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Security aspects of quantum key distribution with sub-Poisson light
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The security of quantum key distribution with sub-Poisson light sources is investigated. It is shown that a
guantitative analysis of the security of such sources requires only two measured values, the efficiency and
second-order correlation. These two numbers represent figures of merit, which characterize the performance of
such light sources. We show that sub-Poisson light sources can offer significant improvements in communica-
tion rate over Poisson light in the presence of realistic experimental imperfections. We also investigate the
amount of channel loss that can be tolerated for secure communication to be possible, and show that this only
depends on the second-order correlation, provided the device efficiency exceeds a critical value. If this critical
efficiency is exceeded, an inefficient source can perform as well as an efficient one at sufficiently high channel
losses.
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I. INTRODUCTION One of the difficulties of implementing quantum key dis-
tribution is generating single photons. All of the above
Quantum cryptography is a method by which two partiesimplementations use attenuated laser light to approximate
can potentially exchange an unconditionally secure secretingle photons. In such cases the photon number follows a
message. The security of this message is ensured by the laWwsisson distribution. By making the average photon number
of quantum mechanics, which forbid any third-party eavesimuch less than 1, the probability of generating two or more
dropper from localizing the state of a quantum system simulphotons can be suppressed. This is done at the expense of
taneously in two noncommuting observables. The first prohaving a large contribution of vacuum states, which reduces
tocol for quantum cryptography was proposed by Bennetthe communication rate. The problem with generating more
and Brassard in 19841], and has since been known asthan one photon is that such states are vulnerable to photon
BB84. A good review of the BB84 protocol and quantum splitting attacks. The BB84 protocol assumes that Alice only
cryptography in general can be found in Re]. prepares one qubit to be sent to Bob. If she accidentally
In BB84, the sender of the message, Alice, encodes eagbrepares two, Eve can steal one of the qubits and relay the
bit of a secret key in a two-level quantum systégubi).  other one to Bob without being detected. Thus, multiphoton
The qubit is sent to the receiver, Bob, over a quantum charstates pose a dangerous security loophole.
nel. The enemy, Eve, is allowed to tap the quantum channel The effect of multiphoton states on the security of BB84
and perform any measurement allowed by the laws of quarhas already been studi¢#,9]. The presence of such states
tum mechanics. To prevent eavesdropping, Alice randomlgan strongly degrade the security of the secret key. Worse
prepares the qubit in one of two nonorthogonal bases. Evget, the impact of the multiphoton states becomes stronger
does not know the preparation basis, which is needed in owith increasing channel loss. Thus, even if only a minute
der to make a proper measurement. Without this informationfraction of the signals contain more than one photon, they
Eve will make the wrong measurement some of the timegan create a significant security risk at high loss levels. At
and unavoidably distort the wave function of the qubit. Suchsome critical loss level, they can even render the entire key
distortions result in an increased error rate for Bob, revealingompletely insecure. For these reasons there has recently
the presence of the eavesdropper. been an effort to create devices which better approximate a
For practical implementations of quantum cryptography,single-photon state.
the information carrier of choice is almost exclusively the One approach to reducing photon splitting attacks has
photon. The wave function of the photon is typically very been to engineer single-photon turnstile devices. Such
robust to environmental noise, and a photon can be serdources would ideally generate exactly one photon on re-
through a single-mode fiber for many kilometers withoutquest. Already, there are several promising experimental
prohibitively large loss. Several versions of BB84 usingimplementations of devices generating single photons on de-
fiber-optic technology have already been implementednand [10-20. Unfortunately, a perfect heralded single-
[3-6]. Alternate implementations based on free space propgshoton device can never be made in practice. All real devices
gation show that a single photon can be reliably sent througbuffer from two important device imperfections. First, all de-
open space ovea 1 kmdistance in broad dayligh]. These vices have some degree of intrinsic loss, which creates an
fiber and free space experiments demonstrate that quantunmavoidable vacuum contribution. Second, there is always
key distribution can be made into a practical technology. some probability of inadvertently generating a multiphoton
state due to factors such as scattered background light and
substrate photoluminescence. Thus, it is dangerous to com-
*Also at NTT Basic Research Laboratories, Atsugi, Kanagawapletely ignore photon splitting attacks even when using such
Japan. devices for single-photon preparation.
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It is commonly accepted that the use of nonideal single- Dump
photon devices, which we will refer to as sub-Poisson light T
sources, will enhance the performance of a cryptography sys :
tem. However, to date there has been no real quantitativ | — e
analysis of the security of such devices. Adding to the diffi- PBS
culty of a security analysis is the fact that, unlike Poisson %Sa‘; ) ]5305/15)0 HV
light, we do not have complete information about the photon o
number distribution of sub-Poisson light sources. Such infor- FIG. 1. Schematic of experimental configuration of quantum
mation can only be measured by a detector that can coumey distribution with BB84.
photon number, and this is difficult to do. The sub-Poisson
nature of the device is typically measured by a Hanburyfrivacy amplification. These two steps use only public dis-
Brown and Twiss intensity interferometer. This measuremencussion. The purpose of error correction is to eliminate errors
gives us the normalized second-order correlatiéh [21]. in the quantum transmission, which may occur from either

In this paper we will show thay‘® and the average pho- eavesdropping or experimental imperfection. A good discus-

ton number per pulse are sufficient to analyze the security Sion of error correction can be found in R¢22]. Because

of sub-Poisson light sources. These two numbers can be ag@ll Practical systems have a base line error rate, there is al-
curately measured in a lab, and serve as figures of merit fof/ayS Some'potentlal fo Inl‘_ormz?ltlon leakage to an eaves-
the expected security behavior of the device. We explicitlydroPper. Privacy amplification is used to eliminate this
calculate the expected communication rate for BB84, andgaked information by compressing the error corrected trans-
compare the performance of sub-Poisson sources to PoissgHSSION Into a shorter final key. Even if Eve has substantial
light in the presence of realistic channel losses and detectdpformation about the error corrected transmission, after pri-
dark counts. It is known that multiphoton states and detectoy@cy amplification she will know virtually nothing about this
dark counts put an upper limit on the acceptable amount ofin@l key[23]. _ _

channel lossef9]. Here we show that the amount of accept- Several p_roofs of security currently exist for the BB84
able channel loss for sub-Poisson sources can be signiffrotocol against the most general attacks allowed by quan-
cantly greater than Poisson light. Furthermore, the maximunfdM mechanic$24—26. Unfortunately, these proofs do not
channel loss is only a function @f?, provided the device @PPly to sources that sometimes produce more than one pho-
efficiency exceeds a critical value. This is an important re{0n So they cannot be used to analyze practical systems. A
sult, since device losses can be substantial in current impld200f of security which can be applied to realistic sources

mentations of sub-Poisson sources. As long as the efficiendj2S been derivefB], and was used to characterize the per-
exceeds this critical levélvhich is well within technological ~formance of BB84 with Poisson light. This proof requires an

capabilities for typical casgsan inefficient device can toler- auxiliary restriction that Eve attacks each photon individu-
ate the same amount of channel loss as a very efficient d&lly- We will use this proof to perform an analysis of BB84
vice. with sub-Poisson light sources. It has come to our attention

To analyze the performance of sub-Poisson sources, V\;gat a new proof has been proposed, v_vh_ich applie_s to realis-
first calculate rigorous bounds on the communication ratdic sources and does not require restriction to individual at-
after error correction and privacy amplification. These!@Cks[27]. Such a proof would represent the most complete
bounds, based on the assumption that Eve attacks each quBfcurity analysis of BB84 known to date. We believe that our
independently, use the security proof of BB84 given in Ref analysis of sub-Pmssqn light can be extended to this more
[8]. Such calculations give us security estimates againg¥€neral proof of security.

eavesdroppers with highly advanced technological capabili- Figure 1 shows the setup which we will consider. We
ties. Unfortunately, the equations involved in calculating@SSUme that the photon source creates a train of light pulses

such rates are complicated. It is difficult to get analyticaldt @ fixed repetition rate. Each light pulse is assumed to be
solutions for important quantities such as the maximum ac¢ontained in an intervdlo,A ], which is smaller than the duty
ceptable channel loss and critical efficiency, forcing us tofycle of the experiment. Under these conditions we can de-
resort to numerical methods. In the second part of the papdine the photon number operator

we use an approximate analysis to derive analytical estimates R

on such quantities. Such an analysis allows us to get closed- ﬁ:J af(va(t)dt. 1)
form solutions that give a better intuitive understanding of 0

the issues and tradeoffs of sub-Poisson light sources. These

estimates are compared to the exact numerical results, and the above equatio&T(t) is the photon creation operator in

shown to be accurate to within about a factor of 2. the time domain. The average number of photons in a duty
cycle is simply given byn=(n). We can also define the
Il. RATE CALCULATIONS FOR SUB-POISSON LIGHT second-order correlation as
The security of BB84 is a complex subject with a fairly N A A
long history. Adding to the difficulty of the problem is the f J (a'(va'(tHa(t)a(t))dtdt
fact that for practical systems, the basic BB84 protocol must g@= 0’0 _ ) )
be augmented by two additional steps, error correction and n?
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It is not difficult to show, using the commutation relation TABLE I. Values of f(e) for different error rates.
[a(t),a(t)]=8(t-t"), (3 e f(e)
that the expression fay® can be rewritten in the form 0.01 1.16
0.05 1.16
gD, @ 015 e

n

The numbers1 andg®® will form the basis for the security The functionh(e) is the Shannon entropy function of a

analysis. _ ~ single bit given by
For completeness, we assume that the information is en-
coded in the polarization of the photon. Thus, an electro- h(e)=—elog,e— (1—e)log,(1—e). 9)

optic modulator is used to set the polarization of the photon

before injection into the quantum channel. Alternate imple-The functionf(e) characterizes the performance of the error
mentations based on momentum and time can be treated incgrrection algorithm. Whefi(e) =1, the algorithm is work-
completely analogous way. For these schemes the electrghg at the Shannon limit. This limit defines the ultimate per-
optic modulator will typically be placed in an appropriate formance of an error correction algorithm and cannot be ex-
Mach-Zehnder interferometer configuration. We also allowgeeded. Thus,f(e)=1 in general (see Ref.[22] for

for Alice to intentionally introduce an additional amount of giscussion

loss 77 via a beam splitter, as shown in Fig. 1. It may at first  |n order to analyze the security of BB84, we need values
seem counterintuitive to introduce additional loss, but wWefor p,..,, € andp,,, as well as the functiof(e). The value
will show that, at times, this is necessary for secure commupf f(e) depends on which error correction algorithm is used.
nication. Bob's detection apparatus is composed of a 50-5@)ne such algorithm, which performs very close to the Shan-
beam splitter which partitions the light into two polarizing non limit, can be found in Ref22]. Values off(e) for this
beam splitters, one measuring in the horizontal/verticab|gorithm at different error rates are given in Table I. The
(H/V) basis, the other in the right/lefR(L) circularly po-  function is linearly interpolated for intermediate error values.
larized basis. This technique is referred to as passive modu- Bgp's detection events can be separated into a signal com-
lation, and obviates the need for an active polarization rotaponent that originates from Alice’s transmission, and a dark

tor at Bob's detection site. . count component that originates from Bob’s detectors. Thus
In analyzing communication rates for BB84, an importantye have

security parameter is the disturbance measurgiven by

pclick_psignal d psignald (10)
Perr+P /2
€= —er Tes d . (5)

Pclick ~ Psignart d. (11)

In the above equatiom,,, andpy are the probabilities thata \ pare g s the probability of a dark count. The above ap-

pulse causes an error and a multiple detection event, reSpeﬁr'oximation is valid whemy, . andd are small, so that we
tively, and pgjick is the probability that a pulse causes a signa ’

inale detecti + When th b f dual detecti may ignore a simultaneous signal and dark count event. In
sihgie detection event. en the number ot dual detec Iorg].JeneraI, our calculations will assume that multiple detection
events is negligibly small, we hawe=e, wheree is the bit

te of the t ) In this limit th . events are negligibly small and can thus be neglected. This is
error rate ot the transmission. In this fimit the communica- 5 very good approximation for most quantum key distribu-
tion rate is given by8] tion experiments.

D The signal contribution to the detection events is given by
click

R=72

{Br(e)—f(e)h(e)}. (6)

. . . -, ignal™ n[1-(1-T)"]. (12
The parametep is the fraction of detection events originat- Psignal nZO p(MIL=( ]

ing from single photons given by
The parametefl in the above equation is the total optical
Pclick™ Pm loss from the quantum channel and Bob’s detection appara-
B= Pelick ™ tus. In general, we cannot evaluate this expression because
we do not knowp(n). But as mentioned before, we are
wherep,, is the probability that the source generated moreconsidering the limit where dual fire events are negligible. In
than one photon. The compression functigf®e) accounts this limit we can keep the above expression only to first
for Eve’s attacks on the raw quantum key, and is given by order inT. Using the approximation (2 T)"~(1—nT), we
have
e)2
B | 8

7(e)=—log,

P
27

psignalmﬁTv (13
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0

wheren is the average number of photons injected by Alice 10
into the quantum channel. The probabildyis given by the
dark count rate of the detectors multiplied by the measure-
ment time window. Thusg=r47,,. 107
The error ratee will receive a contribution from both the
signal and dark count component. Errors from the signal¢
component occur because of imperfect state prepara’[ion%_10
channel decoherence, and imperfect polarization optics ax
Bob’s detection unit. We define a baseline signal error rate®:
m, which contains all of these effects. For good systems, 510
is typically less than 2%. A second error component comes
from the dark counts at Bob's detection unit. Each dark count | |

(nl)=1

_6_

) . X . 10 1
is completely uncorrelated with Alice’s signal and thus
. I @_q0-1 @)
causes a 50% error rate. Using the above definitions we hav L =0
g@=10 g¥=10
-10
1 1 1 1 1 1 1 1
MPsignart d/2 °% 10 20 30 40 50 60 70 80
e=———. (14) Loss (dB)

Peclick
FIG. 2. Secure bits per pulse as a function of channel loss. Each

Finally, we must come up with a bound . For this o —
Y. b P device is assumed to produce an average photon numbér.

we needg®. From Eq.(4) we can write

o

duce the number of multiphoton states relative to the single-
> i(i—1)p() photon states. At larger loss levels the number of
g(z):':2 (15) multiphoton states may be too big to allow secure commu-

nication. By introducing additional loss we can suppress this

contribution to allow higher channel losses, at the expense of

Using the fact that(i—1)=2 for all i=2, we have the it rate. We cannot do this indefinitely, however, because at

n2

bound some point the dark counts will start to domingtgicy -
" We compare the communication rate as a function of the
2 2p(i) channel losqg for various sources ranging from Poisson light
=) to ideal single-photon devices. The dark count mgfeof a
g@= T very good commercial avalanche photodiode can be around

20 s 1. The measurement window, is ultimately limited
by the time jitter of the detector, which is usually around 500
=—_", ps. The dark count probability under these conditionsl is
n® =4x10"8, where the factor of 4 comes from four detectors.
We set the base line error rateto 1%. The additional loss
7 is assumed to be an adjustable parameter, and the bit rate
— ) is optimized with respect to this parameter for each value of
n-g T. Figure 2 shows the calculation results for the case where
Prn<= . (169 - F9
2 n=1. The normalized communication rate is plotted as a
function of channel loss for different values g@’. Poisson
light corresponds to the cung? =1, while the curvey®

or alternately

Thus,g® allows us to put an upper bound on the probability

of creating a multiphoton state, which is exactly what we *_". ; . ! .
need to characterize the security of the system. =0 is an ideal single-photon turnstile device. Note that the

. . . . _Poisson light bit rate decreases faster than the ideal single-
We now come back to the issue of intentionally adding . o X )
. g : hoton device. This is because the single-photon device does
losses after the device. It can be shown that adding lineat "
not suffer from photon splitting attacks. Thus, the rate de-
loss to the source does not chanj®. The average photon

) A crease is only due to the increasing channel loss. For Poisson
number, on the other hand, is reducedzfo. Substituting |ight, as the channel loss increases, the effect of the multi-

this back intopick andpp,, we get photon states is enhanced, forcing us to reduce the average
— number of photons. Intermediate devices witke @?<1
Pclick—Nn7T+d, (A7) feature two types of behaviors. At low channel losses, they
behave very similar to the ideal device where the bit rate
n®n’g® decreases in proportion to the channel transmission. At
Pm— 2 ) (18) higher loss levels, the multiphoton states start to make a

significant contribution and the behavior gradually switches
As can be seen from the above equations, the probabilitpver to that of Poisson light.
Peaiick reduces only linearly withy, while p,, reduces qua- As can be seen, each curve features a cutoff channel loss,
dratically. This means that by adding attenuation we can rebeyond which secure communication is no longer possible. A
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10° ; . . . on these two important quantities. This estimate will allow us
@ = 0.01 — E:t :0_1 to get a better intuitive understanding of the different
Lo o <n>; 102 tradeoffs involved.
10 -~ e () =107
~~ Ill. ESTIMATES FOR DEVICE PERFORMANCE
o e . . . L
L0 el . In this section we derive closed-form approximations for
2 Tl the cutoff loss and critical efficiency of a sub-Poisson light
g source. Using the arguments presented in ff.we put an
%10—6 - 1 upper bound on the allowable error rate using the condition
100 L i e= g (19
10 _ . . . Sincep is the fraction of single-photon states in the key, the
107 10 20 30 40 50 condition above defines the point where Eve can intercept
Channel loss (dB) and resend all single-photon states, and perform a photon

splitting attack on the multiphoton states. Secure communi-
tation is not possible beyond this point. We find the channel
loss where the above condition is satisfied, which will serve
as an estimate for the loss cutoff. The efficiency that opti-
mizes the cutoff loss will give us an estimate for the critical
smallerg®® implies that more loss can be tolerated, as exfficiency. A device with efficiency exceeding this value can
pected. We would now like to investigate the effect of im-be attenuated down to the critical efficiency if the channel
perfect efficiency on the device performance. Figure 3 showksses are close to the cutoff. Comparison with numerical
how the bit rate of the system varies with the efficiency ofcalculations from Eq(6) will show that the above estimates
the device wheg®=0.01. At lowloss levels the bit rate of give a remarkably close approximation to the real value.
the system decreases with decreased efficiency, as expected.Note that both the error rafgiven in Eq.(14)] and the
But at higher loss levels most of the curves meet with theparameteis [given in Eq.(7)] are functions of the channel
ideal curve, leaving the cutoff loss unaffected. Only the ex{ransmissionl. We can plug these equations back into Eq.
tremely lossy device with efficiency of 16 fails to rejoin (19 and solve for the channel transmission, which is given
the ideal curve, and features a smaller cutoff loss. The reas

that most of the curves rejoin the ideal curve is that, at high

loss levels, added attenuation is already required in order to 1

FIG. 3. Secure bits per pulse as a function of channel loss fo
devices with different efficiencies. All devices hag€’=0.01.

=+
n 2

reduce the effect of photon splitting attacks. For lossy de- 1-4u
vices, some of this attenuation is provided by device ineffi-

ciency. If this inefficiency does not exceed the attenuationThe above equation gives us the value of the channel trans-
required at the cutoff loss, then at some loss level, the curveission where Eve can intercept and resend all single pho-
for the lossy device will rejoin that of a lossless one. Thistons and perform a photon splitting attack on all multiphoton
leads us to the conclusion that, givef?) and the system States. Here:, d, andg‘® are considered to be fixed system
parameters such as the detector dark count datmd the Parameters. When using Poisson light sources, the average
signal error rateu, a critical efficiency value exists. If the photon numben is an adjustable parameter, which can be
device efficiency exceeds this critical efficiency, then the deimade arbitrarily large or small. This is because Poisson light
vice can tolerate the same maximum channel losses asS@urces, such as lasers, start with a macroscopically large
perfectly efficient one. Furthermore, as channel losses inaumber of photons that can be attenuated down to the de-
crease, there will be a crossover point where the commungsired final average. With sub-Poisson light the average is
cation will no longer depend on the device efficiency. TheOnly adjustable by introducing loss, as previously discussed,
value of the channel loss where this crossover point occur@nd can never exceed the device efficiency.

however, does depend on the device efficiency. Figure 3 Equation(20) shows more clearly the tradeoffs involved

shows that for the particular value gf?=0.01, which is a in optimizingT. If n is set too low, the first term on the right

realistic value for good single-photon devices, the criticalSide of the equation becomes large. If it is set too high, the
efficiency is below 102. Such efficiencies are within the second term becomes large. For an ideal device we can set

(20)

d ﬁgm)

reach of today’s technological capabilities. n=1 andg®¥=0, so that
Unfortunately, it is very difficult to get a closed-form so- deal
lution of the critical efficiency and loss cutoff from E¢p) Tmin =d/(1-4pu). (21)

because of the nonlinear nature of the equation. This forces o . o _
us to resort to numerical methods. In the following sectionvhen the device is not ideal we can easily minimizevith
we use an approximate method to get a closed-form estimatespect tan, resulting in the conditions
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— 2d a) 107 - . .
ne=1\/— (22 -
9(2) . T -
Rl -
Trin™ T 23
. — . 10_7 -5 I—4 I—3 I—2 -1
In the above equations), is the average photon number 10 10 1?2) 10 10
which minimizes Eq.(20), and Ty, is the obtained mini- b) 44~ . 9
mum channel transmission. Equati(2?) gives us an esti- Ry
mate for the critical efficiency. If the device efficiency ex- B R T
ceeds this value, one can always attenuate down to optime z "“\\-\_
value when the channel transmission is close to its minimum < _ T LTS
value. If the device efficiency is below this value, however, ] IRRE T
there is no way to increase it in order to achieve the optimal . . .
efficiency. Note that fo. =0 andg‘®=1, we reproduce the Ry 10° 10° 107 10”
bound derived in Ref.9] for Poisson light. The above equa- g®

tions, however, can now be applied to any sources between
Poisson light and ideal single-photon devices.

We note that on initial inspection there is an apparen
inconsistency in Eq(23) in the limit g?—0. The equation
predictsT ;=0 in this limit, but we know that we can never
do better than an ideal single-photon source, which igredicts the actual value to within a factor of 2 over a four-
bounded by Eq.(21). However, note that in this limit order-of-magnitude range fay/?.

n.—. The average photon number cannot be made arbi-
trarily large, and is ultimately limited bg(®. Using Eq.(4)
and the fact tha¢n?)=n?, we have the bound

FIG. 4. () Comparison of the minimum channel transmission
stimated by Eq(23) and the actual value numerically calculated
rom Eq. (6). (b) Comparison of the critical efficiency estimated by
Eq. (22) and the actual value numerically calculated from ).

IV. DISCUSSION

We investigated the security of quantum key distribution
with sub-Poisson light sources and showed that such sources
can provide significantly improved performance over Pois-
son light. Furthermore, if the efficiency of a device exceeds
some critical value, then this device can tolerate the same

— . . : maximum amount of channel loss as a perfectly efficient
When g¥)—0, n=1, with equality holding when the de- device. We found an approximate closed form solution for
vice creates exactly one photon per pulse. Thus, we shoulgyis' ¢ iticay efficiency, which depends on only the dark count
only use Eqgs(22) and(23) if n.<1. For typical experiments yated and the second-order correlatigh?). For typical val-
we have g®=0.01 andd=4x10"8, giving us n.=3 ues of these two numbers this critical efficiency is around
x 10" 3, which is well below 1. 3% 103, which is well within the reach of currently avail-

Figure 4 shows a comparison between our estimate for thable devices. Thus, sub-Poisson devices are a promising
cutoff loss and critical efficiency, and the actual value calcutechnology for improving the performance of quantum cryp-
lated numerically from Eq(6). In both cases, the estimate tography systems.
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n=s 1_—9(2) (24)
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