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In order to study multipartite quantum cryptography, we introduce quantities which vanish on product
probability distributions, and which can only decrease if the parties carry out local operations or public
classical communication. These “secrecy monotones” therefore measure how much secret correlation is shared
by the parties. In the bipartite case we show that the mutual information is a secrecy monotone. In the
multipartite case we describe two different generalizations of the mutual information, both of which are
secrecy monotones. The existence of two distinct secrecy monotones allows us to show that in multipartite
guantum cryptography the parties must make irreversible choices about which multipartite correlations they
want to obtain. Secrecy monotones can be extended to the quantum domain and are then defined on density
matrices. We illustrate this generalization by considering tripartite quantum cryptography based on the
Greenberger-Horne-Zeilinger state. We show that before carrying out measurements on the state, the parties
must make an irreversible decision about what probability distribution they want to obtain.
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[. INTRODUCTION tum bits, the partie#\, B, andE end up in exactly the situa-
tion considered by Maurer. Therefore, distillation protocols
Quantum cryptography uses the uncertainty principle ofused in Maurer’s cryptographic scheme can be adapted to the
guantum mechanics to allow two parties to communicate sequantum situatioi5]. Moreover, ideas from quantum cryp-
cretly [1]. It has been extensively studied during the lasttography and quantum information theory have illuminated
decade both theoretically and experimentdige, e.g.[2]  the structure of Maurer’s cryptographic schef6g
for a review. The basic idea of a quantum cryptographic In this paper, we will consider multipartite cryptography
protocol is that two parties, Alice and Bob, use a quantunboth from the point of view of Maurer’s classical crypto-
communication channel to exchange an entangled stagraphic scheme and from the point of view of quantum cryp-
V¥ ,g. Local measurements yield correlated results and allovtography. As in the papers mentioned above, these two ap-
them to obtain a certain number of shared secret Bits  proaches are complementary. We show that putting ideas
uncorrelated with Eve, defined by the probability distributionfrom these two approaches together provides insights into
piB(o,o): Pis(lal): 1/2. These resulting secret bits can Multipartite cryptography. Let us first consider the extension
then be used for secure cryptography, using, e.g., the on&f Maurer’s cryptographic scenario to more than two parties.
time pad scheme. An eavesdropper, Eve, will necessarily di€one supposes that the different partigs, A, ... An E
turb the quantum staté » when attempting to get informa- POSsess independent realizationsnaf 1 random variables
tion on the secret bits, and will therefore be detected by A"céj_lstrlbuted according to the multipartite probability distribu-
and Bob. A central problem of quantum cryptography is toiON Pa;a,..-a e, WhereE denotes the eavesdropper, as be-
establish the maximum rate at which Alice and Bob can esfore. In this case, however, it is not obvious what the goal of
tablish a secret key for a given level of disturbance by Evethe parties should be. For instance, in the case of three par-
Independently of quantum cryptography, Maurer has in_ties,_or_le possible ai_m of the distillation process could be to
troduced a paradigm for classical cryptography based off@ximize the resqltng nzumk;er of random bits shared be-
probabilistic correlations between two parties, Alice andtween pairs of partieB;gPgcP¢ . Another goal could be to
Bob, and an eavesdropper % Speciﬁca”y, suppose that generate efﬁCientIy the tripartite pl’obablllty d|Str|bUt|m
Alice, Bob, and Eve have several independent realizations defined byP3g(0,0,0)=P3g(1,1,1)=1/2. This probabil-
their three random variables, each distributed according tdy distribution allows any one of the parties to encrypt a
the probability distributiorPsge. The goal is for Alice and messagéby xoring it with his random variable and publicly
Bob to distill, from these realizations, a maximal number ofcommunicating the resulin such a way that it can be de-
shared secret bit83;. The tools available to Alice and Bob crypted by both the other parties independently. A third pos-
to perform this distillation are local operations and classicafibility could be to generate the probability distributiBiyg
public communication$LOPC). An important question is to in which any two random variables are independent random
estimate the maximum rate at which the parties can generatiits, while the third one is th&or of the other two bits,
the secret bits. Bounds on this secret bits distillation ratdPagc(0,0,0)= Pagc(1,1,0)= P3g(1,0,1)= Pag(0,1,1)
have been obtained i]. =1/4. This probability distribution allows any one of the
Quantum cryptography and Maurer’s cryptographic paraparties to encrypt a messag®gy xoring it with his random
digm are closely related. Indeed, after measuring their quanariable and publicly communicating the regul such a
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way that it can only be decrypted if the other two parties getwhich context they are called entanglement monotones. Our
together and compute theor of their two random bits. This study of secrecy monotones is closely inspired by these
is known as secret sharing, g for a discussion of quan- works on entanglement monotones. Entanglement mono-
tum secret sharing. tones are positive and vanish on unentangled density matri-

One main result of the present paper is to show that in thees, which implies that they measure the amount of entangle-
multipartite case, the parties must decide before they start th@ent in a density matrix. In a similar way, secrecy
distillation protocol which probability distribution they want monotones are positive and vanish on product probability
to obtain. Making the wrong choice entails an irreversibledistributions(or product density operatgrsso that they mea-
loss. For instance, the parties will, in general, obtain moresure the amount of both classical and quantum correlations
triplets P2 if they directly distill to P® than if they first distill  between the parties. In the present paper, we introduce two
to another kind of probability distribution, say shared ran-information-theoretic multipartite secrecy monotortealled
dom bits between pairs of parti@iBPécpéA, and subse- S, andT,), which can be viewed as the multipartite exten-
quently try to generat®? from these pairs of random bits. Sion of the(classical or quantummutual information of a
More generally, we address in this paper the question of thbipartite system. The definition of the quantum mutual infor-
convertibility, using LOPC, of one multipartite probability mation was discussed i3], and its use in the context of
distribution into another one. guantum channels was investigated in detai[id4]. Here,

As mentioned above, these issues can be generalized tais quantity is shown to be a monotone and is extended to
guantum-mechanical systems in the context of quantunfultipartite systems. In particular, we discuss several appli-
cryptography. We thus aim at addressing the same questioﬁgtions of these monotones to the special case of three par-
of convertibility between quantum multipartite density op- tI€s.
erators in this paper. An important potential application of The paper is organized as follows. The initial sections of
this extension is to provide bounds on the yields of multiparthe paper are devoted exclusively to the classical secrecy
tite guantum Cryp[ography_ Indeed, in guantum Cryptography;nonotones. We begin in Sec. I by glVIng a general definition
the parties start with a quantum stdte general, a mixed Of classical secrecy monotones and studying the implications
state and, by carrying out local operations, measurementsOf this definition. In Sec. Il we introduce two specific mul-
and classical communication, they aim at obtaining a multitipartite secrecy monotone%, andT,, which are the multi-
partite classical probability distributiofwhich can of course partite generalization of the bipartite mutual entropy. Most of
be viewed as a particular kind of mixed quantum state this section is devoted to proving that these functions obey
Bounds on the interconvertibility of multipartite quantum all the properties of a secrecy monotone. In Sec. IV, we use
states have been studied by several autts®s, for instance, these two secrecy monotones to study the particular case of
[8—11]), but most of this work has focused on pure stateslripartite cryptography. In particular we address the question
The interconvertibility of mixed states, and, in particular, ap-raised above concerning the interconvertibility under LOPC
plications to multipartite cryptography, have so far been relaof the probability distribution®3g, P3c, P&a, PRgc, and
tively little studied. As an illustration, we consider in detail P gc. Finally, in Sec. V, we study the generalization of the
the case of quantum cryptography based on the Greenberge&tassical secrecy monotones to quantum mechanics. In par-
Horne-Zeilinger (GHZ) state Wg,,,=(|000)+|111))/\2.  ticular, we show that the monoton&s and T, have natural
By measuring¥ 7 in the z basis the parties can obtain the quantum analogs that have important applications to multi-
probability distributionP®, while by measuring in the& ba-  partite quantum cryptography. As an illustration, we study
sis, they can obtain the probability distributi®f. We show  bounds on quantum cryptography based on the GHZ state.
that the parties cannot obtain more than @ieor one P
distribution per GHZ state. Combining this with the bounds
stated above, we see that when extracting correlations from Il. PROPERTIES OF SECRECY MONOTONES
the GHZ state, the parties must make an irreversible choice
of what kind of tripartite correlations they want to obtain. . ] i ]

In order to study these interconvertibility issues, we have A secrecy monotone is a functiovi defined on multipar-
developed a tool that we cadlecrecy monotoneThese are tite probability distributionsP, a, .. a g Which obeys a se-
functions of the multipartite probability distribution®@r,  ries of properties, which we now review and explaiie
more generally, of the quantum density opergtéhsit can  restrict ourselves to the classical case, the quantum case will
only decreaseunder local operations and public classicalbe analyzed in Sec. ¥We will denote the monotone by
communication. Therefore, comparing the value of theeither M(Pa a,...a g) OF M(A;:A;:---:A,:E) where the
monotone on the initial and the target probability distributionsemicolons separate the different parties.
allows one to obtain an upper bound on the number of real- The first two properties ensure tHdtprovides a measure
izations of the target probability distribution that can be ob-of the amount of correlation between the parties.
tained from the initial probability distribution. In fact, the  (3) Semi-positivity
upper bounds obtained i8] and in[4] on the secret key
distillation rate in the bipartite case can be reexpressed in M(PA1A2~--AHE)>0- (h)
terms of the existence of certain bipartite secrecy monotones.

Monotones have proved to be extremely useful for the
study of quantum entangleme(gee, for instancg,12]), in (b) Vanishing on product probability distributions

A. Defining properties
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If PA1A2-~AnE: PAlEPAZE' e PAnEa

then M(PAlEPAZE. . PAnE):O' (2)
The next two properties express the monotonicityMof

under LOPC, namely, the fact th&t can only decrease if

one of the parties performs some local operatie., ran-

domization or publicly disclosegpartly or completely the
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either by performing some local operation or by publicly
disclosing(in part or totally his variable.

(g) Monotonicity under local operations by EvBuppose
that Eve carries out a local transformation which modikes
to E according to the conditional probability distribution
Pgje. ThenM can only increase:

if PAl"'AnE: PE\EPA1~--AnE!

value of his variable. Thus, these monotonicity properties

imply that M describes the amount of correlation not shared

with Eve. They also mak® useful for studying the convert-
ibility of one probability distribution into another.

(c) Monotonicity under local operationsSuppose that
partyA; carries out a local transformation that modiffgsto

A; according to the conditional probability distribution

Pala,- ThenM can only decrease:

if PAl‘"Xj"'AnE:PXj‘AjPAl"‘Aj"'AnE’

then M(PAl“.Kj..AAnE)gM(PAl ©)

(d) Monotonicity under public communicatioSuppose
that partyj publicly discloses the value oA;, whereA,
depends on’s variableA; according to the conditional prob-
ability distribution P;j|Aj. ThenM can only decrease on av-

then  M(Pa ..AB)=M(Pa ...ag)- ©®)

(h) Monotonicity under public communication by Eve
Suppose that Eve publicly discloses the valu& pfvhereE
depends on Eve’s variablE according to the conditional
probability distributionPgje. ThenM can only increase on
average:

M(Pa,...AEE)ZM(Pa .. A E) (7)

B. Consequences of the defining properties
1. Upper bound on the yield

The most important consequence of the above properties
is that a monotone allows one to obtain a bound on the rate
at which a multipartite probability distributio® can be

erage: converted into another probability distributioR? using
LOPC. Suppose that the parties are able, using LOPC, to
M(PAl»--Aj---AnEIKj)gM(PAr--Aj-‘»AnE)- (4 convertn realizations ofP? into some realization of a prob-
. . . ability distribution P2" which is close tom independent re-
The next two properties are important if the .Secrecyfalizations of the desired probability distributi®?:
monotone is to provide information on the asymptotic rate o

convertibility of one probability distribution into another. By

1\®n 2" _/p2y®m
this, we mean that the parties initially have a large nunmber (P Lo—;cp =(P"™. ®)
of realizations of the probability distributioR® and want to
obtain a large numbem of realizations of the probability e yield of this distillation protocol is defined as
distribution P2, Property(e) ensures that one can use the
monotoneM to study the asymptotic limit,m— . Property
(f) allows one to study the situation where one does not want Ypi_,p2= e 9

to obtain the exact probability distributio®€)®™, but only
a probability distribution that is close tdPg)®™.

() Additivity. The existence of a secrecy monotdveallows us to put a

bound on the yield. Indeed, from E(B), we have

M(Pl@P2)=M(PY)+M(P?). (5)
Note that one may also impose only the weaker condition
M(P®M=nM(P) (see[12] for a motivation for considering Where we have used the defining properties/ofadditivity,
only this weaker condition in the case of entanglement monotonicity, and continuify Hence, using the positivity of
(f) Continuity M(P) is a continuous function of the prob- M, we obtain
ability distribution P. We will not make more explicit the
condition that this imposes oWl since the monotones we
will explicitly describe below are highly smooth functions of
P. We refer to[12] where a weak continuity condition is
introduced and motivated in the context of entanglement.
Finally, we introduce two additional properties which are o _ )
natural to impose if the monotone is to measure the amount N practice, it is much easier to construct a restricted type
of secrecy shared by the partids- - - A,,, with E viewed as of monotoneslvl that are only defined on probab|I|ty. distri-
a hostile party. Indeed, these final properties express the faBHtions Pa a,...4 that do not depend of. These simple
that the secrecy can only increasebflooses information monotones are therefore applicable only to the cases where

M((PH®M=nM(PH)=M(P2)=mM(P?), (10

M(P1)
Ypl_,ng YN

M(P?)’ (12)

2. Monotones that do not involve Eve
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Eve initially has no information about the probability distri- done as discussed in Sec. Il B 2, although we do not know of
bution. It is these monotones which we will consider in mosta systematic way to carry out the minimization over Eve’s
of this paper. operations used to obtain the monotdvig in Eq. (12).
Importantly, one can easily extend such monotoket
more general monotondd defined on probability distribu-
tions P a,...a g that also include initial correlations with ] o )
Eve. The simplest way to carry out this extension is to cal- The first multipartite secrecy monotone is denotedSy

culate the probability distribution®, s .. e conditional  and 1S defined by

A. Amount of shared randomness between the partiesS,

on Eve’s variableéE, and then to average the valueMfover Sh(Agi-- AN =H(A;---A))

the conditional probability distribution. This yields a mono- N

t M;:

oneiia =2, HAAL A sA LAy,
M ( PAlAZ---AnE):; P(E)M(Paa,. A E)- (13)

The monotond\/ll thus constructed Obeys prope(m, but Whel’eH(A) denotes the Shannon entropy of variahldis-
in general does not obey propefty) [4]. tributed as P, that is, H(A)=—ZX,p,log; p,. Here
In order to obtain a monotone that obeys both propertiesi(A|B) denotes the conditional entropy and is defined as
(g) and(h), before computing the conditional probability dis- H(A|B) =H(AB)—H(B).
tribution Pa a,...a g, We first need to take the minimum  In order to provide a physical interpretation &, we
note that the first term on the right-hand side of ELp) is
the total randomness of the probability distributieg, ... ,

whereas the subtracted terms are the amounts of randomness
that are purely local to each party. Th@s measures the
o number of bits of shared randomness betweenntiparties
ML(PAlAzmAnE): rTlin Z P(E)M(PA1A2~~AnIE)' (irrespective of them being shared between two, three, or

P(E|E) E more parties, but not including the local randomne@s the

12 basis of this interpretation it is natural that if one of the

parties publicly reveals some of his data, this will decrease
aSn since the total number of bits of shared randomness has
decreased. This remark suggests ®ashould be a secrecy
monotone. That this is indeed the case will be proven below.
3. Extending monotones to more parties We begin by introducing two alternative expressions for

over Eve’s operations. This transforms the varidbleto E

according toP(E| E). This procedure yields a new monotone
M, :
!

Note that it is this second procedure that was useldjrio
obtain a strong upper bound on the rate of distillation of
secret key.

A monotone defined on an-partite probability distribu-
tion can be extended in a natural way to a monotone on a n
m-partite probability distribution wittm>n. Let us illustrate Sy(Ari A= H(A; - A_AL A
this procedure in the case of a bipartite monotbhg A: B) =1
extended to a tripartite case. An example of a tripartite
monotone for the variables, B, andC is simply M,(AB:C)
and can be interpreted as the bipartite monotone which
would be obtained if partieA andB get together. We can of and
course group the parties in many different ways, and there-
fore M,(AC:B) andM,(BC:A) are two other independent ~ Sn(A1i-+1An) =1(A1:AAz- -~ Ap)

—(N=DH(A;---Ap) (14)

tripartite monotones. These three monotones are distinct n—1
from the genuinely tripartite monotones that can be con- 2 H(AGA LAY AL ALY,
structed onPpc, as we will show later on, and lead to i=2
independent conditions on the convertibility of tripartite dis- (15)
tributions.
wherel (A:B)=H(A)+H(B)—H(AB) is the mutual infor-
IIl. TWO CLASSICAL MULTIPARTITE mation between A and B, while 1(A:B|C)=H(AC)
SECRECY MONOTONES +H(BC)—H(C)—H(ABC) is the conditional mutual in-

formation betweerA and B given C. The proof of these

We now introduce two information-theoretic multipartite different equivalent expressions follows from the following

secrecy monotones fan partiesA;, ... A, (with n=2) recurrence relation fo8,

sharing some classical probability distributiml,_.An. We '

shall suppose that Eve initally has no knowledge about the S(Ap:-iA)=S, 1(Ag:i-- A, 1A,
probability distribution. The generalization to the case where " e

the probability distribution depends @can, in principle, be +1(A_ 1 ALAL - ALy, (16)
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These expressions allow us to derive the following simplewhich allows us to derive the following expression:
properties ofS,:

. . . n—1

(1) S, is symmetric under the interchange of any two
partiesA; andA, . This follows from Eq.(13). Ta(Ag:--iAq) =1(Ag:Ag) + 22 [(Ar - AA ).

(2) S, is semipositive. This follows from Eq.15) and (21)
from the positivity of the conditional mutual entropy,
I(A:B|C)=0, which itself follows from the strong subbadi-  These expressions allow us to derive the following simple
tivity of Shannon entropiegThus S, statisfies conditiorfa) properties ofT, :
for a secrecy m_o_notonh. _ o N (1) T, is symmetric under the interchange of any two

(3) S, is additive[thus it satisfies conditioke) for a se-  partiesA, andA,; . This follows from Eq.(18).
crecy monotong (2) T, is semipositive. This follows from Eq21).

(4) S, vanishes on the product probability distributi&n (3) T, is additive.
=Pa,Pa, ... Pa [thus it satisfies conditiotb) for a secrecy (4) T, vanishes on product probability distributioR
monotoné. =PaPa, - Pa.

(5) For two partiesS, is the mutual information, (5) For two partiesT, is the mutual information,

S(A:B)=H(A)+H(B)-H(AB)=I(A:B). (17 To(A:B)=H(A)+H(B)—H(AB)=1(A:B). (22

(6) S, is a continuous function dP ..., [thus property (6) T, is a continuous function of the probability distribu-

(f) of secrecy monotones is satisfled tion Pa,- A,

B. Local increase in entropy to erase all correlations:T C. Relation betweenS. and T
. n n

The second secrecy monotone is defined as For two partiesS, and T, coincide and are equal to the
n mutual entropy between the parties. Th8s,and T, can be
To(Ap--A)=D H(A)—H(AL---A). (18 viewed as t_wo(gene_rally distinc)t multipartite extensions of
=1 the mutual information of a bipartite system. That these two
generalizations are generally distinct follows from the fol-
In order to interpret this quantity we note that it is equal tolowing relation between the two monotones:
the minimum relative entropy between the probability distri-

bution P, ..o and any product probability distribution Sh(Ap:- - tADFT(As 1AL
Qa,Qn, - Qa, (with the minimum being attained when the n
QAi are equal to the local distributiorfsAi): =E FAGAL; A AL AY. (23
=1
Ta(Arze - 2An)= D(PAl-“An”PAlPAz' Pa) This expression will prove important in the interpretation of
- the monotones in the quantum case.
_ D(P A . . .
ml.r.l. ( Al"'A"HQAlQAZ Qny): Let us note that linear combinations ®f and S, of the
Qa,Qn, " Qa,
form
(19
M,=AS,+(1-\)T,, (24)

where D(P4||Qa)=24P(a)log,[P(a)/Q(a)] is the relative

entropy between the distributiosand Q. In order to give  with 0<\<1, are monotones as well. For the case of three
an interpretation td@,, we turn to the recent work of Vedral parties, we will prove below thatnly for this range of\ is
[15] (see also the revieyd 6]), who gave an interpretation of M a monotone.

a related quantity, the relative entropy of entanglement, as e have already shown tht andT, satisfy the require-
the minimum increase of entropy afassically correlated ments(a),(b),(e),(f) for being a secrecy monotone. Let us
environments needed to erase all correlations between thgow show that they also satisfy conditiofe and(d). [Con-
parties sharing an entangled staféhe relative entropy of ditions (g) and(h) will not be considered, since initially Eve

entanglement is the minimum relative entropy between théas no information about the probability distributipn.
entangled state and any separable stdteis argument can

easily be extended to the present situation whereupon one

finds thatT, is the minimum increase of entropy of local

uncorrelatedenvironments if the parties erase all correlations We now prove thag, can only decrease under local op-

between them by interacting locally with their environment. erations. Local operations by paitcorrespond to carrying
To proceed, we note that, obeys the recurrence relation out a local transformation which modifiég to A; according

to the conditional probability distributiorP;j‘Aj. For ex-

Ta(Ari - A) =T a(Arl - An-) FHACAL - Anc1) ample, let us choosA, to undergo such a transformation.

(20 We want to prove first that

D. Monotonicity of S,, and T, under local operations
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Sa(Ari+ A =Sy(Agie - A,
Using Eqgs.(20) and (23), we find

Sn(Aqi---:An)=

(29

—Tho1(Agr--1AnZy)
n—-1
+i§1 LA GAL A 1A 1A 1Ay,

(26)

Clearly, only the second term on the right-hand side is af-

fected by the local operation @k, . As a consequence of the
data processing inequalitgee, e.g.[17]), one can show that

each term of the summation can only decrease under the

transformationA, —A,,,
[(A AL A 1A 1 Ao 1A

=1(A AL A AL A A, (27)

For example, consider the term=1 and write the mutual
informationl (A:A,- - -AsA,) in two equivalent ways:

LA Ay Ay 1A+ (AA A, AL 1A,

=1(A1: Ay Ay +HHALA A, - A). (28)
We havel (A;:A,|A,- - -A,) =0 sinceA; andA, are condi-
tionally independent giver\,. Using strong subadditivity
[(AL:ALA,---A,_1A)=0, we conclude thatl(A;:
Ay A =(ALA,- - -Ap_4A,). Finally, asS, is symmet-
ric in all A;, this proof is actually valid for local operation
performed by all parties.

In order to prove the monotonicity &f, under local op-
erations, we assume, as above, tAgtundergoes a local

transformation toKn, and prove that

To(Ap -t AD=T(AL A, (29)
Using Eq.(20), we have
To(Ars Ay A =Ty g(Ag 1AL )
1A AL Ar_y). (30

PHYSICAL REVIEW @6, 042309 (2002

choose the partp; to makeKl known to the public, where

Kl is drawn from the conditional probability distribution
Pa,la,- We want to prove tha$, is a monotone, that is,

Su(Ari-- A =S (A AAY),

with the right-hand side term being the monotdgecalcu-
lated from the probability distributiorPAl,,,An|;l:a, aver-

(31)

aged over all valuea of A;, or
n
Sh(Agis A A= 2, H(AL Al 1A 1 AglAy)

—(N—1LH(A;---AA). (32

Using Eq.(15), we have

Su(Ar:- - AAD =1 (A A - ALA)
n—-1
+§2 (AGA 1 Agl A AA).

(33

The knowledge of\; clearly only changes a conditional mu-
tual information if A, is not given. This is only the case in
the first term on the right-hand side of the above equation.
Finally, we can prove that this term only decreases under
classical communication by writing the mutual information

I(A1K1:A2~ --A,) in two equivalent ways,
(AL Ay Ag) +1(ApiAg- - AglAy)

=1(AL Ay Ay +HH(ALA, - AA). (39
We havel (Kl:AZ' -AplA)=0 sinceK1 is irEIependent of
A,- - - A, conditionally onA;. Then, usingl (A1:A,---A,)
=0, we find that

I(Ag:Ag- - A= 1(AriAg- - Agl Ay, (35)
which proves tha§, is a monotone when party; makesKl
public. SinceS, is symmetric in all parties, we have also

proven that it decreases on average under classical commu-
nication between all parties.

Again, due to the data processing inequality, the second term Let us finally prove the monotonicity af, under classical

on the right-hand side cannot increase as a result of the loc
transformation onA,,, while the first term remains un-
changed. This proves E9). Consequently, a$,, is sym-
metric in allA;’s, it can only decrease under local operations
of any party.

E. Monotonicity of S, and T,, under public
classical communication

Now, let us consider the monotonicity §f and T, under

classical communications. Here, classical communication

means that one party makes its probability distribution
(partly or completely known to all the other parties. Say, we

@bmmunications. If one of the parties, sfy, makesA;
public, thenT, changes according to
To(Avi- - A)=Tr(Arl- - AlAy), (36

with the right-hand side term being the monotdngfor the
probability distributionPAl. A A =as averaged over all val-

uesa of A,, or

To(Ag:- - :An|K1>=i§1 H(AAD —H(A; A Ay).
37
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Using Eq.(21), we have TABLE I. Values of the secrecy monoton&s, S;, T5 in the
. case of the joint probabilitieB?, P2, P*.
n
To(Agz A A = 21 I(Ap---AA]A). (39 S,(A:BC) S,(B:AC) S,(C:AB) S;(ABC) Ts(ABC)
=
_ Pis 1 1 0 1 1
As proven above, we have for all the terms on the nght—hanq@,z 1 0 1 1 1
'de AC
side, P2, 0 1 1 1 1
~ P3 1 1 1 1 2
LA -AGAL DA -AA LAY, (39 szz 1 1 1 ) 1
which proves thafl, can only decrease under public com-
munication of one party. This is true for all parties sifiggs
a symmetric quantity. and
IV. TRIPARTITE CLASSICAL SECRECY MONOTONES 28c(0,0,0=Prgc(1,1,00=Prpc(1,0,) =P45(0,1,1)
A. Five independent tripartite secrecy monotones =1/4. (46)

For three parties, B, andC, we have a closer look at the
above secrecy monotones for classical probability distribuThe first three probability distributions, Ecgl2)—(44), are
tions. We start by writing the monotones explicitly in terms perfectly correlated shared random bits between two of the
of entropies or mutual informations: three parties; the fourth probability distribution, Eg5), is
o _ one shared random bit between the three parties; and the last
S3(A:B:C)=H(AB)+H(BC) +H(AC)—2H(ABC) probability distribution, Eq.(46), corresponds to the case

=1(A:BC)+I1(B:C|A), (400  where two parties have independent random bits while the
third party has the exclusiver (xoR) of these bits.
T3(A:B:C)=H(A)+H(B)+H(C)—H(ABC) Table |1 lists for each of these probability distributions the

values of the five tripartite monotones.
=1(A:B)+I(AB:C). (41)

In addition to these two tripartite monotones, we also  C. Converting a probability distribution into another

have three other monotonesS,(A:BC)=I(A:BC), We can use this table to study which probability distribu-
S;(B:AC)=1(B:AC), and S,(C:AB)=I(C:AB), which  iong can be converted into which others, and with what
consist of evaluating the bipartite monotoBgon the prob-  yje|q. The first thing we note from the table is that it forbids

ability distribution obtained by grouping together any two of y,o conversion of a probability distributid?. s into a prob-

the three parties. Thus, there is a total of five tripartite Seébility distribution Pf\Bc and vice versa, asSy(Plso)

crecy montones. These monotones are not all linearly inde- 3 3 X . s
pendent as Eq(23) shows. However, none of these mono- >S3(P.ABC) andT3(.PABC)>T3(PABC)' This can be under
tood in the following way. The number of shared random

tones can be written as a linear combination of the othiﬁ. derlvi he distributiorP” ... | .
monotones with only positive coefficients. For this reaso Its underlying the distributiorPgc IS two (two parties
ust have uncorrelated random hitwhile it is only one for

these five monotones give independent constraints on tHgust have u 3 )
transformations that are possible under LOPC. the distributionP, g (Where the three parties share one com-

mon biY. Since the number of shared big is a monotone,

one cannot go fronP3 ;. to Pigc. On the other hand, the

_ _ i o _number of bits that must be forgottéor put in the environ-
We begin by using these five tripartite monotones t0 in-meny in order to get three independent bits is equal to two

vestigate in detail five particular tripartite probability distri- to, the distribution Pisc (two parties, say and C, must

butions. These five probability distributions play a particular,;4qomize their bits while it is only one for the distribution

role S"‘C? the_y are, in a sense made pre_cis_e be_:low, the A c (where it is enough that par forgets its bit in order
treme points in a convex set. These five distributions consist 2

R S[to get three independent bitsSince the numbef 5 of bits
of three bipariite distributions that must be forgotten to get independent distributions is a

B. Five particular probability distributions

P2.(0,00=P2,(1,1)=1/2, (42) ~ Monotone, one cannot go froR g to PiBC_. _
The above table also suggests that distillation procedures
P2.(0,0=P2(1,1)=1/2, (43 of the formPXgc— P2z or Pigc— P7g are possible. This is
indeed the case: starting froRjgc, the partyC simply has
PZBC(0,0)= pZBC(1,1)= 1/2 (44) to make its bit public in order to geFtiB, thereby reducing
by one the number of shared bis. If we start withP3 g
and two tripartite distributions instead, the part{ has to forget its bit, i.e., send it through
3 3 a channel that completely randomizes it. Thus, one bit must
Paec(0,0,0=Pyg(1,1,1)=1/2 (45 pe forgotten, reducing by one the monotdhge
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The transformations P35-°?—PXgc and PXgc®? A B
— P3¢ are also allowed by the above table of monotones,
and we can check that they can actually be achieved. If the A
probability distribution isP3;.%? and the parties want to
convert it intoPA g, thenA has to forget the first of the two AA
bits it has,B has to forget the second, a@just takes the
sum of the two bits it has, forgetting the individual values. c

Thus, three bits must be forgotten, reducing the valu&-of
from 4 to 1. To converP} "2 into P3gc is a little bit more

complicated. We start witiA having the bitsx and x’, B FIG. 1. Venn diagram for a tripartite probability distribution.
having the bitsy andy’, and C having the bitsx+y and

x"+y’. Now A makesx public andB makesy’ public. From To prove this, let us introduce the following notation:
this, C can calculatey as well asx’. Then,C makesy+ x’

public, which allowsA (who still hasx’) to calculatey. r=I1(A:B[C),

Thus, every party knows the secret pjtso we have got

P3sc. Here, three bits must have been made public, reduc- s=1(B:C|A),

ing the value ofS; from 4 to 1.
The above table leaves open the question whether the
conversion

t=1(C:A|B),

u=1(A:B)—1(A:B|C). (49)
Phec®Phec—Pas® Pac®Pac (47 Let us note thati is symmetric between the three parties and
is ppssible. We have not be_en able to devise a protocol thé:_talrzcéff B)l?eThvgggegiﬁ:?é:tléigﬁt)itT els(Bcia\Cr:JAt:\))e:rle(grieé)ented
e out (s ansiomaton, Such & 01000 U Wkrapncay s n . 1
H])Eriget a bit in order t(') keep the values®f andT,, constant. Given these quantities we can exprégsandTs as

Ruling out this possibility would probably require an addi- Sy=r+s+t+u, (50)
tional independent monotone, and the five monotones listed
above are the only ones we know at present. T3=r+s+t+2u. (52

Let us note that in order to carry out the above conver-
sions, we sometimes had to suppose that one of the partid¥e note thau is not positive definite, but the additivity and
forgets some of his information. In practice, this is obviouslystrong subadditivity of Shannon entropies impose the posi-
a stupid thing to do. Why to forget something you know?tivity conditions
However, there may be an accident, say an irrecoverable

hard disk crash, such that one of the parties has lost part or r=0,
all of his data. In this case, the monotohg constrains how ~0
much secrecy is left among the parties. It would be interest- s=U,
ing and important to study the restricted class of transforma- t=0
tions in which the parties never forget their détzey would -
only be allowed to communicate classicallyhis would im- F+u=0
pose another constraint on the transformations that are pos- '
sible. s+u=0,
D. Extremality of the five tripartite probability distributions t+u=0. (52

The above discussion raises the general question of thggjng these conditions, one can show thai#0, then the
reversibleconversion of one probability distribution into an- oyersible conversion

other. By this we mean that, in the limit of a large number of

draws, it is possible to go from one probability distribution Pagc= pi‘?l@ pé‘ib@ p/zféVB

P, to anotherP, and back with negligible losses. In particu-

lar, in the tripartite case, one can enquire whether there arg allowed by our tripartite monotones. if>0, then the

yieldsy,, ... ys such that the reversible conversion reversible conversion
. p2®Y1 2®Y,y 2®Yy3 X®Yy 3®Yysg . p2®Yy; 2®Y,) 2®y3 3®Ys5
Pagc=Pyg " ®P *®P, *®P, g d®P e (48) Pagc=Pyg " ®Pc 2®P, *®Pype

is possible. Let us show that the five secrecy monotone$ allowed by our tripartite monotones. <0, then the
introduced above leave open the possibility of the reversibléeversible conversion
distillation of Eq.(48). Whether this is possible in practice is

) _.p2®Y1 p2®Y2 o p2®Y3 o, pX@Ya
an open question. Pasc=Ppg ®Pgc "®@P,c "®P

ABC
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is allowed by our tripartite monotones. and
Thus our monotones, in principle, allow the reversible

conversion between any tripartite probability distribution and . " . .
the distributions P4z, P3c, Pac, Pigc, and Pigc. To(pa,. . a)=T(Ar1- 1Ay 221 S(pa) = S(pa,.--a,):
Whether or not such a reversible transformation is possible is (54)

an open question. To rule this out will probably require dis-

covering additional secrecy monotones. -
g 4 where nowS(p) denotes the von Neumann entropy of a

E. Extremality of the monotonesS; and T density matrix, which is given b$(p) = — Tr(p log, p), and
As a final comment about the secrecy monotones in th@artial traces are written in the fomEpA A
tripartite case, we note that using the distillation procedures_ '

for Pigc—Pag and Pigc—Pig, We can now also prove . -
that 0<\=<1 is the only range for which the linear combi- 1 he different rewritings of5, [Egs.(13), (15), and(16)]

nation of S; and T, is a monotone. This can be seen by andT, [Egs.(20) and(21)] that were obtained in_the classi-
calculating Mg=\S;+ (1—\)T for both distillations. In cal case carry through to the quantum case, in analogy to
the first case, we get thals(Pied)=A+1 should be what was shown for bipartite systems [ib3]. This means
greater or equal tM(P25) =1, so thah =0. In the second that the simple properties that followed from these rewritings

. ¥ 07 2\ in the classical case also hold in the quantum case. In par-
case, we find thals(Pagc) =2—-A=M;y(Pjg) =1, so that ticular, the positivity of thes, andT,, follows from the posi-

A=<1. This suggests that if there are other monotones thag i of the conditional mutual entropy, which holds in both

the My's, they will probably not be composed out of entro- 1, cjassical and quantum caee[18] for a review. The

pies. proofs of monotonicity are more involved in the quantum
case, so we give them below.

V. QUANTUM MULTIPARTITE SECRECY MONOTONES Let us note that, for pure stateS, and T, coincide and

are equal to the sum of the local entropies:

. i—1Ai+17An
TrAi(pA1~ . -An)-

A. Definition of quantum secrecy monotones

The definition of classical secrecy monotone of Sec. Il A n
can be immediately extended to the quantum case. In the Sn(|i/fA1--~An>)=Tn(|¢A1--~An>)=_2 S(pa). (55
case where there is no eavesdropper, the monotone will now i=1
be a function defined on multipartite density matrices
PA,- A, which must be(1) semipositive,(2) vanishing on  Thus, for instance, on a singlet staB,and T, are equal to

product density matricega, ® - - - ®p, , (3) monotonic un- 2, and on a GHZ state&s; and T3 are equal to 3.

der local operationglocal completely positivd CP) mapsg, th we dot not at pre_srerz]nt have a _cletar tmterpretatl%rsiﬂfr:h
(4) monotonic under public classical communicatid), ad- € quantum case. The reason IS Ba measures bo €
ditive, (6) continuous. classical and the quantum correlations and does not distin-

One can also extend the quantum definition of the secrec uish them. On_ the other hand,_ the mterprgtaﬂoffrpm the .
antum case is the same as in the classical case. Indeed, it

monotone to the case where there is an eavesdropper. In t . - ;

case, it is defined on a multipartite density mapig..» e can be written as the mlnlmum reI.:iItNe entropy between

The monotonicity properties are then modified to require thafAs A, and @ product denstty Matrixa, @ - - @ 7, (the

the secrecy montone is monotonically decreasing under locahinimum being attained whenAiszi). Therefore,T,, can

operations and public communication by the partiespe interpreted as the minimum increase of the entropy of

A;---A, and monotonically increasing under local opera-jocal (uncorrelatefienvironments if the parties erase all cor-

tions and public communication by Eve. relations between them by letting their quantum systems in-
In what follows, we shall for simplicity not include Eve in teract with their local environment.

the discussion, just as we did in the classical case. That is,

we shall suppose that initially Eve has no information about

the density matrix, but she listens to all public communica- €. Monotonicity of S, and Ty

tions and thereby tries to thwart the parties - - A, . We now give the proofs of monotonicity &, and T,
under local operations and public classical communication in
B. Quantum version of the secrecy monotoneS,, and T, the quantum case.

Local operations of one party are described mathemati-

The definitions C.)f the monotones, "?md.T“’ Egs. (14) cally as local CP maph , , which only act on the subspace
and (18), have straightforward generalizations to the quan- . i .
tum case: of the ith party. We can assume that such a map is imple-

mented as follow$20,21]: A; adds to its Hilbert space the

A noo Hilbert space of an ancillei®"*. The ancilla’s initial state is
Snlpa,. A )=S(Ag:--- 1An)=;l S(pa,- A AL, A ITjjaw=|0) (0] It then carries out a unitary transforma-
~ tion U o yaux 0N its original system and the auxiliary variable.

—(n=1)S(pa;-.a) (53 Finally,litltraces over a paH of its Hilbert space. Note that

042309-9



N. J. CERF, S. MASSAR, AND S. SCHNEIDER PHYSICAL REVIEW @6, 042309 (2002

H/ does not have to coincide witH®"*. Hence, we can

I\k Ak A
Praws ... o = (Phaug ®1a . a )(pa,...a ®TTHau)
represent a local CP map as HI AL Ay T HTTA T A2 An AR A 1

-k
-~ ~ X (P QLA ...
Pa,-A=MA®IA A AL A(PA . A) ( HEA < Ag Ay

k

=Try[(Uapao®la..oa AL, and I5HauxAl being a complete set of orthogonal projectors
1

acting on the extended space l#§"* and A, , ;::auxAl“_A
1 n
. being the joint state after outconkehas been measured and

T ~
X(Uppaw®la. . jaea)] (56) pk:Tr(pEauxAl_uA) being the probability that outcomle
i 1 n

><(PAl---An@’l_[H;i“X)

occurs. We now go back to E(p3). The orthogonality of the

. a k . . ~
projectors PHelIUXAl implies that thepAl"‘Ai—lAHl"'An are

nt block diagonal fori#1, so that their entropies can be ex-
Sh(Asis+ AN = 2 Sy(A AL A LiA L An1AY)  pressed as

We start withS,, and write it in the following form:

_An (57) S(’;)Al"'AiflAiJrl"'An)
with ~
=H[p+ 2 PSR, A y-a) (63
n—-1 k
An= 2 S(pa)=S(pa,...a, - (58)
i=1 and

Now we assume that the systefyy undergoes a local CP _ _~
mapM,,, Eq.(56). As A,, does not depend of,, it remains S(pa,...a)= Hlpel+ >, PkS(PA,..A): (64)
unchanged, thus we only have to ch&skfor monotonicity. K

For thi ite Eq(56) for t temsA and B, . . .
or this we rewrite Eq(56) for two systemsA an with H[ p,] denoting the Shannon entropy of the probability

distributionp,.. Fori=1, we find the following inequality

~ - :
Pas=Ma®1e(pap) = Trar[(Ua® ) Pas®11a(Upa® lg)] for the first term, which makes use of the concavity of en-

(59 tropy
and note that neither adding a local auxiliary syst@mor S(ha....a )22 IOkS(;;/kA 2. (65)
2" "n K 2" "n

performing a unitary transformation chang8s. Tracing
over a local subsystem, however, decreaesince
Replacing all these expressions in E§3), we finally find
S,(A’H":B)—S,(A":B)=S(H":B|A"), (60 that

which is just the conditional mutual quantum entropy and ~ —~
which, due to strong subadditivifyL8], is semipositive, thus Sn< > kaAl...An) => PS(Pa,.--a)- (66)
implying that . .

S,(A’H’:B)=S,(A’:B). (61  This shows that the monotor® can only decrease on aver-

age if A; performs a POVM measurement and the outcome

Due to symmetryS, given by Eq.(57) is then monotonic IS made known to the other parties. By symmetry, this prop-
under local CP maps of any party. erty holds for allA;, i={1, ... n}.

For monotonicity under local measurements and public To prove the monotonicity oT , we proceed as follows.
communication of their outcome, we assume that a positivéuppose thaf; carries out a local CP map. As before, add-
operator valued measureméROVM) [21] is performed on  ing a local ancilla and carrying out a local unitary transfor-
systemA,. This is realized by adding as above an ancillamation do not chang&,. Tracing over part ofA;’s Hilbert
IT,;auxto A; and then carrying out a von Neumann measurespace decreasds,. Indeed,

ment that transformpAl_“An@HHiux to T (Agag Ay 1A)—To(Ag- - -:A)

~ Nk _S po =S(a; Az - Ap|A)=0. (67)
pH:iluxAl_,,An— . pHiuxAl'”An_ . pkaiuxAl,,,An,
(62)  Suppose now thah; carries out a measuremefwith out-

come k) and publicly reveals the result. In E¢54), the

with termsS(pAi) with i #1 decrease because of the concavity of

042309-10



MULTIPARTITE CLASSICAL AND QUANTUM SECRECY ... PHYSICAL REVIEW A66, 042309 (2002

entropy [see Eq. (65)] and because the ternS(pAl) E. Decrease ofS,+ T, when converting a multipartite pure
—S(pa....a) stays constanfwhere we used Eq¢63) and state into a multipartite probability distribution

1" "n
(64)]. Hence Let us suppose that initially the parties share a multipar-

tite pure statel\IfAl. ~.a,)- Initially
Tn(; pkﬁkl...An)>; PeTa(PR,. AL 1A,

69) S| Wa, A ) =Toll W, a ) =2 Slpa). (7D
where we have used the same notation as in(&6). Suppose that the aim of the parties is to obtain, by carrying
out local measurements and classical communication, a mul-
D. Applications of quantum secrecy monotones tipartite probability distributionP,_ ... . In doing so, the

The two quantum monotones described above can be us#donotonesS,, and T, will decrease. More precisely, the
to provide bounds on the rate of conversion of one multiparamount by which they decrease is such that their sum is
tite density matrix into another using local operations anddecreased by at least a factor 2:
classical communication. As an example, we study in this
section and the next one how many realizations of a corre- -
lated tripartite probability distributions can be obtained from Sn(Pag-a) +TolPay. 'A“)\zi: Sea)- (73
a GHZ state.

Let us recall that the GHZ state, in tzebasis, is To prove this, let us first consider the bipartite case. Thus

the parties initially share a pure std®¥ ,g) and they carry
|GHZ)=(]000)+|111))/2. out measurements so as to obtain a probability distribution
) ) ) ] Pag. Let us first suppose that no communication takes place
If the state is measured in tizebasis one obtains the prob- petween the parties. Then, it follows from Holevo’s bound
ability distributionP3. In contrast, if the state is measured in [19] that the mutual information between Alice and Bob after

the x basis one obtains the probability distributie. the measurement is necessarily less than the local entropies
We have shown above th&® and P* cannot be revers- of the original state:

ibly converted one into the other. This therefore suggests that

when using a GHZ state to do multipartite quantum cryptog- S(pa)=S(pg)=I1(A:B). (73

raphy, there is an irreversible choice that must be made.

However, the above discussion leaves open the possibilitipquality is attained in Eq(73) only if they measure in the

that the three parties could use a more sophisticated strateg@ghmidt basis.

than those just described and thereby obtain more than one Let us now show that Eq73) also holds if the parties

of these probability distributions from a single GHZ state. communicate classically. We will suppose that the communi-
To address this question, let us compute the monotBges cation takes place in a series of rounds. During each round,

andT; on the initial state and on the final probability distri- One of the parties carries out a partial measurement on the
butions. We find state and communicates information to the other party. After

all the communication has taken place the parties measure
S;(|GHZ))=3, T3(|GHZ))=3, the states they are left with. Such a general protocol is diffi-
cult to analyze, but we can transform it into a simpler proto-
S(PY)=1, T3(P3=2, col. In the simpler protocol, during each round the party
transmits all the information obtained by the partial measure-
S3(P*)=2, T3(P)=1. (69  ment to the other party. This should be contrasted with the
most general protocol in which only part of the information
bbtained by the measurement is transmitted. The simplifica-
tion follows from the fact that we can divide the measure-
ment into a first partial measurement in which the informa-
tion transmitted to the other party is obtained, and a second
partial measurement in which the information that was kept

Thus the monotones leave open the possibility of a highe
yield than oneP® or oneP* per GHZ state.

Let us note, however, an interesting feature of &9,
namely, that the sum of the final values&fandT; is equal
to half the sum of the initial values:

Sy(P3)+ T4(P3) = Sy(PX) + To(P¥) is obtained. Bu_t the secor_ld partial measurement coyld th(_an
as well be carried out during the next round. Repeating this
S;(|GHZ)) + T3(|GHZ)) reasoning round after round, we can construct a simpler pro-

- 2 - (70 tocol in which the information that is not communicated to

the other party is acquired during the last round only.
We shall now show that this is no accident but is necessarily In the case of the simplified protocol, one can easily show
the case when one passes from a multipartite pure state tot@at Eq.(73) holds. Consider the first round. Suppose that
multipartite probability distribution. Thus it is indeed impos- Alice carries out a partial measurement. The measurement
sible to obtain more than orle® or one P* probability dis- has outcomes, with probabilitiesp(k). The state if the
tribution from a single GHZ state, and the simple measureoutcome isk is Wk .. Because of monotonicity of the quan-
ment strategies described above are therefore optimal. tum mutual information, we have
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i} a product ofP® and P* with appropriate weights. Thus, for
S(.DA)BE P(k)S(pa)- (74 instance, the operatioR"=P**Y1@ P3%Y2 may be possible
for some vyieldsy; andy,. These questions are identical to

The local entropies decreagen averagedue to the commu-  th0se raised in Eq47) or at the end of Sec. IV D.

nication. The same will hold for all the subsequent rounds.

Hence, Eq.(73) holds also if the parties carry out public VI. CONCLUSION

communication. Ip fact the abqve reasoning shows that the | this paper, we have introduced the concept of secrecy
optimal strategy is for the parties not to communicate, bufnonotones which are powerful tools to obtain bounds on the
simply to measure the state in the Schmidt basis. distillation rate in Maurer’s classical cryptographic scheme

Flnally let us Consider t'he multipartite case. The result fOl’as well as bounds on the distillation rate in quantum cryp-
two parties, Eq.(73), implies that for any partition of the tography.

parties into one party, say andn—1 parties, the mutual We introduced two independent multipartite secrecy
information betweeri and then—1 other parties after the monotones based ofShannon or von Neumah®entropies
measurements is bounded by S, and T,, which allowed us to investigate the distillation

rates for multipartite cryptographic schemes. In the classical
case, we studied in detail the tripartite case and showed that
there are several inequivalent tripartite probability distribu-
tions in the sense that they cannot be converted reversibly
one into the other. We also studied the particular case of
sn(P)+Tn(P)s2 S(pa), (76) tripartite quantum cryptography based on the GHZ state. We
i ' showed that the parties must choaspriori which probabil-

ity distribution they want to generate when measuring the
GHZ state.

The important feature that emerges from our study is thus
that in multipartite classical or quantum cryptography, the

As an additional application let us consider théstate  parties must make an irreversible choice on what final prob-
|W)=(]100)+|010)+|001))/\/3, which seems to play a ability distribution they want to obtain. Making the wrong
particular role in the classification of the tripartite states ofchoice entails an irreversible loss. We note that this feature is
two-dimensional system@2]. It is natural in this case for not unique to cryptography; indeed, a similar situation arises
the parties to measure the state in the computational basi@ multipartite entanglement distillation since there are en-
which vyields the probability distribution PW(100) tangled pure states that cannot be reversibly converted one
=PY(010)=PY(001)=1/3. The secrecy monotones for the into the other[8,9].
probability distribution PV obey S;(P")=log,3 and Note addedAfter this paper was completed, we learned
To(PY)=21l0og,3—2. One finds thatSs;(PW)+Ts(PW) of the quk[23] in which njpnotoneiunder certain classes
=S(pM)+S(p) +S(pl), where pagc are the reduced of operation that are positive both on quantum states and
density matrices of the stafev). This shows that this mea- Probability distributions are considered in the bipartite case.
surement procedure extracts the maximum amount of classi-
cal secrecy fromw).

Let us note that the values of these secrecy monotones We would like to thank Daniel Collins, Nicolas Gisin, and
imply that PY is not equivalent to eitheP® or PX. However  Sandu Popescu for helpful conversations. We acknowledge
our monotones do not exclude the possibility of reversiblyfunding by the European Union under the project EQUIP
converting PV into a product ofP3;®P3-® P2, and PX  (IST-FET program S.M. is a research associate of the Bel-
(see Sec. IV D) or because of the symmetry of the state, intogian National Fund for Scientific Research.

|(Ai:A1'"Ai—lAH—l"-An)SS(pAi)' (75)

Summing oveli and using Eq(23), we find that

which is what we wanted to prove.

F. Application to the W state
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