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Distinguishability measures and ensemble orderings

Anthony Chefles
Department of Physical Sciences, University of Hertfordshire, Hatfield AL10 9AB, Hertfordshire, United Kingdom

~Received 2 October 2001; published 30 October 2002!

It is shown that different distinguishability measures impose different orderings on ensembles ofN pure
quantum states. This is demonstrated using ensembles of equally probable, linearly independent, symmetrical
pure states, with the maximum probabilities of correct hypothesis testing and unambiguous state discrimination
being the distinguishability measures. This finding implies that there is no absolute scale for comparing the
distinguishability of any two ensembles ofN quantum states, and that distinguishability comparison is neces-
sarily relative to a particular discrimination strategy.
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I. INTRODUCTION

The use of quantum channels to send classical infor
tion has many advantages over the use of classical chan
One of these is the fact that it enables one to establish c
tographic keys in a way that is provably secure, a feat wh
has never been achieved classically. Developments suc
this have led to renewed attention being given to the prob
of distinguishing between quantum states@1#. In state dis-
crimination, we are faced with the following situation:
quantum system is prepared in one ofN states. For the sak
of simplicity, we will take these to be pure statesuc j&, where
j 51, . . . ,N. Thea priori probability of the state of the sys
tem beinguc j& is pj . We would like to determine which stat
has been prepared. Unless the states are orthogonal we
not determine the state perfectly. We are then faced with
problem of devising a strategy that discriminates between
N potential states as well as possible. This will involve som
possibly generalized, quantum measurement, which sh
be optimized. The resulting figure of merit, which is typ
cally a probability, can be regarded as a measure of the
tinguishability of the states with thesea priori probabilities.
A set of quantum statesuc j& considered together with theira
priori probabilitiespj forms an ensembleE5E(pj ,uc j&). So,
distinguishability measures will refer to ensembles.

We shall denote a generic distinguishability measure
D@E#. Several distinct measures are in common use for qu
tifying the distinguishability of states@1#. The question we
address in this paper is the following: do all distinguishab
ity measures impose the same ordering on ensemblesN
quantum states? That is, suppose that we have two ensem
E1 and E2 and two distinguishability measuresD1 and D2.
Then, if D1@E1#.D1@E2#, is it the case thatD2@E1#
>D2@E2#? We shall see that this is not necessarily so.

The distinguishability measures we choose are the m
mum probabilities of correct hypothesis testing and una
biguous state discrimination. For the sake of simplicity,
restrict our attention to ensembles of states that have equa
priori probabilities. We show that, for two equally probab
pure states, this effect cannot be demonstrated for these
tinguishability measures, which leads us to consider
sembles ofN.2 states. We restrict our attention to linear
independent ensembles, since this is a requirement for un
biguous state discrimination@2#. The states in the chose
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ensembles are taken to form symmetrical sets. This is d
to take advantage of the fact that, for such ensembles,
distinguishability measures can be calculated analytically
equala priori probabilities. The effect we have described
shown to occur forN53. We conclude with a discussion o
the connection between this effect and a related one rece
discovered by Jozsa and Schlienz@3#.

II. DISTINGUISHABILITY MEASURES IMPOSING
DIFFERENT ENSEMBLE ORDERINGS

The distinguishability measures we choose are the m
mum probabilities of correct hypothesis testing and una
biguous state discrimination. In hypothesis testing amonN
states in the ensembleE(pj ,uc j&), we consider an
N-outcome generalized measurement, in which thej th out-
come is associated with the positive operator valued mea
~POVM! elementEj . Our hypothesis is that the outcome
the measurement corresponds exactly to the state. If the
is uc j& and outcomej is obtained, then the hypothesis
correct. If, however, outcomej 8Þ j is obtained, then the hy
pothesis will be incorrect. The maximum probabilityPHY P
that our hypothesis is correct is@4#

PHY P~E!5max
$Ej %

(
j

pj^c j uEj uc j&, ~2.1!

where the maximization is carried out over all sets ofN
positive operatorsEj such that( jEj51. We shall use the
maximum probability of correct hypothesis testin
PHY P(E), as a measure of the distinguishability of the e
sembleE.

In unambiguous state discrimination, there are only t
possible outcomes for the stateuc j&: outcomej and a further
inconclusive result ‘‘?.’’ There are no errors. Unlike hypot
esis testing, unambiguous discrimination is only possible
linearly independent sets@2# and it is to such sets that w
will restrict our attention. IfPUSD(uc j&) is the probability
that, given the initial state wasuc j&, we obtain a conclusive
identification rather than an inconclusive result, then
maximum probability of unambiguous state discrimination
©2002 The American Physical Society25-1
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PUSD~E!5 max
$PUSD(uc j &)%

(
j

pj PUSD~ uc j&), ~2.2!

where the extremization with respect to thePUSD(uc j&) is
discussed by Duan and Guo@5#. The distinguishability mea-
sure we will use for this strategy will be the maximum pro
ability PUSD(E) of unambiguous determination of the stat

Here, we will show that there exist ensemble pairs
which

PUSD~E2!,PUSD~E1!, ~2.3!

PHY P~E2!.PHY P~E1!. ~2.4!

The effect we wish to demonstrate does not occur for
ensemble of just two equally probable pure states. This
be seen by examining the values ofPHY P and PUSD for a
pair of pure statesuc1& and uc2&. For later convenience, w
will give expressions for these with arbitrarya priori prob-
abilitiesp1 andp2. The former is given by Helstrom’s boun
@4#:

PHY P5
1

2
~11A12~12D2!z^c1uc2& z2!, ~2.5!

whereD5up12p2u. Also, the maximum value ofPUSD for a
pair of pure states is given by the Jaeger-Shimony bound@6#

PUSD55 12A12D2z^c1uc2& z, A12D

11D
> z^c1uc2& z

1
2 ~11D!~12 z^c1uc2& z2!, A12D

11D
< z^c1uc2& z.

~2.6!

When thea priori probabilities are equal,D50 and PHY P

5(1/2)(11A12@12(12PUSD)2#. From this, one can
show thatPHY P is an increasing function ofPUSD , implying
that inequalities~2.3! and ~2.4! can never be simultaneous
satisfied.

To find ensembles of equally probable pure states
which both~2.3! and ~2.4! are true, we have to consider
least three states. We focus on ensembles of equally p
able, linearly independent, symmetrical states, since
maximum probabilities for unambiguous discrimination a
correct hypothesis testing can be calculated explicitly
these. We will demonstrate the existence of ensemble p
E1 andE2 that satisfy inequalities~2.3! and ~2.4!, in the fol-
lowing way. First, we will considerall sets ofN linearly
independent, symmetric states with equala priori probabili-
ties that have the same, arbitrary but fixed, value ofPUSD .
Over this set, we will find the extremal values ofPHY P .
Using this information, we choose ensemble pairs that sat
inequality ~2.3!, but whereE1 andE2 have, respectively, the
minimum and maximum values ofPHY P for their corre-
sponding values ofPUSD . We will find that, for N53, in-
equality ~2.4! is satisfied for a large range of parameters.
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The N pure statesuc j&, where j 50, . . . ,N21, are lin-
early independent and symmetric if and only if they can
written as

uc j&5 (
r 50

N21

cre
2p i j r /Nuxr&, ~2.7!

for some N orthonormal statesuxr& and nonzero complex
coefficientscr satisfying( r ucr u251. Notice that the phase o
cr may be absorbed byuxr&, which implies that we may,
without loss of generality, takecr to be real and non-
negative, which we shall. We will take all states to ha
equala priori probabilitiespj51/N. The maximum unam-
biguous discrimination probability for these states is@7#

PUSD5N3min
r

cr
2 . ~2.8!

The optimum hypothesis testing strategy uses the so-ca
‘‘square-root’’ measurement@4#. Define the operator

F5(
j

uc j&^c j u ~2.9!

and the states

uv j&5F21/2uc j&. ~2.10!

One can quite easily show that the operatorsEr5uv r&^v r u
form a POVM~i.e., thatEr>0 and( rEr51.! This POVM is
the optimal hypothesis testing strategy, and we find that

PHY P5
1

N S (
r

cr D 2

. ~2.11!

The square-root measurement optimally discriminates
tween any set of equally probable, symmetric states, eve
they are not linearly independent. This measurement has
cently been carried out@8,9# for symmetrical optical polar-
ization states. Applications of this measurement to quan
key distribution are discussed in@10#.

We now calculate the global extrema ofPHY P for a fixed
value of PUSD . Our aim is to fix the smallest of thecr ,
which is equivalent to fixingPUSD , and vary the remaining
coefficients to obtain the extremal values ofPHY P . We may
let minrcr5c0. This allows us to write

cr5c01cos2u r , ~2.12!

for r 51, . . . ,N21 and some anglesu j . We will now ex-
tremizePHY P with respect to these angles using the meth
of Lagrange multipliers, in order to take into account t
normalization constraint. This method will yield the loc
extrema, over which we will subsequently optimize to fin
the global extrema. LetG5(( r 50

N21cr
2)21. The constrained

local extrema ofPHY P occur where

]PHY P

]u r
5l

]G

]u r
~2.13!
5-2
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and l is our Lagrange multiplier. Inserting Eq.~2.12! into
the definitions ofPHY P andG, we find that this becomes

sinu rcosu rF c01
1

N (
r 851

N21

cos2u r 82l~c01cos2u r !G50.

~2.14!

It is a simple matter to show that the normalization requi
ment will be violated if sinur50 for any r. So, for eachr,
either cosur50, in which casecr5c0, or the term in brackets
is zero. To proceed, we will partition thecr into two sets,
where each set corresponds to one of these two possibil
Let there beN0 coefficients, includingc0, which are equal to
c0. For the remainingN2N0 coefficients, the term in brack
ets is zero. All of the coefficients in this latter set must a
be equal, as can be seen from the fact that the vanishin
the bracket term implies that the corresponding cos2ur are
equal. The value that they have is easily deduced from
fact that the otherN0 coefficients are equal toc0, and nor-
malization. We find they have the value

cr5A12N0c0
2

N2N0
. ~2.15!

We can now calculate the local extrema ofPHY P . Evaluating
Eq. ~2.11! where N0 coefficients are equal toc0, with the
remainingN2N0 coefficients being given by Eq.~2.15!, and
making use of the fact thatc05APUSD /N, we find that the
local extrema ofPHY P for fixed PUSD are

PHY P5
1

N2
@N0APUSD1A~N2N0!~N2N0PUSD!#2.

~2.16!

Finding the global extrema ofPHY P amounts to extremiza
tion of this expression with respect toN0. One method of
doing this is to treatN0 as a continuous parameter in th
interval @1,N21# and differentiate Eq.~2.16! with respect to
it. After some algebra, we find that]PHY P /]N0<0, for
PHY P given by Eq.~2.16!. This implies that the global maxi
mum and minimum ofPHY P occur at the minimum and
maximum values ofN0, respectively. Thus, the maximum
value of PHY P occurs atN051, which gives us the tigh
upper bound

PHY P<
1

N2
@APUSD1A~N21!~N2PUSD!#2. ~2.17!

For PUSD51, we see that the maximum ofPHY P is also
equal to 1. However, whenPUSD50, the maximum ofPHY P
is (N21)/N.

We also see that the minimum value ofPHY P occurs at
N05N21, which gives us the tight lower bound

PHY P>
1

N2
@~N21!APUSD1AN2~N21!PUSD#2.

~2.18!
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When PUSD51, the minimum ofPHY P is also 1, as we
would expect. However, ifPUSD50, then the minimum of
PHY P is 1/N, which corresponds to a random guess of wh
of the N possible states the system has been prepared in
fact, it is quite easily shown that in this case, alluc j& are, up
to a phase, equal toux0&. Here, the states are linearly depe
dent and this case is of no interest to us in the present c
text.

Let us now use the bounds in~2.17! and ~2.18! to dem-
onstrate the existence of ensembles for which inequali
~2.3! and~2.4! hold. For the sake of simplicity, we will con
sider only ensembles for whichN53. We will chooseE2 to
be an ensemble that saturates the bound in~2.17! andE1 to
be one which saturates the bound in~2.18!, yet where
PUSD(E2)5PUSD(E1)2e, for some positive, nonzero pa
rametere. This guarantees that inequality~2.3! is satisfied.
Figure 1 depictsPHY P(E2)/PHY P(E1) as a function of
PUSD(E1) and e, where 0<e<PUSD(E1) and N53. Satis-
faction of the inequality~2.4! occurs for parameters wher
PHY P(E2)/PHY P(E1).1, and a large range of such param
eters in clearly visible in the figure.

For example, letPUSD(E1)50.5 andPUSD(E2)50.4. This
givese50.1 and inequality~2.3! is satisfied. Evaluating the
maximum correct hypothesis testing probabilities, w
find that PHY P(E1)58/9;0.888 and PHY P(E2);0.943
.PHY P(E1) which satisfies inequality~2.4!.

III. DISTINGUISHABILITY AND INFORMATION

We have seen that different distinguishability measu
impose different orderings on ensembles of pure quan
states. We considered linearly independent states and de
strated this effect using the maximum probabilities of corr
hypothesis testing and unambiguous state discrimination
distiguishability measures.

This result has important implications for any situatio
where we wish to transmit nonorthogonal states to send c
sical information. For example, in quantum key distributio
we may have a choice of sending states prepared in e
ensembleE1 or ensembleE2. The distinguishability of these
ensembles may determine the potential information availa
to an eavesdropper and also the rate at which key bits ca
generated. It would therefore be desirable to be able to c
pare the distinguishability of both ensembles. What the
sults in the preceding show is that this cannot be done in
absolute sense; we must know in advance which distingu
ability measure is being used. However, we may not kn
which measure would apply to a potential eavesdrop
since we may not know in advance which detection strat
they would employ.

To put the results of the preceding section in context, i
helpful to consider a related finding recently made by Jo
and Schlienz@3#. They considered two ensembles of pu
states,E1 and E2, with all states in each ensemble havin
equala priori probabilities. They used the pairwise overla
of pairs of states as a means of quantifying the distingu
ability of each ensemble, and the von Neumann entropySi of
the density operator of ensembleEi as a means of quantify
ing information content. They showed that there exist e
5-3
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ANTHONY CHEFLES PHYSICAL REVIEW A66, 042325 ~2002!
semble pairs in which the pairwise overlaps, and hence
distiguishability ofE2, are less than those ofE1, yet where
S2.S1, implying that the information content ofE2 is greater
than that ofE1. This is somewhat counterintuitive, as info
mation and distinguishability are often regarded as in
changeable concepts.

This finding suggests that there are distinctions to
made between information and distinguishability. That th
are not entirely interchangeable is perhaps suggested b
fact that they arise in different contexts. In attempting
distinguish between a set of states, we are given only
copy, and must make optimum use of it. In information tra
mission, however, we perform a collective measurement o
large number of states drawn from the same ensemble.
length of the strings and the subset chosen from the set o
possible strings is such that these strings are highly dis
guishable. Indeed, they are chosen in such a way that
probability of failing to distinguish between the states p
fectly can be made arbitrarily small. The information conte
is the number of bits of classical information that can
transmitted per signal in each string, where the signals o
the statistical constraints of the ensemble. In informat
transmission, we select strings which are sufficiently long
that we can neglect the distinguishability issue in one w
However, it is possible that this issue does return in so
form to dictate the information content of a single signal

FIG. 1. Contour plot of the ratio of the maximum probabilitie
of correct hypothesis testing for ensemblesE1 andE2 of three lin-
early independent, equally probable, symmetric states, versus
maximum unambiguous discrimination probabilityPUSD(E1) of E1

and the parametere5PUSD(E1)2PUSD(E2). This parameter is
positive, which implies that, except at the origin, inequality~2.3! is
satisfied. Inequality ~2.4! is satisfied whenever the rati
PHY P(E2)/PHY P(E1).1, which, on this plot, corresponds to poin
lying above the fourth contour from the bottom.
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ways that are not currently well understood.
A conclusive distinction, which does not apply to situ

tions in which all states have the samea priori probabilities,
is that information content and distinguishability can vary
opposite ways when thea priori probabilities of the states
are altered. To illustrate this, consider two ensemblesE1 and
E2, where both consist of the pure statesuc1& anduc2&. In E1,
both states have equala priori probabilities equal to 1/2.
However, inE2, they have unequala priori probabilitiesp1
and p2. In state discrimination, our goal is to determine t
state. If one state is more probable than the other, then
can take advantage of this fact to tailor our measuremen
weight it in favor of the state that has highera priori prob-
ability, so that, on average, we will be able to improve o
ability to determine the state. It follows thatE2 ought to have
higher distinguishability thanE1. This is made explicit if we
look back at either the Helstrom bound~2.5! or the Jaeger-
Shimony bound~2.6!. These both increase asD5up12p2u
increases, confirming this expectation.

However, if we wish to use states in ensembleE2 to send
messages, then the constraint that one state must alway
more probable than the other implies that, to regain our fr
dom in the message we might choose to send, we must
more signal states per message asD increases. Quantita
tively, for E2, the information content is given by the vo
Neumann entropy of the ensemble density operator, whic
equal to the binary entropy function

S252x log2x2~12x!log2~12x!, ~3.1!

where

x5 1
2 @11A12~12D2!~12 z^c1uc2& z2!#. ~3.2!

As D increases,x also increases, which implies that, as c
easily be shown,S2 decreases. The extreme situation
where one of thea priori probabilities, sayp1, is equal to 1,
in which casep250. Here, we know in advance what th
state is, and so we can always determine it perfectly. We m
say that this ensemble has perfect distinguishability. Ho
ever, the sender has no freedom in which state to send
the state is always entirely predictable. For this reason,
impossible to transmit any information using this ensemb
for which S2 is easily seen to be zero.

As the above argument demonstrates, a clear distinc
between information content and distinguishability emerg
if variation of thea priori probabilities of the states is per
mitted. However, it is not entirely clear why they should
distinct concepts when thea priori probabilities of all states
are equal. Consequently, for ensembles with equala priori
probabilities, the observation that information and dist
guishability impose different orderings remains to be pro
erly understood.

The results in this paper suggest a potential explanatio
this phenomenon. Given that it is not clear why informati
content should not be regarded as a distinguishability m
sure when we restrict our attention to ensembles of st
with equala priori probabilities, let us assume that it is i
fact a suitable distinguishability measure under these circ

he
5-4
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stances. The Jozsa-Schlienz effect could then be explaine
a demonstration of the fact that, even for ensembles
equally probable states, different distinguishability measu
impose different ensemble orderings, which is what we h
shown in this paper, using quantities that are indisputa
suitable distinguishability measures.

It remains to be understood why different distinguishab
ity measures impose different orderings. Perhaps, for
distinguishability measures to be nontrivially distinct fro
one another, they must be sensitive to different aspect
ensembles of states, which can vary, with some degre
independence, from one ensemble to another. This se
reminiscent of the discovery recently made by Virmani a
Plenio@11# that different, good measures of the entanglem
of mixed states must order these states differently.

IV. DISCUSSION

We have shown in this paper that two of the most co
mon measures of the distinguishability of states, the ma
mum probabilities of correct hypothesis testing and una
biguous state discrimination, are essentially incompat
with each other. By this, we mean that they do not impo
the same ordering on ensembles of pure states. It is pos
to have one ensembleE1 which is more distinguishable tha
another ensembleE2 when the states must be distinguish
unambiguously, yet whereE2 is more distinguishable thanE1
if we wish to identify the state by minimum error hypothes
testing. In general, we cannot, in any absolute sense, cha
terize one ensemble of states as being more distinguish
than another. Distinguishability comparison must necessa
refer to a particular discrimination strategy.

As with any interesting phenomenon, it is important
determine the conditions under which this effect can be d
onstrated optimally. Here, we are faced with the fact that,
generic ensembles of states, the optimization problems
must be solved to obtain values of distinguishability me
sures are difficult to tackle analytically. At the time of wri
ing, the only ensembles forN.2 for which both of our
chosen distinguishability measures can be calculated ana
cally are ensembles of equally probable, linearly indep
dent, symmetric pure states. For such ensembles, inequa
~2.16! and~2.17! give the extremal values of the correct h
pothesis testing probability for a fixed value of the maximu
ry
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probability of unambiguous state discrimination, and so
optimal conditions for demonstrating this effect for these e
sembles are given by these relations. We also explore
some detail the case ofN53.

The effect we have demonstrated is somewhat reminis
of a related one recently discovered by Jozsa and Schli
These authors showed that one can construct an ense
pair E1 ,E2 where the distinguishability ofE1, as measured by
the pairwise overlaps of states, is greater than that ofE2, yet
where the information content ofE2, which is quantified by
the von Neumann entropy, is greater than that ofE1.

This is an important finding, not least because the c
cepts of distinguishability and information content are som
times used interchangeably. We described how essential
ferences between these concepts do arise when, in mo
from one ensemble to another, thea priori probabilities of
the states are changed. However, if thea priori probabilities
of all states in both ensembles are the same, it is by no me
clear that, despite the contrast between the asymptotic na
of information and the ‘‘one shot’’ nature of distinguishab
ity, information measures cannot also serve as measure
distinguishability.

Jozsa and Schlienz demonstrated their effect using s
ensembles. What the results in this paper suggest is a
sible interpretation of the Jozsa-Schlienz effect. Th
showed that, for ensembles of equally probable pure sta
information and a particular distinguishability measure suf
an ordering incompatibility problem. Does this imply that f
such ensembles information content is not a suitable dis
guishability measure? The results in this paper suggest
this is not necessarily the case, since different distingu
ability measures suffer analogous ordering problems. It co
then be the case that, for the ensembles considered by J
and Schlienz, information content is in fact a suitable dist
guishability measure and that the ordering incompatibi
they discovered is a consequence of the fact that such p
lems arise with regard to generic distinguishibility measur
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