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Dressed-state approach to quantum systems
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Using the nonperturbative method dressedstates introduced in a previous publicat{dh P. Andion, A. P.
C. Malbouisson, and A. Mattos Neto, J. Phys34 3735(2001], we study effects of the environment on a
guantum-mechanical system, in the case in which the environment is modeled by an ensemble of noninteract-
ing harmonic oscillators. This method makes it possible to separate the whole system idtestedme-
chanical system and thdressecenvironment, in terms of which a nonperturbative approach is possible. When
applied to the Brownian motion, we give explicit nonperturbative formulas for the classical path of the particle
in the weak and strong coupling regimes. When applied to studying atomic behaviors in cavities, the method
accounts for experimentally observed inhibition of atomic decay in small cavities.
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[. INTRODUCTION where strong effective couplings are involved. In some non-
perturbative approachs in statistical physics and constructive
Quantum-mechanical systems remain stable in the alfield theory, general theorems can be derived using cluster
sence of interaction. When interacting with an environmentike expansions and other related methptls In some cases,
they lose stability as a consequence of the interaction. Ahese methods lead to the rigorous construction of field-
material body, for instance, an excited atom or molecule, ofheoretical modelgsee, for instance, Reff5] and references
an excited nucleon, changes its state due to its interactioferein, but, in spite of the rigor and in some cases the
with the environment, e.g., the atom—electromagnetic fieldeauty of demonstrations, they are not of great usefulness in
coupling in the case of an atom, or the quark-gluon interacC&|CU|ati0nS of a predictive character. In another mathemati-
tion for a nucleon inside a nucleus. The understanding of théal framework, there are a large number of successful at-
nature of the destabilization mechanism is important but istempts in the literature to circumvent the limitations of per-
in general, not an easy task, due to the fact that it is to a largiirbation theory. In particular, there are methods to perform
extent modeled by the method, in general approximate, useg@summations of perturbative serigwven if they are diver-
to study the system. A very complete account on the subjecg€nd, which amounts in some cases to analytically continue
in particular as it applies to the study of the Brownian mo-Weak-coupling series to a strong-coupling domgia-13.
tion, can be found in Refd1,2]. From a general point of For instance, starting from a function of a coupling constant
view, in modern physics, apart from computer calculations ind defined formally by means of a serig®t necessarily con-
lattice field theory, the only available method to treat thevergen,
physics of interacting bodies, except for a few special cases,
is perturbation theory. The perturbative solution to the prob- N
lem is obtained by means of the introduction of bare, nonin- f(g):nzo ang’
teracting fields, to which are associated bare quanta, the in-
teraction being introduced order by order in powers of thaye can, under certain analyticity assumptigthe validity of
coupling constant in the perturbative expansion for the obthe \Watson-Nevanlinna-Sokal theorem, see, for instance,
servables. The perturbative method gives remarkably accyzef.[14] and other references thergidefine its Borel trans-
rate results in quantum electrodynamics and in weak interagprm as the associated series,
tions. In high-energy physics, asymptotic freedom makes it
possible to apply quantum chromodynamics in its perturba- ” a3
tive form and very important results have been obtained in B(b)= >, —Tb”, 1.2
this way in the last decad¢8]. However, in spite of its wide =o M
applicability, there are situations where the use of perturba- . i ) , i
tion theory is not possible, as in the low-energy domain ofVhich has an analytic continuation on a strip along the beal
quantum chromodynamics where confinement of quarks an@Xis from zero to infinity. It can be easily verified that the
gluons takes place, or are of little usefulness, as, for instanc&verse Borel transform
in atomic physics, in resonant effects associated with the
cpupl!ng of atoms with strong radio-frequency .fields. These B(g)= Efmdb e P'9B(b), (1.3
situations have led a long time to attempt to circumvect the gJo
limitations of perturbation theory, in particular, in situations
reproduces formally the original seri€s1). From a physical
point of view, the important remark is that the ser®)
*Email address: gflores@cbpf.br can be convergent and summed up even if the séli€l$
TEmail address: adolfo@chbpf.br diverges. In this case, the inverse Borel tranfqrhB) de-
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fines afunction of g, B(g), which we can think of as the tem and try to extract the most detailed information we can
“sum” of the divergent serie$1.1). This functionB(g) can from th's. model. We will mtrgd_qceiressedstates by means
be defined for values af not necessarily small and, in this of a precise and rigorous definition to solve our problem. Our

. g ! ressedstates can be viewed as a rigorous version of the
sense, we can perform an analytic continuation from a wea

; A i . Techni f this t ‘ emiqualitative idea of dressed atom mentioned above,
0 a strong-coupling regime. Techniques ot this type are ol §,ich can be constructed in view of the linear character of

predictive character and have been largely employed in &5, nroplem. We take a linear model in order to have a
cent years in quantum field theory literature. clearer understanding of what is one of the essential points,
_Nevertheless, as a matter of principle, due to the nonvaryjamely, the need for nonperturbative analytical treatments of
ishing of the coupling constant, the idea of a bare partlcleboupbd systems, which is the basic problem underlying the
associated with a bare matter field is actually an artifact ofdea of adressedquantum-mechanical system. Of course,
perturbation theory and is physically meaningless. A chargeduch an approach to a realistic nonlinear system is an ex-
physical particle is always coupled to the gauge field; intremely hard task, and here we achieve what we think is a
other words, it is always “dressed” by a cloud of quanta of good agreement between physical reality and mathematical
the gauge fieldphotons, in the case of electrodynamids reliability.

fact, as mentioned above, from a phenomenological point of Where the Brownian motion is concerned, there are usu-
view there are situations even within the scope of QEDally two equivalent ways of modeling the environmétite
where perturbation methods are of little usefulness, for inthermal bath to which the particle is coupled: to represent
stance, resonant effects associated with the coupling of athe thermal bath by a free field, as is done in the classical
oms with strong radio-frequency fields Rdfl5]. As re- ~ work of Ref. [1], or to consider the thermal bath as a reser-
marked in Ref[16], the theoretical understanding of these VOir composed of a large number of noninteracting harmonic
effects using perturbative methods requires the calculation d¥scillators(see, for instance, Reff28-31). In both cases,
very high order terms in perturbation theory, what makes th&X@ctly the same type of argument given above in the case of
standard Feynman diagrams technique practically unreliabl@ charged particle appliesutatis mutandigo this system,
The trials of treating systems of this type nonperturbatively’Vé May speak of a “dressing” of the Brownian particle by
have led to the idea of the “dressed atom.” introduced origi-f[he ens_emble of the particles in the thermal bath. The Brown-
nally in Refs.[17] and[18]. Since then this concept has been ian particle should be always “dressed” by a cloud of quanta
used to investigate several situations involving the interac®f the thermal bath. This should be true, in general, for any
tion of atoms and electromagnetic fields, as, for instanceSYStém in which a material body is coupled to an environ-
atoms embedded in a strong radio-frequency field backent, no matter the specific nature of the environment and
ground[19,20, and atoms in intense resonant laser beam#téraction involved. L _

[21]. In order to give a precise mathematical definition and a " What follows we use the term “particle” or “material
clear physical meaning to the idea of dressed atom, a cruci®Pdy” in @ general manner, a particle may refer, for instance,
aspect is the nonlinear character of the problem involved if® @n &tom coupled to a field, or to a Brownian particle
realistic situations, which, in genaral, does not allow that &£CUPIed to a thermal bath, the two situations where we apply
rigorous definition of “dressed atom” could be given. A way OUr formalism in this paper. ,

to circumvent these mathematical difficulties is to assume N recent publication$32,33 a method(dressedcoordi-

that under certain conditions the coupled atom_nates andiressedstate$ has been introduced that allows a

electromagnetic field system may be approximated by thé]onperturba_tive approach to situgtions of the type described
system composed of a harmonic oscillator cougladarly above, provided that the interaction between the parts of the
to the field through some effective coupling constgrithis ~ SYStém can be approximated by a linear coupling. More pre-
is the case in the context of the general QED linear respongdiSely, the method applies for all systems that can be de-
theory, where the electric dipole interaction gives the leadingciPed by a Hamiltonian of the form
contribution to the radiation procefRefs.[22—-24)). Also, in N
a slightly different context, recently a significant number of _ 2, 2.2 2, 2.2
works have been devoted to the study of cavity QED, in H=3 p0+w0q0+k21 (Pict @) ‘q°k21 Cilk
particular to the theoretical investigation of higher- (1.4
generation Schiinger cat states in hig- cavities, as has
been done, for instance, in RER5]. Linear approximations where the subscript O refers to the “material body” akd
of this type have been applied along the last years in=1,2,...N refer to the harmonic environment modes. A
condensed-matter physics for studies of Brownian motiorHamiltonian of this type, describing a linear coupling of a
and in quantum optics to study decoherence, by assumingarticle with an environment, has been used in R2f.to
linear coupling between a cavity harmonic mode and a therstudy the quantum Brownian motion of a particle with the
mal bath of oscillators at zero temperature, as has been dopath-integral formalism. The limi—o in Eq. (1.4) is un-
in Refs.[26] and[27]. derstood. In the case of the coupled atom field system, this
In this paper we adopt a general physicist's point of view.formalism recovers the experimental observation that excited
We do not intend to describe all the specific features of a readtates of atoms in sufficiently small cavities are stable. It
nonlinear physical situation. Instead, we analyze a simplifiegllows to give formulas for the probability of an atom to
linear version of the atom-field or particle-environment sys-remain excited for an infinitely long time, provided that it is

N
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placed in a cavity of appropriate siz83]. For an emission is well defined. For ohmic and suprachmic environments the
frequency in the visible red, the size of such a cavity is insum on the right-hand side of E@2.4) diverges, which
agreement with experimental observatip84,35. We give a  makes the equation meaningless as it stands, a renormaliza-
nonperturbative treatment to the system introducing somé&on procedure being needed. In this case, as a first step we
dressed coordinates that make it possible to divide theadd and subtract the quant®?(w?2)"~* to the numerator of
coupled system into two parts, teessednaterial body and  the right-hand side of Eq(2.4). After changing the term

the dressedenvironment, which makes it unnecessary tocorresponding to the subtraction fo(wi)nfl to the left-
work directly with the concepts of bare material body, barehand side, Eq(2.4) can be rewritten in the form

environment, and interaction between them. In terms of these

new coordinateslressedstates are defined, and a nonpertur- N 2\n_ )2(,,2yn—1 N 2¢ 2yn—1
. . . X 5 (@})" = Q7 () 2 O} (wj)
bative approach to the time evolution of the system is pos- wg— 7;22 Q5= ——
. . . . ] 2_ 2 & 2_0)2
sible. We investigate also the behavior of the system as a Wy r Wy r

function of the strength of the coupling between the particle (2.9
and the bath. In particular, we give explicitly nonperturbative ) . . . .
formulas for the decay probability and for the classical pathf N=1 (ohmicsystem, this step is sufficient, the right-hand
of the particle in the weak and strong coupling regimes. ~ Side of Eq.(2.5) is convergent, and we define from the left-
hand side of Eq(2.5 the renormalized frequency by Eq.

(2.13 below. If n=1 further steps are necessary, we add to
and subtract from the numerator of the right-hand side of Eq.
(2.5 the quantity 2?)?(w2)"~? and we change the term

II. THE EIGENFREQUENCY SPECTRUM AND THE
DIAGONALIZING MATRIX

We consider for a moment, as in RE32], the problem of
a harmonic oscillatog, of (bare frequencywg coupled toN
other oscillatorgy; of frequenciesw;, i=1,2,... N. In the

corresponding to its subtraction to the left-hand side. The
process is continued until the series in right-hand member of
the resulting equation is convergent. This is attained after a

limit N— o we recover our original situation of the coupling number of steps, and the result can be rewritten in the form
particle-bath after redefinition of divergent quantities, in a

manner analogous to the naive mass renormalization done in N

field theories. The bilinear Hamiltoniaf1.4) can be turned wi— 0w’ —Qf= Uerz[[n]]kZl 72" (2.6
to principal axis by means of a point transformation, T Ok
qu:tLQr’ pu:t;tpr’ w=(04k}), where we have defined the counterterm
N [[n]]
k=1,2,...N; r=0,...N, 2.1 2 _
( ) 5({)2:% E E Qfawﬁ(n a), (27)
k=1 a=1

performed by an orthonormal matrix= (tL). The subscript
u=0 and u=Kk refer, respectively, to the particle and the
harmonic modes of the bath andrefers to the normal
modes. In terms of normal momenta and coordinates, th
transformed Hamiltonian in principal axis reads

with the notatior{[ n]] standing for the smallest integer con-
tainingn. Note that all thek-dependence characteristic of the
fiumerator of the right-hand side of E@.4) has moved to
the counterternf2.7). From an analysis of Eq2.6) it can be

1 N seen that itw3> dw?, Eq.(2.6) yields only positive solutions
H=> > (P2+02QD), (2.2  for Q2, while if 03<dw?, Eq.(2.6) has a negative solution
r=0 Q2. This means that in this case there is a damped collective

where the(),’s are the normal frequencies corresponding torllloervrgiritlhrenlgg: Tithgg%s bloie?:g\plies(tjaﬂwoz;ai;y ;%?:f'grueﬁt'ggﬁl
the possible collective stable oscillation modes of the !

. . text, it is precisely this runaway solution that is related to the
coupled system. The matrix elememjzsare given by{32] existence of a bound state in the Lee-Friedrechs mi&!
This solution is considered in Rdf37] in the framework of
a model to describe qualitatively the existence of bound
states in particle physics. We will not consider this situation.

N 2 -1/2

k
E1 (0= 0P)?

r Ck

tk: r
(0= QF)

ty, to=|1+

(2.3  We consider the situation in which all normal modes are
) . harmonic, which corresponds to takimg£> Sw? and defin-
with the condition ing therenormalizedfrequency
" Cﬁ “2_ 2 2
w(z)_QrZZE ——. (2.4) 0= wy— dw*, (2.8
k=1 wk_Qr
in terms of which Eq(2.6) becomes
We takec, = n(wy)". In this case the environment is clas-
sified according ton>1, n=1, or n<1, respectively, as o N 2l
supraohmi¢ ohmig or subohmic For a subohmic environ- w?— Q%= 7? Zr 5 (2.9
ment the sum in Eq2.4) is convergent and the frequeney k=1 wi—Qr
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We see that in the limiN— oo the above procedure is exactly ll. THE DRESSED PARTICLE
analogous to the naive mass renormalization in gquantum IN AN OHMIC ENVIRONMENT

: . o 2
field theory: the addltlon_of_a_ cougtgrterméwzqo llows To fix our framework and to give precise applications of
one to cpmpensatg the mﬂmty @p in such a way as to our formalism, we study in this paper ahmicenvironment.
IEave a finite, physically meaningful renormalized frequencyrne normalized eigenstates of our syst@igenstates of the
. This simple renormalization scheme was originally intro-Hamiltonian in principal axis can be written in terms of
duced in Ref[38]. normal coordinates,

To proceed, we take the constamtas 7= 2gAw, Aw
being the interval between two neighboring bath frequencies  (Q|ng,ny, .. .)=dnnn,...(Q1)
(supposed uniforfnand whereg is some constartwith di-

mension of (frequency) 7]. For reasons that will become [2Ns Qg
apparent later, we restrict ourselves to the physical situations - 1;[ n_S!H ng TQS I'o(Q)
in which the environment frequencies, can be written in

the form )
><exp( —-i> nSQst) , (3.1
S

w=2km/L, k=12, .... (2.10

WhereHnS stands for thength Hermite polynomial andl'y is

the normalized vacuum eigenfunction.
Next we intend to divide the system into tHeessedpar-
, (2.12) ticle and thedressedenvironment by means of some conve-
niently chosendressedcoordinates,q, and qj’ associated,
respectively, with thelressedparticle and thalressedoscil-

Then, using the formula

N
1 1 T
———=|—— —cot(wu
IZl (k*—u?) [Zu2 geotm)

Eq. (2.9 can be written in closed form, lators composing the environment. These coordinates will
LQ Q3 . 2102 allow a natural division of the system into the dressed
cot( _) - 4~ |1- @ . (physically observedparticle and thedressedenvironment.
2c) ggo2nl LO mgcQ 2] The dressed particle will contain automatically all the effects
(2.12 of the environment on it. Clearly, these dressed coordinates
should not be introduced arbitrarily. Since our problem is
For an ohmic environment we haxg= nw, and dw? linear, we will require a linear transformation between the
=N72. Taking in Eq.(2.6) @3>N7?, therenormalizedos-  normal anddressedcoordinategdifferent from the transfor-
cillator frequency; is given by mation (2.1) linking the normal to the bare coordinajes
Also, we demand the physical condition of vacuum stability.
0= ws—N7? (2.13  We assume that at some given time=Q) the system is

described bydressedstates, whose wave functions are de-
and the eigenfrequency spectrum for @mic environment ~ fined by
is given by the equation _
wll' ’
Vol
XTo(q’), (3.2

lﬁxokl, ...(Q')=H {(ZKHKM!)MHK#
y2

LO
co E

0 152L -
“wg Lo\t a2

The solutions of Eq(2.14) and Eq.(2.12 with respect ta) L

give the spectrum of eigenfrequenci@s corresponding to  where ql’qu(’), q/, w,=(w,0) and Iy is the invariant

the collective normal modes. ground-state eigenfunction introduced in E8.1). Note that
The transformation matrix elements turning the materiakhe above wave functions will evolve in time in a more com-

body-bath system to principal axis is obtained in terms of theplicated form than the unitary evolution of the eigenstates

physically meaningful quantitie§),, », after some rather (3.1), since these wave functions are not eigenstates of the

long but straightforward manipulations analogous to the prodiagonal Hamiltonian(1.4). It is precisely the nonunitary

cedure in Ref[32]. They read evolution of these wave functions which will allo@gee be-
low) a nonperturbative study of the radiation and dissipation
79, processes of the particle.
th= , In order to satisfy the physical condition of vacuum sta-
_ 7? _ bility (invariance under a tranformation from normal to
\/(Qrz— 0?2+ — (307~ w?) + 79?0} dressedcoordinates we remember that the the ground-state
2 eigenfunction of the system has the form
r_ 1Y% 1o
t= wﬁ—ﬂft"' (2.19 FO(Q)ocexp( — o rzo Qer) : 3.3
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and we require that the ground state in terms ofdressed cally. But in general terms it describes the expected damped
coordinates should have the form behavior of the particle.
We will approach this problem using ttdressedstates
) — introduced in the preceding section, and we will treat in de-
Fo(q")>exp — 2%~ ®,(0,)° | (34 tail the case in which the environment is at zero temperature
- (which corresponds to considering the environment initially
in its ground state Our method will account for the ex-
pected behavior in a simpler way than the usual path integral
approach.
We assume, as usual, that initially the Brownian particle
N and the environment are decoupled and that the coupling is
\/;—M%: 2 tL\/Q_rQr_ (3.5 turned_on suddenly at some givel_q tim_e that we qhooste at_
r=0 =0. Since we treat here the case in which the environment is
at zero temperature, our assumption is that the initial system
Thesedressedcoordinates are newollective coordinates, ¢an pe described by a pudzessedstate. The environment
different from the bare coordinateg, {q;} describing the state at zero temperature should be described byrétssed
bare particle and the free field modes, and also from thground state. Thus we can write the initial state of the system
normal (collective coordinates{Q,}. Indeed thesalressed  particle-environment in the forrfin the following, primed
coordinates are related to the bare coordinatef3ay labels refer to dressed stat¢éq’) and unprimed labels refer
to the eigenstateg(Q)],

N

From Egs.(3.3) and (3.4) it can be seen that the vacuum
invariance requirement is satisfied if we deforesseccoor-
dinates by

1
QL:E a,u,qui a,u,V:\/_:Z tLt:}\/Q_, (36)
“u IN,n7,n5, ... ;t=0)=|\)[ng,ng, .. ). 4.1

As we have already mentioned above, duessedstates,
given by Eq.(3.2), arecollectivebut nonstablestates, linear i ) o
combinations of the(stabld eigensatateg3.1) defined in N the above equatiopn) is the initial dressed statef the
terms of the normal modes. The coefficients of these combiParticle[see Eq(4.2) below] and|ni,ny, ...} is the initial
nations are given in Ed4.5) below and explicit formulas for dressedstate of the environment, whose wave functions
these coefficients for an interesting physical situation are/n/n:...(q") are given by Eq(3.2) (in the following we will
given in Eq.(4.11). This gives a complete and rigorous defi- tgke ni=n,=---=0, corresponding to the environment at
nition of our dressed states. Moreover, our dressed statg&ro temperatuje To proceed, we recall that the classical
have the interesting property of distributing the energy ini-path in the case of the quantum harmonic oscillator is given
tially in a particular dressed state, among itself and all otheby the mean value of the operator position in a coherent
dressed states with precise and well-defined probability amstate. In our formalism, we defifa) as adressedcoherent
plitudes[32]. We choosethese dressed states as physicallystate given by
meaningful and we test successfully this hypothesis by
studying the radiation process by an atom in a cavity. In both

cases, of a very large or a very small cavity, our results are in > ()\)né
agreement with experimental observations. |)\>:e—IA|2/2 2 Ing), (4.2)
Having introducediressedcoordinates andressed states ny=0 VNg!

in the following section we will apply these concepts to
study the time evolution of the expectation value of the par-

ticle coordinate. and accordingly the classical path of the Brownian particle
should be given by the time evolution of tdeessedarticle
IV. BROWNIAN MOTION AT ZERO TEMPERATURE position operator in the dressed coherent stdtd). It is

useful to examinate first the time evolution of the initial co-

As a first application of our formalism we consider the herent dressed state as given by E;q_’l_) Rep|acing Eq
study of Brownian motion. The Brownian particle is mod- (4.2) in Eq. (4.1) we obtain,

eled by a harmonic oscillator coupled to ahmic environ-
ment, the whole system being described by the Hamiltonian

(1.4). This model for the Brownian motion is in fact not new 2\

and has been implemented using the path integral formalism |x,n],n}, . .. ;t:o>:e—w2/2 > = [ngnj, ...).
in, for instance, Ref42,30,31. In this approach, an effective ny=0 VNg!

action for the Brownian particle is obtained, which, in gen- 4.3

eral, is very complicated and nonlocal in time. From this

effective action, an equation for the classical path of the

Brownian particle can be derived. However, this equationNow, since the eigenstatdsg,nq, ...) form a complete
obtained from the effective action is a very complicatedbasigstable states having eigenfunctions given by BdL)],
integro-differential equation that cannot be solved analytiawe can write Eq(4.1) as

042118-5
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I\.n{.ng, ... ;t=0) TEZ::E::::z(nO,nl, congng, )
—e ‘A|2/22 z no nl,... N n > ,
ny=0 {n;} \/no Lo O e = dQ(bnO,nl,...(Q)lpn(’),ni,...(q ). (4.5
(4.9 : : I
Since |ng,nq, ...) are eigenvectors of the Hamiltonian
where{n,}=(ng,nq,n,, ...) and (2.2), the time evolution of Eq(4.4) is given by
|
n/

AN, .. ty=e N2 T"o" nl""exp(—i Q.(n +1/2t) No,Ny, ...). (4.6)

| 1.112 > nE—o%r:}\/Knn"" Z r(r ) |O 1 >

Now we can compute; (t), the time-dependent mean value for the dressed oscillator position operator, i.e., the mean value
of the dressedparticle position operator taken in thieessedcoherent staté4.1),

ax(t)=(\,n;,n5, .. .5tlggIN,ni,ng, .. o5t)

:exp_l)\lz E

ng m'{nrzr} Vmo \/_,

()\*)mo )\n mo ml n

0
ST
0

,n

o "exy{ —iZ Qr(nr—mr)t)(mo,ml, ..laglng,ny, .. .).

’
My

(4.7
Using EQq.(3.5 for =0 and the formula

h
(M| Qulng) =\ 55 (Ve 8, -1 VNt L Sy o 1), 4.8

in Eq. (4.7) it is easy to obtain

GO=e A LS S S s o e me e qronnsrn| QT A0 g Q00 AT
A 205 g ) 0V'is LV VP ngng, - /m6| /n(')! /n(/)! /m6|

4.9

As we have mentioned above, the situation in which the environment is at zero temperature correspgnds,te
=0. In this case from Eq<4.5), (3.2), (3.5, (3.1), and with the help of the theore[89]

r Q"
mi2 Z ty V?Qf (to)mo(t )M 0,
Hn(’) = 2 , molml QO ml Ql CRCEE)
/Z (t;)z mp+my+---=nj

1
—| > (1))?
Nl r

(4.10
|

we get :
an(t) = \/ =MD +N* % (1], (412

Tn01nl!n2'--- ™

N:0.0, ...
n.l where
N no|n0| (t )no( O)nl(t )n25m’ MNo+ny+ny+--
00ty = $\24—i04t

(4.11) () ES: (to)e . (4.13

Replacing Eq.(4.11) in Eq. (4.9, we obtain after some From Refs[32,33 we recognize the functioh®(t) as the
straightforward calculations probability amplitude that at timethe dressedparticle still
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be excited, if it was initially(at t=0) in the first excited w0 y2e vt
level. We see that underlying our dressed states formalism is J(t)=ng dy——=-——-5>-
a unified way to study two physically different situations, the 0 (Y to?)—7gy
radiation process and Brownian motion. To illustrate this uni-
fying aspect of our formalism, in the following section we Replacing the above equations in E¢.12 we obtain for
perform a study of the radiation process of the dressed pathe classical path of the Brownian particle at zero tempera-
ticle. ture the following expressions:
Returning to the study of the Brownian particle, we see
that to obtain an expression for the classical path we have to Py
awt=1/ ——‘
w

(4.20

perform the sum appearing in E¢4.13 and replace the
result in Eq.(4.12. If we assume, as is currently done in

T
2 cogkt+8)— TQSin(Kt-F ) |e” ™92

studies of the Brownian motion, that the environment distrib-

utes itself over the whole free space, its frequencigs

should have a continuous distribution. This continuum can

be realized simply taking the limit— in Eq. (2.10. In
this case the matrix element§, given by Eq.(2.15, be-
come

o V2g0+/A0
AQ—WO\/(Qz—wZ)Z—i- 772929[2

(4.19

and the functionf®(t) in Eq. (4.13 can be written in the
form

s 2,—10Q
f°°(t)=f 200% 70
0 (QZ_w2)2+7T29292

(4.15

Before going ahead let us define a “driving parametery

2 (4.19

and let us study the above integrEl(t) in the different
cases(a «°>0, (b) k?=0, and(c) k°<0. The extreme

cases in(@ and (c), k>>0 or k<0 correspond, respec-
tively, to the situations of aveakcoupling between the par-

ticle and the environmenthE) or of a strong coupling
(g>w). We get for the above situations

(@) k>0,
f°°(t)=(1—i2lf)ei“’Tgt’2+2iJ(t). (4.17
(b) ¥?=0,

gt

f°°(t)=(l— T) e 924 21J(1), (4.18

and(c) «%<0,

1 T
o0 1) = 5[ 1+ 2—9) & 792+ |«
0}

+

1- 79 ) e-(moz-1unt| 4 2i3(1). (4.19
2|«

where

+2 sinﬁJ(t)] (k>0), (4.2)
q.(t)= \/@2@035)(1— Tr—gt)ewgt’2
> 2w 2
+2(sin 5)J(t)} (k=0), (4.22
aL(t)=\/ @[2(0055)( coshx|t— 9 sinh k|t | e~ ™9V2
» 2w 2|«
+2(sin 5)J(t)} (k<0). (4.23
In the above equations we have writter \/ﬁe*i‘?, with n’

being the mean value for the number operator in the coherent
state. Equation$4.21) to (4.23 give the expected behavior
for the classical path of the Brownian particle. Apart from a
parcel containing the integrd(t), these equations describe
the behavior of a damped oscillator in the three regimes cor-
responding ta«>0, k=0, andx<0, with a damping coef-
ficient equal torg. The above formulas describe the exact
behaviors for6=0, which corresponds to a real value of the
coherence parameter. The integralJ(t) in Egs. (4.17)—

(4.19 can be evaluated for large timés; 1/w. We obtain

49
J(t)y~=—
~=3

(4.29

1
t>=|.
w

Using Eq.(4.29 in Eq. (4.12 and remarking that for very
large times the power behaviert 3 dominates over the
exponential decay, we obtain identical asymptotic behaviors
in the three regimes above,

(1) \/ﬁﬁgg ind 0,k=0,k<0 t>1

~ ——=———72SINn k>0,k=0,k X >=|.

R 20 0™t w
(4.25

The path behavior in the different coupling regimes can be
obtained from Eqs(4.21) to (4.23 and Eq.(4.16. In the

strong coupling regimex?<0 (g>5), we obtain
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— — 2
[hin 202 00,412 T —mgt
Py A [ — w2t/mg ; f%t)|“=| coshk|t— =— sinN k|t| e™™
g,(t) 250056( pore )e +2(sind)J(t) 11250 h| 2| k| |
+ =% (k<0). (5.3
"t

and in the weak coupling regime?>0 (g<5), we obtain
from Eqgs.(4.16 and (4.21), In theweakcoupling regimex>0, we obtain from Eq(5.1)
that the probability that the particle be still excited at time

t>1/w if it was in the first excited level at=0, obeys a

q/(t)~ /ﬁ_” 2 cos{gt+6)— 77__9 sin(gt+5) o Tot2 modified exponential decay law,
» 2w w )
00412, a— 7gt 169
+2(sin8)J(t). 4.27 [2(0)|*~e +ET'[6' (5.4

We see that the behaviors are quite different in the two situl? the strong coupling regimes<0, we obtain from Eq.

ations, for not very large values of the timefor which the

exponential decay dominates over the power-law decay of — )

J(t): an oscillatory damped behavior with time in the weak |f00(t)|2%(L> o202ty | l_ﬁ (5.5

coupling regime, while in the strong coupling regime the 292 w5t®

expected dressed coordinate value has an exponential decay.

Again, asymptoticallyl(t) dominates and both behaviors are In both cases we see from Ed5.4) and (5.5 that asymp-

identical, obeying a power-law decay[*3_ In the following totically the probability that the dressed particle be still ex-

section we apply our formalism to the study of the radiationcited at a very large timet obeys a power law,

process. |T9%t)|?|;_ ..~ 169/ »®t®. However, in the weak coupling
regime we can see that this behavior is dominant only for
extremely large values df where the probabilityf%(t)|? is

V. THE RADIATION PROCESS vanishingly small. For lower values af(but satisfying the

In this section we study the radiation process of theconditiont>1/w), the behavior is dominated by the expo-
dressedparticle when it is prepared in such a way that ini- nential law. For instance, let us take=4.0x10" ¢
tially it is in its first excited state. We shall consider two — /137, In this case the conditid® 1/w corresponds to
situations, the particle in free space and the particle confined. 5 5. 10715 5. A numerical analysis of E5.4) with these
in a cavity of diametet.. data shows that farin the interval 1013 s<t<10 2, the
curve describing the function in E(p.4) is practically indis-
tinguishable from the pure exponential exptgt). For those
In thi h f the f ios h values ofg and w the contribution from the monomial term

n this case the spectrum of the frequencigg has a Eq. (5.4) is negligible. In fact, this is valid for the exact
cont_lnuous dlstrlbutlon_ asoowe _havg seen in the preced'ngrobability. In Fig. 1 plots of the probabilityf®(t)|? from
section, and_the functior (t). IS given by Eqs.(4.17)7 theexactEq. (4.17) and from the pure exponential decay law
(4.19. Combining these equations with Hg.24), we obtain exp(—mgt) are superposed for the time interval<®
for the probability that the dressed particle still remain inits — "~ |, —

=10 *“s and the same values gfand v as before. They

f'.rSt gxmted state at a time>1/w, the following expres- are completely indistinguishable for the emission frequency
sions: and the time interval considered. Similar results hold for Eq.

202 (5.5 in the case of strong coupling>w. We can also see
1+ T) e "9t g 72 that we recover with our formalism the fact that the decay of
4w the particle is enhanced for a strong coupling as compared to
1602 the weak coupling. We emphasize that the different behav-
+_ﬂ (k>0), iors described in Eq€5.4) and(5.5) are due to the fact that
w5t in the two situations the system obeélfferent decay laws
(5. and that this factannotbe inferred from perturbation theory.
' It is a consequence of thdressedstates approach.

A. The particle in free space

|£9%(t)|2=

g 2 B. Behavior of the confined system

11%1)|2=| 1- 2t 2 oy 29 g (5.2
(O]°= 2 € Bt6 (k=0), ' Let us now consider thehmic system in which the par-

ticle is placed in the center of a cavity of diamelgrin the

case of a very small, i.e., that satisfies the condition of

and being much smaller than the coherence lengt&2c/g. We
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11

0.8
061 FIG. 1. Plot of the superposition of the prob-
ability of the particle being still excited at a time
PIt] t, from the exact probability amplitudé.17 and
from the exponential decay law exp{rgt). Both
0.4 probabilities are commonly namer[t]. Time is
in units of 10 13s.
0.2
0 2 4 . 6 8 10
note that from a physical point of view, stands for either To solve Eq.(2.14 with respect to the lowest eigenfre-

the diameter of a spherical cavity or the spacing betweeuency )y, let us assume that it satisfies the condition
infinite parallel mirrors. To obtain the eigenfrequency spec{),L/2c<1 (we will see below that this condition is compat-
trum, we remark that from a graphical analysis of Etj14) ible with the condition of a small as defined aboyelnsert-

it can be seen that in the case of small value§,dfs solu-  ing the condition)yL/2c<1 in Eq.(2.14) and keeping up to
tions are very near the frequency values corresponding to thguadratic terms i), we obtain the solution for the lowest
asymptotes of the curve cat/2c), which correspond to the eigenfrequency),,

environment mode&; =i27c/L, except the smallest eigen-

frequency()y. The larger the solutions taken, the nearer they )

are to the values corresponding to the asymptotes. For in- Qo=—F——. (5.9
stance, for a value of of the order of 2<10°? m andw A /l+ EL

~10'%s, only the lowest eigenfrequené€y, is significantly 2¢c

different from the field frequency corresponding to the first _ N
asymptote, all the other eigenfrequenci@s, k=1,2,. .. ConS|_stency betv_vgen E@5.9) and the conditionQ)yL/2c
being very close to the field mod&g&c/L. For higher val- <1 gives a condition ot,

ues ofw (and lower values of ) the differences between the

2 2
eigenfrequencies and the field mode frequencies are still L<2—Cf f:z 9 14 1+i w
smaller. Thus to solve E@2.14 for the larger eigenfrequen- ' 2\ » z2\ag) |
cies, we expand the function cbfp/2c) around the values (5.10

corresponding to the asymptotes. We write

Let us consider, as in the preceding section, the situations of
kazic(kJr e), k=12,..., (5.6  Weakcoupling, k?>0 (g<w) and of strong coupling, 2
L <0 (g>w), and let us consider the situation where the

dressed material body is initially at its first excited level.

with 0<€,<1, satisfying the equation Then from Eq.(4.13 we obtain the probability that it will

- still be excited after an elapsed time

L

1= 2m7gc

). (5.7

_ 2c " 1
COt(ﬂ'ek)—g—L( +Ek)+(k+ek)

[FAOP=(15)*+22, (1)*(t5)*cos Q= o)t
But since for a small value df every e, is much smaller

than 1, Eq.(5.7) can be linearized i%,, giving n

7

(t§)2(tp)2cog Q, — QL. (5.1

k=1

47gclk
€= — .
K 2(4m2cK2— 2L 2

(5.8 1. Weak coupling

In the case ofveakcoupling a physically interesting situ-

Equations(5.6) and (5.8) give approximate solutions to the ation is when interactions of electromagnetic type are in-
eigenfrequencie),, k=1,2,.... volved. In this case, we takg= aw, where« is the fine-
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structure constanty=1/137. Then the factof multiplying 2. Strong coupling
2c/g in Eq. (5.10 is ~0.07 and the conditioh <2c/g is In this case we see from Eqé¢..16), (5.9), and(5.10 that
replaced by a more restrictive one<0.07(Z/g). For a ) ~ and obtain from Eq(2.15
typical infrared frequency, for instance~2,0x 10'Ys, our
calculations are valid for a value &f L<10"3 m. 02 1 ko 9L

From Egs.(2.15 and using the above expressions for the () ~1r 55 ()= 2 (5.19
eigenfrequencies for smdll we obtain the matrix elements, me

Using Egs(5.19 in Eq. (5.11), we obtain for the probability
gL that the excited system will still be at the first energy level at

(5.12

mck?’ time t, the expression

gL
() ~1- >, (t5)*~

2 2 S 28
> mcoiﬂk—ﬂo)

To obtain the above equations we have neglected the correc- n
2+ 7w =1

tive term ¢, from the expressions for the eigenfrequencies
Q, . Nevertheless, corrections & should be included in the
expressions for the matrix elemert§, in order to avoid
spurious singularities due to our approximation.

Using Egs.(5.12 in Eq. (5.11), we obtain

£t~

2+ 76

Xt+ 4 52 i ! 0,—Qpt. (5.1
— —— CO — . .
20 21 K22 k I

We see from Eq(5.16) that as the system evolves in time,

oo

6 the probability that the material body will be excited attains
00, 2..1_ 82 _ —
[PAOF~1-mo+4 T g )gl K2 cog (2= o)t periodically a minimum value that has a lower bound given
by

2

4 2 1
+ 7282+ — 62 —— cogQ,—O)t,
i w? k,|2=l k212 R

ool 2 \mé w8
min( 0=\ 5575 ~l2576/3 ~ 9

(5.13 (5.1

where we have introduced the dimensionless param&ter The condition of positivity of Eq(5.17) imposes forfixed
=Lg/2c <1, corresponding to a small value bfand we  values ofg andw an upper bound for the quantity 6 ax.
remember that the eigenfrequencies are given by 6. which corresponds to an upper bound to the diametef
and(5.8). As time goes on, the probability that the material the cavity, L,,,, (remember thats=Lg/2c). Values of &
body be excited attains periodically a minimum value whichjarger thand,,, or, equivalently, values of. larger than

has a lower bound given by Lax @re unphysical and should not be considered. These
5 upper bounds are obtained from the solution of the inequality
5 144 in(1£90()[2) = L4 €00/ 12
min( 1)) =1— = 5+ 2. (5.14 min([f°(t)[)=0. We have miff%(t)[)>0 or

3 9 min(|f%(t)[?)=0, for, respectively,0< Snax OF 6= max-

- - For a frequencyw of the orderw~4.00x 101/s (in the red
For a frequencyw of the ordero~4.00x 10'/s (in the red  vyisible range, with g=10w the lower bound5.17) above
visible range, which corresponds t@~0.005 andL~1.0  attains zero for a cavity of size~1.1x 10" 'm. For a typi-
x107" m, we see from Eq(5.14) that the probability that .5 microwave frequency~2.00x 1049, the same vanish-
the material body be at any time exqted will neverfall b.elowing| lower bound is attained for a cavity of side~1.2
a value~0.97, or a decay probability that is never higher 1 5-31, \we see, comparing with the results of the preced-
that a value~0.03. It is interesting to compare this result ing subsection, that the behavior of the system dtiong
W,'Fh gxperlmental observatp_ns In Re[§4,$ﬂ, where sta- coupling is rather different from its behavior in the weak
bility is found for atoms e_m|tt|ng in _the visible ranggg)laced coupling regime. For appropriate cavity sizes, which are of
between two parallel mirrors a distan¢e=1.1x10° m rder 10! of those ensuring stability in the weak coupling
apart from one another. For lower frequencies the value ofggime we ensure for strong coupling the complete decay of
the spacingL ensuring quasistability of the same order asy,s particle to the ground state in a small elapsed time.
above, for the excited particle may be considerably larger.
For instance, folw in a typical microwave valuep~2.00

. - VI. CONCLUDING REMARKS

x 10'Ys, and taking als@~0.005, the probability that the
material body will remain at the first excited level at any We have presented in this paper a nonperturbative treat-
time would be larger than a value of the order of 97%, for ament of a quantum system consisting of a partigfe the
value ofL of L~2.0x10 2 m. The probability that the ma- larger sense of a “material body,” an atom or a Brownian
terial body will remain excited as time goes on oscillatesparticle coupled to an environment modeled by noninteract-
with time between a maximum and a minimum value anding oscillators. We have useltessedstates that allow one to
never departs significantly from the situation of stability in divide the system into thdressedparticle and thedressed
the excited state. environment by means of some conveniently chadressed
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coordinates,q, and q; , associated, respectively, with the in its ground state Our method accounts for the expected
dressedparticle and thedressedoscillators composing the damped behavior of the particle in a simpler way than the
environment. In terms of these coordinates a division of thaisual path integral approach. For atomic systems we recover
system into the dressegbhysically observedparticle and  with our formalism the experimental observation that excited
thedressedenvironment arises naturally. The dressed particlestates of atoms in sufficiently small cavities are stable. We
will contain automatically all the effects of the environment are able to give formulas for the probability of an atom to
on it. This formalism allows a nonperturbative approach toremain excited for an infinitely long time, provided it is
the time evolution of a system that may be approximated byjaced in a cavity of appropriate size. For an emission fre-
a particle coupled linearly to its environment, in rather dif- quency in the visible red range, the size of such a cavity is in
ferent situations as confinement of atoms in cavities or theggreement with experimental observatig88]. The gener-
Brownian motion. In other words, underlying our dressedalization of the work presented in this paper to the case of a
state formalism is a unified way to study two physically dif- generic (supraochmic or subohmiicenvironment and finite

ferent situations, the radiation process and the Brownian maemperature is in progress and will be presented elsewhere.
tion. We have approached these situations usinglthssed

states, and in both cases we have obtained results in good

agreement with experim_ental o_bservations or with e_xpecte_d ACKNOWLEDGMENTS
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