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Experimental realization of a continuous version of the Grover algorithm
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A continuous, analog version of the Grover algorithm is realized using NMR. The system stutfild is
a liquid-crystal medium. The presence of quadrupolar coupling makes thd s@if2 nucleus a two-qubit
system. Applying a specially designed pulse sequence, the time evolution of the spin-density operator is
described in an interaction representation that has no external time-dependent radio-frequency fields. This
approach is used to implement one instance of the continuous Grover search for the transform of a uniform
state to a target state, and the implementation provides a clear physical interpretation of the algorithm. The
experimental results are in good agreement with the theory.
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[. INTRODUCTION delays related to the coupling constants to perform unitary
operations. However, it has been pointed @it that the

The idea of a quantum computer was first proposed bysrover quantum search can be achieved by a continuous
Feynman in 19821]. He noted that simulating quantum dy- €evolution of an initial state under the influence of a time-
namics using classical computers is intrinsically difficult, be-independent Hamiltonian. We have realized such a method
cause the memory space and processing time required to pé&xperimentally, and the results are reported here. The NMR
form the simulation grow exponentially with the size of the System used is a spin-3/2 nucleus showing well-defined
quantum system to be simulated. He suggested that this diguadrupole splitting. Nuclei with=3/2 in ordered environ-
ficulty might be overcome by performing quantum simula-ments can form two-qubit systeris4—-16, and nuclei with
tions on quantum simulators, which are devices whosé=7/2 can form three-qubit systeris7—-19.
memory space and processing time grow only as a small
polynomial in the size of the quantum system to be simu- Il. THE FARHI-GUTMANN-FENNER APPROACH
lated. No one was sure how to use quantum effects to speed . . . .
up computation until 1994, when Shor discovered a polyno- 10 P& specific, let us consider a two-qubit system with
mial time quantum algorithm for factoring integdi. four marked p's'eudopure states and a uniform $satevhich

Feynman's quantum computEs] essentially operates as 'S @ Superposition of the four marked states
an analog computer: it is a quantum system whose dynamics 1 0
can be programmed to mimic the dynamics of the quantum
system of interest. However, most quantum algorithms have lwo) =
been realized using an algorithmic approach, when a physi-
cal system works like a digital quantum computer. The
Grover algorithm[4] is an important digital quantum algo-
rithm, and is the basis of quantum search. Its first analog
analog was described by Farhi and Gutmghi Later, Fen-
ner found a time-independent Hamiltonian for a system of
guantum bits that results in time evolution matching Grov-
er’s iteration exactly6].

Several different techniques have been used to construtt the following, the binary notationgwg)=|00), |w;)
prototype quantum computefg]. Among these, NMR is the =|01), |w,)=|10), and |wz)=|11) are used for the
best developed experimental approd@h-11]. It has been pseudopure states.
used to carry out a number of quantum simulations and Farhi and Gutmann propos¢8] that a time-independent
guantum algorithms, including the factorization of a numberHamiltonian can perform a quantum search in a database
(15=3x5) using the Shor algorithmi11]. In general, to with N items. Their Hamiltonian is the sum of two simple
carry out quantum information processing by NMR, aHamiltonians, an “oracle”|jw){w| and a “driver” Hamil-
pseudopurdeffectively puré spin statg12,13 is first pre-  tonian [s)(s|. The oracle Hamiltonian has a large
pared, followed by the application of a series of pulses with(N—1)-fold degenerate ground state and a single “marked”

excited statdw), and the driver has a larg&¢ 1)-fold de-
generate ground state and a single excited f&at€he quan-
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Hamiltonian strays far from the intermediate steps in Grov-the initial uniform state is transformed to the marked state,
er's algorithm; nevertheless, the commutator of an “oracle”i.e., expEiHete) |S)=|w,).
and a “driver” gives the adequate Hamiltonian.

The Fenner Hamiltonian for our system(@etails that can

be found in[6] are omittedl 1. IMPLEMENTATION
The system studied i$Na, which has spin=3/2, in a
He=2QFi (|W,)(s| —|s){Ws]|) liguid-crystalline medium. For this system in the presence of
00 -1 0 a large magnetic field, the Hamiltonian can be writte h2:8
(throughout the paper we uge=1)
o 0 0 -1 0 .
= FI s
11 0 1 Ho=— w71+ wol12—1(1+1)/3)/4. (4)
0 0 -1 0

where Q¢ is an adjustable amplitude. It was shown that, if When oz> szequPz(cose)_, where the second-order
the time intervalts is such that Legendre polynomiaP,(cosé) is the order parameter, the
quadrupole interaction acts as a perturbation to the Zeeman
20 cte=2[7—2 cos }(0.5)]/v3=1.2092, (3) interaction, so that

3 1
_sz+4_‘er 0 0 0
1 1 e 0 0 O
0 T 2977 4% 0 0 0 ¢ 0 O
Ho= 0 0 T . o 0 & of ®)

2927 3% 0 0 0 e

0 0 0 +§wz+1w

2 479

The general form of the radio-frequen@y) Hamiltonian  operator does not need to preserve its original férinand

can be written as can be shaped to have, in principle, any matrix eleménts

our system the triple-quantum transition frequency is the
Hi(t)=wq(t)ly, (6) same as the frequency of the central single-quantum transi-

tion, so that two of the matrix elements cannot be easily

where w4(t) is a time-dependent function ard is the ob-  created.

servable operator for this system expressed by the matrix ~ To analyze one of several possibilities, let us consider a

three-frequency rf Hamiltonian:

V3
0 —-i— O 0
2
i g 0 —ij 0 H1=2[ Q09 wpt + ¢p2) + 15,04 w1t + ¢1)
ly= VR (7) +Q23C08 wast + ¢23) ]y, 8
0 i 0 —i—
'2
V3 where();; , wj;, andg;; are the amplitudes, frequencies, and
0 0 = 0 phases of the three harmonics, respectively. Here the fre-
quencies are chosen to fulfill the resonant conditians
Our goal is to construct the Fenner Hamiltoni@husing =€1— €, w3=€;— €3 (single-quantum transitions and

an adequate choice of the functien(t). For thel =3/2 spin  wp,=(€g— €,)/2 (double-quantum transition For further
system, the four energy levels are not equally spaced, so thabnsideration, the rf Hamiltonia(8) is split into a secular
six different frequencies can be applied to excite thredime-independent part and a nonsecular oscillating (besre
single-quantum transitions, two double-quantum transitionsand in the following we do not use any special notation for
and one triple-quantum transition. As a consequence, the dperators in the interaction representation definedy:
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FIG. 1. (1) Schematic pulse sequencal double quantum 90° pulséh) selective 180° pulsdr) three-frequency inverse Grover pulse;
(d) three-frequency direct Grover pulge) monitoring /20 pulse(ll) The corresponding spin states in vector notat{tih) The spin states
in a notation showing excess populations in the four energy levels. It should be noted thét)simteot diagonal and has off-diagonal
matrix elements(IV) Expected spectra after applying a monitoring pulse after each step.

Ha(t)=H5H HIOMSeEt), (9) cies are set to the correct values @f,, w3, and wqy,
respectively, the rf Hamiltonian takes the time-independent
form

where the time-independent terms are 0 0 _ngg 0
0 0 —iQq, 0
Sec_ se se ) ) V3
Hi <1|H1 (12>+<2|H1 (11> Hy= |ng2f Q9 0 —j ?023 (12)
+(2|H3%13) +(3|H1*12) /i
= 05((1]14]2)+(2[14]1)) L

+Q 2|1 +{3|1vy|2)). 1
2 (2[1v13)+(3[1v12) 10 4 finally shape the Hamiltoniafi1) into the Fenner Hamil-

tonian form(2), it is necessary to adjust the laboratory-frame
Because the matrix elemet®|ly|2) (as well as(2|1y|0))  rf amplitudesQg,, Q,, and Q,3 in such a way that the
vanishes, and the time-dependent rf perturbation cannaghagnitudes of all nonzero matrix elements in Efjl) are
cause any transitions froff) to |2) at first order, the ampli- equal to the Fenner constaflf: .
tude of the transition is determined by the second-order ma-
trix element. The general formula for the intensity of NMR off 2
multiple-quantum transitions can be obtained from perturba- 902291227923=QF' (12)
tion theory[21], and the expression for the double-quantum
transition in spin-3/2 systems is quite simp&2]. Experi- This adjustment was accomplished by a calibration proce-
mentally, we used a calibration procedure to determine thelure. Three independent experiments were performed. In
value of the rf amplitudeQ)q, which gives the right value each of them the duration of a pulse was fixedttg,
Qg;f. When the condition is fulfilled and the pulse frequen- =2000us and only one frequency was excited. When irra-
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FIG. 2. Experimental spectra recorded after applying the following pulse sequences to the system in thermal eq@iliri2d); (b)
(DQ-90°—(7/20); (c) (DQ-909—(SQ-180j—(7/20); (d) (DQ-909—(SQ-180j—(inverse Grover pulge(7/20); (e) (DQ-90°—(SQ-180)—
(inverse Grover pulge(Grover pulsg—(7/20). They correspond to the schematic expected spectra in Rigvwi V).
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diating only one transition the system can be considered asnd monitoring pulse—but all amplitudes are shown ap-
effective spin 1/223,24 with the usual Pauli matrix trans- proximately equal to fit the picturghe real amplitude of the
formation rule Grover pulse double-quantum component is about seven
times more that of single-quantum components, as discussed
in the previous section
=coq2wt)o,+sin(2wt) oy (13) (1) The first step is the preparation of the ground
pseudopure stat@0) from the equilibrium state using a
One starts with the equilibrium statg . Theoretically, either  double-quantum 90° puls®Q-909 with appropriate phase
the duration or the strength of the rf pulses must be proporeycling[14], Fig. 1(a,l). The pulse has a Gaussian shape, and
tional to yN. In practice, the pulse amplitude can only bethe length was 2.00 ms.
calibrated experimentally because it is determined by the real (2) The second step is the transformation of this
rf power, but the rf amplifier is not truly linear and the tuning pseudopure ground state to another pseudopure staje
of the probe is sample dependent. Therefore, the rf powerf0£|01> using a selective 180° single-quantum pul&Q-
any specific frequency is adjusted to produce the sigle 1809, Fig. 1(b,l). The pulse has a Gaussian shape, and the
that gives the max?mum signal, and it gives the relation|ength was 1.50 ms.
20t o=m/2. In this way, it was found that the values (3) The next step is the transformation of thve,)=|01)
21,=62.5Hz, (13=72.2 Hz, and(2p,=458.5Hz gave the  gia4e 1o the uniform statie) using the inverse Grover itera-
same(le . tion, Fig. 1(c,l). The pulse length was 1.54 ms.
By modulating the phase and amplitude of the rf carrier, ) j . : .
y 9 P p ', (4) The last step is the transformation of the uniform state

the three different frequencies with the amplitudes specifie B . . .
above can be applied simultaneously to fulfill the conditionﬁ:?é rt10 é?ge rfgﬁl)(e$hséa;g|v§é_|!r1&hu32§ sl'éici CSE-ZOr\:]eSI‘ ltera-

set in Eq.(8). Then, equal matrix elements in the represen-"" . . .
a.(8) g P Figure 1 also shows the vector notation of the spin state

tation given in Eq(11) can be created. The Fenner tite L
which is necessary to achieve the full coherence transfer b&/ter each stegrow I1), the scheme of excess population in

tween the uniform state and a target state, can be calculaté@® four energy levelgrow Iil), and the expected spectrum
as follows. In addition to the conditio®¢t.,,= /4 used (row 1V) after the application of a nonselectiv#20 pulse to

during the calibration, one can see from H@) that the Monitor the populations on all energy levels of each state.
Fenner time satisfies(2-tr~1.2092. Knowing the length of ~ The corresponding experimental spectra are shown in Fig.
the /2 pulse, t,,=2000us, one gets the valudr 2. For the system in equilibrium, Fig.(@, the integrated
~1.2092_,,/(7/2)~0.7698 _,=1540us. This value was intensity ratios of the three peaks are 3:4:3; the outer peaks
used for the Grover pulses. are considerably broadened so that their peak heights are
The experimental procedure is the following. First, one oflower. The final spectrum, Fig.(®, has a reduction in the
the pseudopure states, the marked gtate, is produced by signal intensity due to spin-lattice relaxation. Taking these
using a double-quantum 90° pulse followed by a selectivento account, the experimental results show excellent agree-
180° single-quantum pulse with phase cycl[ig]. Second, ment with the theoretical spectra depicted in Figrdw 1V).
an inverse Grover iteration is applied to transfojw) to We have presented the results of only one of four possible
the uniform statgs). Third, a direct Grover iteration is ap- Grover iterations, |s)=|10). Another Grover iteration,
plied to transforms) into the marked statpw,). A continu-  namely,/s)=|01), is the direct version of the inverse Grover
ous Hamiltonian of the fornt1l) is used for both the direct jteration (01)=|s)) used in the second step. The regulbt
Grover iteration, Eq(2), in the third step, and the inverse shown hergis similar to Fig. 2; the only difference is that

expl —iwtoy) o, exp(+iwtoy)

iteration in the second step. the last spectrurte) is replaced by spectruie) with slightly
reduced amplitudédue to spin-lattice relaxationTo con-
IV. EXPERIMENTAL RESULTS struct the two other possible Grover iteratiofs}=|00) and

The sample used was a lyotropic liquid crystal composetj,d5>:>!1l>' the trlple-qgantum transition must be excned.. As
of 37% decylsulfate, 7% decanol, and 56% water. The NMRTentioned in S_ec. IIl, in our case the fr_quency for the triple-
experiments were carried out using a Varian UNITY/INOVA guantum transitionwgs=(eo—€3)/3, coincides with that of
400 spectrometer at 22 °C, wiffiNa resonance frequency at theé central  single-quantum  transitionw;,=(e1—85)
105.79 MHz. The®Na quadrupole splittingthe full spec- [22,24. Itis necessary to use _compllcated schemes to excite
trum width) wg/27 was 10840 HzT;=16 ms; T, was 16 o_nl_y the former without aff_ectlng the latter. B_ecause of this
ms for the central peak and 4.5 ms for the outside peaks. difficulty, we have not carried out such experiments.

Our experimental procedure can be represented schemati-
cally by consecutive transformationgsystem in thermal
equilibriumj=|00)=|01)=|s)=|10), where the last step V. SUMMARY
(|sy=]10)) corresponds to one of four possible Grover itera-
tions. The schematic diagram for the pulse sequence is We have shown that the Grover quantum algorithm can be
shown in Fig. 1(row I). The diagram shows the real pulse realized in an adequate interaction representation by a time-
shapes—the Gaussian shapes for the selective pulses and thdependent Hamiltonian with all parameters well controlled
rectangular shapes for the three Grover pulse componenby the experimentalist. In summary, starting with one of the
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pseudopure states, Figbl and Fig. Zc), the superposition erated, Fig. {d) and Fig. 2e), achieving the purpose of the
of all quantum states was prepared by using an invers&rover search.

Grover operation, Fig.(t) and Fig. 2Zd). This superposition

has proper nonzero off-diagonal elements in the density ma-

trix, and is entirely different from a state in which equal ACKNOWLEDGMENTS

populations are prepared by complete rf saturation. By ap-
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