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Entanglement properties of some fractional quantum Hall liquids
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We study the entanglement properties of some fractional quantum Hall liquids. We calculate the entangle-
ment of the Laughlin wave function and the wave functions that are generated by theK matrix using the
modified entanglement measure of indistinguishable fermions that is first proposed by Pasˇkauskas and You
@Phys. Rev.A64, 042310~2001!#.
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I. INTRODUCTION

Entanglement is no doubt an intriguing property of co
posite quantum systems. It is a correlation that is stron
than any classical correlation. It is found that entanglemen
not only of interests in the interpretation of the foundation
quantum mechanics, but also a resource useful in quan
information processing and quantum computation. Althou
the theory of entanglement is widely developed in the s
tems of distinguishable particles, only very recently the
tanglement properties in identical particle systems bega
attract much attention@1–6# in the fields of quantum infor-
mation and quantum computation.

Quite recently, it is realized that applying the theory
entanglement developed in quantum information scienc
the field of condensed matter physics may give us new
sight in these problems, especially the abundant entan
ment properties of ground-state wave function and the w
functions related to the quantum phase transitions@7,8#.
Some systems have already been extensively studied, su
the models of Heisenberg spin chain@9# and harmonic chain
@10#. It should be emphasized that these systems are al
lated to the crystal lattice, thus the entanglement can be
culated using the side entropy suggested by Zanardi@11# or
just using the measure of entanglement suggested by the
tanglement theory of distinguishable particle systems by
ing account of the fact that each site can be viewed as
‘‘party’’ in quantum information science.

It is noticed that the fractional quantum Hall liquid is
kind of strongly correlated quantum fluid, in which quantu
correlation plays an essential role@12#. As the external mag-
netic field perpendicular to the two-dimensional election-g
increases, the Hall conductance, as well as the filling fa
jumps from one value to another. Correspondingly, a cha
of the wave function of the system takes place. It is w
known that the fractional quantum Hall effect with the fillin
fractionsn51/(odd integer) has been explained by Laugh
@13#. Besides these states, the quantum Hall liquid posse
an extremely rich internal structure, which is classified
terms of so-calledK matrix @14#. So far it is clear that the
fractional quantum Hall system experiences quantum ph
transition, and some characters of one fractional quan
Hall state are essentially different from those of anot
state. Seeking some order or index to describe these ess
characters can facilitate further understanding of the qu
1050-2947/2002/66~4!/042324~7!/$20.00 66 0423
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tum phase transition. Many work has been done along
direction @15#. Recently it is noticed that the states in fra
tional quantum Hall liquid have very sophisticated entang
ment properties@16#, and different states may have differe
entanglement properties. Thus it attracts our attention to
ply the theory of entanglement developed in quantum inf
mation science to investigate the entanglement propertie
this system.

However, since there is no longer any site in the liquid,
first sight it seems that we cannot use the entanglement m
sure of distinguishable particle systems to calculate the
tanglement of this system. Surprisingly, it is found b
Paškauskas and You@3# that the von Neumann entropy of th
reduced single-particle density matrix remains to be a g
entanglement measure for two identical particles, which
natural extension of the entanglement measure of dis
guishable particles. Thus, this entanglement measure of i
tical particles is sufficient to meet our need here.

In this paper, we study the entanglement properties of
Laughlin wave function and the wave functions that are g
erated by theK matrix of quantum Hall liquid. First in Sec. I
we will explain the meaning of the entanglement measure
indistinguishable fermions that is proposed by Pasˇkauskas
and You, and further point out the relationship between t
measure and the measure used in the distinguishable pa
systems. We will find that a slight modification is needed
the measure of Pasˇkauskas and You. Then we calculate t
entanglement of the Laughlin wave function and the wa
functions that are generated by theK matrix in the simplest
case that the particle numberN is 2 in Sec. III using the
slightly modified entanglement measure of indistinguisha
fermions. In Sec. IV the more sophisticated case with
particle number larger than 2 is considered.Some discuss
about our results will be given in Sec. V.

II. ENTANGLEMENT MEASURE OF
INDISTINGUISHABLE FERMIONS

The first entanglement measure of indistinguishable
mions is introduced by Schliemannet al. @1,4#. In Ref. @1#,
they claimed that the concept of separablility of a state
composite systems of fermions should be defined in term
that the state can be expressed in the form of a single S
determinant. In Ref.@4#, they find that the wave function o
two fermions can be written in the following standard form
©2002 The American Physical Society24-1
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uC&5
1

A(
i 51

k

uzi u2
(
i 51

k

zi f a1( i )
1 f a2( i )

1 u0&, ~1!

where f a1( i )
1 u0& and f a2( i )

1 u0& represent the orthonormal bas

of single-particle space. Following this idea, they defined
entanglement measure of two fermions as follows:

h~ uC&)5u^C̄uC&u, ~2!

where uC̄& is the dual state ofuC&. It can be verified that
h(uC&)50 if and only if uC& can be expressed in the form
of a single Slater determinant andh(uC&) is a smooth func-
tion ranging from h(uC&)50 for the separable state t
h(uC&)51 for the maximum correlated state.

Later, Pasˇkauskas and You@3# suggested another en
tanglement measure for two fermions. They found that
von Neumann entropy of the reduced single-particle dens
matrix remains to be a good entanglement measure for
identical particles.Thus, for the state~1!, the entanglemen
can be calculated as

Sf
PY52tr @r f ln r f #52 ln 224 (

k51

<n/2

uzk/2u2ln~ uzk/2u2!,

~3!

wheren is the dimension of the single-particle space.Sf is
also a smooth function ranging fromSf5 ln 2 for the sepa-
rable state toSf5 ln ne for the maximum correlated state
wherene is the maximal even number less or equal ton.

However, a problem with this measure still remains,
the uncorrelated two-fermion state givesSf5 ln 2 rather than
0. We point out here that this problem can be easily und
stood because it is noticed that the extra ln 2 is just the
tanglement contained in the antisymmetry of the wave fu
tion in the first quantized representation of two identic
fermions. It is already known that this extra entanglemen
of no use in quantum information processing. Since in id
tical particle systems it is important to find the entanglem
beyond that involved in the~anti!symmetry induced by quan
tum statistics, we need to get rid of this extra ln 2, i.e., t
entanglement measure needs a slight modification

Sf52tr @r f ln r f #2 ln 2522 ln 224 (
k51

<n/2

uzk/2u2ln~ uzk/2u2!.

~4!

It must be emphasized that although this modification
quite slight, it is very important in the sense that this mo
fication enables us to obtain the same value of entanglem
measure when the system of identical particles is reduce
a system of distinguishable particles. To be more concr
consider the following state of two-qubits written in the for
of the Schmidt decomposition

uc&5au00&1bu11& ~5!

whose second quantized counterpart is
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uc&5~aa†b†1bc†d†!u0&, ~6!

whereuau2u1ubu251.
It is easy to get

Sf~ uc&)52uau2lnuau22ubu2lnubu2. ~7!

This is in accordance with the von Neumann entropy
two-qubit state~5!. It is also a very easy task to show th
when the two fermions are distinguishable, what the mo
fied entanglement measure~4! give us is just the von Neu
mann entropy. In this sense we can say the modified
tanglement measure~4! is the measure suitable for two
fermion systems, either identical or distinguishable.

It is also noticed that to calculate entanglement of t
fermions with Eq.~4! has another three advantages. First,
can see from Eq.~4! the close relationship between this me
sure and the measure used in the distinguishable particle
tems. Second, we can either calculate this measure dire
from the first quantized representation using the skills dev
oped to calculate the entanglement measure of distingu
able particles or from the second quantized representatio
just calculating the one-particle density matrix and diagn
ing it. Third, this measure can be extended to multiparti
case naturally to calculate the entanglement between one
ticle and the other particles in the system with a slight mo
fication

Sf852tr @r f ln r f #2 ln N, ~8!

where N is the particle number. It is noticed that the e
tanglement measure~2! cannot be directly extended to mu
tiparticle case@6#.

Although in multiparticle case this measure cannot g
us all the entanglement properties of the state, we can g
least some information about the entanglement propertie
the state. In fact it is well known that in both the distinguis
able and identical particle case the question of quantify
multiparticle entanglement is still open.

Considered all in all, we will use Eqs.~4! and ~5! to
explore the entanglement properties in quantum Hall liqu

III. ENTANGLEMENT IN QUANTUM HALL LIQUID
„NÄ2 CASE…

The Laughlin wave function for a quantum Hall liqui
with filling factor 1/m reads

cm~z1 , . . . ,zN!5)
j ,k

~zj2zk!
mexpS 2 1

4 (
i

uzi u2D , ~9!

wherezis are complex coordinates of the electrons andm is
a positive odd number. It is already known that the casem
51 corresponds to the integer quantum Hall effect, wh
the Laughlin wave function is just a single Slater determ
nant, i.e.,
4-2
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ENTANGLEMENT PROPERTIES OF SOME FRACTIONAL . . . PHYSICAL REVIEW A 66, 042324 ~2002!
c1~z1 , . . . ,zN!5expS 2 1
4 (

i
uzi u2D

3detS 1 z1 . . . z1
N

. . . . . . . . . . . .

1 zN . . . zN
N
D ,

~10!

thusc1 is separable.
However, whenmÞ1, cm cannot be expressed in th

form of a single Slater determinant, i.e., it is entangled.
order to explore the entanglement properties of Laugh
wave function in the casem.1, we need to calculate th
amount of entanglement contained in these functions. F
we consider the simplest case that the particle numbeN
52, then the Laughlin wave function will be

cm~z1 ,z2!5~z12z2!mexp~2 1
4 ~ uz1u21uz2u2!!

5 (
k50

m

(21)kCm
k z1

m2kz2
kexp[2 1

4 ~ uz1u21uz2u2!]

5 (
k50

(m21)/2

~21!kCm
k ~z1

m2kz2
k2z1

kz2
m2k!

3exp[2 1
4 ~ uz1u21uz2u2!]

5F (
k50

(m21)/2

~21!kCm
k detS z1

m2k , z1
k

z2
m2k , z2

kD G
3exp@2 1

4 ~ uz1u21uz2u2!#. ~11!

Obviously, to calculate the measure of entanglement~4! from
the first quantization point of view is a very difficult task, fo
this is a problem concerning continuous variable entan
ment which always cannot be obtained analytically. Then
need to tackle this problem from the second quantiza
point of view. Fortunately, if the one-particle space is chos
appropriately, the calculation can be done within a finite
mensional space. It is noticed that these functions in the l
est Landau level with different angular momentum are w
ten as

$ f i~z!5Aiz
iexp~2 1

4 uzu2!% i 50
m . ~12!

The family of functionsf i(z),i 50, . . . ,m form an orthogo-
nal basis of one-particle space, whereAi is the normalization
factor, i.e.,

Ai5
1

AE
x52`

` E
y52`

`

~x21y2! iexpF2
1

2
~x21y2!G

5
1

Ap2i 11i !
~13!

andz5x1 iy .
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Define a set of creation operators$ai
†% i 50

m corresponding
to f i(z) by

^zuai
†u0&5 f i~z!. ~14!

Thus we can rewritecm in the second quantized form as

ucm&5S 1

A (
k50

(m21)/2 ~Cm
k !2

Ak
2Am2k

2

D
3 (

k50

(m21)/2

~21!kF Cm
k

AkAm2k
Gam2k

† ak
†u0&

522 @~m21!/2 (
k50

(m21)/2

ACm
k am2k

† ak
†u0. ~15!

It is easy to find thatucm& in Eq. ~12! has the form of the
Slater decomposition~1!, thus we can calculate the entangl
ment of ucm& directly using formula~4!

Sf~ ucm&)522 ln 222(m21) (
k50

(m21)/2

Cm
k ln~22(m11)Cm

k !

522 ln 2222m(
k50

m

ln~22(m11)Cm
k !. ~16!

The variation ofSf(ucm&) with t5(m21)/2 is shown in
Fig. 1. We can see from Fig. 1 that the entanglement
creases withm increasing.

We know that a quasihole excitation aboveucm& is de-
scribed byc(j)5AN(j,j* )) i(j2zi)cm . These quasiholes
can form new quantum fluid in the second level, leading
more complicated filling fraction, such asn5 7

2 . It is well
known that there are hierarchical fractional quantum H
states. The wave functions of such states can be constru

FIG. 1. The N52 case: The variations ofSf(ucm&) and
Sf(ufm&) with t5(m21)/2 in the units of ln 2bits. The boxes
represent the value ofSf(ucm&) of the Laughlin wave functions and
the crosses represent the value ofSf(ufm&) of the wave functions
generated by theK matrix.
4-3
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with the help of K-matrix @14#. As an example, the stat
characterized by usingK5(1 22

m 1 ) has a filling fraction

n5
1

m2~2 1
2 !

5
2

2m11
,

and is described by the generalized Laughlin wave funct

fm~z1 ,z2!5~z12z2!mE E dj1dj2~j12z1!~j12z2!~j2

2z1!~j22z2!~j1* 2j1* !2exp@2 1
3 ~ uj1u2

1uj2u2!#exp@2 1
4 ~ uz1u21uz2u2!#. ~17!

Physically, these states have two quasiholes above
ucm& state, and then these quasiholes form quantum H
liquid with n5 1

2 . Integrating over the coordinates of th
quasiholes, one obtains a new dancing pattern of these
trons which is different from that ofucm&. Naturally, it leads
to a change of the entanglement property. It is found tha

E E dj1dj2~j12z1!~j12z2!~j22z1!~j22z2!~j1*

2j1* !2exp~2 1
4 ~ uj1u21uj2u2!!52162p~z1

21z2
2!.

~18!

Thusfm(z1 ,z2) can be rewritten as

fm~z1 ,z2!5~z12z2!m~z1
21z2

2!exp[2 1
4 ~ uz1u21uz2u2!].

~19!

In the second quantized form the normalized state ve
of fm(z1 ,z2) reads

ufm&5S 1

A (
k50

(m11)/2 ~Cm
k 1Cm

k22!2

Ak
2Am2k12

2

D
3 (

k50

(m11)/2 FCm
k 1Cm

k22

AkAm2k12
Gam2k12

† ak
†u0&. ~20!

Obviously, ufm& in Eq. ~17! also has the form of the Slate
decomposition~1!, thus we can calculate the entanglement
ufm& directly using formula~4!,
04232
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Sf~ ufm&)524 (
k50

(m11)/2 S ~Cm
k 1Cm

k22!2

Ak
2Am2k12

2

2S (
k50

(m11)/2
~Cm

k 1Cm
k22!2

Ak
2Am2k12

2 D D
3 lnS ~Cm

k 1Cm
k22!2

Ak
2Am2k12

2

2S (
k50

(m11)/2
~Cm

k 1Cm
k22!2

Ak
2Am2k12

2 D D 22 ln 2.

~21!

The variation of Sf(ufm&) with t5(m21)/2 is also
shown in Fig. 1. We can see from Fig. 1 that the entang
ment also increases whenm is increasing. Comparing the
two curves in Fig. 1 we can find that for eachm, Sf(ufm&)
.Sf(ucm&). This fact can be understood by noting that ad
ing a hierarchical structure will result in the increase of qua
tum entanglement. It is interesting to notice thatSf(uc3&)
5Sf(uf1&). This can also be found from their explicit ex
pression, i.e.,

c3~z1,z2!5~z12z2!3;~a0
†a3

†1A3a1
†a2

†!u0&, ~22!

f1~z1,z2!5~z12z2!~z1
21z2

2!;~A3a0
†a3

†1a1
†a2

†!u0&. ~23!

IV. ENTANGLEMENT IN QUANTUM HALL LIQUID
„NÌ2 CASE…

Now we turn to the much more difficult caseN.2. As
mentioned above, we can only get some information of
entanglement between one particle and other particles u
Eq. ~5!. We again use second quantized representation
calculate the entanglement of this special kind of multip
ticle states.

TakeN53 Laughlin wave function, for example,

cm8 ~z1 ,z2 ,z3!5~z12z2!m~z12z3!m~z22z3!m

3exp@2 1
4 ~ uz1u21uz2u21uz3u2!#. ~24!

We have

Sf8~ ucm8 &)52tr @r f ln r f #2 ln 3. ~25!

The second quantized form ofuc38& is

uc38&5S 1

A0A3A6
a0

†a3
†a6

†1
3

A0A4A5
a0

†a4
†a5

†

1
6

A1A3A5
a1

†a3
†a5

†1
3

A1A2A6
a1

†a2
†a6

†

1
15

A2A3A4
a2

†a3
†a4

†D u0&. ~26!
4-4
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It is noted foruc38&, the single-particle density matrix~up
to a normalization factor! rmn

f 5^c38uam
† anuc38& has no off-

diagonal elements, thusSf8(uc38&) can easily be calculate
from the form ofuc38&.

In fact, sincecm8 (z1 ,z2 ,z3) is a homogeneous polynomia
of z1 , z2, andz3 apart from an exponential factor, there w
be no off-diagonal elements of the single-particle dens
matrix, for arbitrary positive odd value ofm. This is also true
for any particle numberN. This fact makes the calculation o
Sf8 much easier. Our result for theN53 case is shown in Fig
2. It can be seen from Fig. 2 thatSf8 also increases whenm is
increasing.

Similar things happen in the calculation ofSf8 of a state
that is generated by the same kind ofK-matrix mentioned
above, since in these wave functions the polynomial is a
homogeneous. TakeN53, for example,

fm8 ~z1 ,z2 ,z3!5~z12z2!m~z12z3!m~z22z3!m

3exp@2 1
4 ~ uz1u21uz2u21uz3u2!#

3E E dj1dj2~j12z1!~j12z2!~j12z3!

3~j22z1!~j22z2!~j22z3!~j1* 2j1* !2

3exp@2 1
3 ~ uj1u21uj2u2!#. ~27!

Since

E E dj1dj2~j12z1!~j12z2!~j12z3!~j22z1!~j22z2!

3~j22z3!~j1* 2j1* !2exp@2 1
3 ~ uj1u21uj2u2!#

52162p~z1
2z2

21z1
2z3

21z2
2z3

2!. ~28!

We get

FIG. 2. The N53 case: The variations ofSf8(ucm8 &) and
Sf8(ufm8 &) with t5(m21)/2 in the units of ln 2bits. The boxes
represent the value ofSf8(ucm8 &) of the Laughlin wave functions and
the crosses represent the value ofSf8(ufm8 &) of the wave functions
generated by theK matrix..
04232
y

o

fm8 ~z1 ,z2 ,z3!5~z12z2!m~z12z3!m~z22z3!m~z1
2z2

21z1
2z3

2

1z2
2z3

2!exp@2 1
4 ~ uz1u21uz2u2!#, ~29!

which is also a homogeneous polynomial ofz1 , z2, andz3
apart from an exponential factor.

Thus the calculation ofSf8 of this kind of wave functions
is also quite easy. Our result forN53 case is shown in Fig
2. It can be seen from Fig. 2 thatSf8 also increases whenm is
increasing. However, we can see that at this timeSf8(uc38&) is
no longer equal toSf8(uf18&). Comparing the two curves in
Fig. 2 we can find that for eachm, the relationSf8(ucm8 &)
.Sf8(ufm8 &) still holds.

The comparison ofN52 andN53 cases for the Laughlin
wave function is shown in Fig. 3. It can be seen that
amount of entanglement between one electron and the o
electrons increases with the electron numberN. TheK matrix
case is shown in Fig. 4. However, this case is quite sop
ticated since the amount of entanglement between one e

FIG. 3. The variation ofSf(ucm&) andSf8(ucm8 &) of the Laughlin
wave functions witht5(m21)/2 in the units of ln 2bits. The
boxes represent the value ofSf(ucm&) of the N52 case and the
crosses represent the value ofSf8(ucm8 &) of the N53 case.

FIG. 4. The variation ofSf(ufm&) and Sf8(ufm8 &)of the wave
functions generated by the (m53) K matrix with t5(m21)/2 in
the units of ln 2bits. The boxes represent the value ofSf(ufm&) of
the N52 case and the crosses represent the value ofSf(ufm8 &) of
the N53 case.
4-5
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tron and the other electrons only increases with the elec
numberN besides the casem53.

Now we turn to another kind of dancing patterns of the
strongly correlated electrons. We have already shown tha
n51 state is a separable state, while if there exists so
quasihole excitation above it, and then these quasiholes f
a Laughlin-type state with filling fractionn51/(m21),
where m is an odd integer. It will result in entangleme
between electrons. TheK matrix is written as (1 2(m21)

1 1 ),
and the corresponding filling fractions aren51/@12(1/m
21)#. Thus the wave functions associated with thisK matrix
take the form~take the caseN54, for example!

xm~z1 ,z2 ,z3 ,z4!5~z12z2!~z12z3!~z22z3!~z12z4!~z2

2z4!~z32z4!exp@2 1
4 ~ uz1u21uz2u2

1uz3u21uz4u2!#E E dj1dj2~j12z1!~j1

2z2!~j12z3!~j12z4!~j22z1!~j22z2!

3~j22z3!~j22z4!~j1* 2j2* !(m21)

3exp@2 1
3 ~ uj1u21uj2u2!#. ~30!

Using the method above we can also get some infor
tion of the entanglement properties these wave functions.
Sf8„xm(z1 ,z2 ,z3 ,z4)…, our result is shown in Fig. 5. It is
similar to that of Fig. 1; this is consistent with the particl

FIG. 5. TheN54 case: The variation ofSf8(uxm&) of the wave
function generated by theK matrix in the units of ln 2bits.
. B

ss

nn
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hole duality picture in quantum Hall liquid. The eventual
vanishing ofSf8 is due to the effect of finite number of elec
trons. It is easy to find that whenm.2N11

E E dj1dj2)
i 51

N

~j12zi !~j22zi !~j1* 2j2* !(m21)

3exp~2 1
3 ~ uj1u21uj2u2!!50. ~31!

This fact means that then51 N-electron system cannot sup
port a Laughlin-type wave function of quasiholes whenm is
larger than 2N11.

V. DISCUSSIONS

We calculated the entanglement of the Laughlin wa
function and the wave functions that are generated by thK
matrix using the modified entanglement measure of indis
guishable fermions that is first proposed by Pasˇkauskas and
You @3# through the second quantized approach in this pa
It is noticed that the fractional quantum Hall effect occu
when the external magnetic field is sufficiently high, the d
generacy of the lowest Landau level is large enough that
problem can be treated in the subspace of lowest Lan
level. This leads to the fact that the wave function can
expressed in an elegant form which is an analytical homo
neous polynomial of its arguments apart from a Gauss
factor, and results in a clean second quantized form with
any off-diagonal elements. This property enables us to w
down the entanglement measure in an analytical way.

Our result shows that for both kinds of wave function
the amount of entanglement contained in each kind of w
function increases with the increase of the parameterm.
However, since it is well known that the filling fractio
changes dramatically with the increase of external magn
field B, the entanglement properties is indeed very sophi
cated in the system of quantum Hall liquid. It is expect
that our results and methods can shed light on further stu
of quantum orders in quantum Hall liquid and other physi
systems.
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