations
0 Mo/’ C—C’'=S'CS such thatS'>S=3, where, in the §,p)

convention, thesymplectic matrix is given by

y=(n+1/2)

We will only be interested in the ground stajg,=|0){0|,
however, since this is the only eigenstate which is Gaussian. B 0 I
Passing to the harmonic chain consistingnofiarmonic -1, O
oscillators, we will only consider interactions between the
oscillators due to a coupling between the different positionThis real skew-symmetric matrix incorporates the canonical
operators. According to theq(p) convention we have commutation relations between the canonical coordinates.
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Fortunately, because the kinetic matrix is a multiple of thewhere3=1/T. Again, one can obtain the covariance matrix
identity, the Hamiltonian matrix can be diagonalized by any(g) of the statep(B) in a convenient manner in the basis in

orthogonalequivalence of the form which the Hamiltonian matrix is diagonal. Then& 2n di-
agonal matrixy’(B) can be obtained using the virial theo-
C—C'=(S®9)'C(S89), rem: the mean potential energy and the kinetic energy of a

single oscillator are identical and half the mean energy of the

whereSis the real orthogonai X n matrix that diagonalizes system at inverse temperatyge Using this procedure one
the potential matri¥/. It is readily checked that the resulting gptains

transformation is indeed a symplectic one. In f&$,S is an
element of the maximal compact subgroup of Sp(®. Y (B)= (v (B)® y,’)(ﬁ))lz,

So C' is now a diagonal matrix and is of the for@’
=(mw?/2)V'®1,/(2m), whereV' is the diagonah X n ma- , 1 2
trix with entries »;, 1<j<n, the eigenvalues oV. The [VX(B)]J,J:me 1+ exp( Bw;)— 1)’
covariance matrixy’ of the ground state of the transformed
Hamiltonian consists therefore just of single-oscillator cova-
riance matrices with parameter,= w+/'n;, 1<j<n, and is [¥p(B)]},j=Mw;
diagonal itself, to wit,

2
14
In the convention wheren=1, w=1, one gets
Y(B)=[y(B) & vp(B)]12,
(B =V 1o+ 2 exp VI~ 1,17,

Yp(B)=V41n+ 2[exp( BV — 1] 71,

The covariance matrix in the original coordinates is then for the covariance matrix of a Gibbs state in the original
obtained by transforming’ back, canonical coordinates.

Y = (%@ 7p)l2,
(7)j,j=Umw)),

(7p)j,j=Mw; .

= 4 T gl rQl
y=(S99)y'(SeS) [(S%‘S )@(SYPS )12 Ill. GENERAL FORMULA FOR THE LOGARITHMIC
=[(V Y (mw))® (mwV¥?)]/2. NEGATIVITY

T . . _ In this section we derive a general formula for the loga-
I,Ozsllmggfnghiar\],cge;“;?ﬁ;\(g f\g’ 'rlrln&e;?g:%tg sg‘;;r; nacr;dma_rithmic negayivity of a Gaussia}n state m)t:.oup_led harmonic _
trix in. terms of the potential matri¥/ oscnlators_Wlth respect to a bipartite sp_llt, given the covari-

' ance matrixy of the Gaussian state. This set may consist of
all n oscillators or of a subset ah<<n oscillators. The only

r=(1®7p)/2, restriction is that the covariance matrix must be a direct sum

=V 12 of a position partyx_ and a momentu.m parg,, i.e., there
X ' must be no correlations between positions and momenta. The
vl resulting formula can be found at the end of this section.
Yp= -

Let n; andn, be the sizes of the two groups of oscillators

. . _— I the entanglement between which we wish to calculate, and
Using this same derivation, we can also easily find a for

mula for the energy of the ground state. We will need thisIet m=ny+n,=n. From Sec. |l, we know that the covari-
. 9y gre ' .. ance matrixy of the ground state of the harmonic chain is
result in Sec. VI, where we will compare the log negativity _. - ) T
. iven by y=(yx® vp)/2, wherey,=V andy,=V*“ In
of a state to its energy. Indeed, the ground state energy of L
. . ) o order to calculate the entanglement between two disjoint
single oscillator isi w/2. In the decoupled description of the

round state of the chain. the oscillators have ener roups of oscillators in this state, we need to consider the
9 : . b ) 9¥ovariance matrix associated with the reduced state ofithe
hio\n;/2, with ;, 1<j=<n, being the eigenvalues of the

| . oscillators of the two groups. This covariance matrix
potential matrix V. The total ground-state energy i group

"~ n _ u—from now on also referred to as reduced covariance
;z;\fiew/Z)Ej:lm. Denoting 7 w/2 by Eo, we therefore napiy s given by the hx 2m principal submatrix ofy

that consists of those rows and columsjothat correspond

to the canonical coordinates of either group 1 or group 2. If
m=n, meaning that the whole set ofoscillators is consid-
Finally, we turn to Gibbs states corresponding to some tem,?ririd’ tir;";s:ﬁ ('; ?ﬁé ?;?:SS&W' The reduced covariance ma-
peratureT>0, the states associated with the canonical en- K 9

semble, given by

E=E,Tr[VY2].

= (fax® pp)/2,

p(B)=exp — ,8|:| ) Tr[exp— BI:| )], where bothu, and u, aremXxm matrices.
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Taking thepartial transposeof a covariance matrix cor- i
responds to changing the sign of the momentum variables of
the oscillators in the second group. This operation maps the
covariance matrixuw to

p'=PuP
with
P=P,&P,, Py=In,

P, is amXxm diagonal matrix. Specifically, thgth diagonal
element ofP, is 1 or —1, depending on whether the oscil-
lator on position &j=<m belongs to group 1 or 2, respec- n/2 Lo+l

tively.

T)rl1e logarithmic negativity 11,17 of a state is defined as FIG. 1. The symmetrically bisec_ted harmonic chain. The oscil-
the logarithm of the trace norm of the partial transpose of thég‘tors 1 ton/2 form group 1, the oscillatons/2+ 1 ton form group
state. The negativity is an entanglement measure in the sense
that it is a functional that is monotone under local quantum ) )
operationg12,13. To date it is the only feasible measure of XY In  particular, the eigenvalues ofB  are
entanglement for mixed Gaussian quantum states. The defic [N (4xPpupPp/#)]% 1<j<m. Because of thet sign,
nition of the logarithmic negativity can be easily translatedtaking the absolute value of the eigenvalues has the effect of
into an expression which does not involve the state itself, buloubling the eigenvalue multiplicity. Hence,
rather the covariance matrix of the state: as the trace norm is
unitarily invariant, one has the freedom to choose a basis for
which the evaluation of the trace norm becomes particularly
simple. More specifically, one may make use of Widliam-
son normal forn{15] for the partial transpose of the covari- which is finally the resulting formula of the logarithmic
ance matrix. The problem of evaluating the logarithmicnegativity in terms of the matrices, and ., .
negativity is then essentially reduced to a single-mode prob-
lem. This procedure gives rise to the form{iZ)] IV. THE SYMMETRICALLY BISECTED
HARMONIC CHAIN

m

N=— 3 10g,min(LA (1P Py))

2m
N=— Z log,[ Min(L, 2N (i3~ )], In this section we present exact analytical results for the
k=1 log negativity in a chain ofhh harmonic oscillators with a
where A (i~ 1ul), 1<k=2m, are the eigenvalues of translationally invariant coupling. Moreover, we shall be in-

i$ 140 is the symplectic matrix terested here in the most symmetric case of calculating the
entanglement with respect to a symmetric bisection of the
0 1, chain. That is, the numberof oscillators should be even and
=121 0o the oscillators in positions 1 to/2 constitute group 1, the
m others group 2see Fig. 1 Hence, in the notation of Sec. Il
SinceX '=-3, we have to calculate the spectrum of the 4= 7- ) o
matrix B= —iSPuP, giving 2m real eigenvalues (B) of Using the result of Sec. lll, we find that the logarithmic
B. Then the logarithmic negativity equalsN= negativity of a symmetrically bisected oscillator chain, of
—Eifllogzmin(l.a)\k(B)l)- This formula can be further lengthn and with potential matri¥/, is equal to
simplified due to the direct sum structure @f= (uy n
@ up)/2. Simplification ofB yields[16] N= _le logs[ Min(L\;(Q))],
B i[0 —PyupPp '
) " 0 . with

—\/—1/2 1/2,
The eigenvalue equation of a block matrix of this form reads Q=V TPVEP,

0 X\[u u P=1,0®(—1lnp).
v ollo] =)

1%
which is equivalent to the coupled system of equatizios We begin our analytical investigations by studying a more
=Au andYu=\v. Substituting one equation in the other general object tha®, namely, the matrix

yields XY u=\?u, hence the eigenvalues of the block matrix
are plus and minus the square roots of the eigenvalues of R=G PGP.

A. Symmetry properties of Q
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Here, G is a general reatirculant matrix that is symmetric
under transposition. Sinc@ is symmetric and circulant, it
can be written in X 2 block form as

o

We will first show thatR exhibits the same block structure.
Define thenXxn flip-matrix F=F,, as

G/
G//

G”
G')’

Fij=6int1j-

To simplify the notation, we will mostly refrain from men-
tioning the sizen of F; the mathematical context should
make it clear whichn is being used.

Lemma 1The matrixR can be written in X 2 block form

as
R|

Proof. SinceG is circulant and symmetrid; GF=G, which
is true for every symmetric Toeplitz matrix. Als&,PF=
— P holds. Writing

R: ( ) ,

symmetry demands thaf=FBF and D=FAF. Further-
more, bothG and P are also invariant under the,,®F,»
symmetry. HenceR exhibits this symmetry too, i.e.,F(
®F)R(F®F)=R. Thus,A andB are invariant undeF. B
Matrices with this block structure can be brought in block
diagonal form using a similarity transform:
Lemma 2 Let S=(P+F)/\2. Then

A B
B A

A B
C D

(A B) B
S|y |S=(A+BF)®(A-BF).

Proof. This follows by direct calculation and noting that
S =S and

We now specialize the above results f®to the matrix

Iy
F

S

_Fln>/ﬁ.

Q=V PPVPP, O<p=<l,

with V again a general real symmetric circulant matrix. TheFurthermore,

PHYSICAL REVIEW &6, 042327 (2002

QI Q/I
QH Q!
The following lemma is crucial for the rest of the calcula-
tions.

Lemma 3 With the previous notation®Q’' +Q"F=(Q’
-Q"F) tand

de( Q'+ Q"F)=exp{—pTr[F log,(V) 1},
de{ Q' — Q"F)=exp{+pTr[F log,(V)]}.

For p in the interval Gsp=<1, the following also holds: if
V'F=0, thenQ'+Q"F=<l,,, and if V'F=<0, thenQ’
_Q”FglnIZ-

Proof. ConsiderSQS. On one hand, we have, by Lemma

SQS=(Q'+Q"F)a(Q"~Q"F),

and similarly, SVS=(V'+V"F)& (V' —V"F). Also, SPS
=F, as a short calculation shows. On the other hand, we also
have

SQS=SV PPVPPS= SV PSSPSSVPSSPS
=(8VS) PSPS(SVS)PSPS,
and therefore
SQS=[(V'+V"F)"Pa (V' =V"F)"PIF[(V' +V"F)P
® (V' —V"F)PIF
=[(V'+V"F) P (V' =V"F) P]
X[(V'=V"F)P& (V' +V"F)P]
=(V'+V"F)"P(V' = V"F)P
(V' =V"F) P(V' +V"F)P.
Identifying the blocks in the two expressions 80QS, we
get
Q' +Q"F=(V'+V"E) P(V' =V"F)P,
Q' —Q"E=(V'—V"F) " P(V'+V"F)P,
so thatQ’ +Q"F is the inverse ofQ’ —Q"F and

de(V' —V'F)\°

et Q") =| L v Ve

logv=5(logy(V' +V'F)&logy(V' = V'F))S,

powerp remains hitherto unspecified. Note that any power ofhence

a symmetric circulant matrix is again symmetric circulant.
Again, thenX n matrix V can be written in X 2 block form

)

where bothV’ andV”"F are Hermitian. By Lemma 1Q can
similarly be written as the block matrix

V !
VI/

VH
Vl

Tr[Flog,V]=Tr[SFS(log,(V'+V"F)@log,(V' —V"F))]
=Tr[P(logy(V' +V"F)@logy(V' —V'F))]
=Tr[logy(V'+V"F)—log,(V' —V"F)]

detV' +V'F)
2 det(V' —V'F)’

log
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This then yields
det( Q'+ Q"F)=exp(—pTr[F log,V]),
def Q' —Q"F)=exp(+pTr[F log,V]).

Considering the second assertion,MfF=0, thenV’
+V"F=V'-V"F, and, by Lavner's theoreni14],

(V' +V'F)P=(V' —V"F)P

for 0O<p=<1. Hence, for any vector+ 0 satisfying an equa-
tion (V' —V"F)Px=X\(V’'+V"F)Px, it follows that A must
be less than or equal to(1o see this, take the inner product
of both sides with the vectot). Rearranging the equation to

(V' +V"F)"P(V' —V"F)Px=\X,

which is just Q' +Q"F)x=\X, yields that thex for which
such anx exists are precisely the eigenvalues@f+ Q"F.
Hence, under the conditiod”F=0, the eigenvalues d’
+Q"F are less than or equal to 1. SimilarlyMf'F<0, we

proceed in an identical way to show that the eigenvalues ofj,¢

Q' —Q"F are less than or equal to 1. [ ]

B. A lower bound on the negativity

We will now apply Lemma 3 to the cage=1/2 andV

being the potential matrix of the oscillator chain to obtain a

lower bound on the logarithmic negativity:
Theorem 1The logarithmic negativity of the bisected os-
cillator chain of lengttn obeys

N=|Tr [F log,(V)]|/2.

If V'F is semidefinite(i.e., either positive or negative
semidefinitg, then equality holds.

PHYSICAL REVIEW A 66, 042327 (2002

For commutingX andY, min(X,Y) is the elementwise mini-
mum in the eigenbasis of (andY). By Lemma 2, we then
have N= —Tr [log,min(1,,,(Q’' +Q"F)®(Q'—Q"F))] and
this is also equal to

N=—Tr[log,min(1,,,Q"+Q"F)]
—Tr [log,min(1,,,Q" = Q"F)].

From Lemma 3 we also know thaD’'+Q"F and Q’
—Q"F are each other’s inverse. Hence,

N

=—Tr[log,min(Q'+Q"F,Q'—Q"F)],

and, because the two arguments of min commiNes
—Tr [min(log,(Q’ +Q"F),log,(Q’' —Q"F))]. Finally, the trace
of a minimum is smaller than or equal to the minimum of the
traces, so that

N=max(Tr[log,(Q"+Q"F)],Tr[logy(Q"~Q"F) ]).

Because the two arguments of max are each other’s negative,
the maximum amounts to taking the absolute value of, say,
first argument. Hence, N=|Tr[log,(Q +Q'F)]|
=|Tr [F logy(V)]/2, where the last equality follows from the
first part of the proof. |

For the nearest-neighbor Hamiltoniawvjs of the form

Proof. To calculate the negativity we need the eigenvalues$©

of Q with p=1/2 that are smaller than 1. By Lemma 2, the
spectrum ofQ is the union of the spectra €' + Q"F and of
Q’'—Q"F. By Lemma 3, forV matrices satisfying th&/"F
=0 condition, the eigenvalues @ smaller than 1 are the
eigenvalues o)’ + Q"F. Furthermore,

Tr[logx(Q"+Q"F)]=log,de( Q"+ Q"F)
—pTr[Flog,(V)].

Settingp=1/2 then giveN=Tr [F log,(V)]/2. On the other
hand, ifV'"F<0, it is the eigenvalues d@' — Q"F that we
need to consider. Since Mog,(Q' —Q"F)]=
+pTr [F logx(V)], we find

N=—Tr[Flog,(V)]/2.

For generaV"F, we first note that the general formula for
the negativity can be written as

N

—Tr[log,min(1,,,Q)].

vg vy O 0 vg
U1 Ug Ug 0
Ve 0 vy wvg : |
: vy O
0 vy Ug Ug
vy O 0 v1 vg
vg vy O 0
Vi1 Uo VU1
v'=| 0 0], (€N)
: vy Ug U3
0 0 vy vg
vy O 0
0
V'F= : 2
0 O
0 0 v,

Asv =<0, V'F is obviously a(negative semidefinite matrix.
Therefore, the nearest-neighbor Hamiltonian satisfies the
equality condition of the Theorem, and the logarithmic nega-
tivity of the bisected harmonic chain with nearest-neighbor
Hamiltonian equaldN=|Tr [F log,(V)]|/2.
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C. An explicit formula in the coupling

n—-1 .
. 27i
The bound of Theorem 1 is actually a very simple one (QFQT)n—H:JZO exp{[jn—(n—l)I]T)/n
because we can give an explicit formula far [F log,(V)]|

in terms of the coupling coefficients; , as follows. 2qi
Theorem 2For a translationally invariant potential matrix =exp +I n
V with coupling coefficientsy,, ay, ... an,

In the calculation of TfF log,(V)] we only need the nonzero
ITr[Flogx(V)]|=logy[ 1+ 4(as+ az+---)]. diagonal elements oflFQT, which are the (0,0) and the
(n/2n/2) elements. Hence
Note, in this formula, the absence of the coefficients with
even index.

Proof. The eigenvalue decomposition of a general circu-
lant nXn matrix V is very simple to calculate. For conve-
nience of notation, we use matrix indices starting from zero _log, Lot 2vat2oat - -
instead of 1. LeV, ;=v,_;, thenV=0TAQ, with Q the gzv0—2v1+2v2— s
kernel matrix of the discrete Fourier transform,

Tr[F logy(V)]=l0gy(A o) + 'ngmn/z)ex‘( (2 Znﬂ)

Inserting the relations between the elementsvoénd the
coupling coefficientsy;

2 i
Qk’|=ex;{kl%)/\/ﬁ,

vo=1+2(a;+art---),
with 0<k,I<n—1. This matrix is unitary and symmetric. vj=—aj, for j>0,
The eigenvalues\, are related ta), via a discrete Fourier

. yields the stated formula. |
transform according to

For the nearest-neighbor Hamiltonian, the only nonzero
- _ a; coefficient isa= a;,, giving rise to the following simple
2qi expression for the logarithmic negativity.
A= ;0 ex Tkl)vl' Corollary 1. For the nearest-neighbor Hamiltonian with
coupling coefficienta=0, the logarithmic negativity of the

For real symmetrid/ this gives bisected chain of length is given by

1
N= Zlog,(1+4a).
4., 2

2 2
Ak=U0+201CO kT +21)2C0 Zk?
It is remarkable indeed that the negativity is independent of

It is now a straightforward calculation to obtain an expres—n’ the chain length.

sion for Tr[F lo . First,
[ %(V)] D. Other potential matrices

n—1

2.7 To conclude this section, we will prove that any other
(QFQM), = > ex jk—) Sjn-1-j’ circulant symmetric potential matrix does not satisfy the
j.i’=0 n equality condition of Theorem 2 so that the negativity will in
2 general be larger than the lower bound and, moreover, de-
Xexp( —j’l —)/n pendent on the sizae of the chain. Consider first a Hamil-
n tonian with a nearest-neighbor coupling of strengthand a
n-1 2 7i next-nearest-neighbor coupling of strength,, where
=> exp([jk—(n—l—j)l]—)/n aq,a,>0. The matrixV"F is then of the form
j=0 n
n-1 . — Q) ey e 0
) 277i
=> ex [J(k+|)—(n—1)|]T)/n. —a; O
=0
J V'E=
All elements are zero except those for whick | is an in- 0 Ta
teger multiple ofn, i.e., eitherk=1=0 ork+I=n, e Tap T
n—1 : The nonzero eigenvalues of this matrix are those of the sub-
) 277i .
(QFQN o= exp((oj+0)T)/n:1 matrix
]=0
—a; T ap
and —a, 0 )
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FIG. 2. There exist no symplectic transformations that decouple _
all but four oscillators from each other in the case of the bisected 10 0 5
harmonic chain with nearest-neighbor Hamiltonian.

10 15 20
o

FIG. 3. Positive eigenvalues @ —1 versusa, for a chain of
sizen=20. From Lemma 3 it follows that the eigenvalues @f
come in reciprocal pairs; hence, the plot shows that in this case all

b i & ol ield AX'E which eigenvalues of) are either larger than 1 or smaller than 1. For other
etween oscillatork places apart, yields a mat whic chain sizes, the eigenvalues behave in a similar way. This shows

?S Hankel[14] and has— aj on two skew diagonals. If there that the symmetrically bisected chain typically cannot be reduced to
is ak such thatey anday,.; are nonzero buiy.,,=0, then e system depicted in Fig. 2.

V"F contains a (X 2) principal submatrix of the form

As its determinant is negative; a3, it is not a definite ma-
trix, hence neither i&/"F.
Generally, akth neighbor couplingyy, i.e., a coupling

(note that we are using a quadrature ordering convention
( —ak _“k+1) here that is different from the one used in the rest of this

Qg 0 papej. Here, y,, and y,, are 4x 4-covariance matrices as-
sociated with the oscillators 1 amdon the one hand amf2
which is again not definite. Hence, in that caséF is not  andn/2+1 on the other hand, anig_,/2 is the covariance
semidefinite. Now, if one fixes the interactions and themlet matrix of the pure product states of the remaini‘m’g_z
grow (which is exactly the setting herethere will always be  oscillators of system 1 and 2, respectively. If for anguch
some point whe"F will exhibit a zero skew diagonal and, a basis change could be performed, leading to the same co-

hence, is not semidefinite. variance matricesy;, and y,, then the invariance of the
logarithmic negativity of the bisected chain—the statement
V. INEQUIVALENCE TO A FOUR-OSCILLATOR of Corollary 1—would follow as a trivial consequence. We
PROBLEM will briefly show, however, that this is not the case.

. . _ 71 ’l"
At this point, one might be tempted to think that the in- Consider the eigenvalues B =i "y

dependence of the log negativity of the chain lengtin the
case of nearest-neighbor interaction, is a consequence of the

presumption that the bisected harmonic chain of length The spectrum of the corresponding matx that enters into

=4 with nearest-neighbor interaction is in fact equivalent e formula for the negativity can easily be evaluated using

a much simpler problem: there could be an appropriat : : S
choice of basis of the Hilbert spaces of system 1 and 2‘?,he procedure mentioned in Sec. lIl. Itis given by

corresponding to a symplectic transformation, such that, in N=I11 . 1
effect, only those four oscillators that are adjacent to the split o(Q)={1... . 101,42, 0s.Ga},
boundary would be in an entangled state. The otli2--2  \yhereq,, ...,q,>0, and 1 appeans—4 times.

oscillators of each system would then be in pure product Now we can confront this result with the spectrum of the
states, thereby not contributing to the logarithmic negativity.matrix Q of the harmonic chain as it is. A simple numerical
This would mean that one could locally disentangle all butca|culation yields the values depicted in Fig. 3. Since the
four oscillators with local symplectic transformatiofsee  gjgenvalues of) come in reciprocal pairs, we only show the

B’ =i3 P((1h-4/2) ® y18 ¥12 (15— 4/2))P.

Fig. 2). eigenvalues larger than 1; furthermore, we subtract 1 from
If this indeed were the case, then the symplectic transforthem and show the result on a logarithmic sdateorder to
mationsS;,S, e Sp(n, R) would exist such that clearly distinguish all eigenvalugsin the case depictedh
_ =20, we see that ten eigenvalues are larger than 1, for any
1Y=(519S) ¥ ($,8S) value of the coupling constani. Furthermore, the ten re-
maining eigenvalues are all smaller than 1. This means that,
¥ =n-al2)® 128 ¥12% (1, 4/2) in fact, 1 is not included in the spectrum &, which is
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32

2.8

2.6

241

2.2t 20

—
oo

n FIG. 5. Same as Fig. 4, but seen from a different viewpoint.

FIG. 4. Logarithmic negativityN of a harmonic chain bisected \yhich says that this value islawer bound for all symmetric
in groups of sizen; andn,. The interaction is nearest neighbor with pisections with general circulant coupling$oreover, for
coupling a=20. general circulant couplings, we conjecture that an upper
bound onN(nq,n,) is given by lim,_,.N(m,m). Another
feature is that when, say, is kept fixed the log negativity
%?ecreases withm, from a given value oh, onwards. This
henomenon is seen most clearly with srmgll particularly

completely at variance with the result fQr of the purported
reduced chain. Hence, we arrive at the statement that n
even a single oscillator can be exactly decoupled from all th
others by the application on an appropriate local symplecti or n;=1. We will endeavour an intuitive explanation of
transformation.

This analysis shows that the coupled bisected chain Wiﬂ%hese feature§ below. In co_nclusic_m, we conjec_ture that, again
. ) , or general circulant couplings, lim...N(1,n,) is a lower
nearest-neighbor interaction can not be reduced to a problem 2
of only two pairs of interacting oscillators. In Sec. Vil— bound onN(ny,ny).
equipped  with  further results from  numerical From Fig. 6 we can see that the convergencl tdwards
investigations—we will discuss these findings and present al{S Plateau valueN(«,) depends on the strength of the

intuitive picture of the correlations present in the groundCOUplinga. For higher values, convergence is slower. What
state of this system of coupled oscillators. cannot be seen from this figure is that the actual plateau

value is larger as well.
VI. GENERAL BISECTIONS

In this section we turn towards more general problems,
exhibiting less symmetry. As these problems are much more 0.95f
difficult to solve analytically, we basically have restricted ool

ourselves to numerical calculations and we only give analyti- a=1,2,5,10,20
cal results for small subproblems, valid in some asymptotic 0.85-
regime only. L0t
A. Asymmetrical bisections Z0.75)
In Figs. 4 and 5 we show the results of a numerical cal- 1

culation for asymmetrically bisected chains with nearest-
neighbor coupling. That is, the groups of oscillators have 0.65f
sizesn;#n,. From these figures a number of features are
immediately obvious. The most striking feature is the “pla- 0.6r
teau” in the entanglement that is reached whenever bott ¢35 . . :
groups are sizeable enougbay n;,n,>10, at least in the 0 3 10 15 20

presented case for coupling strength=20). Of course, ™

whenn; =n,, being the “diagonal” of the plot, we recover g 6. Effect of coupling strength on the convergence of the
the result of Sec. IV that the log negativity is independent ofigg negativity towards its maximal value. Group siag is kept
n=n;+n,. From these figures we are led to conjecture thatfixed at 20 and group size, is varied. Shown is the ratio
in the case of nearest-neighbor coupling, the value of logy(n,,n,)/N(e,). The different curves are for various values of
negativity forn;=n, is an upper bound on the values for «. One clearly sees that for small couplings the limit value is
ni#n, (not to be confounded with the result of Theorem 1,reached much faster.
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B. Entanglement versus energy 1

It is interesting to compare the entanglement present in
the chain ground state with its energy. We consider nearest
neighbor interaction only. We have shown in Section Il that g9}
the ground-state energy equals«(/2)Tr[VY?]. For zero
coupling (V=1,), this gives jusnh times the single-oscillator 0.85r
ground-state energio=%w/2, as expected. For large cou-
plings «, we show that the ground-state energy is of the S 0.8r
order of JanE,.

From the proof of Theorem 2, we have that the eigenval- 0.75r |
uesh, of V are given by 0.7} i
Nx=vo+2v,c08k27/n)+2v,c082k27w/N) + - - - 0.65+ )
The energy in terms of these eigenvalue€ 5 i\{?. For 0.6— . . . . .
large values oh, we can replace the discrete sum oldry 1 3 5 N 7 9 1
an integral inx=2k/n. For nearest-neighbor coupling, this 2

yields FIG. 7. Energy per oscillatofin units of Zw/2) per unit of

- negativity (not logarithmi¢ in function of the negativity, for the
E%Eo(n/ﬂ')f dX(v o+ 2v,C0S 2()1/2 case of contiguous groups of large enough sige that the en-
0 tanglement plateau in Fig. 5 is reachetihe interaction is nearest
neighbor and the coupling is implicitly present as a parameter. The
= 2E4(n/ ) fﬂlzdx[(v +20,)—4v Sin2X]1/2 dashed line depicts the limiting value for infinitely strong coupling.
0 0 0 1 ! Here, the numben of oscillators is taken to be 20. However, the
results become independentrofor n large enough: fon=20, the

wl2 limiting value is 0.635 31, while for infiniten the exact result is
— ; 112 ,
=2Eq(n/m) J;) dx(1+4a siréx] 2/ =0.636 62.

already show that the log negativity tends to a constant times
n, the chain length. Therefore, in this case, the log negativity
can grow indefinitely large even when the mean energy is
In the limit of « tending to infinity, the latter integral kept fixed. In view of this, it would be more correct to say
tends to 7"%dxsin(x)=2, so that indeed that there are two contributions to the entanglement: one is
the mean energy, which is directly related to the coupling
strengths, and the second is the surface area of the boundary

= 2Eq(n/ ) e f " x4 SirP(x) + La]V?
0

4
EmnEO;\/Z.

30

Recalling the exact formula for the log negativity in the sym-
metrically bisected case, we have that the negativiot the 25t
logarithmic ongis y1+4«. We thus find that the negativity

is approximately proportional to the mean energy per oscil-
lator. The exact values, calculated numerically, have beer
plotted in Fig. 7. Fora=0, the curve obviously goes

through the point with mean energy equalEg and nega- N s
tivity equal to 1. Fora going to infinity, the mean energy
goes to (2fr)E,=0.636 6E times the negativity. 10l

20r

C. Non-contiguous groups

From the above, one would get the impression that the
mean energy gives a general upper bound on the amount ¢ ) ) ) . . ) )
entanglement in the systefapart from a numerical factpr 0 5 10 15 20 25 30 35 40
This is certainly not the case, because, until now, we only n

have investigated the cases where the two groups of oscilla- g g. Entanglement between the group of even oscillators and
tors were contiguous. In the following paragraph we l00kihe group of odd oscillators, in function of the chain lengtfeven

into the entanglement between noncontiguous groups. Sp@-only). Interaction is again nearest neighbor with coupliag
cifically, we look at the extreme case of entanglement be=20. The log negativity is seen to quickly converge to a constant
tween the group of even oscillators and the group of oddimesn. The value of the constant depends @rand the relation-
ones. As can be seen from Fig. 8, numerical calculationship is shown in Fig. 9.
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between the two groups of oscillators, which in the one- 0.8 - - - - T - -
dimensional case is just the number of points where the twc
groups “touch” each other. We will return to this issue in 0.7}
Sec. VII.

The validity of the purported linear relationship can be
shown analytically in a rather simple way, yielding as a
byproduct an expression for the proportionality constant.
First of all, the diagonal elements of the matrix for this S04l
configuration are 1 for odd index values, and. for even
index values. The Fourier transformBfthat is:QPQ " (see 03}
proof of Theorem 2 is equal to

0.5r

0.2

( 0 Jln/2)
1n/2 0 ! 0.1

as is easily checked. We already have calculated the Fourie %570 15 20 25 30 35 40
transform of thev matrix, which again can be inferred from o

the proof of Theorem 2. It is given hy=QVQT; here A is
a diagonal matrix with diagonal elements\,=v,
+2v 1c08(Xm/n)+2v, cos(Km/n)+---, 0O<k=n-—1. Insert-
ing this in the expression for th@ matrix gives

FIG. 9. Relationship between the constant factappearing in
the asymptotic formula for the log negativity=cn in the even-
odd setting(as in Fig. 8 and the coupling constaat.

0 1y 0 1 which indeed proves that, for large the log negativity is a
Q=QTA1’2< ) 1’2( ) linear function ofn. The integral itself cannot be brought in
2 0 Iz O closed form. In Fig. 9, we show the result of numerical cal-

If we write A in 2x 2 block form as culations giving the asymptotic value bifn versusa.

(A’ 0 ) D. Effect of group separation

0 A" In the following paragraph, we give some results for con-

tiguous groups that do not comprise the whole chain. In Fig.

the spectrum ofQ is the union of the spectrum of 14 e consider a fixed chain af= 40 oscillators and look at
A’ Y2A"2 and of A" ~Y2A Y2 Worked out, this gives the

eigenvalues A no/A)Y? and (A /A )Y for 0<k : : :
=<n/2—1. Using the inherent symmetry that, ,=A,, the :

eigenvalues of are 107 |
Ak +1/2
( Anjo- k) ' 107
The formula for the log negativity obtained in Sec. Ill can be
reformulated as minus the sum of the negative eigenvalues ¢ 107
l0og,Q. In the present case we get as log negativity
12
12 Ay
N=3 2 |log, : 107
k=0 n/2—k
For the nearest-neighbor Hamiltonian, this simplifies to
8
10" — : :
n/2 0 5 10 15
N= E > llog v0+201005{277k/n)| Group separation
2EL | PPvg—2v,cog 27kin)|
FIG. 10. Log negativity for two contiguous groups that do not
n/4

1+2a[1+cog2mk/n)] comprise the whole chain. The chain consists of 40 oscillators, cou-
= log, pling is nearest neighbor with coupling strength-20. Shown is

k=0 1+2a[1-cog2mk/n)] the log-negativity, displayed on a logarithmic scale, versus the sepa-
ration between the groups, i.e., the number of oscillator positions
between them. The different curves are for different group sizes
(both groups are taken to be equal in $iZéhe curve for group size
1 is not visible because it is a single point: the log negativity be-

12
N~ lfﬁ dx |0921+ 2af1+cosx)] , tween two oscillators turns out to be 0 whenever their separation is
2mJo 1+2a[1-cogXx)] larger than O.

for n that are multiples of 4. For large we can replace the
discrete sum by an integral,
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the entanglement between two equally sized contiguous  1¢°
groups, in function of the group size and the separation be-
tween them. We define the separation as the number of os
cillators in the smallest gap between the groups; since we ar "
dealing with a ring, there are two gaps between the groups 10 ¢
Note that the log negativity is plotted on a logarithmic scale.
There are two main features in this figure. The first and least
unexpected feature is that the entanglement decreases mo~._ 1072
or less exponentially with the separation. We believe that this™.

is quite natural in view of the fact that the coupling between o)

the groups also decreases with the distance. i

The more remarkable feature is that for small groups, the 10
entanglement quickly becomes zero altogether, as measure
by the logarithmic negativity. Bound entanglement of states
with a positive partial transpodé.7,6] is of course not de- 107 s - - - s s -
tected by this measure of entanglement, and it would be ar 0 3 1015 2j0 530 3% 4
interesting enterprise in its own right to study the structure of
bound entanglement present in coupled oscillator systems. FIG. 11. Classical correlations in a chain consisting of 40 oscil-
We will leave this, however, for future investigations. From lators; coupling is nearest neighbor with coupling strength20.
now on, the term that no entanglement is present will be useghown is the quantitxf(lf(j), displayed on a logarithmic scale,
synonymically with the statement that the logarithmic nega-versus the second-oscillator indpx
tivity vanishes.

For groups of size 1, the log-negativity is zero already atthat these correlations are given by the elements of the ma-
separation Athe gap consists of one oscillatoFor groups  triX ¥,/2=V~1%2. In the case of circulant symmetry, we
of size 2, there is still entanglement at separation 1, but nonenly have to consider the first row of the matrix, giving the
at separation 2. The larger the groups, the larger the maxim&prrelations between the first oscillator and any other one.
separation for which there is still entanglement can be. On&igure 11 shows these classical correlations for the system
could try to interpret this by saying that there is a kind of considered in Fig. 10n(=40, «=20). As could be expected,
threshold value below which entanglement drops to zerothese correlations decrease exponentially with the oscillator
However, this is more a reformulation of the results than arflistance and, furthermore, never vanish completely.
explanation, because it sheds no light on why this supposed
threshold should depend on the group size. E. Thermal state

To really explain what is happening, we need to take a To conclude this section, we consider a thermal state in-

closer look at the exact calculations. Consider the first tw%tead of the ground state. The calculations are exactly the

g:oupsloif ostc iIIatci)trisr?f iizeng gnd rWith zeptazlati?]r(]j 15 t%?t 'Ssame in both cases, apart from the fact that in the covariance
?ngturi?( ofstf?isp(c;)snfio usrati(?n(witr,\ ?181% aﬁd il20) .hase matrix there is an additional factdf + 2[exp(ByV) — o] *
9 . “ to the y,, and y, blocks (T=1/8). The results are shown in

e|genvalues 2'063’ 1.1339, 1.0938 and .0'8.83 61. As one ig. 12. One sees that for small temperatures the negativity is
the eigenvalues is smaller than 1, there is, indeed, entangle-

ment present. We might be led to think that this entanglemen qual to the ground-state negativity, and from some value
is the cumulative result of the entanglement between the dif- N

ferent oscillator pairs(1,4), (1,5), (2,4), and(2,5), but this is

not true, because these pairs are not entangled themselve S
their separation is larger than 0. What is happening here is3\ e ““
that the eigenvalues of th@ matrix belonging to paif1,4), -

say, are 1.8065 and 1.1724, which are both larger than 1 anc
therefore, do not count in the entanglement figure.

The resolution of this strange behavior in terms of the
separation is that the mere fact alone of having correlations!
between the group®igenvalues of) different from 1) is not
enough to have entanglement. The correlations must be 09>
special nature, namely, the eigenvaluefahust be smaller
than 1. One could say that larger groups can more easily
exhibit entanglement; thel® matrix has a larger dimension
and, hence, more eigenvalues, so that there are more oppac
tunities for having at least one eigenvalue smaller than 1.

In _th's respec_t, it IS Interestl_ng_also to have a lQOk at the FIG. 12. Log negativity of a thermal state with temperatiire
CIAaSAS|calcorreIatlonS in the chain, i.e., the expectation values,grsysT and chain sizen. Symmetrically bisected chain, nearest-
(XjX). From the treatment in Sec. Il we immediately seeneighbor interaction with coupling = 20.

24
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FIG. 14. Same as Fig. 5, but with a Hamiltonian that does not
connect the harmonic chain end-to-end. The two groups are, there-
fore, connected only at one poifih the middle of the chain and

FIG. 13. Schematic drawing of the inter-oscillator correlation this explains why the log negativity is only about one half of the
packets, i.e., the rows of the correlation matyix. The line thick- value it had with end-to-end connection. Furthermore, for small
ness indicates the amount by which the correlation packet is inwe now see an increase with instead of a decrease, which seems
volved in the entanglement between the groups, i.e., how much it i#o imply that the counterintuitive behavior on the ring is actually a
shared by the two groups. winding effect(see text

. i ~ure. For large groups, most of the correlation packets de-
onwards it starts to decrease more or less linearly With scribe correlationsvithin the groups. What is important is

until there is no(free) entanglement at all anymore. the amount of correlationdetweenthe groups, and this
quantity is virtually independent on the group size, provided
VII. DISCUSSION the groups are so large they can accomodate most of the

. . . packets within their boundaries.
The numerical results we have obtained in Sec. VI can be \we must stress, however, that these two rules are of a

interpreted in a qualitative way, by means of two rules-of-qualitative nature. As noted already in Sec. VI, in the discus-
thumb. These rules are not to be interpreted as strict matl’gion of the dependence of entang|ement on group Separation,
ematical statements; for that, we already have the exact fohaving correlations between the groups alone is not enough
mulas. The importance of the two rules is that they allow tofor having entanglement. The correlations must be such that
reason about the dependence of entanglement on various fate Q matrix has at least one eigenvalue smaller than 1. The
tors, such as group size, coupling strengths, and group géottom line is in any case that one must go through the exact
ometry. calculations to see whether or not there is entanglement.
The first rule is thatdue to the coupling between the  Another effect that can be accounted for is the depen-
oscillators, the system exhibits interoscillator correlations dence of the log negativity on the group size if at least one
which are decreasing with distanc&his is a fairly natural ~group is very small. If both groups are very small, say one
statement, in view of the fact that the couplings between th@scillator both, then the packets are so wide they wind up

oscillators are short range as well. In a more mathematicatlong the chain and, therefore, cross every group more than
way, one could consider the matrix =V~ Y2 whose ele- ©Nce, adding to the entanglement figure a number of times. If

. RS . one of the groups is kept fixed, and the other is made larger,
ments are the cIaSS|_caI correlatiof}§ Xy). Th_elth row de- the Windinggnurrﬁ)ber of tFr)le packets decreases and so doeg the
scribes th_e correlations betw_een thid oscHIaFor ar!d aII_ amount by which the packet is shared by the groups. This
other oscillators. The correlations can thus, in a flguratlv_eeﬁect could explain the decrease of entanglement with grow-
way, be subdivided into packets, one packet for every row inng ny, At this point, the qualitative reasoning again breaks
the correlation matrix. For chains with a circulant potential gown, however, since the reduction of the amount of sharing
matrix V, it is self-evident thaty, is also circulant so that the per packet is counteracted by an increase in the number of
correlation packets all have an identical shépee Fig. 13 packets. To show that the balance is still in favor of an en-

The second rule is thahe entanglement between two tanglement decrease, once again one really needs to go
groups of oscillators depends on the total amount of correthrough the exact calculations; this is what we have done in
lation between the group#\gain, this rule looks fairly in-  Sec. IV. Nevertheless, the qualitative reasoning has the virtue
nocuous and even trivial. However, combining the two rulesthat it shows what the main ingredients are. Furthermore, it
readily shows why, in the case of contiguous groups, thémmediately leads to the conjecture that the effect of de-
entanglement in function of the group sizes should reach areasing entanglement would not occur in a chain that is not
plateau. Indeed, even while the total amount of correlatiorconnected end-to-end, since no winding occurs there.
grows, more or less, linearly with the chain size, this has A numerical experiment immediately showed that this is
very little impact on the entanglement between the groupexactly what happens, as witnessed by Fig. 14. One has to be
because it is only the correlation packets that straddle theareful, though, about how one “opens” the chain. To clearly
group boundaries that enter in the bipartite entanglement figshow the disappearance of the winding effect, one has to
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make sure that opening the chain does not introduce sidedso growsglinearly with n), in contrast with the contiguous
effects. Particularly, the oscillators at both ends should stilgroups, whose boundary area is fixddor the open chain, 2
“see” the same springs as before opening the chain. One cafor the closed chain Hence, the amount of correlations
take care of this by connecting the ends of the chain to twatraddling the boundary should grow too. The exact calcula-
additional oscillators that are kept in a zero-energy siae  tion confirms this effect and shows a linear relationship be-
with zero X-variance; hence, they must be oscillators withtween log negativity and chain size. It would be interesting
infinite mas$. At the level of the potential matrix, this means to investigate what happens in three-dimensional oscillator
that the diagonal element$, ; and V, , are still 1+2«, arrangements with couplings decreasing with distance. We
although the element¥,,, andV, ; are being set to zero. believe that a similar relation will show up between en-
Noting the analogy between harmonic chains and transmiganglement between two groups and the area of the boundary
sion lines, we call this special connection processtémmi-  between the groups. We leave this issue, however, for future
nation of the harmonic chain. In transmission line theory, investigations.
correct termination of a lindusing appropriately matched
impedancesis necessary to avoid signal reflections at the
ends of the line. We believe that analogous reflection effects
could be exhibited by nonterminated harmonic chains, but This paper was benefited from very interesting conversa-
leave the investigation of this boundary phenomenon to futions with C. Simon, R. Ratonandez, S. Scheel and M. San-
ture work. tos. This work was supported by the European Union project
Finally, for noncontiguous groups, and, specifically, for EQUIP, the European Science Foundation program on
the entanglement between even and odd oscillators, the tw&®Quantum Information Theory and Quantum Computing,”
rules-of-thumb correctly predict that the entanglement keepby a grant from the U.K. Engineering and Physical Sciences
increasing with growing chain length. Indeed,nifgrows, Research Counci{EPSRQ, and by a Feodor-Lynen grant
then the “boundary area” between the even and odd groufrom the Alexander von Humboldt Foundation.
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