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Entanglement properties of the harmonic chain
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We study the entanglement properties of a closed chain of harmonic oscillators that are coupled via a
translationally invariant Hamiltonian, where the coupling acts only on the position operators. We consider the
ground state and thermal states of this system, which are Gaussian states. The entanglement properties of these
states can be completely characterized analytically when one uses the logarithmic negativity as a measure of
entanglement.
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I. INTRODUCTION

Quantum entanglement is possibly the most intrigu
property of states of composite quantum systems. It m
fests itself in correlations of measurement outcomes that
stronger than attainable in any classical system. The rene
interest in a general theory of entanglement in recent yea
largely due to the fact that entanglement is conceived as
key resource in protocols for quantum information proce
ing. Initial investigations focused on the properties of bip
tite entanglement of finite-dimensional systems such as t
level systems. In fact, significant progress has been m
and our understanding of the entanglement of such syst
is quite well developed@1#. A natural next step is the exten
sion of these investigations to multipartite systems. Unfor
nately, the study of multipartite entanglement suffers from
proliferation of different types of entanglement already in t
pure state case@2#, and even less is known about the mix
state case. For example, necessary and sufficient criteri
separability are still lacking. For other properties, such
distillability, no efficient decision methods are known, and
is even difficult to find meaningful entanglement measu
@3#. A direction that promises to lead to simpler structures
that of infinite-dimensional subsystems, such as harmo
oscillators or light modes, which are commonly denoted
continuous-variable systems@4,5#. Indeed, for continuous
variable systems the situation becomes much more trans
ent if one restricts attention to Gaussian states~e.g. coherent,
squeezed or thermal states! which are, in any case, the stat
that are readily experimentally accessible.

Quite recently, it has been realized that it might be a v
fruitful enterprise to apply the methods from the theory
entanglement not only to problems of quantum informat
science, but also to the study of quantum systems that
typically regarded as belonging to statistical physics, syste
that consist of a large or infinite number of coupled su
systems@7–10#. Examples of such systems are interacti
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spin systems, which, like most interacting systems, exh
the natural occurrence of entanglement, i.e., the ground s
is generally an entangled state@7–9#. It has, furthermore,
been suspected that the study of the entanglement prope
of such systems may shed light on the nature of the struc
of classical and quantum phase transitions@7,9#. It has turned
out, however, that the theoretical analysis of infinite sp
chains is very complicated and only very rare examples
be solved analytically. Coupled harmonic oscillator syste
allow for a much better mathematical description of th
entanglement properties than spin systems. Physical rea
tions of such systems range from the vibrational degree
freedom in lattices to the discrete version of free fields
quantum-field theory. This motivates the approach that
have taken in this work, namely to investigate the entang
ment structure of infinitely extended harmonic oscillator s
tems.

In this paper we study a special case, namely, a se
harmonic oscillators arranged on a ring and furnished wit
harmonic nearest-neighbor interaction, i.e., oscillators t
are connected to each other via springs. The paper is o
nized as follows. In Sec. II we provide the basic mathem
cal tools that are employed in the analysis following in t
remaining sections. We then move on to derive a sim
analytical expression for the ground state energy of the h
monic oscillator systems. Our main interest is the compu
tion of entanglement properties of the ground state of
chain. In Sec. III we derive a general formula for the log
rithmic negativity@11,12# which we employ as our measur
of entanglement. In Sec. IV we present analytical results
concern the symmetrically bisected chain, that is, the sit
tion where the chain is subdivided into two equal contiguo
parts and the entanglement is calculated between those p
We show how to construct a very simple lower bound on
log negativity, in the form of a closed-form expression bas
on the coupling strengths; that is, no matrix calculations
necessary. Furthermore, for nearest-neighbor interaction
show that the bound is sharp, i.e., gives the exact value of
log negativity. Surprisingly, the value of the log negativity
this case is independent of the chain length; in particula
remains finite. We show in Sec. V that the problem is n
reducible to a four-oscillator picture, thereby demonstrat
©2002 The American Physical Society27-1
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the nontriviality of the physical system. We then move on
Sec. VI, where we study general bisections of the chain
merically. We demonstrate that entanglement is maximi
for the symmetrically bisected chain. Furthermore, and ra
counterintuitively, for asymmetric bisections where o
group of oscillators is very small, and especially when
consists of only one oscillator, we find that the entanglem
decreases if the size of the other group is increased. We
demonstrate that for large numbers of oscillators the m
energy of the ground state and the value of the negativity
proportional and provide an interpretation for this result.
Sec. VII we discuss our results. We also provide an intuit
picture that allows to explain the results in the preced
sections. Generally we have attempted to structure the so
times somewhat involved mathematics in such a way,
the reader can skip it and extract the main physical res
easily. We state at the beginning of each section what m
result will be obtained.

II. COVARIANCE MATRIX FOR GAUSSIAN STATES
OF THE HARMONIC CHAIN

In this section we derive an expression for the covaria
matrix of the ground state and of the thermal states of a se
harmonic oscillators that are coupled via a general inte
tion that is quadratic in the position operators~e.g., oscilla-
tors coupled by springs!. As a byproduct we also give a
expression for the energy of the ground state.

Let us first consider the covariance matrix for the grou
state of a single uncoupled harmonic oscillator. The Ham
tonian is given by~we have adopted units where\51)

Ĥ5
1

2m
P̂21

mv2

2
X̂2.

Denoting the quadrature operators as a column vectoR,
with R15X̂ and R25 P̂, the Hamiltonian can be concisel
rewritten as

Ĥ5RTS mv2/2 0

0 1/~2m!
DR.

The covariance matrixg of a general stater is given by

gk,l5Re Tr†r~Rk2Tr @rRk# !~Rl2Tr @rRl # !‡,

for 1<k,l<2. Forrn thenth eigenstate of the Hamiltonian
rn5un&^nu, it is a straightforward exercise to calculate th

g5~n11/2!S 1/~mv! 0

0 mv
D .

We will only be interested in the ground state,r05u0&^0u,
however, since this is the only eigenstate which is Gauss

Passing to the harmonic chain consisting ofn harmonic
oscillators, we will only consider interactions between t
oscillators due to a coupling between the different posit
operators. According to the (q,p) convention we have
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adopted here, the vectorR of quadrature operators is give
by Rj5X̂j andRn1 j5 P̂j , for 1< j <n. The Hamiltonian is
then of the form

Ĥ5RTS Vmv2/2 0

0 1n /~2m!
DR,

where then3n matrix V contains the coupling coefficients
The Hamiltonian is thus written as a quadratic form in t
quadrature operators; we will call the matrix correspond
to this form theHamiltonian matrix~as opposed toĤ, the
Hamiltonianoperator!. In the present case, the Hamiltonia
matrix is a direct sum of thekinetic matrix1n /(2m) and the
potential matrix Vmv2/2.

In this paper, we will consider a harmonic chain ‘‘con
nected’’ end-to-end by a translationally invariant Ham
tonian. TheV matrix of the Hamiltonian is, therefore, a so
called circulant matrix@14#. This is a special case of
Toeplitz matrix because not only do we haveVj ,k5v j 2k , but
evenVj ,k5v ( j 2k)modn for 1< j ,k<n, due to the end-to-end
connection. We can easily write the coefficientsvk in terms
of the coupling coefficients. For a nearest-neighbor coupl
with ‘‘spring constant’’K, the potential term of the Hamil-
tonian reads

(
k51

n
mv2

2
X̂k

21K~X̂(k11)modn2X̂k!
2.

Therefore, we have

v05114K/~mv2!, v1522K/~mv2!.

More generally, includingkth nearest-neighbor coupling
with spring constantsKk , and defining

ak5
2Kk

mv2
,

we have

v05112~a11a21••• !,

v j52a j , for j .0.

The calculation of the corresponding covariance ma
can now proceed via a diagonalization of the Hamilton
matrix, which effectively results in a decoupling of oscilla
tors. Since the commutation relations between the quadra
operators must be preserved, the diagonalization mus
based on asymplectic transformation SPSp(2n,R). This
means that we can only use equivalence transformat
C°C85STCS such thatSTSS5S, where, in the (q,p)
convention, thesymplectic matrixS is given by

S5S 0 1n

21n 0 D .

This real skew-symmetric matrix incorporates the canon
commutation relations between the canonical coordina
7-2
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Fortunately, because the kinetic matrix is a multiple of t
identity, the Hamiltonian matrix can be diagonalized by
orthogonalequivalence of the form

C°C85~S% S!TC~S% S!,

whereS is the real orthogonaln3n matrix that diagonalizes
the potential matrixV. It is readily checked that the resultin
transformation is indeed a symplectic one. In fact,S% S is an
element of the maximal compact subgroup of Sp(2n,R).

So C8 is now a diagonal matrix and is of the formC8
5(mv2/2)V8% 1n /(2m), whereV8 is the diagonaln3n ma-
trix with entries h j , 1< j <n, the eigenvalues ofV. The
covariance matrixg8 of the ground state of the transforme
Hamiltonian consists therefore just of single-oscillator co
riance matrices with parameterv j5vAh j , 1< j <n, and is
diagonal itself, to wit,

g85~gx8% gp8!/2,

~gx8! j , j51/~mv j !,

~gp8! j , j5mv j .

The covariance matrixg in the original coordinates is the
obtained by transformingg8 back,

g5~S% S!g8~S% S!T5@~Sgx8S
T! % ~Sgp8S

T!#/2

5@~V21/2/~mv!! % ~mvV1/2!#/2.

To simplify the notation, we will henceforth setm51 and
v51. So we have a simple formula for the covariance m
trix in terms of the potential matrixV,

g5~gx% gp!/2,

gx5V21/2,

gp5V1/2.

Using this same derivation, we can also easily find a f
mula for the energy of the ground state. We will need t
result in Sec. VI, where we will compare the log negativ
of a state to its energy. Indeed, the ground state energy
single oscillator is\v/2. In the decoupled description of th
ground state of the chain, the oscillators have ene
\vAh j /2, with h j , 1< j <n, being the eigenvalues of th
potential matrix V. The total ground-state energy isE
5(\v/2)( j 51

n Ah j . Denoting \v/2 by E0, we therefore
have

E5E0Tr @V1/2#.

Finally, we turn to Gibbs states corresponding to some te
peratureT.0, the states associated with the canonical
semble, given by

r~b!5exp~2bĤ !/Tr @exp~2bĤ !#,
04232
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whereb51/T. Again, one can obtain the covariance mat
g(b) of the stater(b) in a convenient manner in the basis
which the Hamiltonian matrix is diagonal. The 2n32n di-
agonal matrixg8(b) can be obtained using the virial theo
rem: the mean potential energy and the kinetic energy o
single oscillator are identical and half the mean energy of
system at inverse temperatureb. Using this procedure one
obtains

g8~b!5~gx8~b! % gp8~b!!/2,

@gx8~b!# j , j5
1

mv j
S 11

2

exp~bv j !21D ,

@gp9~b!# j , j5mv j S 11
2

exp~bv j !21D .

In the convention wherem51, v51, one gets

g~b!5@gx~b! % gp~b!#/2,

gx~b!5V21/2$1n12@exp~bV1/2!21n#21%,

gp~b!5V1/2$1n12@exp~bV1/2!21n#21%,

for the covariance matrix of a Gibbs state in the origin
canonical coordinates.

III. GENERAL FORMULA FOR THE LOGARITHMIC
NEGATIVITY

In this section we derive a general formula for the log
rithmic negativity of a Gaussian state ofn coupled harmonic
oscillators with respect to a bipartite split, given the cova
ance matrixg of the Gaussian state. This set may consist
all n oscillators or of a subset ofm,n oscillators. The only
restriction is that the covariance matrix must be a direct s
of a position partgx and a momentum partgp , i.e., there
must be no correlations between positions and momenta.
resulting formula can be found at the end of this section.

Let n1 andn2 be the sizes of the two groups of oscillato
the entanglement between which we wish to calculate,
let m5n11n2<n. From Sec. II, we know that the covar
ance matrixg of the ground state of the harmonic chain
given byg5(gx% gp)/2, wheregx5V21/2 andgp5V1/2. In
order to calculate the entanglement between two disjo
groups of oscillators in this state, we need to consider
covariance matrix associated with the reduced state of thm
oscillators of the two groups. This covariance mat
m—from now on also referred to as reduced covarian
matrix—is given by the 2m32m principal submatrix ofg
that consists of those rows and colums ofg that correspond
to the canonical coordinates of either group 1 or group 2
m5n, meaning that the whole set ofn oscillators is consid-
ered, this step is not necessary. The reduced covariance
trix m is again of the form

m5~mx% mp!/2,

where bothmx andmp arem3m matrices.
7-3
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Taking thepartial transposeof a covariance matrix cor
responds to changing the sign of the momentum variable
the oscillators in the second group. This operation maps
covariance matrixm to

mG5PmP

with

P5Px% Pp , Px51m ,

Pp is am3m diagonal matrix. Specifically, thej th diagonal
element ofPp is 1 or 21, depending on whether the osc
lator on position 1< j <m belongs to group 1 or 2, respec
tively.

The logarithmic negativity@11,12# of a state is defined a
the logarithm of the trace norm of the partial transpose of
state. The negativity is an entanglement measure in the s
that it is a functional that is monotone under local quant
operations@12,13#. To date it is the only feasible measure
entanglement for mixed Gaussian quantum states. The
nition of the logarithmic negativity can be easily translat
into an expression which does not involve the state itself,
rather the covariance matrix of the state: as the trace nor
unitarily invariant, one has the freedom to choose a basis
which the evaluation of the trace norm becomes particula
simple. More specifically, one may make use of theWilliam-
son normal form@15# for the partial transpose of the covar
ance matrix. The problem of evaluating the logarithm
negativity is then essentially reduced to a single-mode pr
lem. This procedure gives rise to the formula@12#

N52 (
k51

2m

log2@min„1,2ulk~ iS21mG!u…#,

where lk( iS
21mG), 1<k<2m, are the eigenvalues o

iS21mG. S is the symplectic matrix

S5S 0 1m

21m 0 D .

SinceS2152S, we have to calculate the spectrum of t
matrix B52 iSPmP, giving 2m real eigenvalueslk(B) of
B. Then the logarithmic negativity equalsN5
2(k51

2m log2min(1,2ulk(B)u). This formula can be furthe
simplified due to the direct sum structure ofm5(mx
% mp)/2. Simplification ofB yields @16#

B5
i

2 S 0 2PpmpPp

mx 0 D .

The eigenvalue equation of a block matrix of this form rea

S 0 X

Y 0 D S u

v D 5lS u

v D ,

which is equivalent to the coupled system of equationsXv
5lu and Yu5lv. Substituting one equation in the oth
yieldsXYu5l2u, hence the eigenvalues of the block mat
are plus and minus the square roots of the eigenvalue
04232
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XY. In particular, the eigenvalues of B are
6@l j (mxPpmpPp/4)#1/2, 1< j <m. Because of the6 sign,
taking the absolute value of the eigenvalues has the effec
doubling the eigenvalue multiplicity. Hence,

N52(
j 51

m

log2min„1,l j~mxPpmpPp!…,

which is finally the resulting formula of the logarithmi
negativity in terms of the matricesmx andmp .

IV. THE SYMMETRICALLY BISECTED
HARMONIC CHAIN

In this section we present exact analytical results for
log negativity in a chain ofn harmonic oscillators with a
translationally invariant coupling. Moreover, we shall be i
terested here in the most symmetric case of calculating
entanglement with respect to a symmetric bisection of
chain. That is, the numbern of oscillators should be even an
the oscillators in positions 1 ton/2 constitute group 1, the
others group 2~see Fig. 1!. Hence, in the notation of Sec. II
m5g.

Using the result of Sec. III, we find that the logarithm
negativity of a symmetrically bisected oscillator chain,
lengthn and with potential matrixV, is equal to

N52(
j 51

n

log2@min„1,l j~Q!…#,

with

Q5V21/2PV1/2P,

P51n/2% ~21n/2!.

A. Symmetry properties of Q

We begin our analytical investigations by studying a mo
general object thanQ, namely, the matrix

R5G21PGP.

FIG. 1. The symmetrically bisected harmonic chain. The os
lators 1 ton/2 form group 1, the oscillatorsn/211 to n form group
2.
7-4
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Here,G is a general realcirculant matrix that is symmetric
under transposition. SinceG is symmetric and circulant, i
can be written in 232 block form as

G5S G8 G9

G9 G8
D .

We will first show thatR exhibits the same block structure
Define then3n flip-matrix F5Fn as

Fi , j5d i ,n112 j .

To simplify the notation, we will mostly refrain from men
tioning the sizen of F; the mathematical context shou
make it clear whichn is being used.

Lemma 1. The matrixR can be written in 232 block form
as

R5S A B

B AD .

Proof. SinceG is circulant and symmetric,FGF5G, which
is true for every symmetric Toeplitz matrix. Also,FPF5
2P holds. Writing

R5S A B

C DD ,

symmetry demands thatC5FBF and D5FAF. Further-
more, bothG and P are also invariant under theFn/2% Fn/2
symmetry. Hence,R exhibits this symmetry too, i.e., (F
% F)R(F % F)5R. Thus,A andB are invariant underF. j

Matrices with this block structure can be brought in blo
diagonal form using a similarity transform:

Lemma 2. Let S5(P1F)/A2. Then

SS A B

B ADS5~A1BF! % ~A2BF!.

Proof. This follows by direct calculation and noting tha
S 215S and

S5S 1n F

F 21n
D /A2. j

We now specialize the above results forR to the matrix

Q5V2pPVpP, O<p< l 1

with V again a general real symmetric circulant matrix. T
powerp remains hitherto unspecified. Note that any power
a symmetric circulant matrix is again symmetric circula
Again, then3n matrix V can be written in 232 block form

S V8 V9

V9 V8
D ,

where bothV8 andV9F are Hermitian. By Lemma 1,Q can
similarly be written as the block matrix
04232
f
.

S Q8 Q9

Q9 Q8
D .

The following lemma is crucial for the rest of the calcul
tions.

Lemma 3. With the previous notations,Q81Q9F5(Q8
2Q9F)21 and

det~Q81Q9F !5exp$2pTr @F log2~V!#%,

det~Q82Q9F !5exp$1pTr @F log2~V!#%.

For p in the interval 0<p<1, the following also holds: if
V9F>0, then Q81Q9F<1n/2 , and if V9F<0, then Q8
2Q9F<1n/2 .

Proof. ConsiderSQS. On one hand, we have, by Lemm
2,

SQS5~Q81Q9F ! % ~Q82Q9F !,

and similarly, SVS5(V81V9F) % (V82V9F). Also, SPS
5F, as a short calculation shows. On the other hand, we
have

SQS5SV2pPVpPS5SV2pSSPSSVpSSPS
5~SVS!2pSPS~SVS!pSPS,

and therefore

SQS5@~V81V9F !2p
% ~V82V9F !2p#F@~V81V9F !p

% ~V82V9F !p#F

5@~V81V9F !2p
% ~V82V9F !2p#

3@~V82V9F !p
% ~V81V9F !p#

5~V81V9F !2p~V82V9F !p

% ~V82V9F !2p~V81V9F !p.

Identifying the blocks in the two expressions forSQS, we
get

Q81Q9F5~V81V9F !2p~V82V9F !p,

Q82Q9F5~V82V9F !2p~V81V9F !p,

so thatQ81Q9F is the inverse ofQ82Q9F and

det~Q81Q9F !5S det~V82V9F !

det~V81V9F !
D p

.

Furthermore, log2V5S(log2(V81V9F)%log2(V82V9F))S,
hence

Tr @F log2V#5Tr @SFS~ log2~V81V9F ! % log2~V82V9F !!#

5Tr @P~ log2~V81V9F ! % log2~V82V9F !!#

5Tr @ log2~V81V9F !2 log2~V82V9F !#

5 log2

det~V81V9F !

det~V82V9F !
.

7-5
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This then yields

det~Q81Q9F !5exp~2pTr @F log2V# !,

det~Q82Q9F !5exp~1pTr @F log2V# !.

Considering the second assertion, ifV9F>0, then V8
1V9F>V82V9F, and, by Löwner’s theorem@14#,

~V81V9F !p>~V82V9F !p

for 0<p<1. Hence, for any vectorxÞ0 satisfying an equa
tion (V82V9F)px5l(V81V9F)px, it follows that l must
be less than or equal to 1~to see this, take the inner produ
of both sides with the vectorx). Rearranging the equation t

~V81V9F !2p~V82V9F !px5lx,

which is just (Q81Q9F)x5lx, yields that thel for which
such anx exists are precisely the eigenvalues ofQ81Q9F.
Hence, under the conditionV9F>0, the eigenvalues ofQ8
1Q9F are less than or equal to 1. Similarly, ifV9F<0, we
proceed in an identical way to show that the eigenvalue
Q82Q9F are less than or equal to 1. j

B. A lower bound on the negativity

We will now apply Lemma 3 to the casep51/2 andV
being the potential matrix of the oscillator chain to obtain
lower bound on the logarithmic negativity:

Theorem 1. The logarithmic negativity of the bisected o
cillator chain of lengthn obeys

N>uTr @F log2~V!#u/2.

If V9F is semidefinite ~i.e., either positive or negative
semidefinite!, then equality holds.

Proof. To calculate the negativity we need the eigenvalu
of Q with p51/2 that are smaller than 1. By Lemma 2, t
spectrum ofQ is the union of the spectra ofQ81Q9F and of
Q82Q9F. By Lemma 3, forV matrices satisfying theV9F
>0 condition, the eigenvalues ofQ smaller than 1 are the
eigenvalues ofQ81Q9F. Furthermore,

Tr @ log2~Q81Q9F !#5 log2det~Q81Q9F !

52pTr @F log2~V!#.

Settingp51/2 then givesN5Tr @F log2(V)#/2. On the other
hand, if V9F<0, it is the eigenvalues ofQ82Q9F that we
need to consider. Since Tr@ log2(Q82Q9F)#5
1pTr @F log2(V)#, we find

N52Tr @F log2~V!#/2.

For generalV9F, we first note that the general formula fo
the negativity can be written as

N52Tr @ log2min~1n ,Q!#.
04232
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For commutingX andY, min(X,Y) is the elementwise mini-
mum in the eigenbasis ofX ~andY). By Lemma 2, we then
have N52Tr @ log2min„1n ,(Q81Q9F) % (Q82Q9F)…# and
this is also equal to

N52Tr @ log2min~1n/2 ,Q81Q9F !#

2Tr @ log2min~1n/2 ,Q82Q9F !#.

From Lemma 3 we also know thatQ81Q9F and Q8
2Q9F are each other’s inverse. Hence,

N52Tr @ log2min~Q81Q9F,Q82Q9F !#,

and, because the two arguments of min commute,N5
2Tr @min„log2(Q81Q9F),log2(Q82Q9F)…#. Finally, the trace
of a minimum is smaller than or equal to the minimum of t
traces, so that

N>max„Tr @ log2~Q81Q9F !#,Tr @ log2~Q82Q9F !#….

Because the two arguments of max are each other’s nega
the maximum amounts to taking the absolute value of, s
the first argument. Hence, N>uTr @ log2(Q81Q9F)#u
5uTr @F log2(V)#u/2, where the last equality follows from th
first part of the proof. j

For the nearest-neighbor Hamiltonian,V is of the form

V5S v0 v1 0 ••• 0 v1

v1 v0 v1 0

0 v1 v0 � A

A � � v1 0

0 v1 v0 v1

v1 0 ••• 0 v1 v0

D ,

so

V85S v0 v1 0 ••• 0

v1 v0 v1 A

0 � � � 0

A v1 v0 v1

0 ••• 0 v1 v0

D , ~1!

V9F5S v1 0 ••• 0

0 0

A � A

0 0

0 ••• 0 v1

D . ~2!

As v1<0, V9F is obviously a~negative! semidefinite matrix.
Therefore, the nearest-neighbor Hamiltonian satisfies
equality condition of the Theorem, and the logarithmic neg
tivity of the bisected harmonic chain with nearest-neighb
Hamiltonian equalsN5uTr @F log2(V)#u/2.
7-6
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C. An explicit formula in the coupling

The bound of Theorem 1 is actually a very simple o
because we can give an explicit formula foruTr @F log2(V)#u
in terms of the coupling coefficientsa j , as follows.

Theorem 2. For a translationally invariant potential matr
V with coupling coefficientsa1 , a2, . . . am ,

uTr @F log2~V!#u5 log2@114~a11a31••• !#.

Note, in this formula, the absence of the coefficients w
even index.

Proof. The eigenvalue decomposition of a general circ
lant n3n matrix V is very simple to calculate. For conve
nience of notation, we use matrix indices starting from z
instead of 1. LetVk,l5vk2 l , then V5V†LV, with V the
kernel matrix of the discrete Fourier transform,

Vk,l5expS kl
2p i

n D /An,

with 0<k,l<n21. This matrix is unitary and symmetric
The eigenvaluesLk are related tov l via a discrete Fourier
transform according to

Lk5 (
l 50

n21

expS 2p i

n
kl D v l .

For real symmetricV this gives

Lk5v012v1cosS k
2p

n D12v2cosS 2k
2p

n D1•••.

It is now a straightforward calculation to obtain an expre
sion for Tr@F log2(V)#. First,

~VFV†!k,l5 (
j , j 850

n21

expS jk
2p i

n D d j ,n212 j 8

3expS 2 j 8l
2p i

n D /n

5 (
j 50

n21

expS @ jk2~n212 j !l #
2p i

n D /n

5 (
j 50

n21

expS @ j ~k1 l !2~n21!l #
2p i

n D /n.

All elements are zero except those for whichk1 l is an in-
teger multiple ofn, i.e., eitherk5 l 50 or k1 l 5n,

~VFV†!0,05 (
j 50

n21

expS ~0 j 10!
2p i

n D /n51

and
04232
-

o

-

~VFV†!n2 l ,l5 (
j 50

n21

expS @ jn2~n21!l #
2p i

n D /n

5expS 1 l
2p i

n D .

In the calculation of Tr@F log2(V)# we only need the nonzero
diagonal elements ofVFV†, which are the (0,0) and the
(n/2,n/2) elements. Hence

Tr @F log2~V!#5 log2~L0!1 log2~Ln/2!expS ~n/2!
2p i

n D
5 log2

v012v112v21•••

v022v112v22•••

.

Inserting the relations between the elements ofV and the
coupling coefficientsa j

v05112~a11a21••• !,

v j52a j , for j .0,

yields the stated formula. j
For the nearest-neighbor Hamiltonian, the only nonz

a j coefficient isa[a1, giving rise to the following simple
expression for the logarithmic negativity.

Corollary 1. For the nearest-neighbor Hamiltonian wi
coupling coefficienta>0, the logarithmic negativity of the
bisected chain of lengthn is given by

N5
1

2
log2~114a!.

It is remarkable indeed that the negativity is independen
n, the chain length.

D. Other potential matrices

To conclude this section, we will prove that any oth
circulant symmetric potential matrix does not satisfy t
equality condition of Theorem 2 so that the negativity will
general be larger than the lower bound and, moreover,
pendent on the sizen of the chain. Consider first a Hamil
tonian with a nearest-neighbor coupling of strengtha1 and a
next-nearest-neighbor coupling of strengtha2, where
a1 ,a2.0. The matrixV9F is then of the form

V9F5S 2a1 2a2 ••• 0

2a2 0

A

0 2a2

••• 2a2 2a1

D .

The nonzero eigenvalues of this matrix are those of the s
matrix

S 2a1 2a2

2a2 0 D .
7-7
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As its determinant is negative,2a2
2, it is not a definite ma-

trix, hence neither isV9F.
Generally, akth neighbor couplingak , i.e., a coupling

between oscillatorsk places apart, yields a matrixV9F which
is Hankel@14# and has2ak on two skew diagonals. If there
is a k such thatak andak11 are nonzero butak1250, then
V9F contains a (232) principal submatrix of the form

S 2ak 2ak11

2ak11 0 D ,

which is again not definite. Hence, in that case,V9F is not
semidefinite. Now, if one fixes the interactions and then len
grow ~which is exactly the setting here!, there will always be
some point whenV9F will exhibit a zero skew diagonal and
hence, is not semidefinite.

V. INEQUIVALENCE TO A FOUR-OSCILLATOR
PROBLEM

At this point, one might be tempted to think that the i
dependence of the log negativity of the chain lengthn, in the
case of nearest-neighbor interaction, is a consequence o
presumption that the bisected harmonic chain of lengthn
>4 with nearest-neighbor interaction is in fact equivalent
a much simpler problem: there could be an appropr
choice of basis of the Hilbert spaces of system 1 and
corresponding to a symplectic transformation, such that
effect, only those four oscillators that are adjacent to the s
boundary would be in an entangled state. The othern/222
oscillators of each system would then be in pure prod
states, thereby not contributing to the logarithmic negativ
This would mean that one could locally disentangle all b
four oscillators with local symplectic transformations~see
Fig. 2!.

If this indeed were the case, then the symplectic trans
mationsS1 ,S2PSp(n,R) would exist such that

g5~S1% S2!Tg8~S1% S2!

g85~1n24/2! % g12% g̃12% ~1n24/2!

FIG. 2. There exist no symplectic transformations that decou
all but four oscillators from each other in the case of the bisec
harmonic chain with nearest-neighbor Hamiltonian.
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~note that we are using a quadrature ordering conven
here that is different from the one used in the rest of t
paper!. Here,g12 and g̃12 are 434-covariance matrices as
sociated with the oscillators 1 andn on the one hand andn/2
andn/211 on the other hand, and1n24/2 is the covariance
matrix of the pure product states of the remainingn/222
oscillators of system 1 and 2, respectively. If for anyn such
a basis change could be performed, leading to the same
variance matricesg12 and g̃12, then the invariance of the
logarithmic negativity of the bisected chain—the statem
of Corollary 1—would follow as a trivial consequence. W
will briefly show, however, that this is not the case.

Consider the eigenvalues ofB85 iS21g8G

B85 iS21P„~1n24/2! % g12% g̃12% ~1n24/2!…P.

The spectrum of the corresponding matrixQ8 that enters into
the formula for the negativity can easily be evaluated us
the procedure mentioned in Sec. III. It is given by

s~Q8!5$1, . . . ,1,q1 ,q2 ,q3 ,q4%,

whereq1 , . . . ,q4.0, and 1 appearsn24 times.
Now we can confront this result with the spectrum of t

matrix Q of the harmonic chain as it is. A simple numeric
calculation yields the values depicted in Fig. 3. Since
eigenvalues ofQ come in reciprocal pairs, we only show th
eigenvalues larger than 1; furthermore, we subtract 1 fr
them and show the result on a logarithmic scale~in order to
clearly distinguish all eigenvalues!. In the case depicted,n
520, we see that ten eigenvalues are larger than 1, for
value of the coupling constanta. Furthermore, the ten re
maining eigenvalues are all smaller than 1. This means t
in fact, 1 is not included in the spectrum ofQ, which is

le
d

FIG. 3. Positive eigenvalues ofQ21 versusa, for a chain of
size n520. From Lemma 3 it follows that the eigenvalues ofQ
come in reciprocal pairs; hence, the plot shows that in this case
eigenvalues ofQ are either larger than 1 or smaller than 1. For oth
chain sizes, the eigenvalues behave in a similar way. This sh
that the symmetrically bisected chain typically cannot be reduce
the system depicted in Fig. 2.
7-8
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ENTANGLEMENT PROPERTIES OF THE HARMONIC CHAIN PHYSICAL REVIEW A66, 042327 ~2002!
completely at variance with the result forQ8 of the purported
reduced chain. Hence, we arrive at the statement that
even a single oscillator can be exactly decoupled from all
others by the application on an appropriate local symple
transformation.

This analysis shows that the coupled bisected chain w
nearest-neighbor interaction can not be reduced to a prob
of only two pairs of interacting oscillators. In Sec. VII—
equipped with further results from numeric
investigations—we will discuss these findings and presen
intuitive picture of the correlations present in the grou
state of this system of coupled oscillators.

VI. GENERAL BISECTIONS

In this section we turn towards more general problem
exhibiting less symmetry. As these problems are much m
difficult to solve analytically, we basically have restricte
ourselves to numerical calculations and we only give anal
cal results for small subproblems, valid in some asympto
regime only.

A. Asymmetrical bisections

In Figs. 4 and 5 we show the results of a numerical c
culation for asymmetrically bisected chains with neare
neighbor coupling. That is, the groups of oscillators ha
sizesn1Þn2. From these figures a number of features
immediately obvious. The most striking feature is the ‘‘pl
teau’’ in the entanglement that is reached whenever b
groups are sizeable enough~say n1 ,n2.10, at least in the
presented case for coupling strengtha520). Of course,
whenn15n2, being the ‘‘diagonal’’ of the plot, we recove
the result of Sec. IV that the log negativity is independent
n5n11n2. From these figures we are led to conjecture th
in the case of nearest-neighbor coupling, the value of
negativity for n15n2 is an upper bound on the values f
n1Þn2 ~not to be confounded with the result of Theorem

FIG. 4. Logarithmic negativityN of a harmonic chain bisecte
in groups of sizen1 andn2. The interaction is nearest neighbor wi
couplinga520.
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which says that this value is alower bound for all symmetric
bisections with general circulant couplings!. Moreover, for
general circulant couplings, we conjecture that an up
bound onN(n1 ,n2) is given by limm→`N(m,m). Another
feature is that when, say,n1 is kept fixed the log negativity
decreases withn2 from a given value ofn2 onwards. This
phenomenon is seen most clearly with smalln1, particularly
for n151. We will endeavour an intuitive explanation o
these features below. In conclusion, we conjecture that, a
for general circulant couplings, limn2→`N(1,n2) is a lower

bound onN(n1 ,n2).
From Fig. 6 we can see that the convergence ofN towards

its plateau valueN(`,`) depends on the strength of th
couplinga. For higher values, convergence is slower. Wh
cannot be seen from this figure is that the actual plat
value is larger as well.

FIG. 5. Same as Fig. 4, but seen from a different viewpoint.

FIG. 6. Effect of coupling strengtha on the convergence of the
log negativity towards its maximal value. Group sizen2 is kept
fixed at 20 and group sizen1 is varied. Shown is the ratio
N(n1 ,n2)/N(`,`). The different curves are for various values
a. One clearly sees that for small couplings the limit value
reached much faster.
7-9
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B. Entanglement versus energy

It is interesting to compare the entanglement presen
the chain ground state with its energy. We consider near
neighbor interaction only. We have shown in Section II th
the ground-state energy equals (\v/2)Tr @V1/2#. For zero
coupling (V51n), this gives justn times the single-oscillato
ground-state energyE05\v/2, as expected. For large cou
plings a, we show that the ground-state energy is of t
order ofAanE0.

From the proof of Theorem 2, we have that the eigenv
ueslk of V are given by

lk5v012v1cos~k2p/n!12v2cos~2k2p/n!1•••.

The energy in terms of these eigenvalues is(k50
n21lk

1/2. For
large values ofn, we can replace the discrete sum overk by
an integral inx52pk/n. For nearest-neighbor coupling, th
yields

E'E0~n/p!E
0

p

dx~v012v1cos 2x!1/2

52E0~n/p!E
0

p/2

dx@~v012v1!24v1sin2x#1/2

52E0~n/p!E
0

p/2

dx~114a sin2x#1/2

52E0~n/p!AaE
0

p/2

dx@4 sin2~x!11/a#1/2.

In the limit of a tending to infinity, the latter integra
tends to 2*0

p/2dx sin(x)52, so that indeed

E'nE0

4

p
Aa.

Recalling the exact formula for the log negativity in the sy
metrically bisected case, we have that the negativity~not the
logarithmic one! is A114a. We thus find that the negativity
is approximately proportional to the mean energy per os
lator. The exact values, calculated numerically, have b
plotted in Fig. 7. Fora50, the curve obviously goe
through the point with mean energy equal toE0 and nega-
tivity equal to 1. Fora going to infinity, the mean energ
goes to (2/p)E050.636 62E0 times the negativity.

C. Non-contiguous groups

From the above, one would get the impression that
mean energy gives a general upper bound on the amou
entanglement in the system~apart from a numerical factor!.
This is certainly not the case, because, until now, we o
have investigated the cases where the two groups of osc
tors were contiguous. In the following paragraph we lo
into the entanglement between noncontiguous groups. S
cifically, we look at the extreme case of entanglement
tween the group of even oscillators and the group of o
ones. As can be seen from Fig. 8, numerical calculati
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already show that the log negativity tends to a constant tim
n, the chain length. Therefore, in this case, the log negati
can grow indefinitely large even when the mean energy
kept fixed. In view of this, it would be more correct to sa
that there are two contributions to the entanglement: on
the mean energy, which is directly related to the coupl
strengths, and the second is the surface area of the boun

FIG. 7. Energy per oscillator~in units of \v/2) per unit of
negativity ~not logarithmic! in function of the negativity, for the
case of contiguous groups of large enough size~so that the en-
tanglement plateau in Fig. 5 is reached!. The interaction is neares
neighbor and the coupling is implicitly present as a parameter.
dashed line depicts the limiting value for infinitely strong couplin
Here, the numbern of oscillators is taken to be 20. However, th
results become independent ofn for n large enough: forn520, the
limiting value is 0.635 31, while for infiniten the exact result is
2/p50.636 62.

FIG. 8. Entanglement between the group of even oscillators
the group of odd oscillators, in function of the chain lengthn ~even
n only!. Interaction is again nearest neighbor with couplinga
520. The log negativity is seen to quickly converge to a const
timesn. The value of the constant depends ona and the relation-
ship is shown in Fig. 9.
7-10
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ENTANGLEMENT PROPERTIES OF THE HARMONIC CHAIN PHYSICAL REVIEW A66, 042327 ~2002!
between the two groups of oscillators, which in the on
dimensional case is just the number of points where the
groups ‘‘touch’’ each other. We will return to this issue
Sec. VII.

The validity of the purported linear relationship can
shown analytically in a rather simple way, yielding as
byproduct an expression for the proportionality consta
First of all, the diagonal elements of theP matrix for this
configuration are 1 for odd index values, and21 for even
index values. The Fourier transform ofP, that is:VPV† ~see
proof of Theorem 2!, is equal to

S 0 1n/2

1n/2 0 D ,

as is easily checked. We already have calculated the Fo
transform of theV matrix, which again can be inferred from
the proof of Theorem 2. It is given byL5VVV†; here,L is
a diagonal matrix with diagonal elementsLk5v0
12v1cos(2kp/n)12v2 cos(4kp/n)1•••, 0<k<n21. Insert-
ing this in the expression for theQ matrix gives

Q5V†L21/2S 0 1n/2

1n/2 0 DL1/2S 0 1n/2

1n/2 0 DV.

If we write L in 232 block form as

S L8 0

0 L9
D ,

the spectrum ofQ is the union of the spectrum o
L821/2L91/2 and ofL921/2L81/2. Worked out, this gives the
eigenvalues (Lk1n/2 /Lk)

1/2 and (Lk /Lk1n/2)
1/2, for 0<k

<n/221. Using the inherent symmetry thatLn2k5Lk , the
eigenvalues ofQ are

S Lk

Ln/22k
D 61/2

.

The formula for the log negativity obtained in Sec. III can
reformulated as minus the sum of the negative eigenvalue
log2Q. In the present case we get as log negativity

N5
1

2 (
k50

n/2 U log2

Lk

Ln/22k
U.

For the nearest-neighbor Hamiltonian, this simplifies to

N5
1

2 (
k50

n/2 U log2

v012v1cos~2pk/n!

v022v1cos~2pk/n!
U

5 (
k50

n/4

log2

112a@11cos~2pk/n!#

112a@12cos~2pk/n!#

for n that are multiples of 4. For largen, we can replace the
discrete sum by an integral,

N'
n

2pE0

p/2

dx log2

112a@11cos~x!#

112a@12cos~x!#
,

04232
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which indeed proves that, for largen, the log negativity is a
linear function ofn. The integral itself cannot be brought i
closed form. In Fig. 9, we show the result of numerical c
culations giving the asymptotic value ofN/n versusa.

D. Effect of group separation

In the following paragraph, we give some results for co
tiguous groups that do not comprise the whole chain. In F
10 we consider a fixed chain ofn540 oscillators and look a

FIG. 9. Relationship between the constant factorc appearing in
the asymptotic formula for the log negativityN5cn in the even-
odd setting~as in Fig. 8! and the coupling constanta.

FIG. 10. Log negativity for two contiguous groups that do n
comprise the whole chain. The chain consists of 40 oscillators, c
pling is nearest neighbor with coupling strengtha520. Shown is
the log-negativity, displayed on a logarithmic scale, versus the s
ration between the groups, i.e., the number of oscillator positi
between them. The different curves are for different group sizes
~both groups are taken to be equal in size!. The curve for group size
1 is not visible because it is a single point: the log negativity b
tween two oscillators turns out to be 0 whenever their separatio
larger than 0.
7-11
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the entanglement between two equally sized contigu
groups, in function of the group size and the separation
tween them. We define the separation as the number o
cillators in the smallest gap between the groups; since we
dealing with a ring, there are two gaps between the grou
Note that the log negativity is plotted on a logarithmic sca
There are two main features in this figure. The first and le
unexpected feature is that the entanglement decreases
or less exponentially with the separation. We believe that
is quite natural in view of the fact that the coupling betwe
the groups also decreases with the distance.

The more remarkable feature is that for small groups,
entanglement quickly becomes zero altogether, as meas
by the logarithmic negativity. Bound entanglement of sta
with a positive partial transpose@17,6# is of course not de-
tected by this measure of entanglement, and it would be
interesting enterprise in its own right to study the structure
bound entanglement present in coupled oscillator syste
We will leave this, however, for future investigations. Fro
now on, the term that no entanglement is present will be u
synonymically with the statement that the logarithmic ne
tivity vanishes.

For groups of size 1, the log-negativity is zero already
separation 1~the gap consists of one oscillator!. For groups
of size 2, there is still entanglement at separation 1, but n
at separation 2. The larger the groups, the larger the max
separation for which there is still entanglement can be. O
could try to interpret this by saying that there is a kind
threshold value below which entanglement drops to ze
However, this is more a reformulation of the results than
explanation, because it sheds no light on why this suppo
threshold should depend on the group size.

To really explain what is happening, we need to take
closer look at the exact calculations. Consider the first t
groups of oscillators of size 2 and with separation 1; that
group 1 is at positions 1 and 2, group 2 at 4 and 5. TheQ
matrix of this configuration~with n540 and a520) has
eigenvalues 2.063, 1.1339, 1.0938 and 0.883 61. As on
the eigenvalues is smaller than 1, there is, indeed, entan
ment present. We might be led to think that this entanglem
is the cumulative result of the entanglement between the
ferent oscillator pairs,~1,4!, ~1,5!, ~2,4!, and~2,5!, but this is
not true, because these pairs are not entangled themse
their separation is larger than 0. What is happening her
that the eigenvalues of theQ matrix belonging to pair~1,4!,
say, are 1.8065 and 1.1724, which are both larger than 1
therefore, do not count in the entanglement figure.

The resolution of this strange behavior in terms of t
separation is that the mere fact alone of having correlati
between the groups~eigenvalues ofQ different from 1! is not
enough to have entanglement. The correlations must b
special nature, namely, the eigenvalues ofQ must be smaller
than 1. One could say that larger groups can more ea
exhibit entanglement; theirQ matrix has a larger dimensio
and, hence, more eigenvalues, so that there are more o
tunities for having at least one eigenvalue smaller than 1

In this respect, it is interesting also to have a look at
classicalcorrelations in the chain, i.e., the expectation valu

^X̂j X̂k&. From the treatment in Sec. II we immediately s
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that these correlations are given by the elements of the
trix gx/25V21/2/2. In the case of circulant symmetry, w
only have to consider the first row of the matrix, giving th
correlations between the first oscillator and any other o
Figure 11 shows these classical correlations for the sys
considered in Fig. 10 (n540, a520). As could be expected
these correlations decrease exponentially with the oscill
distance and, furthermore, never vanish completely.

E. Thermal state

To conclude this section, we consider a thermal state
stead of the ground state. The calculations are exactly
same in both cases, apart from the fact that in the covaria
matrix there is an additional factor1n12@exp(bAV)21n#21

to thegp andgx blocks (T51/b). The results are shown in
Fig. 12. One sees that for small temperatures the negativi
equal to the ground-state negativity, and from some va

FIG. 11. Classical correlations in a chain consisting of 40 os
lators; coupling is nearest neighbor with coupling strengtha520.

Shown is the quantitŷ X̂1X̂j&, displayed on a logarithmic scale
versus the second-oscillator indexj.

FIG. 12. Log negativity of a thermal state with temperatureT
versusT and chain sizen. Symmetrically bisected chain, neares
neighbor interaction with couplinga520.
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onwards it starts to decrease more or less linearly witT
until there is no~free! entanglement at all anymore.

VII. DISCUSSION

The numerical results we have obtained in Sec. VI can
interpreted in a qualitative way, by means of two rules-
thumb. These rules are not to be interpreted as strict m
ematical statements; for that, we already have the exact
mulas. The importance of the two rules is that they allow
reason about the dependence of entanglement on various
tors, such as group size, coupling strengths, and group
ometry.

The first rule is that,due to the coupling between th
oscillators, the system exhibits interoscillator correlatio
which are decreasing with distance. This is a fairly natural
statement, in view of the fact that the couplings between
oscillators are short range as well. In a more mathemat
way, one could consider the matrixgx5V21/2, whose ele-
ments are the classical correlations^X̂j X̂k&. The j th row de-
scribes the correlations between thej th oscillator and all
other oscillators. The correlations can thus, in a figurat
way, be subdivided into packets, one packet for every row
the correlation matrix. For chains with a circulant potent
matrix V, it is self-evident thatgx is also circulant so that the
correlation packets all have an identical shape~see Fig. 13!.

The second rule is thatthe entanglement between tw
groups of oscillators depends on the total amount of cor
lation between the groups. Again, this rule looks fairly in-
nocuous and even trivial. However, combining the two ru
readily shows why, in the case of contiguous groups,
entanglement in function of the group sizes should reac
plateau. Indeed, even while the total amount of correlat
grows, more or less, linearly with the chain size, this h
very little impact on the entanglement between the gro
because it is only the correlation packets that straddle
group boundaries that enter in the bipartite entanglement

FIG. 13. Schematic drawing of the inter-oscillator correlati
packets, i.e., the rows of the correlation matrixgx . The line thick-
ness indicates the amount by which the correlation packet is
volved in the entanglement between the groups, i.e., how much
shared by the two groups.
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ure. For large groups, most of the correlation packets
scribe correlationswithin the groups. What is important i
the amount of correlationsbetweenthe groups, and this
quantity is virtually independent on the group size, provid
the groups are so large they can accomodate most of
packets within their boundaries.

We must stress, however, that these two rules are o
qualitative nature. As noted already in Sec. VI, in the disc
sion of the dependence of entanglement on group separa
having correlations between the groups alone is not eno
for having entanglement. The correlations must be such
the Q matrix has at least one eigenvalue smaller than 1. T
bottom line is in any case that one must go through the ex
calculations to see whether or not there is entanglement

Another effect that can be accounted for is the dep
dence of the log negativity on the group size if at least o
group is very small. If both groups are very small, say o
oscillator both, then the packets are so wide they wind
along the chain and, therefore, cross every group more
once, adding to the entanglement figure a number of time
one of the groups is kept fixed, and the other is made lar
the winding number of the packets decreases and so doe
amount by which the packet is shared by the groups. T
effect could explain the decrease of entanglement with gr
ing n2. At this point, the qualitative reasoning again brea
down, however, since the reduction of the amount of shar
per packet is counteracted by an increase in the numbe
packets. To show that the balance is still in favor of an e
tanglement decrease, once again one really needs to
through the exact calculations; this is what we have done
Sec. IV. Nevertheless, the qualitative reasoning has the vi
that it shows what the main ingredients are. Furthermore
immediately leads to the conjecture that the effect of
creasing entanglement would not occur in a chain that is
connected end-to-end, since no winding occurs there.

A numerical experiment immediately showed that this
exactly what happens, as witnessed by Fig. 14. One has t
careful, though, about how one ‘‘opens’’ the chain. To clea
show the disappearance of the winding effect, one has

n-
is

FIG. 14. Same as Fig. 5, but with a Hamiltonian that does
connect the harmonic chain end-to-end. The two groups are, th
fore, connected only at one point~in the middle of the chain!, and
this explains why the log negativity is only about one half of t
value it had with end-to-end connection. Furthermore, for smalln1

we now see an increase withn2 instead of a decrease, which seem
to imply that the counterintuitive behavior on the ring is actually
winding effect~see text!.
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make sure that opening the chain does not introduce s
effects. Particularly, the oscillators at both ends should
‘‘see’’ the same springs as before opening the chain. One
take care of this by connecting the ends of the chain to
additional oscillators that are kept in a zero-energy state~i.e.,
with zero X-variance; hence, they must be oscillators w
infinite mass!. At the level of the potential matrix, this mean
that the diagonal elementsV1,1 and Vn,n are still 112a,
although the elementsV1,n and Vn,1 are being set to zero
Noting the analogy between harmonic chains and transm
sion lines, we call this special connection process thetermi-
nation of the harmonic chain. In transmission line theo
correct termination of a line~using appropriately matche
impedances! is necessary to avoid signal reflections at t
ends of the line. We believe that analogous reflection effe
could be exhibited by nonterminated harmonic chains,
leave the investigation of this boundary phenomenon to
ture work.

Finally, for noncontiguous groups, and, specifically, f
the entanglement between even and odd oscillators, the
rules-of-thumb correctly predict that the entanglement ke
increasing with growing chain length. Indeed, ifn grows,
then the ‘‘boundary area’’ between the even and odd gr
an
S

s.

t
-

n-
,
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also grows~linearly with n), in contrast with the contiguous
groups, whose boundary area is fixed~1 for the open chain, 2
for the closed chain!. Hence, the amount of correlation
straddling the boundary should grow too. The exact calcu
tion confirms this effect and shows a linear relationship
tween log negativity and chain size. It would be interesti
to investigate what happens in three-dimensional oscilla
arrangements with couplings decreasing with distance.
believe that a similar relation will show up between e
tanglement between two groups and the area of the boun
between the groups. We leave this issue, however, for fu
investigations.
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