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Distinguishability measures and ensemble orderings
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It is shown that different distinguishability measures impose different orderings on ensemiNeguoé
guantum states. This is demonstrated using ensembles of equally probable, linearly independent, symmetrical
pure states, with the maximum probabilities of correct hypothesis testing and unambiguous state discrimination
being the distinguishability measures. This finding implies that there is no absolute scale for comparing the
distinguishability of any two ensembles Nfquantum states, and that distinguishability comparison is neces-
sarily relative to a particular discrimination strategy.
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[. INTRODUCTION ensembles are taken to form symmetrical sets. This is done
to take advantage of the fact that, for such ensembles, our
The use of quantum channels to send classical informadistinguishability measures can be calculated analytically for
tion has many advantages over the use of classical channetxjuala priori probabilities. The effect we have described is
One of these is the fact that it enables one to establish cryshown to occur foN=3. We conclude with a discussion of
tographic keys in a way that is provably secure, a feat whichthe connection between this effect and a related one recently
has never been achieved classically. Developments such discovered by Jozsa and Schlidi@.
this have led to renewed attention being given to the problem
of distinguishing between quantum stafdg. In state dis-
crimination, we are faced with the following situation: a [l. DISTINGUISHABILITY MEASURES IMPOSING
guantum system is prepared in oneNbbtates. For the sake DIFFERENT ENSEMBLE ORDERINGS

of simplicity, we will take these to be pure states), where . . .
plcty. P td§> The distinguishability measures we choose are the maxi-

j=1,... N. Thea priori probability of the state of the sys- - . ;
tem being|y;) is p; . We would like to determine which state mum probabilities of correct hypothesis testing and unam-

has been prepared. Unless the states are orthogonal we CQ:Q;JOUS'SIBI'; d|scr|m|nat::2€n. In hypothesis tesmg amiing
not determine the state perfectly. We are then faced with th ates in the ensemblet(p; ’|¢J>)' we —consider - an

problem of devising a strategy that discriminates between th -outcome ge_nerallzgd measurement, in which jtieout-
N potential states as well as possible. This will involve someCOMe IS associated with the positive operator valued measure
OVM) elementE; . Our hypothesis is that the outcome of

possibly generalized, quantum measurement, which shoul
be optimized. The resulting figure of merit, which is typi- the measurement corresponds exactly to the state. If the state

cally a probability, can be regarded as a measure of the dig2 |#;) and outcoms is obtained, then the hypothesis is
tinguishability of the states with thegepriori probabilities. ~ CO'Tect. If, however, outcomg #] is obtained, then the hy-
A set of quantum statesy;) considered together with thedr pothesis will be incorrect. The maximum probabiliyyp
priori probabilitiesp; forms an ensemblé=£(p;,|¢;)). So, that our hypothesis is correct [ig]
distinguishability measures will refer to ensembles.
We shall denote a generic distinguishability measure by
D[ &]. Several distinct measures are in common use for quan- = AW E: ]
tifying the distinguishability of stategl]. The question we Prve(&) me?}lel p'wJ'E"%)’ 3
address in this paper is the following: do all distinguishabil-
ity measures impose the same ordering on ensemblés of
guantum states? That is, suppose that we have two ensemblgbere the maximization is carried out over all setsMNof
&, and &, and two distinguishability measuré®;, and D,. positive operatorE; such that>;E;=1. We shall use the
Then, if D,[&]>D4[&], is it the case thatD,[&] maximum probability of correct hypothesis testing,
=D,[ &,]? We shall see that this is not necessarily so. Phvp(€), as a measure of the distinguishability of the en-
The distinguishability measures we choose are the maxisemble&.
mum probabilities of correct hypothesis testing and unam- In unambiguous state discrimination, there are only two
biguous state discrimination. For the sake of simplicity, wepossible outcomes for the stdtfq): outcomej and a further
restrict our attention to ensembles of states that have equalinconclusive result “?.” There are no errors. Unlike hypoth-
priori probabilities. We show that, for two equally probable esis testing, unambiguous discrimination is only possible for
pure states, this effect cannot be demonstrated for these dikaearly independent sef®] and it is to such sets that we
tinguishability measures, which leads us to consider enwill restrict our attention. IfPUSD(|¢j)) is the probability
sembles ofN>2 states. We restrict our attention to linearly that, given the initial state was);), we obtain a conclusive
independent ensembles, since this is a requirement for unaridentification rather than an inconclusive result, then the
biguous state discriminatiof2]. The states in the chosen maximum probability of unambiguous state discrimination is
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The N pure stategy;), wherej=0, ... N—1, are lin-
Pusp(&)= max > piPuso(li)), (220 early independent and symmetric if and only if they can be

{Pusoll#))} ! written as
where the extremization with respect to tRgsp(|¢)) is N~1 B
discussed by Duan and G{i6]. The distinguishability mea- lyj)= Eo c,e2™IMN|x. ), (2.7
“

sure we will use for this strategy will be the maximum prob-
e et o1 1 St or somen ortonormal statess,) and ronzero comples
’ P coefficientsc, satisfying=,|c,|?=1. Notice that the phase of

which ¢, may be absorbed bjx,), which implies that we may,
without loss of generality, take, to be real and non-
Puso(&2) <Puso(&), 23 negative, which we shall. We will take all states to have
equala priori probabilitiesp;=1/N. The maximum unam-
Phvp(€2)>Pryp(€1). (2.4 biguous discrimination probability for these state$7b
The effect we wish to demonstrate does not occur for an PUSD=N><mincr2. (2.8
r

ensemble of just two equally probable pure states. This can
be seen by examining the values Bf;yp and Pygp for a
pair of pure statef;) and|,). For later convenience, we
will give expressions for these with arbitraaypriori prob-
abilitiesp, andp,. The former is given by Helstrom’s bound

[4]: ¢=Z L) (2.9

The optimum hypothesis testing strategy uses the so-called
“square-root” measuremerj]. Define the operator

PHYp:%(lnL V1= (1= A?) (| )P, (2.5  and the states

)y =@~V y). (2.10
whereA =|p;— p,|. Also, the maximum value d? 5, for a
pair of pure states is given by the Jaeger-Shimony b¢6hd One can quite easily show that the operatifs|w,){w;|
form a POVM(i.e., thatE, =0 andZ,E,=1.) This POVM is
the optimal hypothesis testing strategy, and we find that
1
PHYP:N<Z Cr

1-A
1= V1= A% | ), V mBK'ﬂleﬂ

) -4
F(1+A) (1=K | )P, mgKl/lez)'-

(2.6)  The square-root measurement optimally discriminates be-
tween any set of equally probable, symmetric states, even if
When thea priori probabilities are equaldi=0 andP,yp they are not linearly independent. This measurement has re-
=(1/2)(1+1—[1—(1—-Pysp)?]. From this, one can cently been carried oUs,9] for symmetrical optical polar-
show thatP,,y p is an increasing function dsp, implying  ization states. Applications of this measurement to quantum
that inequalitieg2.3) and(2.4) can never be simultaneously key distribution are discussed [@0].
satisfied. We now calculate the global extrema Bf;y p for a fixed
To find ensembles of equally probable pure states fovalue of Pysp. Our aim is to fix the smallest of the;,
which both(2.3) and (2.4) are true, we have to consider at Which is equivalent to fixing®sp, and vary the remaining
least three states. We focus on ensembles of equally prolsoefficients to obtain the extremal valuesRyfyp. We may
able, linearly independent, symmetrical states, since th&t minc,=co. This allows us to write
maximum probabilities for unambiguous discrimination and
correct hypothesis testing can be calculated explicitly for ¢, =Co+CoS'Y; , (212
these. We will demonstrate the existence of ensemble pairfs .
&1 andé&, that satisfy inequalitie2.3) and(2.4), in the fol- orr=1,...N-1 and some angles; . We W'” Now €x-
lowing way. First, we will considerll sets ofN linearly ~ rémMizePuyp with respect to these angles using the method
independent, symmetric states with eqagdriori probabili- of Lagfa“‘-?le m“'t'P"eFS' n (_)rder to take. Into_account the
ties that have the same, arbitrary but fixed, valuegtp. normalization con.stralnt. ThIS method will yle.Id.the Ioc_:al
Over this set, we will find the extremal values Bfyyp. extrema, over which We_W|IINsE|1bszeq_uently optimize to find
Using this information, we choose ensemble pairs that satis;l‘?je global extrema. LeB=(Zr_q¢;) — 1. The constrained,
inequality (2.3, but where€, and&, have, respectively, the 10¢al extrema oy p occur where
minimum and maximum values dPyyp for their corre- JP JG
sponding values oPygp. We will find that, forN=3, in- HYp_\ 72
equality (2.4) is satisfied for a large range of parameters. a0, 90,

2
Pusp=

(2.1

(2.13
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and \ is our Lagrange multiplier. Inserting EG2.12) into ~ When Pysp=1, the minimum ofPyyp is also 1, as we
the definitions ofPyp and G, we find that this becomes would expect. However, iPy5p=0, then the minimum of
Puypis 1N, which corresponds to a random guess of which
i of the N possible states the system has been prepared in. In
Sin 6,086, | Co+ 2 cog 6, —\(co+ o) [=0. fact, it is quite easily shown that in this case, |a]) are, up

ret (2.14 to a phase, equal f). Here, the states are linearly depen-

dent and this case is of no interest to us in the present con-
It is a simple matter to show that the normalization require-

text.
ment will be violated if sirg,=0 for anyr. So, for eaclr,

Let us now use the bounds {2.17) and(2.18 to dem-
either cog, =0, in which case, =c,, or the term in brackets onstrate the existence of ensembles for which inequalities
r [l r [}
is zero. To proceed, we will partition the into two sets,

(2.3) and(2.4) hold. For the sake of simplicity, we will con-
where each set corresponds to one of these two possibilitie

sider only ensembles for whid=3. We will choosef; to
Let there beN, coefficients, includings,, which are equal to °€ @n ensemble that saturates the boun(if7) and¢, to
Co. For the remaining — N, coefficients, the term in brack-

N-1

be one which saturates the bound (2.18, yet where

ets is zero. All of the coefficients in this latter set must alsoPusp(€2) =Pusp(é1) —€, for some positive, nonzero pa-
be equal, as can be seen from the fact that the vanishing 6§metere. Thls_ guarantees that inequalit@.3) is sa'qsfled.
the bracket term implies that the corresponding?goare  F19uré 1 depictsPyyp(&5)/Puyp(&y) as a function of
equal. The value that they have is easily deduced from thEusp(£1) and e, where O<e<Pysp(&;) andN=3. Satis-
fact that the otheN, coefficients are equal top, and nor- faction of the inequality(2.4) occurs for parameters where

malization. We find they have the value Pryp(&2)/Pryp(£1)>1, and a large range of such param-
eters in clearly visible in the figure.
1— NOCS For example, lePsp(€1) =0.5 andPygp(&,) =0.4. This
C = \/W. (2.15 givese=0.1 and inequality2.3) is satisfied. Evaluating the
0 maximum correct hypothesis testing probabilities, we

f|nd that PHYP(51)=8/9~0888 and PHYP(£2)~0943

We can now calculate the local extremaRgfy . Evaluating > P,y p(£;) Which satisfies inequality2.4)
HypPlCcl ).

Eq. (2.1) where N, coefficients are equal toy, with the
remainingN — N, coefficients being given by E¢2.15, and
making use of the fact that,= P sp/N, we find that the lll. DISTINGUISHABILITY AND INFORMATION

local extrema oy for fixed Pysp are We have seen that different distinguishability measures

impose different orderings on ensembles of pure quantum
=) =i[N JPusot VIN=Ng)(N=NgPyusp) 2 states. We considered linearly independent states and demon-
HYPT 2t oY usp 0 oruspil strated this effect using the maximum probabilities of correct
(2.16 hypothesis testing and unambiguous state discrimination as
distiguishability measures.
Finding the global extrema d?,yp amounts to extremiza- This result has important implications for any situation
tion of this expression with respect t¢,. One method of where we wish to transmit nonorthogonal states to send clas-
doing this is to trealN, as a continuous parameter in the sical information. For example, in quantum key distribution,
interval[1,N—1] and differentiate Eq(2.16) with respectto we may have a choice of sending states prepared in either
it. After some algebra, we find thalP,yp/dNg=<0, for  ensemblef; or ensemblel,. The distinguishability of these
Puyp given by Eq.(2.16). This implies that the global maxi- ensembles may determine the potential information available
mum and minimum ofPyyp occur at the minimum and to an eavesdropper and also the rate at which key bits can be
maximum values ofN,, respectively. Thus, the maximum generated. It would therefore be desirable to be able to com-
value of Pyyp occurs atNy=1, which gives us the tight pare the distinguishability of both ensembles. What the re-
upper bound sults in the preceding show is that this cannot be done in any
absolute sense; we must know in advance which distinguish-
1 5 ability measure is being used. However, we may not know
Puyps ﬁ[\/F’usoJr VIN=1)(N=Pysp)]®. (217  which measure would apply to a potential eavesdropper
since we may not know in advance which detection strategy
they would employ.

To put the results of the preceding section in context, it is
helpful to consider a related finding recently made by Jozsa
and SchlienZ3]. They considered two ensembles of pure
states,&; and &,, with all states in each ensemble having
equala priori probabilities. They used the pairwise overlaps
of pairs of states as a means of quantifying the distinguish-
Pyyp= i[(N —1)JPyspt+ VN—(N=1)Pyspl2 ability of each ensemble, and the von Neumann ent@mf

N2 the density operator of ensemifeas a means of quantify-
(2.18 ing information content. They showed that there exist en-

For Pysp=1, we see that the maximum &f,yp is also
equal to 1. However, wheR5p=0, the maximum oPyyp
is (N—1)/N.

We also see that the minimum value Bf;yp Occurs at
No=N-—1, which gives us the tight lower bound
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ways that are not currently well understood.

A conclusive distinction, which does not apply to situa-
tions in which all states have the sam@riori probabilities,
is that information content and distinguishability can vary in
opposite ways when tha priori probabilities of the states
are altered. To illustrate this, consider two ensembleand
&,, where both consist of the pure states) and| ). In &,
both states have equal priori probabilities equal to 1/2.
However, in&,, they have unequal priori probabilitiesp,
andp,. In state discrimination, our goal is to determine the
state. If one state is more probable than the other, then we
can take advantage of this fact to tailor our measurement to
weight it in favor of the state that has highempriori prob-
ability, so that, on average, we will be able to improve our
ability to determine the state. It follows th&f ought to have
higher distinguishability tha@;. This is made explicit if we
look back at either the Helstrom bouri@.5) or the Jaeger-
Shimony bound2.6). These both increase as=|p;—p,)
increases, confirming this expectation.

However, if we wish to use states in ensemBjeo send
messages, then the constraint that one state must always be
more probable than the other implies that, to regain our free-
dom in the message we might choose to send, we must send
more signal states per message Adncreases. Quantita-
FIG. 1. Contour plot of the ratio of the maximum probabilities tively, for &, the information content is given by the von

of correct hypothesis testing for ensembigsand &, of three lin- Neymann entropy of the ensemble density operator, which is
early independent, equally probable, symmetric states, versus “L?qual to the binary entropy function
maximum unambiguous discrimination probabilRy,;sp(E;) of &;

and the parametee=Pysp(&1) —Pysp(&,). This parameter is
positive, which implies that, except at the origin, inequal®yd) is
satisfied. Inequality (2.4) is satisfied whenever the ratio
Puve(&E)/Pryp(E1)>1, which, on this plot, corresponds to points
lying above the fourth contour from the bottom.

Pyyp(&)
Pgyp(&)

1.8
1.6
1.4

1.2

1

S,= —xlogyx—(1—x)logy(1—Xx), (3.1

where

x=3[1+V1-(1-A31-Kyulya)P)]. (3.2
semble pairs in which the pairwise overlaps, and hence the
distiguishability of&,, are less than those &%, yet where As A increasesx also increases, which implies that, as can
S,>S,, implying that the information content &% is greater ~ easily be shownS, decreases. The extreme situation is
than that of&;. This is somewhat counterintuitive, as infor- where one of the priori probabilities, say,, is equal to 1,
mation and distinguishability are often regarded as interin which casep,=0. Here, we know in advance what the
changeable concepts. state is, and so we can always determine it perfectly. We may
This finding suggests that there are distinctions to besay that this ensemble has perfect distinguishability. How-
made between information and distinguishability. That theyever, the sender has no freedom in which state to send and
are not entirely interchangeable is perhaps suggested by tliee state is always entirely predictable. For this reason, it is
fact that they arise in different contexts. In attempting toimpossible to transmit any information using this ensemble,
distinguish between a set of states, we are given only ontor which S; is easily seen to be zero.
copy, and must make optimum use of it. In information trans- As the above argument demonstrates, a clear distinction
mission, however, we perform a collective measurement on hetween information content and distinguishability emerges
large number of states drawn from the same ensemble. Thg&variation of thea priori probabilities of the states is per-
length of the strings and the subset chosen from the set of afhitted. However, it is not entirely clear why they should be
possible strings is such that these strings are highly distindistinct concepts when the priori probabilities of all states
guishable. Indeed, they are chosen in such a way that there equal. Consequently, for ensembles with eguptiori
probability of failing to distinguish between the states per-probabilities, the observation that information and distin-
fectly can be made arbitrarily small. The information contentguishability impose different orderings remains to be prop-
is the number of bits of classical information that can beerly understood.
transmitted per signal in each string, where the signals obey The results in this paper suggest a potential explanation of
the statistical constraints of the ensemble. In informatiorthis phenomenon. Given that it is not clear why information
transmission, we select strings which are sufficiently long sgontent should not be regarded as a distinguishability mea-
that we can neglect the distinguishability issue in one waysure when we restrict our attention to ensembles of states
However, it is possible that this issue does return in somavith equala priori probabilities, let us assume that it is in
form to dictate the information content of a single signal infact a suitable distinguishability measure under these circum-
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stances. The Jozsa-Schlienz effect could then be explained psobability of unambiguous state discrimination, and so the
a demonstration of the fact that, even for ensembles obptimal conditions for demonstrating this effect for these en-
equally probable states, different distinguishability measuresembles are given by these relations. We also explored in
impose different ensemble orderings, which is what we haveome detail the case df=3.
shown in this paper, using quantities that are indisputably The effect we have demonstrated is somewhat reminiscent
suitable distinguishability measures. of a related one recently discovered by Jozsa and Schlienz.
It remains to be understood why different distinguishabil-These authors showed that one can construct an ensemble
ity measures impose different orderings. Perhaps, for twgair &;,&, where the distinguishability of;, as measured by
distinguishability measures to be nontrivially distinct from the pairwise overlaps of states, is greater than thah pfet
one another, they must be sensitive to different aspects afhere the information content &, which is quantified by
ensembles of states, which can vary, with some degree ahe von Neumann entropy, is greater than thafpf
independence, from one ensemble to another. This seems This is an important finding, not least because the con-
reminiscent of the discovery recently made by Virmani andcepts of distinguishability and information content are some-
Plenio[11] that different, good measures of the entanglementimes used interchangeably. We described how essential dif-

of mixed states must order these states differently. ferences between these concepts do arise when, in moving
from one ensemble to another, thepriori probabilities of
IV. DISCUSSION the states are changed. However, if ehpriori probabilities

o of all states in both ensembles are the same, it is by no means
We have shown in this paper that two of the most com-je4r that, despite the contrast between the asymptotic nature
mon measures of the distinguishability of states, the maxiyf information and the “one shot” nature of distinguishabil-

mum probabilities of correct hypothesis testing and unamyy, jnformation measures cannot also serve as measures of
biguous state discrimination, are essentially 'nCOmpat'b"?jistinguishability.

with each other. By this, we mean that they do not impose 35754 and Schlienz demonstrated their effect using such
the same ordering on ensembles of pure states. It is possiblgsemples. What the results in this paper suggest is a pos-
to have one ensembtg which is more distinguishable than gjhje interpretation of the Jozsa-Schlienz effect. They
another ensemblé, when the states must be distinguishedgpowed that, for ensembles of equally probable pure states,
unambiguously, yet wher&, is more distinguishable thafy jnformation and a particular distinguishability measure suffer
if we wish to identify the state by minimum error hypothesis 4y ordering incompatibility problem. Does this imply that for
testing. In general, we cannot, in any absolute sense, charag;ch ensembles information content is not a suitable distin-
terize one ensemble of states as being more distinguishablg,ishapility measure? The results in this paper suggest that
than another. Dlstmgqlsh_ab_mty_companson must necessarilyhis is not necessarily the case, since different distinguish-
refer to a particular discrimination strategy. ability measures suffer analogous ordering problems. It could

As with any interesting phenomenon, it is important t0{hen he the case that, for the ensembles considered by Jozsa
determine the conditions under which this effect can be demang schiienz, information content is in fact a suitable distin-

onstrated optimally. Here, we are faced with the fact that, forguishability measure and that the ordering incompatibility

generic ensembles of states, the optimization problems th@ﬁey discovered is a consequence of the fact that such prob-

must be solved to obtain values of distinguishability meajems arise with regard to generic distinguishibility measures.
sures are difficult to tackle analytically. At the time of writ-

ing, the only ensembles foN>2 for which both of our
chosen distinguishability measures can be calculated analyti-
cally are ensembles of equally probable, linearly indepen- The author would like to thank Masahide Sasaki and Mar-
dent, symmetric pure states. For such ensembles, inequalitiéia B. Plenio for interesting discussions. This work was sup-
(2.16 and(2.17) give the extremal values of the correct hy- ported by the U.K. Engineering and Physical Sciences Re-
pothesis testing probability for a fixed value of the maximumsearch Council.
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