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Experimental realization of a continuous version of the Grover algorithm
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A continuous, analog version of the Grover algorithm is realized using NMR. The system studied is23Na in
a liquid-crystal medium. The presence of quadrupolar coupling makes the spinI 53/2 nucleus a two-qubit
system. Applying a specially designed pulse sequence, the time evolution of the spin-density operator is
described in an interaction representation that has no external time-dependent radio-frequency fields. This
approach is used to implement one instance of the continuous Grover search for the transform of a uniform
state to a target state, and the implementation provides a clear physical interpretation of the algorithm. The
experimental results are in good agreement with the theory.
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I. INTRODUCTION

The idea of a quantum computer was first proposed
Feynman in 1982@1#. He noted that simulating quantum dy
namics using classical computers is intrinsically difficult, b
cause the memory space and processing time required to
form the simulation grow exponentially with the size of th
quantum system to be simulated. He suggested that this
ficulty might be overcome by performing quantum simu
tions on quantum simulators, which are devices wh
memory space and processing time grow only as a sm
polynomial in the size of the quantum system to be sim
lated. No one was sure how to use quantum effects to sp
up computation until 1994, when Shor discovered a poly
mial time quantum algorithm for factoring integers@2#.

Feynman’s quantum computer@3# essentially operates a
an analog computer: it is a quantum system whose dynam
can be programmed to mimic the dynamics of the quan
system of interest. However, most quantum algorithms h
been realized using an algorithmic approach, when a ph
cal system works like a digital quantum computer. T
Grover algorithm@4# is an important digital quantum algo
rithm, and is the basis of quantum search. Its first ana
analog was described by Farhi and Gutmann@5#. Later, Fen-
ner found a time-independent Hamiltonian for a system
quantum bits that results in time evolution matching Gro
er’s iteration exactly@6#.

Several different techniques have been used to cons
prototype quantum computers@7#. Among these, NMR is the
best developed experimental approach@7–11#. It has been
used to carry out a number of quantum simulations a
quantum algorithms, including the factorization of a numb
(155335) using the Shor algorithm@11#. In general, to
carry out quantum information processing by NMR,
pseudopure~effectively pure! spin state@12,13# is first pre-
pared, followed by the application of a series of pulses w
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delays related to the coupling constants to perform unit
operations. However, it has been pointed out@5# that the
Grover quantum search can be achieved by a continu
evolution of an initial state under the influence of a tim
independent Hamiltonian. We have realized such a met
experimentally, and the results are reported here. The N
system used is a spin-3/2 nucleus showing well-defin
quadrupole splitting. Nuclei withI 53/2 in ordered environ-
ments can form two-qubit systems@14–16#, and nuclei with
I 57/2 can form three-qubit systems@17–19#.

II. THE FARHI-GUTMANN-FENNER APPROACH

To be specific, let us consider a two-qubit system w
four marked pseudopure states and a uniform stateus&, which
is a superposition of the four marked states

uw0&5S 1
0
0
0
D , uw1&5S 0

1
0
0
D , uw2&5S 0

0
1
0
D ,

uw3&5S 0
0
0
1
D , us&5

1

2 S 1
1
1
1
D . ~1!

In the following, the binary notationsuw0&5u00&, uw1&
5u01&, uw2&5u10&, and uw3&5u11& are used for the
pseudopure states.

Farhi and Gutmann proposed@5# that a time-independen
Hamiltonian can perform a quantum search in a datab
with N items. Their Hamiltonian is the sum of two simp
Hamiltonians, an ‘‘oracle’’uw&^wu and a ‘‘driver’’ Hamil-
tonian us&^su. The oracle Hamiltonian has a larg
(N21)-fold degenerate ground state and a single ‘‘marke
excited stateuw&, and the driver has a large (N21)-fold de-
generate ground state and a single excited stateus&. The quan-
tum system begins in the stateus& and is reflected into a
‘‘marked’’ state uw& after a timeO(AN). Fenner showed@6#
that, although the evolution under the Farhi-Gutmann Ham
tonian reaches the same final state as the Grover algor
does, the time evolution of the system according to
©2002 The American Physical Society10-1
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Hamiltonian strays far from the intermediate steps in Gr
er’s algorithm; nevertheless, the commutator of an ‘‘orac
and a ‘‘driver’’ gives the adequate Hamiltonian.

The Fenner Hamiltonian for our system is~details that can
be found in@6# are omitted!

HF52VFi ~ uw2&^su2us&^w2u!

5VFi S 0 0 21 0

0 0 21 0

1 1 0 1

0 0 21 0

D , ~2!

whereVF is an adjustable amplitude. It was shown that,
the time intervaltF is such that

2VFtF52@p22 cos21~0.5!#/)>1.2092, ~3!
ix

th
re
n
e

04231
-
’’

f

the initial uniform state is transformed to the marked sta
i.e., exp(2iHFtF) us&⇒uw2&.

III. IMPLEMENTATION

The system studied is23Na, which has spinI 53/2, in a
liquid-crystalline medium. For this system in the presence
a large magnetic field, the Hamiltonian can be written as@20#
~throughout the paper we use\51)

H052vZI z1vQ@ I z
22I ~ I 11!/3#/4. ~4!

When vZ@vQ5e2qQP2(cosu), where the second-orde
Legendre polynomialP2(cosu) is the order parameter, th
quadrupole interaction acts as a perturbation to the Zee
interaction, so that
H05S 2
3

2
vZ1

1

4
vQ 0 0 0

0 2
1

2
vZ2

1

4
vQ 0 0

0 0 1
1

2
vZ2

1

4
vQ 0

0 0 0 1
3

2
vZ1

1

4
vQ

D 5S e0 0 0 0

0 e1 0 0

0 0 e2 0

0 0 0 e3

D . ~5!
the
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The general form of the radio-frequency~rf! Hamiltonian
can be written as

H1~ t !5v1~ t !IY , ~6!

wherev1(t) is a time-dependent function andIY is the ob-
servable operator for this system expressed by the matr

IY5S 0 2 i
)

2
0 0

i
)

2
0 2 i 0

0 i 0 2 i
)

2

0 0 i
)

2
0

D . ~7!

Our goal is to construct the Fenner Hamiltonian~2! using
an adequate choice of the functionv1(t). For theI 53/2 spin
system, the four energy levels are not equally spaced, so
six different frequencies can be applied to excite th
single-quantum transitions, two double-quantum transitio
and one triple-quantum transition. As a consequence, th
at
e
s,
rf

operator does not need to preserve its original form~7! and
can be shaped to have, in principle, any matrix elements~in
our system the triple-quantum transition frequency is
same as the frequency of the central single-quantum tra
tion, so that two of the matrix elements cannot be eas
created!.

To analyze one of several possibilities, let us conside
three-frequency rf Hamiltonian:

H152@V02cos~v02t1w02!1V12cos~v12t1w12!

1V23cos~v23t1w23!#IY , ~8!

whereV i j , v i j , andw i j are the amplitudes, frequencies, a
phases of the three harmonics, respectively. Here the
quencies are chosen to fulfill the resonant conditionsv12

5e12e2 , v235e22e3 ~single-quantum transitions!, and
v025(e02e2)/2 ~double-quantum transition!. For further
consideration, the rf Hamiltonian~8! is split into a secular
time-independent part and a nonsecular oscillating part~here
and in the following we do not use any special notation
operators in the interaction representation defined byH0):
0-2
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FIG. 1. ~I! Schematic pulse sequence:~a! double quantum 90° pulse;~b! selective 180° pulse;~c! three-frequency inverse Grover puls
~d! three-frequency direct Grover pulse;~e! monitoringp/20 pulse.~II ! The corresponding spin states in vector notation.~III ! The spin states
in a notation showing excess populations in the four energy levels. It should be noted that state~c! is not diagonal and has off-diagona
matrix elements.~IV ! Expected spectra after applying a monitoring pulse after each step.
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H1~ t !5H1
sec1H1

nonsec~ t !, ~9!

where the time-independent terms are

H1
sec5^1uH1

secu2&1^2uH1
secu1&

1^2uH1
secu3&1^3uH1

secu2&

5V12~^1uI Yu2&1^2uI Yu1&!

1V23~^2uI Yu3&1^3uI Yu2&!. ~10!

Because the matrix element^0uI Yu2& ~as well as^2uI Yu0&)
vanishes, and the time-dependent rf perturbation can
cause any transitions fromu0& to u2& at first order, the ampli-
tude of the transition is determined by the second-order
trix element. The general formula for the intensity of NM
multiple-quantum transitions can be obtained from pertur
tion theory@21#, and the expression for the double-quantu
transition in spin-3/2 systems is quite simple@22#. Experi-
mentally, we used a calibration procedure to determine
value of the rf amplitudeV02 which gives the right value
V02

eff . When the condition is fulfilled and the pulse freque
04231
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cies are set to the correct values ofv12, v23, and v02,
respectively, the rf Hamiltonian takes the time-independ
form

H15S 0 0 2 iV02
eff 0

0 0 2 iV12 0

iV02
eff iV12 0 2 i

)

2
V23

0 0 i
)

2
V23 0

D . ~11!

To finally shape the Hamiltonian~11! into the Fenner Hamil-
tonian form~2!, it is necessary to adjust the laboratory-fram
rf amplitudesV02, V12, and V23 in such a way that the
magnitudes of all nonzero matrix elements in Eq.~11! are
equal to the Fenner constantVF .

V02
eff5V125

)

2
V23[VF . ~12!

This adjustment was accomplished by a calibration pro
dure. Three independent experiments were performed
each of them the duration of a pulse was fixed totp/2
52000ms and only one frequency was excited. When ir
0-3
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FIG. 2. Experimental spectra recorded after applying the following pulse sequences to the system in thermal equilibrium.~a! ~p/20!; ~b!
~DQ-90°!–~p/20!; ~c! ~DQ-90°!–~SQ-180°!–~p/20!; ~d! ~DQ-90°!–~SQ-180°!–~inverse Grover pulse!–~p/20!; ~e! ~DQ-90°!–~SQ-180°!–
~inverse Grover pulse!–~Grover pulse!–~p/20!. They correspond to the schematic expected spectra in Fig. 1~row IV!.
042310-4
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EXPERIMENTAL REALIZATION OF A CONTINUOUS . . . PHYSICAL REVIEW A 66, 042310 ~2002!
diating only one transition the system can be considered
effective spin 1/2@23,24# with the usual Pauli matrix trans
formation rule

exp~2 ivtsy!sz exp~1 ivtsy!

5cos~2vt !sz1sin~2vt !sx . ~13!

One starts with the equilibrium statesz . Theoretically, either
the duration or the strength of the rf pulses must be prop
tional to AN. In practice, the pulse amplitude can only
calibrated experimentally because it is determined by the
rf power, but the rf amplifier is not truly linear and the tunin
of the probe is sample dependent. Therefore, the rf powe
any specific frequency is adjusted to produce the statesx
that gives the maximum signal, and it gives the relat
2VFtp/25p/2. In this way, it was found that the value
V12562.5 Hz, V23572.2 Hz, andV025458.5 Hz gave the
sameVF .

By modulating the phase and amplitude of the rf carr
the three different frequencies with the amplitudes speci
above can be applied simultaneously to fulfill the conditi
set in Eq.~8!. Then, equal matrix elements in the represe
tation given in Eq.~11! can be created. The Fenner timetF ,
which is necessary to achieve the full coherence transfer
tween the uniform state and a target state, can be calcu
as follows. In addition to the conditionVFtp/25p/4 used
during the calibration, one can see from Eq.~3! that the
Fenner time satisfies 2VFtF'1.2092. Knowing the length o
the p/2 pulse, tp/252000ms, one gets the valuetF
'1.2092tp/2 /(p/2)'0.7698tp/251540ms. This value was
used for the Grover pulses.

The experimental procedure is the following. First, one
the pseudopure states, the marked stateuw1&, is produced by
using a double-quantum 90° pulse followed by a selec
180° single-quantum pulse with phase cycling@15#. Second,
an inverse Grover iteration is applied to transformuw1& to
the uniform stateus&. Third, a direct Grover iteration is ap
plied to transformus& into the marked stateuw2&. A continu-
ous Hamiltonian of the form~11! is used for both the direc
Grover iteration, Eq.~2!, in the third step, and the invers
iteration in the second step.

IV. EXPERIMENTAL RESULTS

The sample used was a lyotropic liquid crystal compo
of 37% decylsulfate, 7% decanol, and 56% water. The NM
experiments were carried out using a Varian UNITY/INOV
400 spectrometer at 22 °C, with23Na resonance frequency a
105.79 MHz. The23Na quadrupole splitting~the full spec-
trum width! vQ/2p was 10 840 Hz.T1516 ms; T2 was 16
ms for the central peak and 4.5 ms for the outside peaks

Our experimental procedure can be represented schem
cally by consecutive transformations:@system in thermal
equilibrium#⇒u00&⇒u01&⇒us&⇒u10&, where the last step
(us&⇒u10&) corresponds to one of four possible Grover ite
tions. The schematic diagram for the pulse sequenc
shown in Fig. 1~row I!. The diagram shows the real puls
shapes—the Gaussian shapes for the selective pulses an
rectangular shapes for the three Grover pulse compon
04231
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and monitoring pulse—but all amplitudes are shown a
proximately equal to fit the picture~the real amplitude of the
Grover pulse double-quantum component is about se
times more that of single-quantum components, as discu
in the previous section!.

~1! The first step is the preparation of the grou
pseudopure stateu00& from the equilibrium state using a
double-quantum 90° pulse~DQ-90°! with appropriate phase
cycling @14#, Fig. 1~a,I!. The pulse has a Gaussian shape, a
the length was 2.00 ms.

~2! The second step is the transformation of th
pseudopure ground state to another pseudopure stateuw1&
5u01& using a selective 180° single-quantum pulse~SQ-
180°!, Fig. 1~b,I!. The pulse has a Gaussian shape, and
length was 1.50 ms.

~3! The next step is the transformation of theuw1&5u01&
state to the uniform stateus& using the inverse Grover itera
tion, Fig. 1~c,I!. The pulse length was 1.54 ms.

~4! The last step is the transformation of the uniform st
us& to the marked stateuw2&5u10& using direct Grover itera-
tion, Fig. 1~d,I!. The pulse length was also 1.54 ms.

Figure 1 also shows the vector notation of the spin st
after each step~row II!, the scheme of excess population
the four energy levels~row III !, and the expected spectrum
~row IV! after the application of a nonselectivep/20 pulse to
monitor the populations on all energy levels of each stat

The corresponding experimental spectra are shown in
2. For the system in equilibrium, Fig. 2~a!, the integrated
intensity ratios of the three peaks are 3:4:3; the outer pe
are considerably broadened so that their peak heights
lower. The final spectrum, Fig. 2~e!, has a reduction in the
signal intensity due to spin-lattice relaxation. Taking the
into account, the experimental results show excellent ag
ment with the theoretical spectra depicted in Fig. 1~row IV!.

We have presented the results of only one of four poss
Grover iterations, us&⇒u10&. Another Grover iteration,
namely,us&⇒u01&, is the direct version of the inverse Grove
iteration (u01&⇒us&) used in the second step. The result~not
shown here! is similar to Fig. 2; the only difference is tha
the last spectrum~e! is replaced by spectrum~c! with slightly
reduced amplitude~due to spin-lattice relaxation!. To con-
struct the two other possible Grover iterations,us&⇒u00& and
us&⇒u11&, the triple-quantum transition must be excited. A
mentioned in Sec. III, in our case the frequency for the trip
quantum transition,v035(«02«3)/3, coincides with that of
the central single-quantum transition,v125(«12«2)
@22,24#. It is necessary to use complicated schemes to ex
only the former without affecting the latter. Because of th
difficulty, we have not carried out such experiments.

V. SUMMARY

We have shown that the Grover quantum algorithm can
realized in an adequate interaction representation by a ti
independent Hamiltonian with all parameters well controll
by the experimentalist. In summary, starting with one of t
0-5
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pseudopure states, Fig. 1~b! and Fig. 2~c!, the superposition
of all quantum states was prepared by using an inve
Grover operation, Fig. 1~c! and Fig. 2~d!. This superposition
has proper nonzero off-diagonal elements in the density
trix, and is entirely different from a state in which equ
populations are prepared by complete rf saturation. By
plying a continuous Grover operation on this uniform sup
position of quantum states, another pseudopure state is
on

os
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erated, Fig. 1~d! and Fig. 2~e!, achieving the purpose of th
Grover search.
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