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Unambiguous state discrimination of coherent states with linear optics: Application to quantum
cryptography
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We discuss several methods for unambiguous state discriminatidh syinmetric coherent states using
linear optics and photodetectors. One type of measurement is shown to be optimal in the limit of small photon
numbers for an\. For the special case &f=4 this measurement can be fruitfully used by the receiving end
(Bob) in an implementation of the Bennett-Brassard 19B884) quantum key distribution protocol using
faint laser pulses. In particular, if Bob detects only a single photon the procedure is equivalent to the standard
measurement that he would have to perform in a single-photon implementation of BB84, if he detects two
photons Bob will unambiguously know the bit sent to him in 50% of the cases without having to exchange
basis information, and if three photons are detected, Bob will know unambiguously which quantum state was
sent.
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[. INTRODUCTION (BB84) protocol [8] the signal states are weak laser pulses
(see, for instancd9]) rather than the single photons envis-
The simple fact that nonorthogonal quantum states cannatged in the original protocol. One disadvantage is that an
be perfectly distinguished lies at the basis of the quantuneavesdropper may exploit the presence of multiple photons
cryptography and quantum key distributioci@KD): An in some of the signals to gain more information and/or re-
eavesdropper is not able to determine with 100% certaintynain undetected, as has been discussed in several papers
which quantum state was sent if the alternatives were chosdi0]. We show here how the legitimite users, too, can make
from a nonorthogonal set of states. Among the various stratdse of multiple photons by improving upon the standard
egies the eavesdropper might use to gather at least somgeasurement that is used in current implementations, which
information are measurements that maximize her probabilitjndeed is tailored for the single-photon implementation. If
of guessing the state correctly. Alternatively, she might dethe quantum information is encoded in the phase of the sig-
cide to perform a measurement that allows her with somaal a strong reference pulse is needed to provide a phase
nonzero probability to learn unambiguously which state waseference. The quantum states sent may then be assumed to
sent, at the cost of sometimes getting an inconclusive resulbe pure coherent statéeelative to the reference pulse, see
The concept underlying this type of measurement, unamfll]) with known amplitudea (assumed to be reabut un-
biguous state discriminatiofUSD), was introduced for the known phases that may take one of four possible values,
case of two nonorthogonal states by Ivanovic in 1pB7and  0,7/2,7,37/2. As pointed out if6], if polarization is used
a bound on the maxium achievable success probability waisistead of phase, the signal states are mixed states, not co-

found shortly afterwardg2], herent states. Yet, as detailed below, an important part of the
following applies to both polarization and phase encoding.
P@=1—|(go|v1)], (1) In Sec. Il we formulate the problem solved in this paper.
In Sec. Il we discuss the solutions for USD fsymmetric
if |4o) and|y,) are the two states to be distinguished. coherent states fdi=2,3,4 andN>4 separately. The most

In general, a USD measurement with a nonzero probabildetailed exposition is given for the cabe=4, the case that
ity to succeed exists for any number of states provided theypplies to QKD.
are linearly independef8]. For the special case of setsNf
symmetricstates, i.e., statg$y;)}i—, . n that can be writ-
ten as{U'"Y|yy)}i_1 . n for some fixed unitary operation Il. FEORMULATION OF THE PROBLEM
U such thatUN|¢,)=|,), the optimum USD probabilities _
were found in[4]. Eavesdropping attacks using such USD ~ Suppose one has one copy of a coherent $tet’) with
measurements were analyzed #6] and USD experiments known amplitudex but an unknown phasé that may have

on polarization were reported on [i@]. Here we will con- one ofN values,¢=27k/N with k=0,1, ... ,N—1). The
sider linear optics implementations of USD measurements ot@sk is to unambiguously discriminate between thdseal-
symmetric coherent states. In particular, we show that everes. Since the set of statfsre'?k),k=0,1,...,N—1)} is

without entangled measurements and quantum nondemoliinearly independent there are, in principle, measurements
tion (QND) measurements a USD measurement with nearpossible that allow one to accomplish unambiguous state dis-
optimum success probablity is possible using just beam splitsrimination (USD) with some nonzero probability. An opti-

ters, photodetectors, and feedback. mum protocol and the corresponding maximum probabilities
The motivation for this is as follows: In virtually all ex- P(DN) have been derived i4]: Defining probability ampli-
perimental implementations of the Bennett-Brassard 1984udes|c,|? for k=0, ... N—1 by
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B.N=2

N—1
1 . 2,27} IN
2__ —2mijk/Ng|a JIN—71
|cul N JZO e 2mikiNglel e ) 2 This case is straightforward and known. It basically is a

measurement in a particular “basis” specified by two phase
(N) : . . values apart. Take the stateve' ¢y and put it on a 50/50
Egrdihs dt?)termlned by the smallest of these amplitudes, aC aam splittexi.e.,t= 12 andr =i/12) with the statéi a),
9 such that the two output modes are coherent states with am-
plitudes|a(e'®+1)/\2), and measure photons on both out-

puts. Since¢ is either 0 orm the probability to detect a
photon is 0 in one output mode, and-&~2/%” in the other.
If a photon is detected one can eliminate one of the two
Sossible values o#h, and thus the probability of USD with

PMW=N min |c/> 3
k=0...N-1

The question considered here is what USD probabm&)
can one reach while using just beam splitters, photodetector

» eam splitters is
feedback, and the ability to produce known coherent states o P

o o2
any amplitude? _ _ _ P@=1—g 2l (5)

To be more precise, we allow the following operations
and measurements. which is in fact equal to the optimum valu®{? .

(1) Unitary operations: take two coherent stafg$ and Alternatively one could use the phase elimination scheme

|y) (that may be known or derived from the initial unkown from Sec. Ill A to find the same optimum value. In fact,
state|€'?)) and split them on a beam splitter to get two applying that method allows one to perform an optimal USD
new coherent states as output modes, with amplitiges on two coherent states with arbitrary phasgs and ¢;.

+ryandrB+ty, interms of the transmission and reflection Namely, split the original unknown state in two equal parts
coefficientst,r of the beam splitter. |a€'#/\/2) and perform the two elimination measurements to

(2) Measurements: take a coherent output state and megtiminate¢, or ¢,. The probability of eliminating one of the
sure whether or not it contains photons with a photodetectofyg is

of efficiency 7.

(3) Feedback: some of the light may be split off to a delay PRA) — 1 g~ lal?e!fo—el 1?2 (6)
line so that subsequent measurements and unitary operations ) )
may depend on previous measurement outcomes. which is optimal and which reduces to E) for ¢o= ¢

Neither quantum-nondemolitiofQND) measurements + 7.
nor entangled measurements are considered here, as those

are far more difficult to perform with present-day technol- C.N=3
ogy. In order to analyze the cadd=3 we first consider a
simple USD setup with a reasonably high probability of suc-
Il RESULTS cess. First split the original unknown coherent state into
S three identical copiesae'?/\/3). Then use each of these
A. Eliminating one phase value three states in a phase elimination measurement setup of the

A primitive to be used later on is a simple beam splittertyPe discussed in Sec. IllA. With the help of Ee}) the
setup that allows one with a finite probability to eliminate Probability to eliminate two out of three phases is
one particular value of the phase of a coherent state with =(3)_ la?\2
known amplitude. Take the stdtee'?) with unknown phase Pgs=(1—e )7 ™
and combine it on a beam splitter with the known COherenEince|ei %— el 4112=3 for all three possible pairs of different
state| ge'%0) with B=—t/ra and ¢ the phase we wish to | | “This function is plotted in Fig. 1.
ellml_nate. By taking the limit ot—_>1 gndr—>0 one will get One can improve upon this simple strategy by splitting
(besides a useless output that is discardedoherent state he state into many small-amplitude coherent states and try-
|“(e_l¢_el¢°)>' (Note this corresponds to a displacement OPring to eliminate one of the phases first, and then using the
eration) If a photon is detected in this stafe cannot have  niimal method to distinguish the remaining two possibili-
the valueg,. The probability of such a detection eventis jag. So, first makeV copies (with M—x) of the state
P (b= |)51_e*vlalzlei¢*9i¢"|z @ |a.eiff’/\/.ﬁ). Then keep feeding copie_s in the thr'ee phase
A 0 ’ elimination setups until one of them gives a positive result.
Subsequently use the rest of the light to elinate the last
which depends on the actu@inknown phase¢. We in-  phase. The probability of success is
cluded here the quantum efficieney defined as the prob-
ability of the photodetector to detect the presence of a pho-
ton. The effect of a finite efficiency is simply to effectively

M/3
P‘(33S): lim 2 ze—6k|a|2/M(1_e—3|a|2/M)

k=0
reduce the amplitude of the coherent statby a factory/7. M

In the following we present results for perfect photodetectors X (1— e—3\a|2(1—3k/M)/2)

only and the results for imperfect photodetectors can be ob-

tained by subsituting.— /7 a. =1+3e 2le’_ge-3lal2, (8)
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FIG. 1. USD forN=3 symmetric coherent states. The solid FIG. 2. USD forN=4 symmetric coherent states. The thick
curve gives the optimum success probabil?@), the dotted curve  solid curve gives the optimum success probabﬂ?@), the dotted
corresponds to a simple beam splitter measurerﬁéﬁt, and the  curve corresponds to a simple beam-splitter measureﬁgéglt and
dashed curve describes a more complicated version of the beathe dashed curve describes a more complicated version of the beam-
splitter setupP$Y. splitter setupP{¥. The thin solid curve give®(:), corresponding

to the related USD measurement on polarizatieee texk

The first line gives the probability to produce a photodetec- ) . , )

tion event after théth try in one of the two photodetectors (il(g Split the original state intdl copies of the state

that possibly could click; the second line gives the probabil @€ /\M). The optimum procedure requires taking the

ity of USD between the two remaining phase#2 apart, limit M—o but any large value oM will be sufficient in

with the light remaining at that point, with intensitw|?(1 ~ Practice. ) o

—3k/M). The functionP{Y is plotted in Fig. 1 along with (2 Choose randomly one of two "basedas in Sec.

P®) as a function of photon numbé|2 lI1B), either ¢=0,m or ¢==/2,37w/2, and perform phase

b ' measurements in the chosen basis on the subsequent copies

For small amplitudesy the minimum coefficient deter- . . .
. : I : - until a photon is detected. The probability to detect a photon
mining the optimum USD probability according to ES) is in exactlyk+1 out of a possibly tries is

always|cy_1|2. For N=3 we getP)~3|a|*2, and com-

paring this toP{~ 3| «|*2 shows our beam-splitter scheme P — g 2Ka?/M (1 _ g=2a2IM) (10
is in fact optimal for small photon numbers, but the simple i '
T2(3) | |4 . L .
scheme only reached2~|a|*. The total probability to succeed in finding a photon is
5.2
D.N=4 Pi=1-e % (11

The case oN=4 symmetric coherent states is particu- s probability is larger than the probability for a photon to
larly relevant for QKD: As mentioned in the Introduction the pe found in the original signal state, simply because the mea-

four signal states in standard implementations of the BB84,,-ament procedure itself doubles the number of photons on
protocol [8] using phase encoding are symmetric coherent e age. If one insists on using classical intuition, however,

states. Because of its relevance we describe the measuremgng surprising that in half of the cases the receiver manages

in more detail. _ _ to measure the phase setting used by the sender no photons
But first, we consider the simple scheme for the cdse \,ouid have been found in the signal state.

=4 consisting of splitting the coherent state into four equal (3) If a photon was detected in one basis in the previous

pgrtslag‘ #)12 and feeding thes_e_ four states into fOUT_ phasestep’ then we perform phase measurements in the other basis
elimination setups. The probability to detect photons in threg), tne remaining copies until a photon is detected. If in the

of those measurements is previous step exactlg+ 1 copies were used, the probability
~ lal2 lal2 to detect a photon after exactiy+ 1 out of the remaining
PEd=(1—e ")2(1—e"eh), ©  M—k-1 tries is

which is plotted in Fig. 2. Py — g~ 2ma®IM (1 _ g=2a%IM) (12)

The full measurement procedure that can be used in BB84
and that generalizes the near-optimum measurement from tfiéhe total probability to detect at least two photons in total
preceding section, consists of four steps. (one in this step, one in the previgus
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M-1 ) ) s the phase of the signal states is defined relative to a reference
P,= >, e 2keIM(] g 2a%My(] _ g=2(M—k-1)a®/M) pulse of amplitudexr/\/2 with the effective signal states hav-
k=0 ing the same amplitude.
—1_e207_ Me*2“2(e2“2”‘"—1) (13) The measurement procedure for phase encoding consid-
' ered above requires for the first two photodetection events
In the limit of M — o this reduces to only reference pulses of the same amplitude as the signal.
This part of the procedure thus carries directly over to the
P2_>1_ef2a2_2a2e72a2. (14)  Polarization case. It is only for the detection of the third

photon, the part completing the USD measurement, that one
For smalle, P,~2a* which is larger by a factor of 4 than needs to know the absolute phase of the signal states. This
the probability to find at least two photons in the original part, therefore, cannot be used for the polarization case. In-
state for smalla. With 50% probability theclassical bit ~ stead, Ref[6] gives an ingenious argument to derive the
values corresponding to the two outcomes obtained in thi@Ptimum USD measurement for this case: produce a state
and the previous step will coincide. In that case, Bob knows«) of a mode with polarizatior orthogonal to that of the
which classical bit Alice sent without having to exchange ynknown statécall it €’). The combined state can be written
basis informatior(in this sense this is like the Bennett 1992 55 5 coherent state with amplitud,@a with an unknown
protocol[12], and as such probably secur# the two clas- polarization €+ e4&’)/\Z. Then we perform a nondemoli-

sical bit values obtained by Bob are different, then only Alice . )
. . ion measurement of the photon number in that state and then
will have to reveal what basis she used for Bob to know Wha%

state Alice had sent. Of course if in such a case the eaveg__erform the optimum USD measurement of polarization

dropper detected two photons as well, this would not be sed!ven the number of photons found. Such a measurement
only exists when one found three or more photons and the

cure. However, the fact that Bob detected two photons does ; . AT
. resulting probability of successful discrimination between
not imply that Eve detected two photons. the four bhases is
(4) If a photon was detected in the previous step, take the P
remainder of the light and feed equal amounts in two phase , olal? ) ) )
elimination setups corresponding to the two remainingpfaole—e |22 sini(y2] a|?) + 2costiy2| a|?) — 1],
phases. The probability to detect another photon, and thus to (19

unambiguously determine the quantum state, is o o ) .
which is plotted in Fig. 2. Since this measurement would

P3:1_ef(Mfkfm)a2/M_ (15) require a quantum-nondemolition measurement of photon
number and an unspecified optimum USD measurement of
The total USD probability is then polarization on Fock states it may not be implemented using
just linear optics and photodetectors.
M-1 M—k—2
P(B4S): kzo e—2ka2/M(1_e—2a2/M) mzo e—Zmaz/M(l E N>4

It is easy to generalize the simple schemes of Secs. IlIC
and 1lID to N>4. Make N copies of the statéae'?/\N)
and test each of them for one of the phaggs 27wk/N. The
probability to detect at least one photon -1 of those
measurements is

_e72a2/M)(1_eflalz(lf(kJrl)/Mf(m+1)/M)), (16)
which in the limit M — oo simplifies to

PW_1+3e 24 2|a|2e 2l —ge 19 (17)

P4

-1
This function is plotted in Fig. 2 together with the optimum PO = (1— e lel?/Nle?mIN=1j2) (20)
P& as a function of photon numbp#|2. For small|a|?, the k=1
more complicated scheme is optimBiR~2|«|%/3, but the
simple scheme only reach®§2~|a|®/4.

To conclude this section, we consider the case where po-

For small|a|? this expression reduces 3]

o . | |2(N—1)N—1 | |2(N—1)
larization is the degree of freedom used to encode informa- PO~ @ H |e2mikIN_ 1|2 @ (21)
tion. As mentioned before, the quantum states of the signals BST NN-T it NN-3
are mixed states. More precisely, the four signal states can be
represented by density matrices of the form The optimal USD probability scales as

pk:fd_¢|a/\/Eei¢><a/\/§ei¢|®|a/\/Eei(¢+¢k)> (N) NJa? 1)

X{al 26T ), (18) , , , _
This shows that the simple scheme is far from optimal for

with ¢, =2mk/4 for k=0, . ..,3 andwhere the two modes largeN: For small amplitudesy the ratio of the two prob-
correspond to two orthogonal polarizations. One could sabilities scales aBP{2/P3=e~N for largeN.
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One straightforward generalization of the more compli-for the summation over all permutations Mf-1 phases fi-
cated beam splitter schemes of Secs. Ill A—Ill D consists ohally leads to

first making M copies of |a€'?/\M), then useN phase

elimination setups until one of those setups detects a photon N—1 N|a|2N-1D
after which the remaininl — 1 phases are tested, etc. Define =

0., to be the phase eliminated at timath step. With the
further definitions

Amzleiom_ 1|21
N—1

Aop= 2 An,
n=m

m—1

M— > (N—j+1)k
=1

Sm= N—m+1 ’ @3

the probability to succeed in USD is then

S; Sm
PIY= lim
VI T e PR el km=0
SN-1
% 2 efkmla\zAZm/M(l_efAm|a|2/M), (24)
kn_1=0

where the first summation is over all thél{1)! different
orders the phaseg; ,i=1,2,...,N—1) can be eliminated.

POY~(N—1)!s)™t (26)

i TN

Comparing this expression with ER2) we see that this is
in fact optimal for smalla for any N.

IV. CONCLUSIONS

We presented linear-optics implementations of unambigu-
ous state discrimination measurementsNbsymmetric co-
herent states, that is, coherent states with known ampliude
but an unknown phase chosen from oneNofequidistant
values in the interval0,27). We discussed very simple but
suboptimal schemes for the casesNf2,3,4 that can be
very easily implemented, and we extended these to more
complicated schemes requiring feedback that are optimal
[14] for small-amplitude coherent states, the relevant limit
for optical implementations of quantum cryptography.

Indeed, the setup fo=4 can be fruitfully used by the
receiving end in a BB848] quantum key distribution proto-
col with faint laser pulses. When polarization encodes the
information only part of the protocol can be used, when
phase encoding is used the full procedure applies. If three
photons in total are detected, the protocol is in fact a USD

This expression is not easy to evaluate analytically, but formeasurement, if only two photons are detected the receiver
small |a| we can expand in powers d)'fy| and evaluate the will know the bit sent by the sender in 50% of the cases
lowest-order nontrivial term. Starting from the last summa-Without having to exchange any basis information. If only a
tion over ky_; and working backwards to the summation Single photon is detected, the measurement is equivalent to
overk; we note that each summation gives rise to a factor the standard one required in a single-photon implementation

n+2
n+1

"1 AN—n|a’|2
n M

a,= (295

of the BB84 protocol.
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