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Multipartite classical and quantum secrecy monotones
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In order to study multipartite quantum cryptography, we introduce quantities which vanish on product
probability distributions, and which can only decrease if the parties carry out local operations or public
classical communication. These ‘‘secrecy monotones’’ therefore measure how much secret correlation is shared
by the parties. In the bipartite case we show that the mutual information is a secrecy monotone. In the
multipartite case we describe two different generalizations of the mutual information, both of which are
secrecy monotones. The existence of two distinct secrecy monotones allows us to show that in multipartite
quantum cryptography the parties must make irreversible choices about which multipartite correlations they
want to obtain. Secrecy monotones can be extended to the quantum domain and are then defined on density
matrices. We illustrate this generalization by considering tripartite quantum cryptography based on the
Greenberger-Horne-Zeilinger state. We show that before carrying out measurements on the state, the parties
must make an irreversible decision about what probability distribution they want to obtain.
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I. INTRODUCTION

Quantum cryptography uses the uncertainty principle
quantum mechanics to allow two parties to communicate
cretly @1#. It has been extensively studied during the la
decade both theoretically and experimentally~see, e.g.,@2#
for a review!. The basic idea of a quantum cryptograph
protocol is that two parties, Alice and Bob, use a quant
communication channel to exchange an entangled s
CAB . Local measurements yield correlated results and al
them to obtain a certain number of shared secret bitsPAB

2

uncorrelated with Eve, defined by the probability distributi
PAB

2 (0,0)5PAB
2 (1,1)51/2. These resulting secret bits ca

then be used for secure cryptography, using, e.g., the
time pad scheme. An eavesdropper, Eve, will necessarily
turb the quantum stateCAB when attempting to get informa
tion on the secret bits, and will therefore be detected by A
and Bob. A central problem of quantum cryptography is
establish the maximum rate at which Alice and Bob can
tablish a secret key for a given level of disturbance by E

Independently of quantum cryptography, Maurer has
troduced a paradigm for classical cryptography based
probabilistic correlations between two parties, Alice a
Bob, and an eavesdropper Eve@3#. Specifically, suppose tha
Alice, Bob, and Eve have several independent realization
their three random variables, each distributed according
the probability distributionPABE . The goal is for Alice and
Bob to distill, from these realizations, a maximal number
shared secret bitsPAB

2 . The tools available to Alice and Bo
to perform this distillation are local operations and classi
public communications~LOPC!. An important question is to
estimate the maximum rate at which the parties can gene
the secret bits. Bounds on this secret bits distillation r
have been obtained in@4#.

Quantum cryptography and Maurer’s cryptographic pa
digm are closely related. Indeed, after measuring their qu
1050-2947/2002/66~4!/042309~13!/$20.00 66 0423
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tum bits, the partiesA, B, andE end up in exactly the situa
tion considered by Maurer. Therefore, distillation protoco
used in Maurer’s cryptographic scheme can be adapted to
quantum situation@5#. Moreover, ideas from quantum cryp
tography and quantum information theory have illuminat
the structure of Maurer’s cryptographic scheme@6#.

In this paper, we will consider multipartite cryptograph
both from the point of view of Maurer’s classical crypto
graphic scheme and from the point of view of quantum cry
tography. As in the papers mentioned above, these two
proaches are complementary. We show that putting id
from these two approaches together provides insights
multipartite cryptography. Let us first consider the extens
of Maurer’s cryptographic scenario to more than two parti
One supposes that the different partiesA1 ,A2 , . . . ,An ,E
possess independent realizations ofn11 random variables
distributed according to the multipartite probability distrib
tion PA1A2•••AnE , whereE denotes the eavesdropper, as b
fore. In this case, however, it is not obvious what the goa
the parties should be. For instance, in the case of three
ties, one possible aim of the distillation process could be
maximize the resulting number of random bits shared
tween pairs of partiesPAB

2 PBC
2 PCA

2 . Another goal could be to
generate efficiently the tripartite probability distributionP3

defined byPABC
3 (0,0,0)5PABC

3 (1,1,1)51/2. This probabil-
ity distribution allows any one of the parties to encrypt
message~by XORing it with his random variable and publicly
communicating the result! in such a way that it can be de
crypted by both the other parties independently. A third p
sibility could be to generate the probability distributionPABC

x

in which any two random variables are independent rand
bits, while the third one is theXOR of the other two bits,
PABC

x (0,0,0)5 PABC
x (1,1,0)5 PABC

x (1,0,1)5 PABC
x (0,1,1)

51/4. This probability distribution allows any one of th
parties to encrypt a message~by XORing it with his random
variable and publicly communicating the result! in such a
©2002 The American Physical Society09-1
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way that it can only be decrypted if the other two parties
together and compute theXOR of their two random bits. This
is known as secret sharing, see@7# for a discussion of quan
tum secret sharing.

One main result of the present paper is to show that in
multipartite case, the parties must decide before they star
distillation protocol which probability distribution they wan
to obtain. Making the wrong choice entails an irreversib
loss. For instance, the parties will, in general, obtain m
tripletsP3 if they directly distill toP3 than if they first distill
to another kind of probability distribution, say shared ra
dom bits between pairs of partiesPAB

2 PBC
2 PCA

2 , and subse-
quently try to generateP3 from these pairs of random bits
More generally, we address in this paper the question of
convertibility, using LOPC, of one multipartite probabilit
distribution into another one.

As mentioned above, these issues can be generalize
quantum-mechanical systems in the context of quan
cryptography. We thus aim at addressing the same ques
of convertibility between quantum multipartite density o
erators in this paper. An important potential application
this extension is to provide bounds on the yields of multip
tite quantum cryptography. Indeed, in quantum cryptograp
the parties start with a quantum state~in general, a mixed
state! and, by carrying out local operations, measureme
and classical communication, they aim at obtaining a mu
partite classical probability distribution~which can of course
be viewed as a particular kind of mixed quantum sta!.
Bounds on the interconvertibility of multipartite quantu
states have been studied by several authors~see, for instance
@8–11#!, but most of this work has focused on pure stat
The interconvertibility of mixed states, and, in particular, a
plications to multipartite cryptography, have so far been re
tively little studied. As an illustration, we consider in deta
the case of quantum cryptography based on the Greenbe
Horne-Zeilinger ~GHZ! state CGHZ5(u000&1u111&)/A2.
By measuringCGHZ in the z basis the parties can obtain th
probability distributionP3, while by measuring in thex ba-
sis, they can obtain the probability distributionPx. We show
that the parties cannot obtain more than oneP3 or one Px

distribution per GHZ state. Combining this with the boun
stated above, we see that when extracting correlations f
the GHZ state, the parties must make an irreversible ch
of what kind of tripartite correlations they want to obtain.

In order to study these interconvertibility issues, we ha
developed a tool that we callsecrecy monotones. These are
functions of the multipartite probability distributions~or,
more generally, of the quantum density operators! that can
only decreaseunder local operations and public classic
communication. Therefore, comparing the value of
monotone on the initial and the target probability distributi
allows one to obtain an upper bound on the number of r
izations of the target probability distribution that can be o
tained from the initial probability distribution. In fact, th
upper bounds obtained in@3# and in @4# on the secret key
distillation rate in the bipartite case can be reexpresse
terms of the existence of certain bipartite secrecy monoto

Monotones have proved to be extremely useful for
study of quantum entanglement~see, for instance,@12#!, in
04230
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which context they are called entanglement monotones.
study of secrecy monotones is closely inspired by th
works on entanglement monotones. Entanglement mo
tones are positive and vanish on unentangled density m
ces, which implies that they measure the amount of entan
ment in a density matrix. In a similar way, secre
monotones are positive and vanish on product probab
distributions~or product density operators!, so that they mea-
sure the amount of both classical and quantum correlat
between the parties. In the present paper, we introduce
information-theoretic multipartite secrecy monotones~called
Sn andTn), which can be viewed as the multipartite exte
sion of the~classical or quantum! mutual information of a
bipartite system. The definition of the quantum mutual inf
mation was discussed in@13#, and its use in the context o
quantum channels was investigated in detail in@14#. Here,
this quantity is shown to be a monotone and is extended
multipartite systems. In particular, we discuss several ap
cations of these monotones to the special case of three
ties.

The paper is organized as follows. The initial sections
the paper are devoted exclusively to the classical sec
monotones. We begin in Sec. II by giving a general definit
of classical secrecy monotones and studying the implicati
of this definition. In Sec. III we introduce two specific mu
tipartite secrecy monotonesSn andTn , which are the multi-
partite generalization of the bipartite mutual entropy. Most
this section is devoted to proving that these functions o
all the properties of a secrecy monotone. In Sec. IV, we
these two secrecy monotones to study the particular cas
tripartite cryptography. In particular we address the quest
raised above concerning the interconvertibility under LO
of the probability distributionsPAB

2 , PBC
2 , PCA

2 , PABC
3 , and

PABC
x . Finally, in Sec. V, we study the generalization of th

classical secrecy monotones to quantum mechanics. In
ticular, we show that the monotonesSn andTn have natural
quantum analogs that have important applications to mu
partite quantum cryptography. As an illustration, we stu
bounds on quantum cryptography based on the GHZ sta

II. PROPERTIES OF SECRECY MONOTONES

A. Defining properties

A secrecy monotone is a functionM defined on multipar-
tite probability distributionsPA1A2 . . . AnE which obeys a se-
ries of properties, which we now review and explain.~We
restrict ourselves to the classical case, the quantum case
be analyzed in Sec. V.! We will denote the monotone by
either M (PA1A2•••AnE) or M (A1 :A2 :•••:An :E) where the
semicolons separate the different parties.

The first two properties ensure thatM provides a measure
of the amount of correlation between the parties.

~a! Semi-positivity.

M ~PA1A2•••AnE!>0. ~1!

~b! Vanishing on product probability distributions.
9-2
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If PA1A2•••AnE5PA1EPA2E•••PAnE ,

then M ~PA1EPA2E•••PAnE!50. ~2!

The next two properties express the monotonicity ofM
under LOPC, namely, the fact thatM can only decrease i
one of the parties performs some local operation~e.g., ran-
domization! or publicly discloses~partly or completely! the
value of his variable. Thus, these monotonicity propert
imply that M describes the amount of correlation not sha
with Eve. They also makeM useful for studying the convert
ibility of one probability distribution into another.

~c! Monotonicity under local operations. Suppose that
partyAj carries out a local transformation that modifiesAj to
Āj according to the conditional probability distributio
PĀj uAj

. ThenM can only decrease:

if PA1•••Āj •••AnE5PĀj uAj
PA1•••Aj •••AnE ,

then M ~PA1•••Āj •••AnE!<M ~PA1•••Aj •••AnE!. ~3!

~d! Monotonicity under public communication. Suppose
that party j publicly discloses the value ofĀj , where Āj
depends onj ’s variableAj according to the conditional prob
ability distributionPĀj uAj

. ThenM can only decrease on av
erage:

M ~PA1•••Aj¯AnEuĀj
!<M ~PA1•••Aj •••AnE!. ~4!

The next two properties are important if the secre
monotone is to provide information on the asymptotic rate
convertibility of one probability distribution into another. B
this, we mean that the parties initially have a large numben
of realizations of the probability distributionP1 and want to
obtain a large numberm of realizations of the probability
distribution P2. Property~e! ensures that one can use t
monotoneM to study the asymptotic limitn,m→`. Property
~f! allows one to study the situation where one does not w
to obtain the exact probability distribution (P2) ^ m, but only
a probability distribution that is close to (P2) ^ m.

~e! Additivity.

M ~P1
^ P2!5M ~P1!1M ~P2!. ~5!

Note that one may also impose only the weaker condit
M (P^ n)5nM(P) ~see@12# for a motivation for considering
only this weaker condition in the case of entanglement!.

~f! Continuity. M (P) is a continuous function of the prob
ability distribution P. We will not make more explicit the
condition that this imposes onM since the monotones w
will explicitly describe below are highly smooth functions
P. We refer to@12# where a weak continuity condition i
introduced and motivated in the context of entanglement

Finally, we introduce two additional properties which a
natural to impose if the monotone is to measure the amo
of secrecy shared by the partiesA1•••An , with E viewed as
a hostile party. Indeed, these final properties express the
that the secrecy can only increase ifE looses information
04230
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either by performing some local operation or by public
disclosing~in part or totally! his variable.

~g! Monotonicity under local operations by Eve. Suppose
that Eve carries out a local transformation which modifiesE

to Ē according to the conditional probability distributio
PĒuE . ThenM can only increase:

if PA1•••AnĒ5PĒuEPA1•••AnE ,

then M ~PA1•••AnĒ!>M ~PA1•••AnE!. ~6!

~h! Monotonicity under public communication by Ev.
Suppose that Eve publicly discloses the value ofĒ, whereĒ
depends on Eve’s variableE according to the conditiona
probability distributionPĒuE . ThenM can only increase on
average:

M ~PA1•••AnEuĒ!>M ~PA1•••AnE!. ~7!

B. Consequences of the defining properties

1. Upper bound on the yield

The most important consequence of the above prope
is that a monotone allows one to obtain a bound on the
at which a multipartite probability distributionP1 can be
converted into another probability distributionP2 using
LOPC. Suppose that the parties are able, using LOPC
convertn realizations ofP1 into some realization of a prob
ability distribution P28 which is close tom independent re-
alizations of the desired probability distributionP2:

~P1! ^ n →
LOPC

P28.~P2! ^ m. ~8!

The yield of this distillation protocol is defined as

YP1→P25
m

n
. ~9!

The existence of a secrecy monotoneM allows us to put a
bound on the yield. Indeed, from Eq.~8!, we have

M „~P1! ^ n
…5nM~P1!>M ~P28!.mM~P2!, ~10!

where we have used the defining properties ofM ~additivity,
monotonicity, and continuity!. Hence, using the positivity o
M, we obtain

YP1→P2<
M ~P1!

M ~P2!
. ~11!

2. Monotones that do not involve Eve

In practice, it is much easier to construct a restricted ty
of monotonesM that are only defined on probability distr
butions PA1A2•••An

that do not depend onE. These simple
monotones are therefore applicable only to the cases w
9-3
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Eve initially has no information about the probability distr
bution. It is these monotones which we will consider in mo
of this paper.

Importantly, one can easily extend such monotonesM to
more general monotonesM defined on probability distribu-
tions PA1A2•••AnE that also include initial correlations with
Eve. The simplest way to carry out this extension is to c
culate the probability distributionsPA1A2•••AnuE conditional
on Eve’s variableE, and then to average the value ofM over
the conditional probability distribution. This yields a mon
toneM1:

M1~PA1A2•••AnE!5(
E

P~E!M ~PA1A2•••AnuE!.

The monotoneM1 thus constructed obeys property~h!, but
in general does not obey property~g! @4#.

In order to obtain a monotone that obeys both proper
~g! and~h!, before computing the conditional probability di
tribution PA1A2•••AnuE , we first need to take the minimum

over Eve’s operations. This transforms the variableE into Ē

according toP(ĒuE). This procedure yields a new monoton
M ↓ :

M ↓~PA1A2•••AnE!5 min
P(ĒuE)

(
Ē

P~Ē!M ~PA1A2•••AnuĒ!.

~12!

Note that it is this second procedure that was used in@4# to
obtain a strong upper bound on the rate of distillation o
secret key.

3. Extending monotones to more parties

A monotone defined on ann-partite probability distribu-
tion can be extended in a natural way to a monotone o
m-partite probability distribution withm.n. Let us illustrate
this procedure in the case of a bipartite monotoneM2(A:B)
extended to a tripartite case. An example of a tripar
monotone for the variablesA, B, andC is simplyM2(AB:C)
and can be interpreted as the bipartite monotone wh
would be obtained if partiesA andB get together. We can o
course group the parties in many different ways, and the
fore M2(AC:B) and M2(BC:A) are two other independen
tripartite monotones. These three monotones are dis
from the genuinely tripartite monotones that can be c
structed onPABC , as we will show later on, and lead t
independent conditions on the convertibility of tripartite d
tributions.

III. TWO CLASSICAL MULTIPARTITE
SECRECY MONOTONES

We now introduce two information-theoretic multiparti
secrecy monotones forn parties A1 , . . . ,An ~with n>2)
sharing some classical probability distributionPA1•••An

. We
shall suppose that Eve initally has no knowledge about
probability distribution. The generalization to the case wh
the probability distribution depends onE can, in principle, be
04230
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done as discussed in Sec. II B 2, although we do not know
a systematic way to carry out the minimization over Ev
operations used to obtain the monotoneM ↓ in Eq. ~12!.

A. Amount of shared randomness between the parties:Sn

The first multipartite secrecy monotone is denoted bySn
and is defined by

Sn~A1 :•••:An!5H~A1•••An!

2(
i 51

n

H~Ai uA1•••Ai 21Ai 11•••An!,

~13!

whereH(A) denotes the Shannon entropy of variableA dis-
tributed as PA , that is, H(A)52(apa log2 pa . Here
H(AuB) denotes the conditional entropy and is defined
H(AuB)5H(AB)2H(B).

In order to provide a physical interpretation toSn , we
note that the first term on the right-hand side of Eq.~13! is
the total randomness of the probability distributionPA1•••An

,
whereas the subtracted terms are the amounts of random
that are purely local to each party. ThusSn measures the
number of bits of shared randomness between then parties
~irrespective of them being shared between two, three
more parties, but not including the local randomness!. On the
basis of this interpretation it is natural that if one of th
parties publicly reveals some of his data, this will decrea
Sn since the total number of bits of shared randomness
decreased. This remark suggests thatSn should be a secrecy
monotone. That this is indeed the case will be proven bel

We begin by introducing two alternative expressions
Sn :

Sn~A1 :•••:An!5(
i 51

n

H~A1•••Ai 21Ai 11•••An!

2~n21!H~A1•••An! ~14!

and

Sn~A1 :•••:An!5I ~A1 :A2A3•••An!

1 (
i 52

n21

I ~Ai :Ai 11•••AnuA1•••Ai 21!,

~15!

where I (A:B)5H(A)1H(B)2H(AB) is the mutual infor-
mation between A and B, while I (A:BuC)5H(AC)
1H(BC)2H(C)2H(ABC) is the conditional mutual in-
formation betweenA and B given C. The proof of these
different equivalent expressions follows from the followin
recurrence relation forSn :

Sn~A1 :•••:An!5Sn21~A1 :•••:An21An!

1I ~An21 :AnuA1•••An22!. ~16!
9-4
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These expressions allow us to derive the following sim
properties ofSn :

~1! Sn is symmetric under the interchange of any tw
partiesAi andAj . This follows from Eq.~13!.

~2! Sn is semipositive. This follows from Eq.~15! and
from the positivity of the conditional mutual entrop
I (A:BuC)>0, which itself follows from the strong subbad
tivity of Shannon entropies.@ThusSn statisfies condition~a!
for a secrecy monotone.#

~3! Sn is additive@thus it satisfies condition~e! for a se-
crecy monotone#.

~4! Sn vanishes on the product probability distributionP
5PA1

PA2
. . . PAn

@thus it satisfies condition~b! for a secrecy
monotone#.

~5! For two partiesS2 is the mutual information,

S2~A:B!5H~A!1H~B!2H~AB!5I ~A:B!. ~17!

~6! Sn is a continuous function ofPA1•••An
@thus property

~f! of secrecy monotones is satisfied#.

B. Local increase in entropy to erase all correlations:Tn

The second secrecy monotone is defined as

Tn~A1 :•••:An!5(
i 51

n

H~Ai !2H~A1•••An!. ~18!

In order to interpret this quantity we note that it is equal
the minimum relative entropy between the probability dis
bution PA1•••An

and any product probability distributio

QA1
QA2

•••QAn
~with the minimum being attained when th

QAi
are equal to the local distributionsPAi

):

Tn~A1 :•••:An!5D~PA1•••An
uuPA1

PA2
•••PAn

!

5 min
QA1

QA2
•••QAn

D~PA1•••An
uuQA1

QA2
•••QAn

!,

~19!

where D(PAuuQA)5(aP(a)log2@P(a)/Q(a)# is the relative
entropy between the distributionsP andQ. In order to give
an interpretation toTn , we turn to the recent work of Vedra
@15# ~see also the review@16#!, who gave an interpretation o
a related quantity, the relative entropy of entanglement
the minimum increase of entropy ofclassically correlated
environments needed to erase all correlations between
parties sharing an entangled state.~The relative entropy of
entanglement is the minimum relative entropy between
entangled state and any separable state.! This argument can
easily be extended to the present situation whereupon
finds thatTn is the minimum increase of entropy of loc
uncorrelatedenvironments if the parties erase all correlatio
between them by interacting locally with their environme

To proceed, we note thatTn obeys the recurrence relatio

Tn~A1 :•••:An!5Tn21~A1 :•••:An21!1I ~An :A1•••An21!,

~20!
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which allows us to derive the following expression:

Tn~A1 :•••:An!5I ~A1 :A2!1 (
i 52

n21

I ~A1•••Ai :Ai 11!.

~21!

These expressions allow us to derive the following sim
properties ofTn :

~1! Tn is symmetric under the interchange of any tw
partiesAi andAj . This follows from Eq.~18!.

~2! Tn is semipositive. This follows from Eq.~21!.
~3! Tn is additive.
~4! Tn vanishes on product probability distributionP

5PA1
PA2

•••PAn
.

~5! For two partiesT2 is the mutual information,

T2~A:B!5H~A!1H~B!2H~AB!5I ~A:B!. ~22!

~6! Tn is a continuous function of the probability distribu
tion PA1•••An

.

C. Relation betweenSn and Tn

For two parties,Sn andTn coincide and are equal to th
mutual entropy between the parties. Thus,Sn andTn can be
viewed as two~generally distinct! multipartite extensions of
the mutual information of a bipartite system. That these t
generalizations are generally distinct follows from the fo
lowing relation between the two monotones:

Sn~A1 :•••:An!1Tn~A1 :•••:An!

5(
i 51

n

I ~Ai :A1•••Ai 21Ai 11•••An!. ~23!

This expression will prove important in the interpretation
the monotones in the quantum case.

Let us note that linear combinations ofTn andSn of the
form

Mn5lSn1~12l!Tn , ~24!

with 0<l<1, are monotones as well. For the case of th
parties, we will prove below thatonly for this range ofl is
Mn a monotone.

We have already shown thatSn andTn satisfy the require-
ments ~a!,~b!,~e!,~f! for being a secrecy monotone. Let u
now show that they also satisfy conditions~c! and~d!. @Con-
ditions ~g! and~h! will not be considered, since initially Eve
has no information about the probability distribution.#

D. Monotonicity of Sn and Tn under local operations

We now prove thatSn can only decrease under local o
erations. Local operations by partyj correspond to carrying
out a local transformation which modifiesAj to Āj according
to the conditional probability distributionPĀj uAj

. For ex-

ample, let us chooseAn to undergo such a transformation
We want to prove first that
9-5
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Sn~A1 :•••:An!>Sn~A1 :•••:Ān!. ~25!

Using Eqs.~20! and ~23!, we find

Sn~A1 :•••:An!52Tn21~A1 :•••:An21!

1 (
i 51

n21

I ~Ai :A1•••Ai 21Ai 11•••An21An!.

~26!

Clearly, only the second term on the right-hand side is
fected by the local operation onAn . As a consequence of th
data processing inequality~see, e.g.,@17#!, one can show tha
each term of the summation can only decrease under
transformationAn→Ān ,

I ~Ai :A1•••Ai 21Ai 11•••An21An!

>I ~Ai :A1•••Ai 21Ai 11•••An21Ān!. ~27!

For example, consider the termi 51 and write the mutua
information I (A1 :A2•••AnĀn) in two equivalent ways:

I ~A1 :A2•••An21Ān!1I ~A1 :AnuA2•••An21Ān!

5I ~A1 :A2•••An!1I ~A1 :ĀnuA2•••An!. ~28!

We haveI (A1 :ĀnuA2•••An)50 sinceA1 andĀn are condi-
tionally independent givenAn . Using strong subadditivity
I (A1 :AnuA2•••An21Ān)>0, we conclude that I (A1 :
A2•••An)>I (A1 :A2•••An21Ān). Finally, asSn is symmet-
ric in all Aj , this proof is actually valid for local operatio
performed by all parties.

In order to prove the monotonicity ofTn under local op-
erations, we assume, as above, thatAn undergoes a loca
transformation toĀn , and prove that

Tn~A1 :•••:An!>Tn~A1 :•••:Ān!. ~29!

Using Eq.~20!, we have

Tn~A1 :•••:An21 :Ān!5Tn21~A1 :•••:An21!

1I ~Ān :A1•••An21!. ~30!

Again, due to the data processing inequality, the second t
on the right-hand side cannot increase as a result of the l
transformation onAn , while the first term remains un
changed. This proves Eq.~29!. Consequently, asTn is sym-
metric in allAj ’s, it can only decrease under local operatio
of any party.

E. Monotonicity of Sn and Tn under public
classical communication

Now, let us consider the monotonicity ofSn andTn under
classical communications. Here, classical communica
means that one party makes its probability distribut
~partly or completely! known to all the other parties. Say, w
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choose the partyA1 to makeĀ1 known to the public, where
Ā1 is drawn from the conditional probability distributio
PĀ1uA1

. We want to prove thatSn is a monotone, that is,

Sn~A1 :•••:An!>Sn~A1 :•••:AnuĀ1!, ~31!

with the right-hand side term being the monotoneSn calcu-
lated from the probability distributionPA1•••AnuĀ15a , aver-

aged over all valuesa of Ā1, or

Sn~A1 :•••:AnuĀ1!5(
i 51

n

H~A1•••Ai 21Ai 11•••AnuĀ1!

2~n21!H~A1•••AnuĀ1!. ~32!

Using Eq.~15!, we have

Sn~A1 :•••:AnuĀ1!5I ~A1 :A2•••AnuĀ1!

1 (
i 52

n21

I ~Ai :Ai 11•••AnuA1•••Ai 21Ā1!.

~33!

The knowledge ofĀ1 clearly only changes a conditional mu
tual information ifA1 is not given. This is only the case in
the first term on the right-hand side of the above equati
Finally, we can prove that this term only decreases un
classical communication by writing the mutual informatio
I (A1Ā1 :A2•••An) in two equivalent ways,

I ~A1 :A2•••An!1I ~Ā1 :A2•••AnuA1!

5I ~Ā1 :A2•••An!1I ~A1 :A2•••AnuĀ1!. ~34!

We haveI (Ā1 :A2•••AnuA1)50 sinceĀ1 is independent of
A2•••An conditionally onA1. Then, usingI (Ā1 :A2•••An)
>0, we find that

I ~A1 :A2•••An!>I ~A1 :A2•••AnuĀ1!, ~35!

which proves thatSn is a monotone when partyA1 makesĀ1
public. SinceSn is symmetric in all parties, we have als
proven that it decreases on average under classical com
nication between all parties.

Let us finally prove the monotonicity ofTn under classical
communications. If one of the parties, sayA1, makesĀ1
public, thenTn changes according to

Tn~A1 :•••:An!>Tn~A1 :•••:AnuĀ1!, ~36!

with the right-hand side term being the monotoneTn for the
probability distributionPA1•••AnuĀ15a , averaged over all val-

uesa of Ā1, or

Tn~A1 :•••:AnuĀ1!5(
i 51

n

H~Ai uĀ1!2H~A1•••AnuĀ1!.

~37!
9-6
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Using Eq.~21!, we have

Tn~A1 :•••:AnuĀ1!5 (
i 51

n21

I ~A1•••Ai :Ai 11uĀ1!. ~38!

As proven above, we have for all the terms on the right-ha
side,

I ~A1•••Ai :Ai 11!>I ~A1•••Ai :Ai 11uĀ1!, ~39!

which proves thatTn can only decrease under public com
munication of one party. This is true for all parties sinceTn is
a symmetric quantity.

IV. TRIPARTITE CLASSICAL SECRECY MONOTONES

A. Five independent tripartite secrecy monotones

For three partiesA, B, andC, we have a closer look at th
above secrecy monotones for classical probability distri
tions. We start by writing the monotones explicitly in term
of entropies or mutual informations:

S3~A:B:C!5H~AB!1H~BC!1H~AC!22H~ABC!

5I ~A:BC!1I ~B:CuA!, ~40!

T3~A:B:C!5H~A!1H~B!1H~C!2H~ABC!

5I ~A:B!1I ~AB:C!. ~41!

In addition to these two tripartite monotones, we a
have three other monotonesS2(A:BC)5I (A:BC),
S2(B:AC)5I (B:AC), and S2(C:AB)5I (C:AB), which
consist of evaluating the bipartite monotoneS2 on the prob-
ability distribution obtained by grouping together any two
the three parties. Thus, there is a total of five tripartite
crecy montones. These monotones are not all linearly in
pendent as Eq.~23! shows. However, none of these mon
tones can be written as a linear combination of the ot
monotones with only positive coefficients. For this reas
these five monotones give independent constraints on
transformations that are possible under LOPC.

B. Five particular probability distributions

We begin by using these five tripartite monotones to
vestigate in detail five particular tripartite probability distr
butions. These five probability distributions play a particu
role since they are, in a sense made precise below, the
treme points in a convex set. These five distributions con
of three bipartite distributions

PAB
2 ~0,0!5PAB

2 ~1,1!51/2, ~42!

PAC
2 ~0,0!5PAC

2 ~1,1!51/2, ~43!

PBC
2 ~0,0!5PBC

2 ~1,1!51/2 ~44!

and two tripartite distributions

PABC
3 ~0,0,0!5PABC

3 ~1,1,1!51/2 ~45!
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PABC
x ~0,0,0!5PABC

x ~1,1,0!5PABC
x ~1,0,1!5PABC

x ~0,1,1!

51/4. ~46!

The first three probability distributions, Eqs.~42!–~44!, are
perfectly correlated shared random bits between two of
three parties; the fourth probability distribution, Eq.~45!, is
one shared random bit between the three parties; and the
probability distribution, Eq.~46!, corresponds to the cas
where two parties have independent random bits while
third party has the exclusiveOR ~XOR! of these bits.

Table I lists for each of these probability distributions t
values of the five tripartite monotones.

C. Converting a probability distribution into another

We can use this table to study which probability distrib
tions can be converted into which others, and with wh
yield. The first thing we note from the table is that it forbid
the conversion of a probability distributionPABC

x into a prob-
ability distribution PABC

3 and vice versa, asS3(PABC
x )

.S3(PABC
3 ) andT3(PABC

3 ).T3(PABC
x ). This can be under-

stood in the following way. The number of shared rando
bits underlying the distributionPABC

x is two ~two parties
must have uncorrelated random bits!, while it is only one for
the distributionPABC

3 ~where the three parties share one co
mon bit!. Since the number of shared bitsS3 is a monotone,
one cannot go fromPABC

3 to PABC
x . On the other hand, the

number of bits that must be forgotten~or put in the environ-
ment! in order to get three independent bits is equal to t
for the distributionPABC

3 ~two parties, sayB and C, must
randomize their bits!, while it is only one for the distribution
PABC

x ~where it is enough that partyC forgets its bit in order
to get three independent bits!. Since the numberT3 of bits
that must be forgotten to get independent distributions i
monotone, one cannot go fromPABC

x to PABC
3 .

The above table also suggests that distillation procedu
of the formPABC

x →PAB
2 or PABC

3 →PAB
2 are possible. This is

indeed the case: starting fromPABC
x , the partyC simply has

to make its bit public in order to getPAB
2 , thereby reducing

by one the number of shared bitsS3. If we start withPABC
3

instead, the partyC has to forget its bit, i.e., send it throug
a channel that completely randomizes it. Thus, one bit m
be forgotten, reducing by one the monotoneT3.

TABLE I. Values of the secrecy monotonesS2, S3, T3 in the
case of the joint probabilitiesP2, P3, Px.

S2(A:BC) S2(B:AC) S2(C:AB) S3(ABC) T3(ABC)

PAB
2 1 1 0 1 1

PAC
2 1 0 1 1 1

PBC
2 0 1 1 1 1

PABC
3 1 1 1 1 2

PABC
x 1 1 1 2 1
9-7



es
th

s

u

t

th
no
t

i-
te

e
rt

sly
?

ab
rt

s
a

po

t
-
o
n
-
a

ne
ib
is

nd

ted

d
osi-

N. J. CERF, S. MASSAR, AND S. SCHNEIDER PHYSICAL REVIEW A66, 042309 ~2002!
The transformations PABC
3 ^ 2→PABC

x and PABC
x ^ 2

→PABC
3 are also allowed by the above table of monoton

and we can check that they can actually be achieved. If
probability distribution isPABC

3 ^ 2 and the parties want to
convert it intoPABC

x , thenA has to forget the first of the two
bits it has,B has to forget the second, andC just takes the
sum of the two bits it has, forgetting the individual value
Thus, three bits must be forgotten, reducing the value ofT3

from 4 to 1. To convertPABC
x ^ 2 into PABC

3 is a little bit more
complicated. We start withA having the bitsx and x8, B
having the bitsy and y8, and C having the bitsx1y and
x81y8. Now A makesx public andB makesy8 public. From
this, C can calculatey as well asx8. Then,C makesy1x8
public, which allowsA ~who still has x8) to calculatey.
Thus, every party knows the secret bity, so we have got
PABC

3 . Here, three bits must have been made public, red
ing the value ofS3 from 4 to 1.

The above table leaves open the question whether
conversion

PABC
x

^ PABC
3 
PAB

2
^ PBC

2
^ PAC

2 ~47!

is possible. We have not been able to devise a protocol
carries out this transformation. Such a protocol should
make any bit public, nor should the parties be allowed
forget a bit in order to keep the values ofSn andTn constant.
Ruling out this possibility would probably require an add
tional independent monotone, and the five monotones lis
above are the only ones we know at present.

Let us note that in order to carry out the above conv
sions, we sometimes had to suppose that one of the pa
forgets some of his information. In practice, this is obviou
a stupid thing to do. Why to forget something you know
However, there may be an accident, say an irrecover
hard disk crash, such that one of the parties has lost pa
all of his data. In this case, the monotoneTn constrains how
much secrecy is left among the parties. It would be intere
ing and important to study the restricted class of transform
tions in which the parties never forget their data~they would
only be allowed to communicate classically!. This would im-
pose another constraint on the transformations that are
sible.

D. Extremality of the five tripartite probability distributions

The above discussion raises the general question of
reversibleconversion of one probability distribution into an
other. By this we mean that, in the limit of a large number
draws, it is possible to go from one probability distributio
P1 to anotherP2 and back with negligible losses. In particu
lar, in the tripartite case, one can enquire whether there
yields y1 , . . . ,y5 such that the reversible conversion

PABC
PAB
2^ y1^ PBC

2^ y2^ PAC
2^ y3^ PABC

x^ y4^ PABC
3^ y5 ~48!

is possible. Let us show that the five secrecy monoto
introduced above leave open the possibility of the revers
distillation of Eq.~48!. Whether this is possible in practice
an open question.
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To prove this, let us introduce the following notation:

r 5I ~A:BuC!,

s5I ~B:CuA!,

t5I ~C:AuB!,

u5I ~A:B!2I ~A:BuC!. ~49!

Let us note thatu is symmetric between the three parties a
can also be written asu5I (B:C)2I (B:CuA)5I (C:A)
2I (C:AuB). These different quantities can be represen
graphically as in Fig. 1.

Given these quantities we can expressS3 andT3 as

S35r 1s1t1u, ~50!

T35r 1s1t12u. ~51!

We note thatu is not positive definite, but the additivity an
strong subadditivity of Shannon entropies impose the p
tivity conditions

r>0,

s>0,

t>0,

r 1u>0,

s1u>0,

t1u>0. ~52!

Using these conditions, one can show that ifu50, then the
reversible conversion

PABC
PAB
2^ y1^ PBC

2^ y2^ PAC
2^ y3

is allowed by our tripartite monotones. Ifu.0, then the
reversible conversion

PABC
PAB
2^ y1^ PBC

2^ y2^ PAC
2^ y3^ PABC

3^ y5

is allowed by our tripartite monotones. Ifu,0, then the
reversible conversion

PABC
PAB
2^ y1^ PBC

2^ y2^ PAC
2^ y3^ PABC

x^ y4

FIG. 1. Venn diagram for a tripartite probability distribution.
9-8
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is allowed by our tripartite monotones.
Thus our monotones, in principle, allow the reversib

conversion between any tripartite probability distribution a
the distributions PAB

2 , PBC
2 , PAC

2 , PABC
x , and PABC

3 .
Whether or not such a reversible transformation is possib
an open question. To rule this out will probably require d
covering additional secrecy monotones.

E. Extremality of the monotonesS3 and T3

As a final comment about the secrecy monotones in
tripartite case, we note that using the distillation procedu
for PABC

x →PAB
2 and PABC

3 →PAB
2 , we can now also prove

that 0<l<1 is the only range for which the linear comb
nation of S3 and T3 is a monotone. This can be seen
calculating M35lS31(12l)T3 for both distillations. In
the first case, we get thatM3(PABC

x )5l11 should be
greater or equal toM3(PAB

2 )51, so thatl>0. In the second
case, we find thatM3(PABC

3 )522l>M3(PAB
2 )51, so that

l<1. This suggests that if there are other monotones t
the Mn’s, they will probably not be composed out of entr
pies.

V. QUANTUM MULTIPARTITE SECRECY MONOTONES

A. Definition of quantum secrecy monotones

The definition of classical secrecy monotone of Sec. I
can be immediately extended to the quantum case. In
case where there is no eavesdropper, the monotone will
be a function defined on multipartite density matric
rA1•••An

which must be~1! semipositive,~2! vanishing on

product density matricesrA1
^ •••^ rAn

, ~3! monotonic un-
der local operations@local completely positive~CP! maps#,
~4! monotonic under public classical communication,~5! ad-
ditive, ~6! continuous.

One can also extend the quantum definition of the secr
monotone to the case where there is an eavesdropper. In
case, it is defined on a multipartite density matrixrA1•••AnE .
The monotonicity properties are then modified to require t
the secrecy montone is monotonically decreasing under l
operations and public communication by the part
A1•••An and monotonically increasing under local ope
tions and public communication by Eve.

In what follows, we shall for simplicity not include Eve i
the discussion, just as we did in the classical case. Tha
we shall suppose that initially Eve has no information ab
the density matrix, but she listens to all public communic
tions and thereby tries to thwart the partiesA1•••An .

B. Quantum version of the secrecy monotonesSn and Tn

The definitions of the monotonesSn and Tn , Eqs. ~14!
and ~18!, have straightforward generalizations to the qua
tum case:

Sn~ r̂A1•••An
![S~A1 :•••:An!5(

i 51

n

S~ r̂A1•••Ai 21Ai 11•••An
!

2~n21!S~ r̂A1•••An
! ~53!
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Tn~ r̂A1•••An
![T~A1 :•••:An!5(

i 51

n

S~ r̂Ai
!2S~ r̂A1•••An

!,

~54!

where nowS( r̂) denotes the von Neumann entropy of
density matrix, which is given byS( r̂)52Tr( r̂ log2 r̂), and
partial traces are written in the formr̂A1•••Ai 21Ai 11•••An

5TrAi
( r̂A1•••An

).

The different rewritings ofSn @Eqs. ~13!, ~15!, and ~16!#
andTn @Eqs.~20! and~21!# that were obtained in the class
cal case carry through to the quantum case, in analog
what was shown for bipartite systems in@13#. This means
that the simple properties that followed from these rewritin
in the classical case also hold in the quantum case. In
ticular, the positivity of theSn andTn follows from the posi-
tivity of the conditional mutual entropy, which holds in bot
the classical and quantum case~see@18# for a review!. The
proofs of monotonicity are more involved in the quantu
case, so we give them below.

Let us note that, for pure states,Sn andTn coincide and
are equal to the sum of the local entropies:

Sn~ ucA1•••An
&)5Tn~ ucA1•••An

&)5(
i 51

n

S~ r̂Ai
!. ~55!

Thus, for instance, on a singlet state,S2 andT2 are equal to
2, and on a GHZ state,S3 andT3 are equal to 3.

We do not at present have a clear interpretation ofSn in
the quantum case. The reason is thatSn measures both the
classical and the quantum correlations and does not dis
guish them. On the other hand, the interpretation ofTn in the
quantum case is the same as in the classical case. Inde
can be written as the minimum relative entropy betwe
r̂A1•••An

and a product density matrixĥA1
^ •••^ ĥAn

~the

minimum being attained whenĥAi
5 r̂Ai

). Therefore,Tn can
be interpreted as the minimum increase of the entropy
local ~uncorrelated! environments if the parties erase all co
relations between them by letting their quantum systems
teract with their local environment.

C. Monotonicity of Sn and Tn

We now give the proofs of monotonicity ofSn and Tn
under local operations and public classical communication
the quantum case.

Local operations of one party are described mathem
cally as local CP mapsMAi

, which only act on the subspac

of the i th party. We can assume that such a map is imp
mented as follows@20,21#: Ai adds to its Hilbert space th
Hilbert space of an ancillaHi

aux . The ancilla’s initial state is
PH

i
aux5u0&H

i
aux̂ 0u. It then carries out a unitary transforma

tion ÛAiHi
aux on its original system and the auxiliary variabl

Finally, it traces over a partHi8 of its Hilbert space. Note tha
9-9
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Hi8 does not have to coincide withHi
aux . Hence, we can

represent a local CP map as

r̃A1•••An
5MAi

^ 1A1•••Ai 21Ai 11•••An
~ r̂A1•••Ai

!

5TrH
i8
@~ÛAiHi

aux^ 1A1•••Ai 21Ai 11•••An
!

3~ r̂A1•••An
^ PH

i
aux!

3~ÛAiHi
aux

†
^ 1A1•••Ai 21Ai 11•••An

!#. ~56!

We start withSn and write it in the following form:

Sn~A1 :•••:An!5 (
i 51

n21

S2~Ai :A1•••Ai 21Ai 11•••An21An!

2Dn ~57!

with

Dn5 (
i 51

n21

S~ r̂Ai
!2S~ r̂A1•••An21

!. ~58!

Now we assume that the systemAn undergoes a local CP
mapMn , Eq. ~56!. As Dn does not depend onAn it remains
unchanged, thus we only have to checkS2 for monotonicity.
For this we rewrite Eq.~56! for two systemsA andB,

r̃AB5MA^ 1B~rAB!5Tra8@~UAa^ 1B!rAB^ Pa~UAa
†

^ 1B!#

~59!

and note that neither adding a local auxiliary systema nor
performing a unitary transformation changesS2. Tracing
over a local subsystem, however, decreasesS2 since

S2~A8H8:B!2S2~A8:B!5S~H8:BuA8!, ~60!

which is just the conditional mutual quantum entropy a
which, due to strong subadditivity@18#, is semipositive, thus
implying that

S2~A8H8:B!>S2~A8:B!. ~61!

Due to symmetry,Sn given by Eq.~57! is then monotonic
under local CP maps of any party.

For monotonicity under local measurements and pu
communication of their outcome, we assume that a posi
operator valued measurement~POVM! @21# is performed on
systemA1. This is realized by adding as above an anc
PH

1
aux to A1 and then carrying out a von Neumann measu

ment that transformsr̂A1•••An
^ PH

1
aux to

r̃H
1
auxA1•••An

5(
k

r̂H
1
auxA1•••An

k
5(

k
pkr̃H

1
auxA1•••An

k
,

~62!

with
04230
c
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r̂H
1
auxA1•••An

k
5~ P̂H

1
auxA1

k
^ 1A2•••An

!~ r̂A1•••An
^ PH

1
aux!

3~ P̂H
1
auxA1

k
^ 1A2•••An

!

and P̂H
1
auxA1

k
being a complete set of orthogonal projecto

acting on the extended space ofH1
aux and A1 , r̃H

1
auxA1•••An

k

being the joint state after outcomek has been measured an
pk5Tr( r̂H

1
auxA1•••An

k
) being the probability that outcomek

occurs. We now go back to Eq.~53!. The orthogonality of the
projectors P̂H

1
auxA1

k
implies that ther̃A1•••Ai 21Ai 11•••An

are

block diagonal foriÞ1, so that their entropies can be e
pressed as

S~ r̃A1•••Ai 21Ai 11•••An
!

5H@pk#1(
k

pkS~ r̃A1•••Ai 21Ai 11•••An

k ! ~63!

and

S~ r̃A1•••An
!5H@pk#1(

k
pkS~ r̃A1•••An

k !, ~64!

with H@pk# denoting the Shannon entropy of the probabil
distribution pk . For i 51, we find the following inequality
for the first term, which makes use of the concavity of e
tropy

S~ r̃A2•••An
!>(

k
pkS~ r̃A2•••An

k !. ~65!

Replacing all these expressions in Eq.~53!, we finally find
that

SnS (
k

pkr̃A1•••An

k D>(
k

pkSn~ r̃A1•••An

k !. ~66!

This shows that the monotoneSn can only decrease on ave
age if A1 performs a POVM measurement and the outco
is made known to the other parties. By symmetry, this pr
erty holds for allAi , i 5$1, . . . ,n%.

To prove the monotonicity ofTn we proceed as follows
Suppose thatA1 carries out a local CP map. As before, ad
ing a local ancilla and carrying out a local unitary transfo
mation do not changeTn . Tracing over part ofA1’s Hilbert
space decreasesTn . Indeed,

Tn~A1a1 :A2 :•••:An!2Tn~A1 :•••:An!

5S~a1 :A2•••AnuA1!>0. ~67!

Suppose now thatA1 carries out a measurement~with out-
come k) and publicly reveals the result. In Eq.~54!, the
termsS(rAi

) with iÞ1 decrease because of the concavity
9-10
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entropy @see Eq. ~65!# and because the termS(rA1
)

2S(rA1•••An
) stays constant@where we used Eqs.~63! and

~64!#. Hence

TnS (
k

pkr̃A1•••An

k D>(
k

pkTn~ r̃A1•••An

k ;A1 :•••:An!,

~68!

where we have used the same notation as in Eq.~66!.

D. Applications of quantum secrecy monotones

The two quantum monotones described above can be
to provide bounds on the rate of conversion of one multip
tite density matrix into another using local operations a
classical communication. As an example, we study in t
section and the next one how many realizations of a co
lated tripartite probability distributions can be obtained fro
a GHZ state.

Let us recall that the GHZ state, in thez basis, is

uGHZ&5~ u000&1u111&)/A2.

If the state is measured in thez basis one obtains the prob
ability distributionP3. In contrast, if the state is measured
the x basis one obtains the probability distributionPx.

We have shown above thatP3 and Px cannot be revers
ibly converted one into the other. This therefore suggests
when using a GHZ state to do multipartite quantum crypt
raphy, there is an irreversible choice that must be ma
However, the above discussion leaves open the possib
that the three parties could use a more sophisticated stra
than those just described and thereby obtain more than
of these probability distributions from a single GHZ state

To address this question, let us compute the monotoneS3
andT3 on the initial state and on the final probability distr
butions. We find

S3~ uGHZ&)53, T3~ uGHZ&)53,

S3~P3!51, T3~P3!52,

S3~Px!52, T3~Px!51. ~69!

Thus the monotones leave open the possibility of a hig
yield than oneP3 or onePx per GHZ state.

Let us note, however, an interesting feature of Eq.~69!,
namely, that the sum of the final values ofS3 andT3 is equal
to half the sum of the initial values:

S3~P3!1T3~P3!5S3~Px!1T3~Px!

5
S3~ uGHZ&)1T3~ uGHZ&)

2
. ~70!

We shall now show that this is no accident but is necessa
the case when one passes from a multipartite pure state
multipartite probability distribution. Thus it is indeed impo
sible to obtain more than oneP3 or onePx probability dis-
tribution from a single GHZ state, and the simple measu
ment strategies described above are therefore optimal.
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E. Decrease ofSn¿Tn when converting a multipartite pure
state into a multipartite probability distribution

Let us suppose that initially the parties share a multip
tite pure stateuCA1•••An

&. Initially

Sn~ uCA1•••An
&)5Tn~ uCA1•••An

&)5(
i

S~rAi
!. ~71!

Suppose that the aim of the parties is to obtain, by carry
out local measurements and classical communication, a m
tipartite probability distributionPA1•••An

. In doing so, the

monotonesSn and Tn will decrease. More precisely, th
amount by which they decrease is such that their sum
decreased by at least a factor 2:

Sn~PA1•••An
!1Tn~PA1•••An

!<(
i

S~rAi
!. ~72!

To prove this, let us first consider the bipartite case. Th
the parties initially share a pure stateuCAB& and they carry
out measurements so as to obtain a probability distribu
PAB . Let us first suppose that no communication takes pl
between the parties. Then, it follows from Holevo’s bou
@19# that the mutual information between Alice and Bob af
the measurement is necessarily less than the local entro
of the original state:

S~rA!5S~rB!>I ~A:B!. ~73!

Equality is attained in Eq.~73! only if they measure in the
Schmidt basis.

Let us now show that Eq.~73! also holds if the parties
communicate classically. We will suppose that the commu
cation takes place in a series of rounds. During each rou
one of the parties carries out a partial measurement on
state and communicates information to the other party. A
all the communication has taken place the parties mea
the states they are left with. Such a general protocol is d
cult to analyze, but we can transform it into a simpler pro
col. In the simpler protocol, during each round the pa
transmits all the information obtained by the partial measu
ment to the other party. This should be contrasted with
most general protocol in which only part of the informatio
obtained by the measurement is transmitted. The simplifi
tion follows from the fact that we can divide the measu
ment into a first partial measurement in which the inform
tion transmitted to the other party is obtained, and a sec
partial measurement in which the information that was k
is obtained. But the second partial measurement could t
as well be carried out during the next round. Repeating
reasoning round after round, we can construct a simpler p
tocol in which the information that is not communicated
the other party is acquired during the last round only.

In the case of the simplified protocol, one can easily sh
that Eq. ~73! holds. Consider the first round. Suppose th
Alice carries out a partial measurement. The measurem
has outcomesk, with probabilities p(k). The state if the
outcome isk is CAB

k . Because of monotonicity of the quan
tum mutual information, we have
9-11



ds
ic
th

bu

fo

l

o

a

e

-
s

n

bl

to

r

to

ecy
the
e

yp-

cy

n
ical
that
u-
ibly
of

We

the

hus
he
ob-
g
e is
ses
n-
one

ed
s
nd
se.

d
dge
IP

el-

N. J. CERF, S. MASSAR, AND S. SCHNEIDER PHYSICAL REVIEW A66, 042309 ~2002!
S~rA!>(
k

p~k!S~rA
k !. ~74!

The local entropies decrease~on average! due to the commu-
nication. The same will hold for all the subsequent roun
Hence, Eq.~73! holds also if the parties carry out publ
communication. In fact the above reasoning shows that
optimal strategy is for the parties not to communicate,
simply to measure the state in the Schmidt basis.

Finally let us consider the multipartite case. The result
two parties, Eq.~73!, implies that for any partition of the
parties into one party, sayi, and n21 parties, the mutua
information betweeni and then21 other parties after the
measurements is bounded by

I ~Ai :A1 . . . Ai 21Ai 11 . . . An!<S~rAi
!. ~75!

Summing overi and using Eq.~23!, we find that

Sn~P!1Tn~P!<(
i

S~rAi
!, ~76!

which is what we wanted to prove.

F. Application to the W state

As an additional application let us consider theW state
uW&5(u100&1u010&1u001&)/A3, which seems to play a
particular role in the classification of the tripartite states
two-dimensional systems@22#. It is natural in this case for
the parties to measure the state in the computational b
which yields the probability distribution PW(100)
5PW(010)5PW(001)51/3. The secrecy monotones for th
probability distribution PW obey S3(PW)5 log2 3 and
T3(PW)52 log2 322. One finds that S3(PW)1T3(PW)
5S(rA

W)1S(rB
W)1S(rC

W), where rA,B,C are the reduced
density matrices of the stateuW&. This shows that this mea
surement procedure extracts the maximum amount of cla
cal secrecy fromuW&.

Let us note that the values of these secrecy monoto
imply that PW is not equivalent to eitherP3 or Px. However
our monotones do not exclude the possibility of reversi
converting PW into a product ofPAB

2
^ PBC

2
^ PCA

2 and Px

~see Sec. IV D!, or because of the symmetry of the state, in
nd

.
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a product ofP3 and Px with appropriate weights. Thus, fo
instance, the operationPW
Px^ y1^ P3^ y2 may be possible
for some yieldsy1 and y2. These questions are identical
those raised in Eq.~47! or at the end of Sec. IV D.

VI. CONCLUSION

In this paper, we have introduced the concept of secr
monotones which are powerful tools to obtain bounds on
distillation rate in Maurer’s classical cryptographic schem
as well as bounds on the distillation rate in quantum cr
tography.

We introduced two independent multipartite secre
monotones based on~Shannon or von Neumann! entropies
Sn and Tn , which allowed us to investigate the distillatio
rates for multipartite cryptographic schemes. In the class
case, we studied in detail the tripartite case and showed
there are several inequivalent tripartite probability distrib
tions in the sense that they cannot be converted revers
one into the other. We also studied the particular case
tripartite quantum cryptography based on the GHZ state.
showed that the parties must choosea priori which probabil-
ity distribution they want to generate when measuring
GHZ state.

The important feature that emerges from our study is t
that in multipartite classical or quantum cryptography, t
parties must make an irreversible choice on what final pr
ability distribution they want to obtain. Making the wron
choice entails an irreversible loss. We note that this featur
not unique to cryptography; indeed, a similar situation ari
in multipartite entanglement distillation since there are e
tangled pure states that cannot be reversibly converted
into the other@8,9#.

Note added. After this paper was completed, we learn
of the work @23# in which monotones~under certain classe
of operations! that are positive both on quantum states a
probability distributions are considered in the bipartite ca
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