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Security aspects of quantum key distribution with sub-Poisson light

Edo Waks, Charles Santori, and Yoshihisa Yamamoto*
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The security of quantum key distribution with sub-Poisson light sources is investigated. It is shown that a
quantitative analysis of the security of such sources requires only two measured values, the efficiency and
second-order correlation. These two numbers represent figures of merit, which characterize the performance of
such light sources. We show that sub-Poisson light sources can offer significant improvements in communica-
tion rate over Poisson light in the presence of realistic experimental imperfections. We also investigate the
amount of channel loss that can be tolerated for secure communication to be possible, and show that this only
depends on the second-order correlation, provided the device efficiency exceeds a critical value. If this critical
efficiency is exceeded, an inefficient source can perform as well as an efficient one at sufficiently high channel
losses.
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I. INTRODUCTION

Quantum cryptography is a method by which two part
can potentially exchange an unconditionally secure se
message. The security of this message is ensured by the
of quantum mechanics, which forbid any third-party eav
dropper from localizing the state of a quantum system sim
taneously in two noncommuting observables. The first p
tocol for quantum cryptography was proposed by Benn
and Brassard in 1984@1#, and has since been known a
BB84. A good review of the BB84 protocol and quantu
cryptography in general can be found in Ref.@2#.

In BB84, the sender of the message, Alice, encodes e
bit of a secret key in a two-level quantum system~qubit!.
The qubit is sent to the receiver, Bob, over a quantum ch
nel. The enemy, Eve, is allowed to tap the quantum chan
and perform any measurement allowed by the laws of qu
tum mechanics. To prevent eavesdropping, Alice rando
prepares the qubit in one of two nonorthogonal bases.
does not know the preparation basis, which is needed in
der to make a proper measurement. Without this informat
Eve will make the wrong measurement some of the tim
and unavoidably distort the wave function of the qubit. Su
distortions result in an increased error rate for Bob, revea
the presence of the eavesdropper.

For practical implementations of quantum cryptograp
the information carrier of choice is almost exclusively t
photon. The wave function of the photon is typically ve
robust to environmental noise, and a photon can be
through a single-mode fiber for many kilometers witho
prohibitively large loss. Several versions of BB84 usi
fiber-optic technology have already been implemen
@3–6#. Alternate implementations based on free space pro
gation show that a single photon can be reliably sent thro
open space over a 1 kmdistance in broad daylight@7#. These
fiber and free space experiments demonstrate that qua
key distribution can be made into a practical technology.

*Also at NTT Basic Research Laboratories, Atsugi, Kanaga
Japan.
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One of the difficulties of implementing quantum key di
tribution is generating single photons. All of the abo
implementations use attenuated laser light to approxim
single photons. In such cases the photon number follow
Poisson distribution. By making the average photon num
much less than 1, the probability of generating two or mo
photons can be suppressed. This is done at the expen
having a large contribution of vacuum states, which redu
the communication rate. The problem with generating m
than one photon is that such states are vulnerable to ph
splitting attacks. The BB84 protocol assumes that Alice o
prepares one qubit to be sent to Bob. If she accident
prepares two, Eve can steal one of the qubits and relay
other one to Bob without being detected. Thus, multipho
states pose a dangerous security loophole.

The effect of multiphoton states on the security of BB
has already been studied@8,9#. The presence of such state
can strongly degrade the security of the secret key. Wo
yet, the impact of the multiphoton states becomes stron
with increasing channel loss. Thus, even if only a minu
fraction of the signals contain more than one photon, th
can create a significant security risk at high loss levels.
some critical loss level, they can even render the entire
completely insecure. For these reasons there has rec
been an effort to create devices which better approxima
single-photon state.

One approach to reducing photon splitting attacks
been to engineer single-photon turnstile devices. S
sources would ideally generate exactly one photon on
quest. Already, there are several promising experime
implementations of devices generating single photons on
mand @10–20#. Unfortunately, a perfect heralded singl
photon device can never be made in practice. All real devi
suffer from two important device imperfections. First, all d
vices have some degree of intrinsic loss, which creates
unavoidable vacuum contribution. Second, there is alw
some probability of inadvertently generating a multiphot
state due to factors such as scattered background light
substrate photoluminescence. Thus, it is dangerous to c
pletely ignore photon splitting attacks even when using s
devices for single-photon preparation.
,
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It is commonly accepted that the use of nonideal sing
photon devices, which we will refer to as sub-Poisson lig
sources, will enhance the performance of a cryptography
tem. However, to date there has been no real quantita
analysis of the security of such devices. Adding to the di
culty of a security analysis is the fact that, unlike Poiss
light, we do not have complete information about the pho
number distribution of sub-Poisson light sources. Such in
mation can only be measured by a detector that can c
photon number, and this is difficult to do. The sub-Poiss
nature of the device is typically measured by a Hanbu
Brown and Twiss intensity interferometer. This measurem
gives us the normalized second-order correlationg(2) @21#.

In this paper we will show thatg(2) and the average pho
ton number per pulsen̄ are sufficient to analyze the securi
of sub-Poisson light sources. These two numbers can be
curately measured in a lab, and serve as figures of meri
the expected security behavior of the device. We explic
calculate the expected communication rate for BB84, a
compare the performance of sub-Poisson sources to Po
light in the presence of realistic channel losses and dete
dark counts. It is known that multiphoton states and dete
dark counts put an upper limit on the acceptable amoun
channel losses@9#. Here we show that the amount of accep
able channel loss for sub-Poisson sources can be sig
cantly greater than Poisson light. Furthermore, the maxim
channel loss is only a function ofg(2), provided the device
efficiency exceeds a critical value. This is an important
sult, since device losses can be substantial in current im
mentations of sub-Poisson sources. As long as the efficie
exceeds this critical level~which is well within technological
capabilities for typical cases!, an inefficient device can toler
ate the same amount of channel loss as a very efficient
vice.

To analyze the performance of sub-Poisson sources
first calculate rigorous bounds on the communication r
after error correction and privacy amplification. The
bounds, based on the assumption that Eve attacks each
independently, use the security proof of BB84 given in R
@8#. Such calculations give us security estimates aga
eavesdroppers with highly advanced technological capa
ties. Unfortunately, the equations involved in calculati
such rates are complicated. It is difficult to get analytic
solutions for important quantities such as the maximum
ceptable channel loss and critical efficiency, forcing us
resort to numerical methods. In the second part of the pa
we use an approximate analysis to derive analytical estim
on such quantities. Such an analysis allows us to get clo
form solutions that give a better intuitive understanding
the issues and tradeoffs of sub-Poisson light sources. T
estimates are compared to the exact numerical results,
shown to be accurate to within about a factor of 2.

II. RATE CALCULATIONS FOR SUB-POISSON LIGHT

The security of BB84 is a complex subject with a fair
long history. Adding to the difficulty of the problem is th
fact that for practical systems, the basic BB84 protocol m
be augmented by two additional steps, error correction
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privacy amplification. These two steps use only public d
cussion. The purpose of error correction is to eliminate err
in the quantum transmission, which may occur from eith
eavesdropping or experimental imperfection. A good disc
sion of error correction can be found in Ref.@22#. Because
all practical systems have a base line error rate, there is
ways some potential for information leakage to an eav
dropper. Privacy amplification is used to eliminate th
leaked information by compressing the error corrected tra
mission into a shorter final key. Even if Eve has substan
information about the error corrected transmission, after
vacy amplification she will know virtually nothing about th
final key @23#.

Several proofs of security currently exist for the BB8
protocol against the most general attacks allowed by qu
tum mechanics@24–26#. Unfortunately, these proofs do no
apply to sources that sometimes produce more than one
ton, so they cannot be used to analyze practical system
proof of security which can be applied to realistic sourc
has been derived@8#, and was used to characterize the p
formance of BB84 with Poisson light. This proof requires
auxiliary restriction that Eve attacks each photon individ
ally. We will use this proof to perform an analysis of BB8
with sub-Poisson light sources. It has come to our atten
that a new proof has been proposed, which applies to re
tic sources and does not require restriction to individual
tacks@27#. Such a proof would represent the most compl
security analysis of BB84 known to date. We believe that o
analysis of sub-Poisson light can be extended to this m
general proof of security.

Figure 1 shows the setup which we will consider. W
assume that the photon source creates a train of light pu
at a fixed repetition rate. Each light pulse is assumed to
contained in an interval@0,D#, which is smaller than the duty
cycle of the experiment. Under these conditions we can
fine the photon number operator

n̂5E
0

D

â†~ t !â~ t !dt. ~1!

In the above equationâ†(t) is the photon creation operator i
the time domain. The average number of photons in a d
cycle is simply given byn̄5^n̂&. We can also define the
second-order correlation as

g(2)5

E
0

DE
0

D

^â†~ t !â†~ t8!â~ t8!â~ t !&dtdt8

n̄2
. ~2!

FIG. 1. Schematic of experimental configuration of quantu
key distribution with BB84.
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It is not difficult to show, using the commutation relation

@ â~ t !,â†~ t8!#5d~ t2t8!, ~3!

that the expression forg(2) can be rewritten in the form

g(2)5
^n̂~ n̂21!&

n̄2
. ~4!

The numbersn̄ andg(2) will form the basis for the security
analysis.

For completeness, we assume that the information is
coded in the polarization of the photon. Thus, an elec
optic modulator is used to set the polarization of the pho
before injection into the quantum channel. Alternate imp
mentations based on momentum and time can be treated
completely analogous way. For these schemes the ele
optic modulator will typically be placed in an appropria
Mach-Zehnder interferometer configuration. We also all
for Alice to intentionally introduce an additional amount
lossh via a beam splitter, as shown in Fig. 1. It may at fi
seem counterintuitive to introduce additional loss, but
will show that, at times, this is necessary for secure comm
nication. Bob’s detection apparatus is composed of a 50
beam splitter which partitions the light into two polarizin
beam splitters, one measuring in the horizontal/verti
(H/V) basis, the other in the right/left (R/L) circularly po-
larized basis. This technique is referred to as passive mo
lation, and obviates the need for an active polarization ro
tor at Bob’s detection site.

In analyzing communication rates for BB84, an importa
security parameter is the disturbance measuree, given by

e5
perr1pd/2

pclick
. ~5!

In the above equation,perr andpd are the probabilities that a
pulse causes an error and a multiple detection event, res
tively, and pclick is the probability that a pulse causes
single detection event. When the number of dual detec
events is negligibly small, we havee5e, wheree is the bit
error rate of the transmission. In this limit the communic
tion rate is given by@8#

R5
pclick

2
$bt~e!2 f ~e!h~e!%. ~6!

The parameterb is the fraction of detection events origina
ing from single photons given by

b5
pclick2pm

pclick
, ~7!

wherepm is the probability that the source generated m
than one photon. The compression functiont(e) accounts
for Eve’s attacks on the raw quantum key, and is given b

t~e!52 log2F1

2
12

e

b
22S e

b D 2G . ~8!
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The function h(e) is the Shannon entropy function of
single bit given by

h~e!52e log2e2~12e!log2~12e!. ~9!

The functionf (e) characterizes the performance of the er
correction algorithm. Whenf (e)51, the algorithm is work-
ing at the Shannon limit. This limit defines the ultimate pe
formance of an error correction algorithm and cannot be
ceeded. Thus,f (e)>1 in general ~see Ref. @22# for
discussion!.

In order to analyze the security of BB84, we need valu
for pclick , e, andpm , as well as the functionf (e). The value
of f (e) depends on which error correction algorithm is use
One such algorithm, which performs very close to the Sh
non limit, can be found in Ref.@22#. Values off (e) for this
algorithm at different error rates are given in Table I. T
function is linearly interpolated for intermediate error value

Bob’s detection events can be separated into a signal c
ponent that originates from Alice’s transmission, and a d
count component that originates from Bob’s detectors. T
we have

pclick5psignal1d2psignald ~10!

'psignal1d. ~11!

where d is the probability of a dark count. The above a
proximation is valid whenpsignal andd are small, so that we
may ignore a simultaneous signal and dark count event
general, our calculations will assume that multiple detect
events are negligibly small and can thus be neglected. Th
a very good approximation for most quantum key distrib
tion experiments.

The signal contribution to the detection events is given

psignal5 (
n50

`

p~n!@12~12T!n#. ~12!

The parameterT in the above equation is the total optic
loss from the quantum channel and Bob’s detection app
tus. In general, we cannot evaluate this expression bec
we do not knowp(n). But as mentioned before, we ar
considering the limit where dual fire events are negligible.
this limit we can keep the above expression only to fi
order inT. Using the approximation (12T)n'(12nT), we
have

psignal'n̄T, ~13!

TABLE I. Values of f (e) for different error rates.

e f(e)

0.01 1.16
0.05 1.16
0.1 1.22
0.15 1.35
5-3
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WAKS, SANTORI, AND YAMAMOTO PHYSICAL REVIEW A 66, 042315 ~2002!
wheren̄ is the average number of photons injected by Al
into the quantum channel. The probabilityd is given by the
dark count rate of the detectors multiplied by the measu
ment time window. Thus,d5r dtw .

The error ratee will receive a contribution from both the
signal and dark count component. Errors from the sig
component occur because of imperfect state prepara
channel decoherence, and imperfect polarization optic
Bob’s detection unit. We define a baseline signal error r
m, which contains all of these effects. For good systemsm
is typically less than 2%. A second error component com
from the dark counts at Bob’s detection unit. Each dark co
is completely uncorrelated with Alice’s signal and th
causes a 50% error rate. Using the above definitions we h

e5
mpsignal1d/2

pclick
. ~14!

Finally, we must come up with a bound onpm . For this
we needg(2). From Eq.~4! we can write

g(2)5

(
i 52

`

i ~ i 21!p~ i !

n̄2
. ~15!

Using the fact thati ( i 21)>2 for all i>2, we have the
bound

g(2)>

(
i 52

`

2p~ i !

n̄2

5
2pm

n̄2
,

or alternately

pm<
n̄2g(2)

2
. ~16!

Thus,g(2) allows us to put an upper bound on the probabil
of creating a multiphoton state, which is exactly what w
need to characterize the security of the system.

We now come back to the issue of intentionally addi
losses after the device. It can be shown that adding lin
loss to the source does not changeg(2). The average photon
number, on the other hand, is reduced tohn̄. Substituting
this back intopclick andpm , we get

pclick→n̄hT1d, ~17!

pm→ n̄2h2g(2)

2
. ~18!

As can be seen from the above equations, the probab
pclick reduces only linearly withh, while pm reduces qua-
dratically. This means that by adding attenuation we can
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duce the number of multiphoton states relative to the sing
photon states. At larger loss levels the number
multiphoton states may be too big to allow secure comm
nication. By introducing additional loss we can suppress t
contribution to allow higher channel losses, at the expens
bit rate. We cannot do this indefinitely, however, because
some point the dark counts will start to dominatepclick .

We compare the communication rate as a function of
channel lossT for various sources ranging from Poisson lig
to ideal single-photon devices. The dark count rater d of a
very good commercial avalanche photodiode can be aro
20 s21. The measurement windowtw is ultimately limited
by the time jitter of the detector, which is usually around 5
ps. The dark count probability under these conditions isd
5431028, where the factor of 4 comes from four detecto
We set the base line error ratem to 1%. The additional loss
h is assumed to be an adjustable parameter, and the bit
is optimized with respect to this parameter for each value
T. Figure 2 shows the calculation results for the case wh
n̄51. The normalized communication rate is plotted as
function of channel loss for different values ofg(2). Poisson
light corresponds to the curveg(2)51, while the curveg(2)

50 is an ideal single-photon turnstile device. Note that
Poisson light bit rate decreases faster than the ideal sin
photon device. This is because the single-photon device d
not suffer from photon splitting attacks. Thus, the rate d
crease is only due to the increasing channel loss. For Poi
light, as the channel loss increases, the effect of the m
photon states is enhanced, forcing us to reduce the ave
number of photons. Intermediate devices with 0,g(2),1
feature two types of behaviors. At low channel losses, th
behave very similar to the ideal device where the bit r
decreases in proportion to the channel transmission.
higher loss levels, the multiphoton states start to mak
significant contribution and the behavior gradually switch
over to that of Poisson light.

As can be seen, each curve features a cutoff channel
beyond which secure communication is no longer possible

FIG. 2. Secure bits per pulse as a function of channel loss. E

device is assumed to produce an average photon numbern̄51.
5-4
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smallerg(2) implies that more loss can be tolerated, as
pected. We would now like to investigate the effect of im
perfect efficiency on the device performance. Figure 3 sho
how the bit rate of the system varies with the efficiency
the device wheng(2)50.01. At lowloss levels the bit rate o
the system decreases with decreased efficiency, as expe
But at higher loss levels most of the curves meet with
ideal curve, leaving the cutoff loss unaffected. Only the
tremely lossy device with efficiency of 1023 fails to rejoin
the ideal curve, and features a smaller cutoff loss. The rea
that most of the curves rejoin the ideal curve is that, at h
loss levels, added attenuation is already required in orde
reduce the effect of photon splitting attacks. For lossy
vices, some of this attenuation is provided by device ine
ciency. If this inefficiency does not exceed the attenuat
required at the cutoff loss, then at some loss level, the cu
for the lossy device will rejoin that of a lossless one. Th
leads us to the conclusion that, giveng(2) and the system
parameters such as the detector dark count rated and the
signal error ratem, a critical efficiency value exists. If the
device efficiency exceeds this critical efficiency, then the
vice can tolerate the same maximum channel losses
perfectly efficient one. Furthermore, as channel losses
crease, there will be a crossover point where the comm
cation will no longer depend on the device efficiency. T
value of the channel loss where this crossover point occ
however, does depend on the device efficiency. Figur
shows that for the particular value ofg(2)50.01, which is a
realistic value for good single-photon devices, the criti
efficiency is below 1022. Such efficiencies are within th
reach of today’s technological capabilities.

Unfortunately, it is very difficult to get a closed-form so
lution of the critical efficiency and loss cutoff from Eq.~6!
because of the nonlinear nature of the equation. This fo
us to resort to numerical methods. In the following sect
we use an approximate method to get a closed-form estim

FIG. 3. Secure bits per pulse as a function of channel loss
devices with different efficiencies. All devices haveg(2)50.01.
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on these two important quantities. This estimate will allow
to get a better intuitive understanding of the differe
tradeoffs involved.

III. ESTIMATES FOR DEVICE PERFORMANCE

In this section we derive closed-form approximations
the cutoff loss and critical efficiency of a sub-Poisson lig
source. Using the arguments presented in Ref.@9#, we put an
upper bound on the allowable error rate using the condit

e5
b

4
. ~19!

Sinceb is the fraction of single-photon states in the key, t
condition above defines the point where Eve can interc
and resend all single-photon states, and perform a pho
splitting attack on the multiphoton states. Secure commu
cation is not possible beyond this point. We find the chan
loss where the above condition is satisfied, which will se
as an estimate for the loss cutoff. The efficiency that op
mizes the cutoff loss will give us an estimate for the critic
efficiency. A device with efficiency exceeding this value c
be attenuated down to the critical efficiency if the chan
losses are close to the cutoff. Comparison with numer
calculations from Eq.~6! will show that the above estimate
give a remarkably close approximation to the real value.

Note that both the error rate@given in Eq.~14!# and the
parameterb @given in Eq.~7!# are functions of the channe
transmissionT. We can plug these equations back into E
~19! and solve for the channel transmission, which is giv
by

T5
1

124m S d

n̄
1

n̄g(2)

2 D . ~20!

The above equation gives us the value of the channel tr
mission where Eve can intercept and resend all single p
tons and perform a photon splitting attack on all multiphot
states. Herem, d, andg(2) are considered to be fixed syste
parameters. When using Poisson light sources, the ave
photon numbern̄ is an adjustable parameter, which can
made arbitrarily large or small. This is because Poisson li
sources, such as lasers, start with a macroscopically l
number of photons that can be attenuated down to the
sired final average. With sub-Poisson light the average
only adjustable by introducing loss, as previously discuss
and can never exceed the device efficiency.

Equation~20! shows more clearly the tradeoffs involve
in optimizingT. If n̄ is set too low, the first term on the righ
side of the equation becomes large. If it is set too high,
second term becomes large. For an ideal device we can
n̄51 andg(2)50, so that

Tmin
ideal5d/~124m!. ~21!

When the device is not ideal we can easily minimizeT with
respect ton̄, resulting in the conditions

r

5-5
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WAKS, SANTORI, AND YAMAMOTO PHYSICAL REVIEW A 66, 042315 ~2002!
n̄c5A 2d

g(2)
, ~22!

Tmin5
A2dg(2)

124m
. ~23!

In the above equations,n̄c is the average photon numbe
which minimizes Eq.~20!, and Tmin is the obtained mini-
mum channel transmission. Equation~22! gives us an esti-
mate for the critical efficiency. If the device efficiency e
ceeds this value, one can always attenuate down to opt
value when the channel transmission is close to its minim
value. If the device efficiency is below this value, howev
there is no way to increase it in order to achieve the optim
efficiency. Note that form50 andg(2)51, we reproduce the
bound derived in Ref.@9# for Poisson light. The above equa
tions, however, can now be applied to any sources betw
Poisson light and ideal single-photon devices.

We note that on initial inspection there is an appar
inconsistency in Eq.~23! in the limit g(2)→0. The equation
predictsTmin50 in this limit, but we know that we can neve
do better than an ideal single-photon source, which
bounded by Eq.~21!. However, note that in this limit
n̄c→`. The average photon number cannot be made a
trarily large, and is ultimately limited byg(2). Using Eq.~4!

and the fact that̂n̂2&>n̄2, we have the bound

n̄<
1

12g(2)
. ~24!

When g(2)→0, n̄<1, with equality holding when the de
vice creates exactly one photon per pulse. Thus, we sh
only use Eqs.~22! and~23! if n̄c<1. For typical experiments
we have g(2)50.01 and d5431028, giving us n̄c53
31023, which is well below 1.

Figure 4 shows a comparison between our estimate for
cutoff loss and critical efficiency, and the actual value cal
lated numerically from Eq.~6!. In both cases, the estima
Pr

H.

P.
E

, J
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predicts the actual value to within a factor of 2 over a fou
order-of-magnitude range forg(2).

IV. DISCUSSION

We investigated the security of quantum key distributi
with sub-Poisson light sources and showed that such sou
can provide significantly improved performance over Po
son light. Furthermore, if the efficiency of a device excee
some critical value, then this device can tolerate the sa
maximum amount of channel loss as a perfectly effici
device. We found an approximate closed form solution
this critical efficiency, which depends on only the dark cou
rated and the second-order correlationg(2). For typical val-
ues of these two numbers this critical efficiency is arou
331023, which is well within the reach of currently avail
able devices. Thus, sub-Poisson devices are a promi
technology for improving the performance of quantum cry
tography systems.

FIG. 4. ~a! Comparison of the minimum channel transmissi
estimated by Eq.~23! and the actual value numerically calculate
from Eq.~6!. ~b! Comparison of the critical efficiency estimated b
Eq. ~22! and the actual value numerically calculated from Eq.~6!.
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