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Entanglement properties of some fractional quantum Hall liquids
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We study the entanglement properties of some fractional quantum Hall liquids. We calculate the entangle-
ment of the Laughlin wave function and the wave functions that are generated ¢ riegtrix using the
modified entanglement measure of indistinguishable fermions that is first proposed kau$tas and You
[Phys. RevA64, 042310(2001)].
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[. INTRODUCTION tum phase transition. Many work has been done along this
direction[15]. Recently it is noticed that the states in frac-
Entanglement is no doubt an intriguing property of com-tional quantum Hall liquid have very sophisticated entangle-
posite quantum systems. It is a correlation that is strongement propertie$16], and different states may have different
than any classical correlation. It is found that entanglement igntanglement properties. Thus it attracts our attention to ap-
not only of interests in the interpretation of the foundation ofPly the theory of entanglement developed in quantum infor-
quantum mechanics, but also a resource useful in quantufation science to investigate the entanglement properties in
information processing and quantum computation. AlthougHhis system.
the theory of entanglement is widely developed in the sys- However, since there is no longer any site in the liquid, at
tems of distinguishab|e partidesl On|y very recenﬂy the en.ﬁrSt Sight it seems that we cannot use the entanglement mea-
tanglement properties in identical particle systems began tgure of distinguishable particle systems to calculate the en-
attract much attentiofil—6] in the fields of quantum infor- tanglement of this system. Surprisingly, it is found by
mation and quantum computation. Pakauskas and Yo[B] that the von Neumann entropy of the
Quite recently, it is realized that applying the theory of reduced single-particle density matrix remains to be a good
entanglement developed in quantum information science tgntanglement measure for two identical particles, which is a
the field of condensed matter physics may give us new innatural extension of the entanglement measure of distin-
sight in these problems, especially the abundant entangl@uishable particles. Thus, this entanglement measure of iden-
ment properties of ground-state wave function and the wavécal particles is sufficient to meet our need here.
functions related to the quantum phase transitipns]. In this paper, we study the entanglement properties of the
Some systems have already been extensively studied, suchlzgughlin wave function and the wave functions that are gen-
the models of Heisenberg Spin Ch@gj and harmonic chain erated by thé&k matrix of quantum Hall |IQU|d Firstin Sec. Il
[10]. It should be emphasized that these systems are all réve will explain the meaning of the entanglement measure of
lated to the crystal lattice, thus the entanglement can be calndistinguishable fermions that is proposed by Kaskas
culated using the side entropy suggested by Zajaddior ~ and You, and further point out the relationship between this
just using the measure of entanglement suggested by the efffeasure and the measure used in the distinguishable particle
tang|ement theory of distinguishab|e partic|e Systems by taksystems. We will find that a Sllght modification is needed in
ing account of the fact that each site can be viewed as ori@e measure of Peauskas and You. Then we calculate the
“party” in quantum information science. entanglement of the Laughlin wave function and the wave
It is noticed that the fractional quantum Hall liquid is a functions that are generated by tiematrix in the simplest
kind of strongly correlated quantum fluid, in which quantumcase that the particle numbét is 2 in Sec. Il using the
correlation plays an essential rdle2]. As the external mag- slightly modified entanglement measure of indistinguishable
netic field perpendicular to the two-dimensional election-gagermions. In Sec. IV the more sophisticated case with the
increases, the Hall conductance, as well as the f||||ng factopartide number Iarger than 2 is considered.Some discussions
jumps from one value to another. Correspondingly, a chang@bout our results will be given in Sec. V.
of the wave function of the system takes place. It is well
known that the fractional quantum Hall effect with the filling
fractionsy= 1/(odd integer) has been explained by Laughlin
[13]. Besides these states, the quantum Hall liquid possesses
an extremely rich internal structure, which is classified in  The first entanglement measure of indistinguishable fer-
terms of so-calledK matrix [14]. So far it is clear that the mions is introduced by Schliemaret al. [1,4]. In Ref.[1],
fractional quantum Hall system experiences quantum phastey claimed that the concept of separablility of a state in
transition, and some characters of one fractional gquanturasomposite systems of fermions should be defined in terms of
Hall state are essentially different from those of anothethat the state can be expressed in the form of a single Slater
state. Seeking some order or index to describe these essentidterminant. In Refl4], they find that the wave function of
characters can facilitate further understanding of the quanwo fermions can be written in the following standard form:

IIl. ENTANGLEMENT MEASURE OF
INDISTINGUISHABLE FERMIONS
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1 “ |)=(aa'd"+pc’dh)|0), (6)
|W)= T 21 Zif;rl(i)f;Z(i)|O>’ (1)
2 |Z'|2 Whel’e|a|2|+|,8|2=1.
V < 14 It is easy to get
Wherefgl(i)|0) andfgz(i)|0) represent the orthonormal basis Si(|¢)) = —|a|?In|a|?—| B|2In| B|2. 7)
of single-particle space. Following this idea, they defined an
entanglement measure of two fermions as follows: This is in accordance with the von Neumann entropy of
- two-qubit state(5). It is also a very easy task to show that
() =[(¥[¥), (2 when the two fermions are distinguishable, what the modi-

fied entanglement measu(é) give us is just the von Neu-
mann entropy. In this sense we can say the modified en-
7(|¥))=0 if and only if[¥) can be expressed in the form tanglement F?Ewleasur(adf) is the measure guitable for two-
of a single Slater determinant and|¥)) is a smooth func-  termion systems, either identical or distinguishable.
tion ranging from »(|W))=0 for the separable state t0 | is also noticed that to calculate entanglement of two
7(|¥))=1 for the maximum correlated state. fermions with Eq(4) has another three advantages. First, we
Later, Pakauskas and YoU3] suggested another en- cqn see from Eq(4) the close relationship between this mea-
tanglement measure for two fermions. They found that the,re and the measure used in the distinguishable particle sys-
von Neumann entropy of the reduced single-particle densitygems Second, we can either calculate this measure directly
matrix remains to be a good entanglement measure for W, the first quantized representation using the skills devel-
identical particles.Thus, for the staf&), the entanglement neq o calculate the entanglement measure of distinguish-

where|¥) is the dual state of¥). It can be verified that

can be calculated as able particles or from the second quantized representation by
<n/2 just calculating the one-particle density matrix and diagnos-
S?Y: —tr[p'Inp'1=—In 2_42 |z/2|2In(|z,/2]2), ing it. Third, this measure can be extended to multiparticle
k=1 case naturally to calculate the entanglement between one par-

(3) ticle and the other particles in the system with a slight modi-

. . . . . , fication
wheren is the dimension of the single-particle spa&g.is

also a smooth function ranging fro®=In2 for the sepa- , ot
rable state toS;=Inn, for the maximum correlated state, St=—trlp’inp’]=InN, ®
wheren, is the maximal even number less or equahto

However, a problem with this measure still remains, forwhere N is the particle number. It is noticed that the en-
the uncorrelated two-fermion state giv8s=1In 2 rather than  tanglement measur@) cannot be directly extended to mul-
0. We point out here that this problem can be easily undertiparticle casg6].
stood because it is noticed that the extra In2 is just the en- Although in multiparticle case this measure cannot give
tanglement contained in the antisymmetry of the wave funcus all the entanglement properties of the state, we can get at
tion in the first quantized representation of two identicalleast some information about the entanglement properties of
fermions. It is already known that this extra entanglement ishe state. In fact it is well known that in both the distinguish-
of no use in quantum information processing. Since in idenable and identical particle case the question of quantify the
tical particle systems it is important to find the entanglemeninultiparticle entanglement is still open.
beyond that involved in th@ant)symmetry induced by quan- Considered all in all, we will use Eq$4) and (5) to
tum statistics, we need to get rid of this extra In 2, i.e., thisexplore the entanglement properties in quantum Hall liquid.
entanglement measure needs a slight modification

<n/i2 lIl. ENTANGLEMENT IN QUANTUM HALL LIQUID
S=—tr[p'inpfl-In2=-21n 2—4k2 |2/2/%In(|2,/2)?). (N=2 CASE)
=1
(4) The Laughlin wave function for a quantum Hall liquid

with filling factor 1/m reads
It must be emphasized that although this modification is g

quite slight, it is very important in the sense that this modi-

fication enables us to obtain the same value of entanglement _ m 1 2
. . . ; Z1, .. ZN)= Zi—z)'exp — 7 zl|°], (9

measure when the system of identical particles is reduced to Un(2y N ,-Elk( i~ %) 4 Z 2 ) ©

a system of distinguishable particles. To be more concrete,

consider the following state of two-qubits written in the form

of the Schmidt decomposition wherez;s are complex coordinates of the electrons amid

a positive odd number. It is already known that the case

| )= a|00)+ B|11) (5) =1 corresponds to the integer quantum Hall effect, where
the Laughlin wave function is just a single Slater determi-
whose second quantized counterpart is nant, i.e.,

042324-2



ENTANGLEMENT PROPERTIES OF SOME FRACTIONA .. PHYSICAL REVIEW A 66, 042324 (2002

2.0 L A B L A A T T
- 1 2 i 1
b1(zq, ... Zy)=€X _ZZ |z ) ]
| n X g
) i
1z z) i T ° ]
- o
' ! E X % a] e
X de . R R e, : x o}
g 1.0 al —
N 3]
1 Zy ... Zy E I o
(10 2
E 0.5F _
thus ¢, is separable. =
However, whenm#1, ,, cannot be expressed in the I
OO b 1 L Il 1

form of a single Slater determinant, i.e., it is entangled. In

order to explore the entanglement properties of Laughlin 0 2 ¢ t 6 8 10
wave function in the casen>1, we need to calculate the

amount of entanglement contained in these functions. First, FIG. 1. The N=2 case: The variations of(|¢y)) and

we consider the simplest case that the particle nundber Si(l#m)) with t=(m—1)/2 in the units of In2bits. The boxes
=2, then the Laughlin wave function will be represent the value &(|#,,)) of the Laughlin wave functions and
the crosses represent the valueSpf| ¢,,)) of the wave functions

Yl Z1,22) = (21— 25)Mexp — 3 (| z4|%+2,]?)) generated by th& matrix.

m
_ Define a set of creation operato{rzx-T}-"‘= corresponding
=2 (—L*Cral Zexpl - (|z1|*+ 22l ?)] to () by e
k=0 i

(m-1)/2 (z|a]|0)y=fi(2). (14
> (-nfChE B2 o
=0

Thus we can rewrite),, in the second quantized form as
X exp[—7(|z4|*+]2,|%)]

1
(m=1)/2 M-k ok _
= E (—1)"C‘r‘nde ;_k i [t} (m-1)/2 ck )2
- 252
xexd — 7(|1z4|*+]29)]. (11) k=0 AlAnL—k
. (m=1)/2 k
Obviously, to calculate the measure of entanglen@@nfrom D K m ot
the first quantization point of view is a very difficult task, for X “ (=1 AA, L am- 3/ 0)
this is a problem concerning continuous variable entangle- m
(m=1)/2

ment which always cannot be obtained analytically. Then we
need to tackle this problem from the second quantization —p-lm-v2 3 [ckal  allo. (15
point of view. Fortunately, if the one-particle space is chosen k=0
appropriately, the calculation can be done within a finite di- _ i )
mensional space. It is noticed that these functions in the low- !t is €asy to find thaty,) in Eq. (12) has the form of the
est Landau level with different angular momentum are writ-S'ater decompositio(i), thus we can calculate the entangle-
ment of |, directly using formula(4)

ten as

fi(z)=AZ'exp — i|z]>}",. 12 (m_1r

{ |( ) i q 4| | )}|—O ( ) Sf(|l//m>)=—2|n2—2(m_1) 2 Ckm|n(2_(m+l)Cﬁ])
The family of functionsf;(z),i=0, ... m form an orthogo- k=0
nal basis of one-particle space, whées the normalization m
factor, i.e., =—2In2-2""> In(2-(Mck), (16)

k=0
1

A= The variation ofS;(| ¢,)) with t=(m—1)/2 is shown in
w w 1 Fig. 1. We can see from Fig. 1 that the entanglement in-
\/f f (x%+ yz)‘exr{ — —(X?+y?) creases withm increasing.
TTedyETe 2 We know that a quasihole excitation abojMg,,) is de-
1 scribed byy(£&)=N(&,8)11;(é—z) . These quasiholes

- (13)  can form new quantum fluid in the second level, leading to

Va2t t more complicated filling fraction, such as=7. It is well
known that there are hierarchical fractional quantum Hall
andz=x+iy. states. The wave functions of such states can be constructed

042324-3



BEI ZENG, HUI ZHAI, AND ZHAN XU PHYSICAL REVIEW A 66, 042324 (2002

with the help of K-matrix [14]. As an example, the state k| ~k=2y2
. natrix 114 X . (Ck+Cl?)
characterized by using=(3' -,) has a filling fraction (m+1)/2 _—

Si|pm))=—4 2
k=0

1)/2 —
R (o ot 2>2)

“ 272
k=0 AAn—k+2

(ChtCrn )2
AZA;
and is described by the generalized Laughlin wave function: «In K m—k+2 —21In2
( (m+1)/2 (Ck +Ck2)2) '
2 m m

- 252
k=0 AAm—k+2

¢m(21722)=(21_22)mj jdéld§2(§1_zl)(§l_22)(§2 (21
—20) (& 2,) (61 — &) %exrd — 3(] &,/ The variation of S;(|¢)) with t=(m—1)/2 is also
2 1 2 2 shown in Fig. 1. We can see from Fig. 1 that the entangle-
129 lexd — 1 (|za[*+[2)]- (A0 ment also increases when is increasing. Comparing the

two curves in Fig. 1 we can find that for eaoh S;(| @)

Physically, these states have two quasiholes above th%sf(wm»' This fact can be understood by noting that add-

. g a hierarchical structure will result in the increase of quan-
|m) state, and then these quasiholes form quantum Hau&m entanglement. It is interesting to notice t&(|ys))

liquid with v=73. Integrating over the coordinates of the =Si(|¢1)). This can also be found from their explicit ex-
guasiholes, one obtains a new dancing pattern of these eIch)ression ie

trons which is different from that dfy,,). Naturally, it leads

to a change of the entanglement property. It is found that
g g property 1;”3(21,22):(21_22)3~(aga§+ \/5315‘;”0% (22)

2,)=(2,— 2+ 72)~(3atat+alal)|o). (23
J fdgldgz<§1—zl><§1—zz><fz—z1><52—z2><§1* P21,22) = (=2 (E 2~ (V3ar+alad[0). (29

— &) 2exp(— 1(| &7+ | £]D) = — 1620(22+ 22). \Y ENTANGLEMEN'I;'\IIIlZQlCJ:QI;'IE')UM HALL LIQUID
(18)
Now we turn to the much more difficult cad¢>2. As
mentioned above, we can only get some information of the

Thus ¢n(2;,2,) can be rewritten as entanglement between one particle and other particles using
Eqg. (5. We again use second quantized representation to
calculate the entanglement of this special kind of multipar-
ticle states.

21,25) = (21— 2,)™(Z2+ Z2)exp[— % (|z1]%+|2,|)].
(21,22 = (2= )" (2 Zg)xpL & (|22 |22 )] TakeN=3 Laughlin wave function, for example,

(19
Uin(21,22,23) = (21— 25)™(21— 23) " (2,— 25)™
In the second quantized form the normalized state vector 1 P 2 2
of ¢m(21122) reads Xexﬂ: 4 |Zl| + |ZZ| +|23| )] (24)

We have

b= - Si(l#) =~ tr[p'Inp']-In3. @9

+1)/2 k k—2\2
(m+1)2 (ck 1 ck2)

" The second quantized form pf3) is
k=0 AAn-k+2

(m+1)/2[ ~k | k-2 N Fott .
=| ———apazagt a,a,a
X > T al _...all0). (20 [¥3) AoAzAg 0T AgALAg 0TS
k=0 [ AAm—k+2 3
Tatat Tatat
+ +
A1A3A5 a1a3a5 A1A2A6 ala2a6
Obviously,| ¢, in Eq. (17) also has the form of the Slater
decomlpositior(l-), thus we can calculate the entanglement of + agaga:{ |0). (26)
|pm) directly using formula(4), A2AzA,
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FIG. 2. The N=3 case: The variations of;(|¢/,)) and FIG. 3. The variation o8 (| ¢,)) andS{(|¢;,)) of the Laughlin
Si{(| ) with t=(m—1)/2 in the units of In 2bits. The boxes wave functions witht=(m—1)/2 in the units of In2bits. The
represent the value & (| ¢,,)) of the Laughlin wave functions and boxes represent the value 8f(|y,,)) of the N=2 case and the
the crosses represent the valueSpf| ¢,,)) of the wave functions  crosses represent the valueS§{|;,)) of the N=3 case.
generated by th& matrix..

bin(21,22,23) = (21— 2)™(21— 23) (2, 23) "(2iZ5+ 2525

It is noted for|¢3), the single-particle density matrixip - ) ) )
to a normalization factorp},,=(y4lala,|44) has no off- +zyzg)exd — 2 (|za|*+ |29 ], (29
diagonal elements, thuS{(|#3)) can easily be calculated
from the form of|y3). which is also a homogeneous polynomialzf z,, andz;

In fact, sincey,(z1,2,,23) is a homogeneous polynomial apart from an exponential factor.
of z;, z,, andzz apart from an exponential factor, there will ~ Thus the calculation o8; of this kind of wave functions
be no off-diagonal elements of the single-particle densityis also quite easy. Our result fdk=3 case is shown in Fig.
matrix, for arbitrary positive odd value of. This is also true 2. It can be seen from Fig. 2 th&f also increases whenis
for any particle numbeN. This fact makes the calculation of increasing. However, we can see that at this Bhe L)) is
S; much easier. Our result for tié= 3 case is shown in Fig. o longer equal tsS;(|¢})). Comparing the two curves in
2. It can be seen from Fig. 2 th&} also increases whanis Fig. 2 we can find that for each, the relationS; (| /)
Increasing. >S{ (| pp)) still holds.

Similar things happen in the calculation 8f of a state The comparison okl =2 andN=3 cases for the Laughlin
that is generated by the same kind Kfmatrix mentioned \ave function is shown in Fig. 3. It can be seen that the
above, since in these wave functions the polynomial is alsgmount of entanglement between one electron and the other

homogeneous. Takd=3, for example, electrons increases with the electron numiefheK matrix
case is shown in Fig. 4. However, this case is quite sophis-
b (21,25,23) = (21— 25)™(21— 25) ™(2p— 25)™ ticated since the amount of entanglement between one elec-
Xex — 3(|za?+]2o]%+ 23] 2.0[ ' Y X
X
X
—_ X 1
XJ fd§1d§2(§1_Zl)(él_zz)(§1_23) 2 15l . = ©® G ]
* *\2 % = e ;
X (62— 21)(§2—22) (€2~ 23) (€7 —€7) < .
£ 1.0 X .
xex — 3(|&*+1&19)]. 27 g
%ﬂ L
. g i
Since g 0.5F .
= f
0.0[ L L s s ]
d&1dEx(61—21)(E1—2o) (€1~ 23) (E2—21) (2 2) 0 2 4 6 8 10
t
_ * _ gx\2 _1 2 2
X (&2 (61 — €D exl — 3 (16" + &[] FIG. 4. The variation ofS(|$r)) and Si(|ép))of the wave
_ 16277(2%23-1—2%2%4—2%2%). (29) functlo.ns generqted by then=3) K matrix witht=(m—1)/2 in
the units of In 2bits. The boxes represent the valuef| ¢,,)) of
the N=2 case and the crosses represent the valus; (0f,,)) of
We get the N=3 case.
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0.4F ' ' ] hole duality picture in quantum Hall liquid. The eventually
.k B ] vanishing ofS; is due to the effect of finite number of elec-
2 o3k ? E trons. It is easy to find that whem>2N+ 1
P ; J f dérdé] ] (61-2)(&—2) (& - &5)™ Y
A :
FI: ] xexp— 1(|&,/7+[ &%) =0. (31)
8 0.1F 3
8 : ] This fact means that the=1 N-electron system cannot sup-
; ] port a Laughlin-type wave function of quasiholes wheiis
0.0b L = . . w : P larger than N+ 1.
0 2 4 6 8 10

V. DISCUSSIONS
FIG. 5. TheN=4 case: The variation (| x,,)) of the wave

function generated by thi€ matrix in the units of In 2oits. We calculated the entanglement of the Laughlin wave

function and the wave functions that are generated byKthe

tron and the other electrons only increases with the electrof@trix using the modified entanglement measure of indistin-
numberN besides the caga=3. guishable fermions that is first proposed by Raskas and

Now we turn to another kind of dancing patterns of theseYCU [3] through the second quantized approach in this paper.
strongly correlated electrons. We have already shown that thit 1S noticed that the fractional quantum Hall effect occurs
»=1 state is a separable state, while if there exists som¥hen the external magnetic field is sufficiently high, the de-

quasihole excitation above it, and then these quasiholes for@€neracy of the lowest Landau level is large enough that the
a Laughlin-type state with filling fractiony=1/(m—1), problem can be treated in the subspace of lowest Landau

wherem is an odd integer. It will result in entanglement level. Th'g 'Ieads :O thet ;act thit. t::? wave fL:nt(':tlolnhcan be
between electrons. Thié matrix is written as ¥ _(ml_l)), expressed in an elegant form which IS an anaiytical homoge
. - . neous polynomial of its arguments apart from a Gaussian
and the corresponding filling fractions ake=1[1—(1/m . . .
. . . . . factor, and results in a clean second quantized form without
—1)]. Thus the wave functions associated with timatrix

= any off-diagonal elements. This property enables us to write
take the form(take the casél=4, for exampl down the entanglement measure in an analytical way.

XmlZ1,22,23,24) = (21— 25)(21— 23) (2, 23) (21— 24) (2, Our result shows that for both kinds of wave functions,
Mo the amount of entanglement contained in each kind of wave
—24)(23—24)exr{—%(|21|2+|22|2 function increases with the increase of the parameter

However, since it is well known that the filling fraction
’ ) changes dramatically with the increase of external magnetic
+z "+ 24 )]J f d&1déx(€1-21)(&1 field B, the entanglement properties is indeed very sophisti-
cated in the system of quantum Hall liquid. It is expected

—25)(E1—23) (€1 24)(E2—21) (&2~ 25) that our results and methods can shed light on further studies
L of quantum orders in quantum Hall liquid and other physical

X(£—23)(§3—2) (&5 — &5)™ Y systems.

xexd — 5(|&1|%+[£])]. (30) ACKNOWLEDGMENTS
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