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Unambiguous state discrimination of coherent states with linear optics: Application to quantum
cryptography

S. J. van Enk
Bell Laboratories, Lucent Technologies, Room 2C-401, 600-700 Mountain Avenue, Murray Hill, New Jersey 07974

~Received 12 December 2001; published 21 October 2002!

We discuss several methods for unambiguous state discrimination ofN symmetric coherent states using
linear optics and photodetectors. One type of measurement is shown to be optimal in the limit of small photon
numbers for anyN. For the special case ofN54 this measurement can be fruitfully used by the receiving end
~Bob! in an implementation of the Bennett-Brassard 1984~BB84! quantum key distribution protocol using
faint laser pulses. In particular, if Bob detects only a single photon the procedure is equivalent to the standard
measurement that he would have to perform in a single-photon implementation of BB84, if he detects two
photons Bob will unambiguously know the bit sent to him in 50% of the cases without having to exchange
basis information, and if three photons are detected, Bob will know unambiguously which quantum state was
sent.

DOI: 10.1103/PhysRevA.66.042313 PACS number~s!: 03.67.Dd, 42.50.Ar, 42.79.Sz
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I. INTRODUCTION

The simple fact that nonorthogonal quantum states can
be perfectly distinguished lies at the basis of the quan
cryptography and quantum key distribution~QKD!: An
eavesdropper is not able to determine with 100% certa
which quantum state was sent if the alternatives were cho
from a nonorthogonal set of states. Among the various st
egies the eavesdropper might use to gather at least s
information are measurements that maximize her probab
of guessing the state correctly. Alternatively, she might
cide to perform a measurement that allows her with so
nonzero probability to learn unambiguously which state w
sent, at the cost of sometimes getting an inconclusive re
The concept underlying this type of measurement, una
biguous state discrimination~USD!, was introduced for the
case of two nonorthogonal states by Ivanovic in 1987@1# and
a bound on the maxium achievable success probability
found shortly afterwards@2#,

PD
(2)512 z^c0uc1& z, ~1!

if uc0& and uc1& are the two states to be distinguished.
In general, a USD measurement with a nonzero proba

ity to succeed exists for any number of states provided t
are linearly independent@3#. For the special case of sets ofN
symmetricstates, i.e., states$uc i&% i 51, . . . ,N that can be writ-
ten as$Ui 21uc1&% i 51, . . . ,N for some fixed unitary operation
U such thatUNuc1&5uc1&, the optimum USD probabilities
were found in@4#. Eavesdropping attacks using such US
measurements were analyzed in@5,6# and USD experiments
on polarization were reported on in@7#. Here we will con-
sider linear optics implementations of USD measurements
symmetric coherent states. In particular, we show that e
without entangled measurements and quantum nondem
tion ~QND! measurements a USD measurement with ne
optimum success probablity is possible using just beam s
ters, photodetectors, and feedback.

The motivation for this is as follows: In virtually all ex
perimental implementations of the Bennett-Brassard 1
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~BB84! protocol @8# the signal states are weak laser puls
~see, for instance,@9#! rather than the single photons envi
aged in the original protocol. One disadvantage is that
eavesdropper may exploit the presence of multiple phot
in some of the signals to gain more information and/or
main undetected, as has been discussed in several p
@10#. We show here how the legitimite users, too, can ma
use of multiple photons by improving upon the standa
measurement that is used in current implementations, wh
indeed is tailored for the single-photon implementation.
the quantum information is encoded in the phase of the
nal a strong reference pulse is needed to provide a ph
reference. The quantum states sent may then be assum
be pure coherent states~relative to the reference pulse, se
@11#! with known amplitudea ~assumed to be real! but un-
known phases that may take one of four possible valu
0,p/2,p,3p/2. As pointed out in@6#, if polarization is used
instead of phase, the signal states are mixed states, no
herent states. Yet, as detailed below, an important part of
following applies to both polarization and phase encodin

In Sec. II we formulate the problem solved in this pap
In Sec. III we discuss the solutions for USD ofN symmetric
coherent states forN52,3,4 andN.4 separately. The mos
detailed exposition is given for the caseN54, the case that
applies to QKD.

II. FORMULATION OF THE PROBLEM

Suppose one has one copy of a coherent stateuaeif& with
known amplitudea but an unknown phasef that may have
one ofN values,fk52pk/N with k50,1, . . . ,(N21). The
task is to unambiguously discriminate between theseN val-
ues. Since the set of states$uaeifk&,k50,1, . . . ,(N21)% is
linearly independent there are, in principle, measureme
possible that allow one to accomplish unambiguous state
crimination ~USD! with some nonzero probability. An opti
mum protocol and the corresponding maximum probabilit
PD

(N) have been derived in@4#: Defining probability ampli-
tudesucku2 for k50, . . . ,N21 by
©2002 The American Physical Society13-1
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ucku25
1

N (
j 50

N21

e22p i jk /Neuau2(e2p i j /N21), ~2!

PD
(N) is determined by the smallest of these amplitudes,

cording to

PD
(N)5N min

k50 . . .N21
ucku2. ~3!

The question considered here is what USD probabilityPBS
(N)

can one reach while using just beam splitters, photodetec
feedback, and the ability to produce known coherent state
any amplitude?

To be more precise, we allow the following operatio
and measurements.

~1! Unitary operations: take two coherent statesub& and
ug& ~that may be known or derived from the initial unkow
stateuaeif&) and split them on a beam splitter to get tw
new coherent states as output modes, with amplitudestb
1rg andrb1tg, in terms of the transmission and reflectio
coefficientst,r of the beam splitter.

~2! Measurements: take a coherent output state and m
sure whether or not it contains photons with a photodete
of efficiencyh.

~3! Feedback: some of the light may be split off to a de
line so that subsequent measurements and unitary opera
may depend on previous measurement outcomes.

Neither quantum-nondemolition~QND! measurements
nor entangled measurements are considered here, as
are far more difficult to perform with present-day techn
ogy.

III. RESULTS

A. Eliminating one phase value

A primitive to be used later on is a simple beam split
setup that allows one with a finite probability to elimina
one particular value of the phase of a coherent state w
known amplitude. Take the stateuaeif& with unknown phase
and combine it on a beam splitter with the known coher
stateubeif0& with b52t/ra andf0 the phase we wish to
eliminate. By taking the limit oft→1 andr→0 one will get
~besides a useless output that is discarded! a coherent state
ua(eif2eif0)&. ~Note this corresponds to a displacement o
eration.! If a photon is detected in this statef cannot have
the valuef0. The probability of such a detection event is

Ph~a,uf2f0u![12e2huau2ueif2eif0u2, ~4!

which depends on the actual~unknown! phasef. We in-
cluded here the quantum efficiencyh, defined as the prob
ability of the photodetector to detect the presence of a p
ton. The effect of a finite efficiency is simply to effective
reduce the amplitude of the coherent statea by a factorAh.
In the following we present results for perfect photodetect
only and the results for imperfect photodetectors can be
tained by subsitutinga→Aha.
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B. NÄ2

This case is straightforward and known. It basically is
measurement in a particular ‘‘basis’’ specified by two pha
valuesp apart. Take the stateuaeif& and put it on a 50/50
beam splitter~i.e., t51/A2 andr 5 i /A2) with the stateu ia&,
such that the two output modes are coherent states with
plitudesua(eif61)/A2&, and measure photons on both ou
puts. Sincef is either 0 orp the probability to detect a
photon is 0 in one output mode, and 12e22uau2 in the other.
If a photon is detected one can eliminate one of the t
possible values off, and thus the probability of USD with
beam splitters is

PBS
(2)512e22uau2, ~5!

which is in fact equal to the optimum valuePD
(2) .

Alternatively one could use the phase elimination sche
from Sec. III A to find the same optimum value. In fac
applying that method allows one to perform an optimal US
on two coherent states with arbitrary phasesf0 and f1.
Namely, split the original unknown state in two equal pa
uaeif/A2& and perform the two elimination measurements
eliminatef0 or f1. The probability of eliminating one of the
two is

PBS
(2a)512e2uau2ueif02eif1u2/2, ~6!

which is optimal and which reduces to Eq.~5! for f05f1
1p.

C. NÄ3

In order to analyze the caseN53 we first consider a
simple USD setup with a reasonably high probability of su
cess. First split the original unknown coherent state i
three identical copiesuaeif/A3&. Then use each of thes
three states in a phase elimination measurement setup o
type discussed in Sec. III A. With the help of Eq.~4! the
probability to eliminate two out of three phases is

P̃BS
(3)5~12e2uau2!2, ~7!

sinceueifk2eif lu253 for all three possible pairs of differen
k,l . This function is plotted in Fig. 1.

One can improve upon this simple strategy by splitti
the state into many small-amplitude coherent states and
ing to eliminate one of the phases first, and then using
optimal method to distinguish the remaining two possib
ties. So, first makeM copies ~with M→`) of the state
uaeif/AM &. Then keep feeding copies in the three pha
elimination setups until one of them gives a positive res
Subsequently use the rest of the light to elinate the
phase. The probability of success is

PBS
(3)5 lim

M→`
(
k50

M /3

2e26kuau2/M~12e23uau2/M !

3~12e23uau2(123k/M )/2!

5113e22uau224e23uau2/2. ~8!
3-2
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The first line gives the probability to produce a photodet
tion event after thekth try in one of the two photodetector
that possibly could click; the second line gives the proba
ity of USD between the two remaining phasesp/2 apart,
with the light remaining at that point, with intensityuau2(1
23k/M ). The functionPBS

(3) is plotted in Fig. 1 along with
PD

(3) as a function of photon numberuau2.
For small amplitudesa the minimum coefficient deter

mining the optimum USD probability according to Eq.~3! is
alwaysucN21u2. For N53 we getPD

(3)'3uau4/2, and com-
paring this toPBS

(3)'3uau4/2 shows our beam-splitter schem
is in fact optimal for small photon numbers, but the simp
scheme only reachesP̃BS

(3)'uau4.

D. NÄ4

The case ofN54 symmetric coherent states is partic
larly relevant for QKD: As mentioned in the Introduction th
four signal states in standard implementations of the BB
protocol @8# using phase encoding are symmetric coher
states. Because of its relevance we describe the measure
in more detail.

But first, we consider the simple scheme for the caseN
54 consisting of splitting the coherent state into four eq
parts uaeif&/2 and feeding these four states into four pha
elimination setups. The probability to detect photons in th
of those measurements is

P̃BS
(4)5~12e2uau2/2!2~12e2uau2!, ~9!

which is plotted in Fig. 2.
The full measurement procedure that can be used in B

and that generalizes the near-optimum measurement from
preceding section, consists of four steps.

FIG. 1. USD for N53 symmetric coherent states. The so
curve gives the optimum success probabilityPD

(3) , the dotted curve

corresponds to a simple beam splitter measurementP̃BS
(3) , and the

dashed curve describes a more complicated version of the b
splitter setupPBS

(3) .
04231
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~1! Split the original state intoM copies of the state
uaeif/AM &. The optimum procedure requires taking th
limit M→` but any large value ofM will be sufficient in
practice.

~2! Choose randomly one of two ‘‘bases’’~as in Sec.
III B !, either f50,p or f5p/2,3p/2, and perform phase
measurements in the chosen basis on the subsequent c
until a photon is detected. The probability to detect a pho
in exactlyk11 out of a possibleM tries is

P1
(k)5e22ka2/M~12e22a2/M !. ~10!

The total probability to succeed in finding a photon is

P1512e22a2
. ~11!

This probability is larger than the probability for a photon
be found in the original signal state, simply because the m
surement procedure itself doubles the number of photons
average. If one insists on using classical intuition, howev
it is surprising that in half of the cases the receiver mana
to measure the phase setting used by the sender no ph
would have been found in the signal state.

~3! If a photon was detected in one basis in the previo
step, then we perform phase measurements in the other
on the remaining copies until a photon is detected. If in
previous step exactlyk11 copies were used, the probabilit
to detect a photon after exactlym11 out of the remaining
M2k21 tries is

P2
(m)5e22ma2/M~12e22a2/M !. ~12!

The total probability to detect at least two photons in to
~one in this step, one in the previous! is

am

FIG. 2. USD for N54 symmetric coherent states. The thic
solid curve gives the optimum success probabilityPD

(4) , the dotted

curve corresponds to a simple beam-splitter measurementP̃BS
(4) , and

the dashed curve describes a more complicated version of the b
splitter setupPBS

(4) . The thin solid curve givesPpol
(4) , corresponding

to the related USD measurement on polarization~see text!.
3-3
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P25 (
k50

M21

e22ka2/M~12e22a2/M !~12e22(M2k21)a2/M !

512e22a2
2Me22a2

~e2a2/M21!. ~13!

In the limit of M→` this reduces to

P2→12e22a2
22a2e22a2

. ~14!

For smalla, P2'2a4, which is larger by a factor of 4 than
the probability to find at least two photons in the origin
state for smalla. With 50% probability theclassical bit
values corresponding to the two outcomes obtained in
and the previous step will coincide. In that case, Bob kno
which classical bit Alice sent without having to exchang
basis information~in this sense this is like the Bennett 199
protocol @12#, and as such probably secure!. If the two clas-
sical bit values obtained by Bob are different, then only Ali
will have to reveal what basis she used for Bob to know w
state Alice had sent. Of course if in such a case the ea
dropper detected two photons as well, this would not be
cure. However, the fact that Bob detected two photons d
not imply that Eve detected two photons.

~4! If a photon was detected in the previous step, take
remainder of the light and feed equal amounts in two ph
elimination setups corresponding to the two remain
phases. The probability to detect another photon, and thu
unambiguously determine the quantum state, is

P3512e2(M2k2m)a2/M. ~15!

The total USD probability is then

PBS
(4)5 (

k50

M21

e22ka2/M~12e22a2/M ! (
m50

M2k22

e22ma2/M~1

2e22a2/M !~12e2uau2(12(k11)/M2(m11)/M )!, ~16!

which in the limit M→` simplifies to

PBS
(4)→113e22uau212uau2e22uau224e2uau2. ~17!

This function is plotted in Fig. 2 together with the optimu
PD

(4) as a function of photon numberuau2. For smalluau2, the
more complicated scheme is optimal,PBS

(4)'2uau6/3, but the

simple scheme only reachesP̃BS
(4)'uau6/4.

To conclude this section, we consider the case where
larization is the degree of freedom used to encode infor
tion. As mentioned before, the quantum states of the sig
are mixed states. More precisely, the four signal states ca
represented by density matrices of the form

rk5E df

2p
ua/A2eif&^a/A2eifu ^ ua/A2ei (f1fk)&

3^a/A2ei (f1fk)u, ~18!

with fk52pk/4 for k50, . . . ,3 andwhere the two modes
correspond to two orthogonal polarizations. One could
04231
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the phase of the signal states is defined relative to a refer
pulse of amplitudea/A2 with the effective signal states hav
ing the same amplitude.

The measurement procedure for phase encoding con
ered above requires for the first two photodetection eve
only reference pulses of the same amplitude as the sig
This part of the procedure thus carries directly over to
polarization case. It is only for the detection of the thi
photon, the part completing the USD measurement, that
needs to know the absolute phase of the signal states.
part, therefore, cannot be used for the polarization case
stead, Ref.@6# gives an ingenious argument to derive t
optimum USD measurement for this case: produce a s
ua& of a mode with polarizationeW orthogonal to that of the
unknown state~call it eW8). The combined state can be writte
as a coherent state with amplitudeA2a with an unknown
polarization (eW1eifeW8)/A2. Then we perform a nondemoli
tion measurement of the photon number in that state and
perform the optimum USD measurement of polarizati
given the number of photons found. Such a measurem
only exists when one found three or more photons and
resulting probability of successful discrimination betwe
the four phases is

Ppol
(4)512e22uau2@A2 sinh~A2uau2!12cosh~A2uau2!21#,

~19!

which is plotted in Fig. 2. Since this measurement wou
require a quantum-nondemolition measurement of pho
number and an unspecified optimum USD measuremen
polarization on Fock states it may not be implemented us
just linear optics and photodetectors.

E. NÌ4

It is easy to generalize the simple schemes of Secs. I
and III D to N.4. Make N copies of the stateuaeif/AN&
and test each of them for one of the phasesfk52pk/N. The
probability to detect at least one photon inN21 of those
measurements is

P̃BS
(N)5 )

k51

N21

~12e2uau2/Nue2p ik/N21u2!. ~20!

For smalluau2 this expression reduces to@13#

P̃BS
(N)'

uau2(N21)

NN21 )
k51

N21

ue2p ik/N21u25
uau2(N21)

NN23
. ~21!

The optimal USD probability scales as

PD
(N)'

Nuau2(N21)

~N21!!
. ~22!

This shows that the simple scheme is far from optimal
large N: For small amplitudesa the ratio of the two prob-
abilities scales asP̃BS

(N)/PD
(N)}e2N for largeN.
3-4



li
o

ot
ne

.
fo

a
n

or

ac

gu-

e

t

ore
mal

it

-
the
en
ree
SD
iver
es
a
t to

tion
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One straightforward generalization of the more comp
cated beam splitter schemes of Secs. III A–III D consists
first making M copies of uaeif/AM &, then useN phase
elimination setups until one of those setups detects a ph
after which the remainingN21 phases are tested, etc. Defi
um to be the phase eliminated at themth step. With the
further definitions

Am[ueium21u2,

A>m[ (
n5m

N21

An ,

sm5

M2 (
j 51

m21

~N2 j 11!kj

N2m11
, ~23!

the probability to succeed in USD is then

PBS
(N)5 lim

M→`
(

$u i %5p$f i %
(

k150

s1

. . . (
km50

sm

. . .

3 (
kN2150

sN21

e2kmuau2A>m /M~12e2Amuau2/M !, ~24!

where the first summation is over all the (N21)! different
orders the phasesf i ,i 51,2, . . . ,(N21) can be eliminated
This expression is not easy to evaluate analytically, but
small uau we can expand in powers ofuau and evaluate the
lowest-order nontrivial term. Starting from the last summ
tion over kN21 and working backwards to the summatio
over k1 we note that each summation gives rise to a fact

an5S n12

n11D n 1

n

AN2nuau2

M
~25!

at thenth step. The final summation then yields another f
tor s1

N215(M /N)N21 and not forgetting the factor (N21)!
n,
.

gn

.
, J
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for the summation over all permutations ofN21 phases fi-
nally leads to

PBS
(N)'~N21!!s1

N21 )
n51

N21

an5
Nuau2(N21)

~N21!!
. ~26!

Comparing this expression with Eq.~22! we see that this is
in fact optimal for smalla for any N.

IV. CONCLUSIONS

We presented linear-optics implementations of unambi
ous state discrimination measurements onN symmetric co-
herent states, that is, coherent states with known amplituda
but an unknown phase chosen from one ofN equidistant
values in the interval@0,2p). We discussed very simple bu
suboptimal schemes for the cases ofN52,3,4 that can be
very easily implemented, and we extended these to m
complicated schemes requiring feedback that are opti
@14# for small-amplitude coherent states, the relevant lim
for optical implementations of quantum cryptography.

Indeed, the setup forN54 can be fruitfully used by the
receiving end in a BB84@8# quantum key distribution proto
col with faint laser pulses. When polarization encodes
information only part of the protocol can be used, wh
phase encoding is used the full procedure applies. If th
photons in total are detected, the protocol is in fact a U
measurement, if only two photons are detected the rece
will know the bit sent by the sender in 50% of the cas
without having to exchange any basis information. If only
single photon is detected, the measurement is equivalen
the standard one required in a single-photon implementa
of the BB84 protocol.
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