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Dressed-state approach to quantum systems
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Using the nonperturbative method ofdressedstates introduced in a previous publication@N. P. Andion, A. P.
C. Malbouisson, and A. Mattos Neto, J. Phys. A34, 3735~2001!#, we study effects of the environment on a
quantum-mechanical system, in the case in which the environment is modeled by an ensemble of noninteract-
ing harmonic oscillators. This method makes it possible to separate the whole system into thedressedme-
chanical system and thedressedenvironment, in terms of which a nonperturbative approach is possible. When
applied to the Brownian motion, we give explicit nonperturbative formulas for the classical path of the particle
in the weak and strong coupling regimes. When applied to studying atomic behaviors in cavities, the method
accounts for experimentally observed inhibition of atomic decay in small cavities.
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I. INTRODUCTION

Quantum-mechanical systems remain stable in the
sence of interaction. When interacting with an environm
they lose stability as a consequence of the interaction
material body, for instance, an excited atom or molecule
an excited nucleon, changes its state due to its interac
with the environment, e.g., the atom–electromagnetic fi
coupling in the case of an atom, or the quark-gluon inter
tion for a nucleon inside a nucleus. The understanding of
nature of the destabilization mechanism is important but
in general, not an easy task, due to the fact that it is to a la
extent modeled by the method, in general approximate, u
to study the system. A very complete account on the sub
in particular as it applies to the study of the Brownian m
tion, can be found in Refs.@1,2#. From a general point o
view, in modern physics, apart from computer calculations
lattice field theory, the only available method to treat t
physics of interacting bodies, except for a few special ca
is perturbation theory. The perturbative solution to the pr
lem is obtained by means of the introduction of bare, non
teracting fields, to which are associated bare quanta, the
teraction being introduced order by order in powers of
coupling constant in the perturbative expansion for the
servables. The perturbative method gives remarkably a
rate results in quantum electrodynamics and in weak inte
tions. In high-energy physics, asymptotic freedom make
possible to apply quantum chromodynamics in its pertur
tive form and very important results have been obtained
this way in the last decades@3#. However, in spite of its wide
applicability, there are situations where the use of pertur
tion theory is not possible, as in the low-energy domain
quantum chromodynamics where confinement of quarks
gluons takes place, or are of little usefulness, as, for insta
in atomic physics, in resonant effects associated with
coupling of atoms with strong radio-frequency fields. The
situations have led a long time to attempt to circumvect
limitations of perturbation theory, in particular, in situatio
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where strong effective couplings are involved. In some n
perturbative approachs in statistical physics and construc
field theory, general theorems can be derived using clu
like expansions and other related methods@4#. In some cases
these methods lead to the rigorous construction of fie
theoretical models~see, for instance, Ref.@5# and references
therein!, but, in spite of the rigor and in some cases t
beauty of demonstrations, they are not of great usefulnes
calculations of a predictive character. In another mathem
cal framework, there are a large number of successful
tempts in the literature to circumvent the limitations of pe
turbation theory. In particular, there are methods to perfo
resummations of perturbative series~even if they are diver-
gent!, which amounts in some cases to analytically contin
weak-coupling series to a strong-coupling domain@6–13#.
For instance, starting from a function of a coupling const
g defined formally by means of a series~not necessarily con-
vergent!,

f ~g!5 (
n50

`

angn, ~1.1!

we can, under certain analyticity assumptions~the validity of
the Watson-Nevanlinna-Sokal theorem, see, for instan
Ref. @14# and other references therein!, define its Borel trans-
form as the associated series,

B~b!5 (
n50

`
an

n!
bn, ~1.2!

which has an analytic continuation on a strip along the reab
axis from zero to infinity. It can be easily verified that th
inverse Borel transform

B̃~g!5
1

gE0

`

db e2b/gB~b!, ~1.3!

reproduces formally the original series~1.1!. From a physical
point of view, the important remark is that the seriesB(b)
can be convergent and summed up even if the series~1.1!
diverges. In this case, the inverse Borel tranform~1.3! de-
©2002 The American Physical Society18-1
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fines a function of g, B̃(g), which we can think of as the

‘‘sum’’ of the divergent series~1.1!. This functionB̃(g) can
be defined for values ofg not necessarily small and, in thi
sense, we can perform an analytic continuation from a w
to a strong-coupling regime. Techniques of this type are o
predictive character and have been largely employed in
cent years in quantum field theory literature.

Nevertheless, as a matter of principle, due to the nonv
ishing of the coupling constant, the idea of a bare part
associated with a bare matter field is actually an artifac
perturbation theory and is physically meaningless. A char
physical particle is always coupled to the gauge field;
other words, it is always ‘‘dressed’’ by a cloud of quanta
the gauge field~photons, in the case of electrodynamics!. In
fact, as mentioned above, from a phenomenological poin
view there are situations even within the scope of Q
where perturbation methods are of little usefulness, for
stance, resonant effects associated with the coupling o
oms with strong radio-frequency fields Ref.@15#. As re-
marked in Ref.@16#, the theoretical understanding of the
effects using perturbative methods requires the calculatio
very high order terms in perturbation theory, what makes
standard Feynman diagrams technique practically unrelia
The trials of treating systems of this type nonperturbativ
have led to the idea of the ‘‘dressed atom,’’ introduced ori
nally in Refs.@17# and@18#. Since then this concept has be
used to investigate several situations involving the inter
tion of atoms and electromagnetic fields, as, for instan
atoms embedded in a strong radio-frequency field ba
ground @19,20#, and atoms in intense resonant laser bea
@21#. In order to give a precise mathematical definition an
clear physical meaning to the idea of dressed atom, a cru
aspect is the nonlinear character of the problem involved
realistic situations, which, in genaral, does not allow tha
rigorous definition of ‘‘dressed atom’’ could be given. A wa
to circumvent these mathematical difficulties is to assu
that under certain conditions the coupled atom
electromagnetic field system may be approximated by
system composed of a harmonic oscillator coupledlinearly
to the field through some effective coupling constantg. This
is the case in the context of the general QED linear respo
theory, where the electric dipole interaction gives the lead
contribution to the radiation process~Refs.@22–24#!. Also, in
a slightly different context, recently a significant number
works have been devoted to the study of cavity QED,
particular to the theoretical investigation of highe
generation Schro¨dinger cat states in high-Q cavities, as has
been done, for instance, in Ref.@25#. Linear approximations
of this type have been applied along the last years
condensed-matter physics for studies of Brownian mot
and in quantum optics to study decoherence, by assumi
linear coupling between a cavity harmonic mode and a th
mal bath of oscillators at zero temperature, as has been
in Refs.@26# and @27#.

In this paper we adopt a general physicist’s point of vie
We do not intend to describe all the specific features of a
nonlinear physical situation. Instead, we analyze a simpli
linear version of the atom-field or particle-environment s
04211
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tem and try to extract the most detailed information we c
from this model. We will introducedressedstates by means
of a precise and rigorous definition to solve our problem. O
dressedstates can be viewed as a rigorous version of
semiqualitative idea of dressed atom mentioned abo
which can be constructed in view of the linear character
our problem. We take a linear model in order to have
clearer understanding of what is one of the essential poi
namely, the need for nonperturbative analytical treatment
coupled systems, which is the basic problem underlying
idea of adressedquantum-mechanical system. Of cours
such an approach to a realistic nonlinear system is an
tremely hard task, and here we achieve what we think i
good agreement between physical reality and mathema
reliability.

Where the Brownian motion is concerned, there are u
ally two equivalent ways of modeling the environment~the
thermal bath! to which the particle is coupled: to represe
the thermal bath by a free field, as is done in the class
work of Ref. @1#, or to consider the thermal bath as a res
voir composed of a large number of noninteracting harmo
oscillators~see, for instance, Refs.@28–31#!. In both cases,
exactly the same type of argument given above in the cas
a charged particle appliesmutatis mutandisto this system,
we may speak of a ‘‘dressing’’ of the Brownian particle b
the ensemble of the particles in the thermal bath. The Bro
ian particle should be always ‘‘dressed’’ by a cloud of quan
of the thermal bath. This should be true, in general, for a
system in which a material body is coupled to an enviro
ment, no matter the specific nature of the environment
interaction involved.

In what follows we use the term ‘‘particle’’ or ‘‘materia
body’’ in a general manner, a particle may refer, for instan
to an atom coupled to a field, or to a Brownian partic
coupled to a thermal bath, the two situations where we ap
our formalism in this paper.

In recent publications@32,33# a method~dressedcoordi-
nates anddressedstates! has been introduced that allows
nonperturbative approach to situations of the type descri
above, provided that the interaction between the parts of
system can be approximated by a linear coupling. More p
cisely, the method applies for all systems that can be
scribed by a Hamiltonian of the form

H5
1

2 Fp0
21v0

2q0
21 (

k51

N

~pk
21vk

2qk
2!G2q0(

k51

N

ckqk ,

~1.4!

where the subscript 0 refers to the ‘‘material body’’ andk
51,2, . . . ,N refer to the harmonic environment modes.
Hamiltonian of this type, describing a linear coupling of
particle with an environment, has been used in Ref.@2# to
study the quantum Brownian motion of a particle with t
path-integral formalism. The limitN→` in Eq. ~1.4! is un-
derstood. In the case of the coupled atom field system,
formalism recovers the experimental observation that exc
states of atoms in sufficiently small cavities are stable
allows to give formulas for the probability of an atom
remain excited for an infinitely long time, provided that it
8-2
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DRESSED-STATES APPROACH TO QUANTUM SYSTEMS PHYSICAL REVIEW A66, 042118 ~2002!
placed in a cavity of appropriate size@33#. For an emission
frequency in the visible red, the size of such a cavity is
agreement with experimental observations@34,35#. We give a
nonperturbative treatment to the system introducing so
dressedcoordinates that make it possible to divide t
coupled system into two parts, thedressedmaterial body and
the dressedenvironment, which makes it unnecessary
work directly with the concepts of bare material body, ba
environment, and interaction between them. In terms of th
new coordinatesdressedstates are defined, and a nonpert
bative approach to the time evolution of the system is p
sible. We investigate also the behavior of the system a
function of the strength of the coupling between the parti
and the bath. In particular, we give explicitly nonperturbat
formulas for the decay probability and for the classical p
of the particle in the weak and strong coupling regimes.

II. THE EIGENFREQUENCY SPECTRUM AND THE
DIAGONALIZING MATRIX

We consider for a moment, as in Ref.@32#, the problem of
a harmonic oscillatorq0 of ~bare! frequencyv0 coupled toN
other oscillatorsqi of frequenciesv i , i 51,2, . . . ,N. In the
limit N→` we recover our original situation of the couplin
particle-bath after redefinition of divergent quantities, in
manner analogous to the naive mass renormalization don
field theories. The bilinear Hamiltonian~1.4! can be turned
to principal axis by means of a point transformation,

qm5tm
r Qr , pm5tm

r Pr , m5~0,$k%!,

k51,2, . . . ,N; r 50, . . .N, ~2.1!

performed by an orthonormal matrixT5(tm
r ). The subscript

m50 and m5k refer, respectively, to the particle and th
harmonic modes of the bath andr refers to the norma
modes. In terms of normal momenta and coordinates,
transformed Hamiltonian in principal axis reads

H5
1

2 (
r 50

N

~Pr
21V r

2Qr
2!, ~2.2!

where theV r ’s are the normal frequencies corresponding
the possible collective stable oscillation modes of
coupled system. The matrix elementstm

r are given by@32#

tk
r 5

ck

~vk
22V r

2!
t0
r , t0

r 5F11 (
k51

N ck
2

~vk
22V r

2!2G21/2

,

~2.3!

with the condition

v0
22V r

25 (
k51

N ck
2

vk
22V r

2
. ~2.4!

We takeck5h(vk)
n. In this case the environment is cla

sified according ton.1, n51, or n,1, respectively, as
supraohmic, ohmic, or subohmic. For a subohmic environ
ment the sum in Eq.~2.4! is convergent and the frequencyv0
04211
e

e
se
-
-
a

e

h

in

e

e

is well defined. For ohmic and supraohmic environments
sum on the right-hand side of Eq.~2.4! diverges, which
makes the equation meaningless as it stands, a renorma
tion procedure being needed. In this case, as a first step
add and subtract the quantityV r

2(vk
2)n21 to the numerator of

the right-hand side of Eq.~2.4!. After changing the term
corresponding to the subtraction ofV r

2(vk
2)n21 to the left-

hand side, Eq.~2.4! can be rewritten in the form

v0
22h2(

k51

N
~vk

2!n2V r
2~vk

2!n21

vk
22V r

2
2V r

25 (
k51

N
V r

2~vk
2!n21

vk
22V r

2
.

~2.5!

If n51 ~ohmicsystem!, this step is sufficient, the right-han
side of Eq.~2.5! is convergent, and we define from the lef
hand side of Eq.~2.5! the renormalized frequency by Eq
~2.13! below. If n>1 further steps are necessary, we add
and subtract from the numerator of the right-hand side of
~2.5! the quantity (V r

2)2(vk
2)n22 and we change the term

corresponding to its subtraction to the left-hand side. T
process is continued until the series in right-hand membe
the resulting equation is convergent. This is attained afte
number of steps, and the result can be rewritten in the fo

v0
22dv22V r

25h2V r
2[[n]] (

k51

N
1

vk
22V r

2
, ~2.6!

where we have defined the counterterm

dv25
h2

4 (
k51

N

(
a51

[[ n]]

V r
2avk

2(n2a) , ~2.7!

with the notation@@n## standing for the smallest integer con
tainingn. Note that all thek-dependence characteristic of th
numerator of the right-hand side of Eq.~2.4! has moved to
the counterterm~2.7!. From an analysis of Eq.~2.6! it can be
seen that ifv0

2.dv2, Eq.~2.6! yields only positive solutions
for V2, while if v0

2,dv2, Eq. ~2.6! has a negative solution
V2

2 . This means that in this case there is a damped collec
normal mode that does not allow stationary configuratio
Nevertheless, it should be remarked that in a different c
text, it is precisely this runaway solution that is related to t
existence of a bound state in the Lee-Friedrechs model@36#.
This solution is considered in Ref.@37# in the framework of
a model to describe qualitatively the existence of bou
states in particle physics. We will not consider this situatio
We consider the situation in which all normal modes a
harmonic, which corresponds to takingv0

2.dv2 and defin-
ing the renormalizedfrequency

v̄25v0
22dv2, ~2.8!

in terms of which Eq.~2.6! becomes

v̄22V r
25h2(

k51

N
V r

2†[n] ‡

vk
22V r

2
. ~2.9!
8-3
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We see that in the limitN→` the above procedure is exact
analogous to the naive mass renormalization in quan
field theory: the addition of a counterterm2dv2q0

2 allows
one to compensate the infinity ofv0

2 in such a way as to
leave a finite, physically meaningful renormalized frequen
v̄. This simple renormalization scheme was originally intr
duced in Ref.@38#.

To proceed, we take the constanth as h5A2gDv, Dv
being the interval between two neighboring bath frequenc
~supposed uniform! and whereg is some constant@with di-
mension of (frequency)22h]. For reasons that will becom
apparent later, we restrict ourselves to the physical situat
in which the environment frequenciesvk can be written in
the form

vk52kp/L, k51,2, . . . . ~2.10!

Then, using the formula

(
k51

N
1

~k22u2!
5F 1

2u2
2

p

u
cot~pu!G , ~2.11!

Eq. ~2.9! can be written in closed form,

cotS LV

2c D5
V3

pgV2†[n] ‡
1

c

LV S 12
v̄2LV2

pgcV2†[n] ‡D .

~2.12!

For an ohmic environment we haveck5hvk and dv2

5Nh2. Taking in Eq.~2.6! v0
2.Nh2, the renormalizedos-

cillator frequencyv̄ is given by

v̄5Av0
22Nh2 ~2.13!

and the eigenfrequency spectrum for anohmicenvironment
is given by the equation

cotS LV

2c D5
V

pg
1

c

LV
S 12

v̄2L

pgc
D . ~2.14!

The solutions of Eq.~2.14! and Eq.~2.12! with respect toV
give the spectrum of eigenfrequenciesV r corresponding to
the collective normal modes.

The transformation matrix elements turning the mate
body-bath system to principal axis is obtained in terms of
physically meaningful quantitiesV r , v̄, after some rather
long but straightforward manipulations analogous to the p
cedure in Ref.@32#. They read

t0
r 5

hV r

A~V r
22v̄2!21

h2

2
~3V r

22v̄2!1p2g2V r
2

,

tk
r 5

hvk

vk
22V r

2
t0
r . ~2.15!
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III. THE DRESSED PARTICLE
IN AN OHMIC ENVIRONMENT

To fix our framework and to give precise applications
our formalism, we study in this paper anohmicenvironment.
The normalized eigenstates of our system~eigenstates of the
Hamiltonian in principal axis! can be written in terms of
normal coordinates,

^Qun0 ,n1 , . . . &[fn0n1n2•••
~Q,t !

5)
s

FA2ns

ns!
Hns

SAVs

\
QsD GG0~Q!

3expS 2 i(
s

nsVst D , ~3.1!

whereHns
stands for thensth Hermite polynomial andG0 is

the normalized vacuum eigenfunction.
Next we intend to divide the system into thedressedpar-

ticle and thedressedenvironment by means of some conv
niently chosendressedcoordinates,q08 and qj8 associated,
respectively, with thedressedparticle and thedressedoscil-
lators composing the environment. These coordinates
allow a natural division of the system into the dress
~physically observed! particle and thedressedenvironment.
The dressed particle will contain automatically all the effe
of the environment on it. Clearly, these dressed coordina
should not be introduced arbitrarily. Since our problem
linear, we will require a linear transformation between t
normal anddressedcoordinates@different from the transfor-
mation ~2.1! linking the normal to the bare coordinates#.
Also, we demand the physical condition of vacuum stabil
We assume that at some given time (t50) the system is
described bydressedstates, whose wave functions are d
fined by

ck0k1 , . . .~q8!5)
m

F ~22kmkm! !21/2Hkm
SAv̄m

\
qm8 D G

3G0~q8!, ~3.2!

where qm8 5q08 , qi8 , v̄m5(v̄,v i) and G0 is the invariant
ground-state eigenfunction introduced in Eq.~3.1!. Note that
the above wave functions will evolve in time in a more com
plicated form than the unitary evolution of the eigensta
~3.1!, since these wave functions are not eigenstates of
diagonal Hamiltonian~1.4!. It is precisely the nonunitary
evolution of these wave functions which will allow~see be-
low! a nonperturbative study of the radiation and dissipat
processes of the particle.

In order to satisfy the physical condition of vacuum s
bility ~invariance under a tranformation from normal
dressedcoordinates! we remember that the the ground-sta
eigenfunction of the system has the form

G0~Q!}expS 2
1

2\ (
r 50

N

V rQr
2D , ~3.3!
8-4
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DRESSED-STATES APPROACH TO QUANTUM SYSTEMS PHYSICAL REVIEW A66, 042118 ~2002!
and we require that the ground state in terms of thedressed
coordinates should have the form

G0~q8!}expS 2
1

2\ (
m50

N

v̄m~qm8 !2D . ~3.4!

From Eqs.~3.3! and ~3.4! it can be seen that the vacuu
invariance requirement is satisfied if we definedressedcoor-
dinates by

Av̄mqm8 5(
r 50

N

tm
r AV rQr . ~3.5!

Thesedressedcoordinates are newcollective coordinates,
different from the bare coordinatesq0 , $qi% describing the
bare particle and the free field modes, and also from
normal ~collective! coordinates$Qr%. Indeed thesedressed
coordinates are related to the bare coordinates by@32#

qm8 5(
n

amnqn , amn5
1

Av̄m

(
r

tm
r tn

r AV r . ~3.6!

As we have already mentioned above, ourdressedstates,
given by Eq.~3.2!, arecollectivebut nonstablestates, linear
combinations of the~stable! eigensatates~3.1! defined in
terms of the normal modes. The coefficients of these com
nations are given in Eq.~4.5! below and explicit formulas for
these coefficients for an interesting physical situation
given in Eq.~4.11!. This gives a complete and rigorous de
nition of our dressed states. Moreover, our dressed st
have the interesting property of distributing the energy i
tially in a particular dressed state, among itself and all ot
dressed states with precise and well-defined probability
plitudes @32#. We choosethese dressed states as physica
meaningful and we test successfully this hypothesis
studying the radiation process by an atom in a cavity. In b
cases, of a very large or a very small cavity, our results ar
agreement with experimental observations.

Having introduceddressedcoordinates anddressed states,
in the following section we will apply these concepts
study the time evolution of the expectation value of the p
ticle coordinate.

IV. BROWNIAN MOTION AT ZERO TEMPERATURE

As a first application of our formalism we consider th
study of Brownian motion. The Brownian particle is mo
eled by a harmonic oscillator coupled to anohmic environ-
ment, the whole system being described by the Hamilton
~1.4!. This model for the Brownian motion is in fact not ne
and has been implemented using the path integral forma
in, for instance, Refs.@2,30,31#. In this approach, an effectiv
action for the Brownian particle is obtained, which, in ge
eral, is very complicated and nonlocal in time. From th
effective action, an equation for the classical path of
Brownian particle can be derived. However, this equat
obtained from the effective action is a very complicat
integro-differential equation that cannot be solved anal
04211
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cally. But in general terms it describes the expected dam
behavior of the particle.

We will approach this problem using thedressedstates
introduced in the preceding section, and we will treat in d
tail the case in which the environment is at zero tempera
~which corresponds to considering the environment initia
in its ground state!. Our method will account for the ex
pected behavior in a simpler way than the usual path inte
approach.

We assume, as usual, that initially the Brownian parti
and the environment are decoupled and that the couplin
turned on suddenly at some given time that we chooset
50. Since we treat here the case in which the environmen
at zero temperature, our assumption is that the initial sys
can be described by a puredressedstate. The environmen
state at zero temperature should be described by itsdressed
ground state. Thus we can write the initial state of the sys
particle-environment in the form@in the following, primed
labels refer to dressed statesc(q8) and unprimed labels refe
to the eigenstatesf(Q)],

ul,n18 ,n28 , . . . ;t50&5ul&un18 ,n28 , . . . &. ~4.1!

In the above equationul& is the initial dressed stateof the
particle @see Eq.~4.2! below# and un18 ,n28 , . . . & is the initial
dressedstate of the environment, whose wave functio
cn

08n
18•••

(q8) are given by Eq.~3.2! ~in the following we will

take n185n285•••50, corresponding to the environment
zero temperature!. To proceed, we recall that the classic
path in the case of the quantum harmonic oscillator is giv
by the mean value of the operator position in a coher
state. In our formalism, we defineul& as adressedcoherent
state given by

ul&5e2ulu2/2 (
n0850

`
~l!n08

An08!
un08&, ~4.2!

and accordingly the classical path of the Brownian parti
should be given by the time evolution of thedressedparticle
position operator in the dressed coherent state~4.1!. It is
useful to examinate first the time evolution of the initial c
herent dressed state as given by Eq.~4.1!. Replacing Eq.
~4.2! in Eq. ~4.1! we obtain,

ul,n18 ,n28 , . . . ;t50&5e2ulu2/2 (
n0850

`
ln08

An08!
un08n18 , . . . &.

~4.3!

Now, since the eigenstatesun0 ,n1 , . . . & form a complete
basis@stable states having eigenfunctions given by Eq.~3.1!#,
we can write Eq.~4.1! as
8-5
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ul,n18 ,n28 , . . . ;t50&

5e2ulu2/2 (
n0850

`

(
$nr %

ln08

An08!
T

n
08 ,n

18 , . . .

n0 ,n1 , . . .
un0 ,n1 , . . . &,

~4.4!

where$nr%5(n0 ,n1 ,n2 , . . . ) and
04211
T
n

08 ,n
18 , . . .

n0 ,n1 , . . .
5^n0 ,n1 , . . . un08 ,n18 , . . . &

5E dQfn0 ,n1 , . . .~Q!cn
08 ,n

18 , . . .~q8!. ~4.5!

Since un0 ,n1 , . . . & are eigenvectors of the Hamiltonia
~2.2!, the time evolution of Eq.~4.4! is given by
n value
ul,n18 ,n28 , . . . ;t&5e2ulu2/2 (
n0850

`

(
$nr %

ln08

An08!
T

n
08 ,n

18 , . . .

n0 ,n1 , . . .
expS 2 i(

r
V r~nr11/2!t D un0 ,n1 , . . . &. ~4.6!

Now we can computeql8(t), the time-dependent mean value for the dressed oscillator position operator, i.e., the mea
of the dressedparticle position operator taken in thedressedcoherent state~4.1!,

ql8~ t !5^l,n18 ,n28 , . . . ;tuq08ul,n18 ,n28 , . . . ;t&

5exp2ulu2 (
n08 ,m08

(
$nr ,mr %

~l* !m08

Am08!

ln08

An08!
T

m
08 ,n

18 , . . .

m0 ,m1 , . . .
T

n
08 ,n

18 , . . .

n0 ,n1 , . . .
expS 2 i(

r
V r~nr2mr !t D ^m0 ,m1 , . . . uq08un0 ,n1 , . . . &.

~4.7!

Using Eq.~3.5! for m50 and the formula

^mauQauna&5A \

2Va
~Ana dma ,na211Ana11 dma ,na11!, ~4.8!

in Eq. ~4.7! it is easy to obtain

ql8~ t !5e2ulu2A h

2v̄
(

s
(

n08 ,m08
(
$nr %

t0
sAns11 T

n
08 ,n

18 , . . .

n0 ,n1 , . . . ,na••• T
n

08 ,n
18 , . . .

n0 ,n1 , . . . ,(ns11)•••F ~l* !m08

Am08!

ln08

An08!
e2Vst1

~l* !n08

An08!

lm08

Am08!
eVstG .

~4.9!

As we have mentioned above, the situation in which the environment is at zero temperature corresponds ton185n285 . . .
50. In this case from Eqs.~4.5!, ~3.2!, ~3.5!, ~3.1!, and with the help of the theorem@39#

1

n08!
F(

r
~ tm

r !2Gm/2

Hn
08S (

r
tm
r AV r

\
Qr

A(
r

~ tm
r !2 D 5 (

m01m11•••5n08

~ tm
0 !m0~ tm

1 !m1
•••

m0!m1! •••
Hm0

SAV0

\
Q0DHm1

SAV1

\
Q1D . . . ,

~4.10!
we get

Tn0,0,0, . . .
n0 ,n1 ,n2 , . . .

5A n08!

n0!n1! •••
~ t0

0!n0~ t0
1!n1~ t0

2!n2dm
08 ,n01n11n21•••

.

~4.11!

Replacing Eq.~4.11! in Eq. ~4.9!, we obtain after some
straightforward calculations
ql8~ t !5A h

2v̄
@l f 00~ t !1l* f 00* ~ t !#, ~4.12!

where

f 00~ t !5(
s

~ t0
s!2e2 iVst. ~4.13!

From Refs.@32,33# we recognize the functionf 00(t) as the
probability amplitude that at timet the dressedparticle still
8-6
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DRESSED-STATES APPROACH TO QUANTUM SYSTEMS PHYSICAL REVIEW A66, 042118 ~2002!
be excited, if it was initially~at t50) in the first excited
level. We see that underlying our dressed states formalis
a unified way to study two physically different situations, t
radiation process and Brownian motion. To illustrate this u
fying aspect of our formalism, in the following section w
perform a study of the radiation process of the dressed
ticle.

Returning to the study of the Brownian particle, we s
that to obtain an expression for the classical path we hav
perform the sum appearing in Eq.~4.13! and replace the
result in Eq.~4.12!. If we assume, as is currently done
studies of the Brownian motion, that the environment distr
utes itself over the whole free space, its frequenciesvk
should have a continuous distribution. This continuum c
be realized simply taking the limitL→` in Eq. ~2.10!. In
this case the matrix elementst0

r , given by Eq.~2.15!, be-
come

t0
r 5 lim

DV→`

A2gVADV

A~V22v̄2!21p2g2V r
2

, ~4.14!

and the functionf 00(t) in Eq. ~4.13! can be written in the
form

f 00~ t !5E
0

` 2gV2e2 iVtdV

~V22v̄2!21p2g2V2
. ~4.15!

Before going ahead let us define a ‘‘driving parameter’’k by

k5Av̄22
p2g2

4
~4.16!

and let us study the above integralf 00(t) in the different
cases~a! k2.0, ~b! k250, and ~c! k2,0. The extreme
cases in~a! and ~c!, k2@0 or k2!0 correspond, respec
tively, to the situations of aweakcoupling between the par
ticle and the environment (g!v̄) or of a strong coupling
(g@v̄). We get for the above situations

~a! k2.0,

f 00~ t !5S 12
ipg

2k De2 ikt2pgt/212iJ~ t !. ~4.17!

~b! k250,

f 00~ t !5S 12
pgt

2 De2pgt/212iJ~ t !, ~4.18!

and ~c! k2,0,

f 00~ t !5
1

2 H S 11
pg

2ṽ
D e2(pg/21uku)t

1S 12
pg

2uku De2(pg/22uku)tJ 12iJ~ t !, ~4.19!

where
04211
is

i-

r-

e
to

-

n

J~ t !52gE
0

`

dy
y2e2yt

~y21v̄2!22p2g2y2
. ~4.20!

Replacing the above equations in Eq.~4.12! we obtain for
the classical path of the Brownian particle at zero tempe
ture the following expressions:

ql8~ t !5A\n̄

2v̄
H F2 cos~kt1d!2

pg

k
sin~kt1d!Ge2pgt/2

12 sindJ~ t !J ~k.0!, ~4.21!

ql8~ t !5A\n̄

2v̄
F2~cosd!S 12

pg

2
t De2pgt/2

12~sind!J~ t !G ~k50!, ~4.22!

ql8~ t !5A\n̄

2v̄
F2~cosd!S coshukut2

pg

2uku
sinhukut De2pgt/2

12~sind!J~ t !G ~k,0!. ~4.23!

In the above equations we have writtenl5An̄e2 id, with n̄
being the mean value for the number operator in the cohe
state. Equations~4.21! to ~4.23! give the expected behavio
for the classical path of the Brownian particle. Apart from
parcel containing the integralJ(t), these equations describ
the behavior of a damped oscillator in the three regimes c
responding tok.0, k50, andk,0, with a damping coef-
ficient equal topg. The above formulas describe the exa
behaviors ford50, which corresponds to a real value of th
coherence parameterl. The integralJ(t) in Eqs. ~4.17!–
~4.19! can be evaluated for large times,t@1/v̄. We obtain

J~ t !'
4g

v̄4t3 S t@
1

v̄
D . ~4.24!

Using Eq.~4.24! in Eq. ~4.12! and remarking that for very
large times the power behavior;t23 dominates over the
exponential decay, we obtain identical asymptotic behav
in the three regimes above,

ql8~ t !'A\n̄

2v̄

8g

v̄4t3
sind S k.0,k50,k,0; t@

1

v̄
D .

~4.25!

The path behavior in the different coupling regimes can
obtained from Eqs.~4.21! to ~4.23! and Eq.~4.16!. In the
strong coupling regime,k2!0 (g@v̄), we obtain
8-7
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ql8~ t !'A\n̄

2v̄
cosdS 2v̄2

pg
D e2v̄2t/pg12~sind!J~ t !

~4.26!

and in the weak coupling regime,k2@0 (g!v̄), we obtain
from Eqs.~4.16! and ~4.21!,

ql8~ t !'A\n̄

2v̄
F2 cos~v̄t1d!2

pg

v̄
sin~v̄t1d!Ge2pgt/2

12~sind!J~ t !. ~4.27!

We see that the behaviors are quite different in the two s
ations, for not very large values of the timet, for which the
exponential decay dominates over the power-law decay
J(t): an oscillatory damped behavior with time in the we
coupling regime, while in the strong coupling regime t
expected dressed coordinate value has an exponential d
Again, asymptoticallyJ(t) dominates and both behaviors a
identical, obeying a power-law decay;t23. In the following
section we apply our formalism to the study of the radiat
process.

V. THE RADIATION PROCESS

In this section we study the radiation process of
dressedparticle when it is prepared in such a way that in
tially it is in its first excited state. We shall consider tw
situations, the particle in free space and the particle confi
in a cavity of diameterL.

A. The particle in free space

In this case the spectrum of the frequenciesvk has a
continuous distribution as we have seen in the preced
section, and the functionf 00(t) is given by Eqs.~4.17!–
~4.19!. Combining these equations with Eq.~4.24!, we obtain
for the probability that the dressed particle still remain in
first excited state at a timet@1/v̄, the following expres-
sions:

u f 00~ t !u25S 11
p2g2

4v̄2 D e2pgt2e2pgt/2

3F 8g

v̄4t3 S sinkt1
pg

2k
coskt D G1

16g2

v̄8t6
~k.0!,

~5.1!

u f 00~ t !u25S 12
pg

2
t D 2

e2pgt1
16g2

v̄8t6
~k50!, ~5.2!

and
04211
-

of

ay.

e

d

g

u f 00~ t !u25S coshukut2
pg

2uku
sinhukut D 2

e2pgt

1
16g2

v̄8t6
~k,0!. ~5.3!

In theweakcoupling regimek@0, we obtain from Eq.~5.1!
that the probability that the particle be still excited at tim
t@1/v̄ if it was in the first excited level att50, obeys a
modified exponential decay law,

u f 00~ t !u2'e2pgt1
16g2

v̄8t6
. ~5.4!

In the strong coupling regime,k!0, we obtain from Eq.
~5.3!

u f 00~ t !u2'S v̄

p2g2D e22v̄2t/pg1
16g2

v̄8t6
. ~5.5!

In both cases we see from Eqs.~5.4! and ~5.5! that asymp-
totically the probability that the dressed particle be still e
cited at a very large timet obeys a power law,
u f 00(t)u2u t→`'16g2/v̄8t6. However, in the weak coupling
regime we can see that this behavior is dominant only
extremely large values oft, where the probabilityu f 00(t)u2 is
vanishingly small. For lower values oft ~but satisfying the
condition t@1/v̄), the behavior is dominated by the exp
nential law. For instance, let us takev̄54.031014, g

5v̄/137. In this case the conditiont@1/v̄ corresponds tot
@2.5310215 s. A numerical analysis of Eq.~5.4! with these
data shows that fort in the interval 10213 s,t,10212 s, the
curve describing the function in Eq.~5.4! is practically indis-
tinguishable from the pure exponential exp(2pgt). For those
values ofg and v̄ the contribution from the monomial term
in Eq. ~5.4! is negligible. In fact, this is valid for the exac
probability. In Fig. 1 plots of the probabilityu f 00(t)u2 from
theexactEq. ~4.17! and from the pure exponential decay la
exp(2pgt) are superposed for the time interval 0<t

<10212 s and the same values ofg and v̄ as before. They
are completely indistinguishable for the emission frequen
and the time interval considered. Similar results hold for E
~5.5! in the case of strong couplingg@v̄. We can also see
that we recover with our formalism the fact that the decay
the particle is enhanced for a strong coupling as compare
the weak coupling. We emphasize that the different beh
iors described in Eqs.~5.4! and~5.5! are due to the fact tha
in the two situations the system obeydifferent decay laws
and that this factcannotbe inferred from perturbation theory
It is a consequence of thedressedstates approach.

B. Behavior of the confined system

Let us now consider theohmicsystem in which the par-
ticle is placed in the center of a cavity of diameterL, in the
case of a very smallL, i.e., that satisfies the condition o
being much smaller than the coherence length,L!2c/g. We
8-8
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FIG. 1. Plot of the superposition of the prob
ability of the particle being still excited at a tim
t, from the exact probability amplitude~4.17! and
from the exponential decay law exp(2pgt). Both
probabilities are commonly namedP@ t#. Time is
in units of 10213 s.
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note that from a physical point of view,L stands for either
the diameter of a spherical cavity or the spacing betw
infinite parallel mirrors. To obtain the eigenfrequency sp
trum, we remark that from a graphical analysis of Eq.~2.14!
it can be seen that in the case of small values ofL, its solu-
tions are very near the frequency values corresponding to
asymptotes of the curve cot(LV/2c), which correspond to the
environment modesv i5 i2pc/L, except the smallest eigen
frequencyV0. The larger the solutions taken, the nearer th
are to the values corresponding to the asymptotes. Fo
stance, for a value ofL of the order of 231022 m and v̄
;1010/s, only the lowest eigenfrequencyV0 is significantly
different from the field frequency corresponding to the fi
asymptote, all the other eigenfrequenciesVk , k51,2, . . .
being very close to the field modesk2pc/L. For higher val-
ues ofv̄ ~and lower values ofL) the differences between th
eigenfrequencies and the field mode frequencies are
smaller. Thus to solve Eq.~2.14! for the larger eigenfrequen
cies, we expand the function cot(LV/2c) around the values
corresponding to the asymptotes. We write

Vk5
2pc

L
~k1ek!, k51,2, . . . , ~5.6!

with 0,ek,1, satisfying the equation

cot~pek!5
2c

gL
~k1ek!1

1

~k1ek!
S 12

v̄2L

2pgc
D . ~5.7!

But since for a small value ofL every ek is much smaller
than 1, Eq.~5.7! can be linearized inek , giving

ek5
4pgcLk

2~4p2c2k22v̄2L2
. ~5.8!

Equations~5.6! and ~5.8! give approximate solutions to th
eigenfrequenciesVk , k51,2, . . . .
04211
n
-

he

y
n-

t

till

To solve Eq.~2.14! with respect to the lowest eigenfre
quency V0, let us assume that it satisfies the conditi
V0L/2c!1 ~we will see below that this condition is compa
ible with the condition of a smallL as defined above!. Insert-
ing the conditionV0L/2c!1 in Eq.~2.14! and keeping up to
quadratic terms inV, we obtain the solution for the lowes
eigenfrequencyV0,

V05
v̄

A11
pgL

2c

. ~5.9!

Consistency between Eq.~5.9! and the conditionV0L/2c
!1 gives a condition onL,

L!
2c

g
f , f 5

p

2 S g

v̄
D 2F11A11

4

p2 S v̄

g
D 2G .

~5.10!

Let us consider, as in the preceding section, the situation
weak coupling, k2@0 (g!v̄) and of strong coupling, k2

!0 (g@v̄), and let us consider the situation where t
dressed material body is initially at its first excited leve
Then from Eq.~4.13! we obtain the probability that it will
still be excited after an elapsed timet,

u f 00~ t !u25~ t0
0!412(

k51

`

~ t0
0!2~ t0

k!2cos~Vk2V0!t

1 (
k,l 51

`

~ t0
k!2~ t0

l !2cos~Vk2V l !t. ~5.11!

1. Weak coupling

In the case ofweakcoupling a physically interesting situ
ation is when interactions of electromagnetic type are
volved. In this case, we takeg5av̄, wherea is the fine-
8-9
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structure constant,a51/137. Then the factorf multiplying
2c/g in Eq. ~5.10! is ;0.07 and the conditionL!2c/g is
replaced by a more restrictive one,L!0.07(2c/g). For a
typical infrared frequency, for instance,v̄;2,031011/s, our
calculations are valid for a value ofL, L!1023 m.

From Eqs.~2.15! and using the above expressions for t
eigenfrequencies for smallL, we obtain the matrix elements

~ t0
0!2'12

pgL

2c
, ~ t0

k!2'
gL

pck2
. ~5.12!

To obtain the above equations we have neglected the co
tive term ek , from the expressions for the eigenfrequenc
Vk . Nevertheless, corrections inek should be included in the
expressions for the matrix elementstk

k , in order to avoid
spurious singularities due to our approximation.

Using Eqs.~5.12! in Eq. ~5.11!, we obtain

u f 00~ t !u2'12pd14S d

p
2d2D (

k51

`
1

k2
cos~Vk2V0!t

1p2d21
4

p2
d2 (

k,l 51

`
1

k2l 2
cos~Vk2V l !t,

~5.13!

where we have introduced the dimensionless parametd
5Lg/2c !1, corresponding to a small value ofL and we
remember that the eigenfrequencies are given by Eqs.~5.6!
and ~5.8!. As time goes on, the probability that the mater
body be excited attains periodically a minimum value wh
has a lower bound given by

min„u f 00~ t !u2
…512

5p

3
d1

14p2

9
d2. ~5.14!

For a frequencyv̄ of the orderv̄;4.0031014/s ~in the red
visible range!, which corresponds tod;0.005 andL;1.0
31026 m, we see from Eq.~5.14! that the probability that
the material body be at any time excited will never fall belo
a value;0.97, or a decay probability that is never high
that a value;0.03. It is interesting to compare this resu
with experimental observations in Refs.@34,35#, where sta-
bility is found for atoms emitting in the visible range place
between two parallel mirrors a distanceL51.131026 m
apart from one another. For lower frequencies the value
the spacingL ensuring quasistability of the same order
above, for the excited particle may be considerably larg
For instance, forv̄ in a typical microwave value,v̄;2.00
31010/s, and taking alsod;0.005, the probability that the
material body will remain at the first excited level at a
time would be larger than a value of the order of 97%, fo
value ofL of L;2.031022 m. The probability that the ma
terial body will remain excited as time goes on oscilla
with time between a maximum and a minimum value a
never departs significantly from the situation of stability
the excited state.
04211
c-
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2. Strong coupling

In this case we see from Eqs.~4.16!, ~5.9!, and~5.10! that
V0'v̄ and obtain from Eq.~2.15!

~ t0
0!2'

1

11pd/2
, ~ t0

k!2'
gL

pck2
. ~5.15!

Using Eqs.~5.15! in Eq. ~5.11!, we obtain for the probability
that the excited system will still be at the first energy level
time t, the expression

u f 00~ t !u2'S 2

21pd D 2

1
2

21pd (
k51

`
2d

pk2
cos~Vk2V0!

3t1
4

p2
d2 (

k,l 51

`
1

k2l 2
cos~Vk2V l !t. ~5.16!

We see from Eq.~5.16! that as the system evolves in tim
the probability that the material body will be excited attai
periodically a minimum value that has a lower bound giv
by

min„u f 00~ t !u2
…5S 2

21pd D 2

2S 2

21pd Dpd

3
2

p2d2

9
.

~5.17!

The condition of positivity of Eq.~5.17! imposes forfixed

values ofg andv̄ an upper bound for the quantityd, dmax,
which corresponds to an upper bound to the diameterL of
the cavity, Lmax ~remember thatd5Lg/2c). Values of d
larger thandmax or, equivalently, values ofL larger than
Lmax are unphysical and should not be considered. Th
upper bounds are obtained from the solution of the inequa
min„u f 00(t)u2

…>0. We have min„u f 00(t)u2
….0 or

min„u f 00(t)u2
…50, for, respectively,d,dmax or d5dmax.

For a frequencyv̄ of the orderv̄;4.0031014/s ~in the red
visible range!, with g510v̄ the lower bound~5.17! above
attains zero for a cavity of sizeL;1.131027m. For a typi-
cal microwave frequencyv̄;2.0031010/s, the same vanish
ing lower bound is attained for a cavity of sizeL;1.2
31023m. We see, comparing with the results of the prec
ing subsection, that the behavior of the system forstrong
coupling is rather different from its behavior in the wea
coupling regime. For appropriate cavity sizes, which are
order 1021 of those ensuring stability in the weak couplin
regime, we ensure for strong coupling the complete deca
the particle to the ground state in a small elapsed time.

VI. CONCLUDING REMARKS

We have presented in this paper a nonperturbative tr
ment of a quantum system consisting of a particle~in the
larger sense of a ‘‘material body,’’ an atom or a Brownia
particle! coupled to an environment modeled by nonintera
ing oscillators. We have useddressedstates that allow one to
divide the system into thedressedparticle and thedressed
environment by means of some conveniently chosendressed
8-10
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coordinates,q08 and qj8 , associated, respectively, with th
dressedparticle and thedressedoscillators composing the
environment. In terms of these coordinates a division of
system into the dressed~physically observed! particle and
thedressedenvironment arises naturally. The dressed part
will contain automatically all the effects of the environme
on it. This formalism allows a nonperturbative approach
the time evolution of a system that may be approximated
a particle coupled linearly to its environment, in rather d
ferent situations as confinement of atoms in cavities or
Brownian motion. In other words, underlying our dress
state formalism is a unified way to study two physically d
ferent situations, the radiation process and the Brownian
tion. We have approached these situations using thedressed
states, and in both cases we have obtained results in g
agreement with experimental observations or with expec
behaviors. In the Brownian motion we have treated in de
the case in which the environment is at zero tempera
~which corresponds to considering the environment initia
-

.A

J.

.A

a-

he
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in its ground state!. Our method accounts for the expecte
damped behavior of the particle in a simpler way than
usual path integral approach. For atomic systems we rec
with our formalism the experimental observation that exci
states of atoms in sufficiently small cavities are stable.
are able to give formulas for the probability of an atom
remain excited for an infinitely long time, provided it i
placed in a cavity of appropriate size. For an emission f
quency in the visible red range, the size of such a cavity is
agreement with experimental observations@33#. The gener-
alization of the work presented in this paper to the case o
generic ~supraohmic or subohmic! environment and finite
temperature is in progress and will be presented elsewh
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