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Solutions of the nonrelativistic wave equation with position-dependent effective mass
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Given a spatially dependent mass distribution, we obtain potential functions for exactly solvable nonrela-
tivistic problems. The energy spectrum of the bound states and their wave functions are written down explic-
itly. This is accomplished by mapping the wave equation for these systems into well-known exactly solvable
Schralinger equations with constant mass using point canonical transformation. The Oscillator, Coulomb, and
Morse class of potentials are considered.
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I. INTRODUCTION new classes of conditionally exac{l§] and quasiexactl{6]
solvable potentials where all or, respectively, part of the en-
Exact solutions of the wave equation are important beergy spectrum is known. The relativistic extension of this
cause of the conceptual understanding of physics that casflevelopment has been established only recdithg]. One
only be brought about by such solutions. These solutions aref these relativistic classes, which includes the Dirac-
also valuable means for checking and improving models an@scillator, Dirac-Coulomb, and Dirac-Morse potentials, was
numerical methods being introduced for solving complicatednvestigated and found to carry a representation of a super-
physical problems. Exactly solvable problems fall within dis- algebra which is a graded extension ofZ@) Lie algebra.
tinct classes of shape invariant potentifd$ Each class car- Each of these relativistic problems could be mapped into one
ries a representation of a dynamical symmetry group. Allanother by an “extended point canonical transformation
potentials in a given class, along with their corresponding XPCT)” [9].
solutions (energy spectrum and wave functigngan be Recently, several contributions have emerged in the litera-
mapped into one another by point canonical transformatioiure where some of the above-mentioned developments in
(PCT) [2]. Henceforth, only one problentthe “reference  nonrelativistic quantum mechanics were extended to the case
problem”) in a given class needs to be solved to obtain soof spatially dependent mag0—14. The motivation for ob-
lutions of all others in the class. PCT maintains the func-taining exact solutions of the wave equation with position-
tional form of the problenii.e., shape invariance of the po- dependent mass comes from the wide range of applications
tential. In other words, it leaves the canonical form of the of these solutions in various areas of material science and
wave equation invariant. As a result, a correspondence magondensed matter. Such applications are found in the study
among the potential parameters, angular momentum, and enf electronic properties of semiconductdrs5], quantum
ergy of the two problemé&he new and reference problgis  dots[16], *He clusterd17], quantum liquidg18], semicon-
obtained. Using the parameter substitution map and thductor heterostructureg19], etc. The one-dimensional
bound states spectrum of the reference problem one can e&ehralinger equation with smooth mass and potential steps
ily and directly obtain the spectra of all other potentials inwas solved exactly by Dekar, Chetouani, and Hamnjaoh
the class. Moreover, the wave functions are obtained byhe usual formalism of supersymmetric quantum mechanics
simple transformations of those of the reference problem. Anmas extended by Plastiret al, to the Schrdinger equation
alternative approach is to start with a problem whose exaatith position-dependent effective mafgkl]. Shape invari-
solution is well established, then apply to it PCTs that pre-ance was also addressed in this setting and the energy spectra
serve the structure of the wave equation resulting in exactlyvere obtained algebraically for several examples. Coordinate
solvable problems that belong to the same class as that of theansformation in supersymmetric quantum mechanics were
original (referencg¢ problem. Thus the reference problem used in Ref[12] to generate isospectral potentials for sys-
acts as a seed for generating new exact solutions. This apems with position-dependent mass. The ordering ambiguity
proach is suitable for searching solutions of a given class obf the mass and momentum operator and its effect on the
problems by making an exhaustive study of all PCTs thakexact solutions was addressed in Ref3] where several
maintain shape invariance of the given wave equation. examples are considered.(8d) Lie algebra as a spectrum
Supersymmetric quantum mechani8$ and potential al- generating algebra and as a potential algebra was used in
gebraq 4] are two among other methods beside PCT that ar®ef.[14] to obtain exact solutions of the effective-mass wave
used in the search for exact solutions of the wave equatiorequation.
In nonrelativistic quantum mechanics wittonstant mass In all cited works above, except for RdfL0], the main
this development was carried out over the years by mangoncern was primarily focused on obtaining the energy spec-
authors, where several classes of shape invariant potentiaisim and potential function for a given mass distribution.
were accounted for and tabulated. It was also extended to The wave functions, on the other hand, were either written
down formally as solutions to a Schiinger equation with
constant mass whose potential is quite involved, or few
*Email address: haidari@mailaps.org lower states were obtained by successive application of the

1050-2947/2002/6@)/0421167)/$20.00 66 042116-1 ©2002 The American Physical Society



A. D. ALHAIDARI PHYSICAL REVIEW A 66, 042116 (2002

raising operators on the ground state which is often not too 1/ 1 . ) 2. 1 . R
difficult to obtain. The exception is in the work by Dekar, H=3 PM(F) Pl+V(N=—5_ Vm(F) VI+V(r),
Chetouani, and Hammari0] where the authors went ad- 0 2.

mirably at great length to solve for the wave function in
terms of the Heun's function after transforming the wavewherem(f) andV(F) are real functions of the configuration
equation to a Fuchsian equation with four singularities. Furspace coordinates. Using atomic unitsi,&4=1), this
thermore, in most of the developments mentioned above nblamiltonian results in the following time-independent wave
integrability condition on the effective mass or potential €quation in one dimension:

functions was given. That is, no constraints were imposed on 42 ,

the mass or the potential such that the problem becomes {_2___
exactly solvable. Nor a general criterion was given for the dx® m dx

proper selection of these functions such that they becom\%hereE is the energy eigenvalue amy’ =dm/dx. On the
compatible with the formalism. That is why most of the ex- other hand, the one-dimensional time-independent ‘Schro

amples given there are either limited or repetitive. Here Wejinger wave equation with constant mass, potential function
follow an alternative approach to the solution of the problem:), 5,4 energy reads

Starting from a well-known exactly solvable ScHiager
equation with constant masgthe reference problem; e.g., the [ d? ] (y)=0
¢ =

—2m[V(x)— E]J d(x)=0, (2.2

harmonic oscillatorwe apply a point canonical transforma- gz ANy) el 2.9

tion to map it into a wave equation with the given spatially y

dependent magghe target problem Therefore, the resulting  We apply to this last equation the following transformation:
map will give not only the energy spectrum of the target

problem, but also the corresponding wave functions in terms y=a(x), $(y)=9(x) (). (2.4

of those of the reference problem. Obviously, these will be ) . )

written in terms of the familiar orthogonal polynomidtsg., || the resultis a mapping into Eq2.2) then this transforma-
Laguerre, Jacobi, efcout with arguments and/or indices that tion Will be referred to as PCT. Now, the action of Eg.4)
may not always be simple but easily derivable. The canonica?" Ed-(2.3 maps it into the following second-order differ-
map will also give the associated target potential functiorEntial €quation:

! ”

belonging to the class that is defined by the reference poten- d2 9 q'\d 9 q'g
tial and the target mass function. Moreover, we find a con- {—2+ ( 2= — —,>—+ (—— — —)
straint for the analytic solvability of the problem that the dx 9 q'/dx 1g 99
square root of the mass function should be analytically inte-

grable. We will consider three classes of reference potentials: —2(q’)2[V(q(x))—s]} ¢(x)=0.
the Oscillator, Coulomb, and Morse classes. The details of

the method will be presented in the case of the oscillato»By identifying this with Eq.(2.2) we obtain the following
class while only a brief summary will be given for the other . J.4itions on the transformatia@.4) to be a PCT:
two classes. It is to be noted that the same development can

be applied to other classes of shape invariant pote"ntials. The g(x)= \/m (2.5
class that includes Rosen-Morse, Scarf, Eckart, aratito
Teller potentials could be of prime significance. (q")? 1

The paper is organized as follows. In Sec. Il, the general ~ V(X)—E=—_=[W(q)—e]+ 7 _[F(M—F(a")],
development of the formalism will be presented and applied (2.6)

to the oscillator class. A summary in the case of the Coulomb

and Morse classes will be given in Sec. Il where we alsowhere F(z)=2"/z—(3/2)(z'/z)?>. We define the following
address the problem in three dimensions. To demonstrate tliémensionless integrdimodulo a constait which will ap-
use of the method and illustrate the utility of our findings, pear frequently in subsequent developments:

few examples will be given in the Appendix for a selected set

of mass distributions satisfying, of course, the solvability _ j o
constraint. The paper concludes with a short summary of p0O9=(Lin) mexjdx, 27
results.

whereris a length scale parameter. Now, giveiix) then a
choice of transformation functioa(x) will determineg(x),
as given by Eq(2.5), and will be used in Eq.2.6) to deduce
the energy spectrur and potential functiorV(x) for the
target problem. To this end, we consider two possibilities for
g(x) that will result in a constant term on the right-hand side
Following the consensus among the majority of the workof Eq. (2.6), which will be identified with the energl. The
done on the subject we will adopt the symmetric ordering offirst is by taking ¢')%2=m, giving q(x) = 7u(x), and result-
the momentum and mass as given by the following Hamil-ing in the following energy spectrum, potential and wave
tonian: function for the target problem

Il. ACTION OF THE PCT MAP ON THE SCHRO DINGER
EQUATION: APPLICATION TO THE OSCILLATOR
CLASS
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E.=¢e,, 1
o V(x) =} a?u(x)2+ = G(m),
8m
m’ 7/m'’ 2
VOO=WrnN+ gt =72\ ] | where « is a real coupling parameter an@(z)=z"/z
—1(2'12)%. The resulting energy spectrum and associated
Bn(X)=m(x) Y4 (T (X)). (2.8  wave functions of the target problem are as follows:
The second possibility is by taking|()?V(q) = + m/ o2 giv- En=(al7)(n+3), N=0.12
ing q(x) =W (ru(x)/0), where(y)=[VEV(y)dyand 4 (x)=Am(x)¥ e *=0"H (Jaru(x) B
o is another scale parameter. The results in this case are as
follows: whereA, is the normalization constant. The other solution is
o as follows: For oscillator 2,d")?V(q)=m/o?. For the os-
En=+ 1o, cillator  class W(y)=(\%2v2)y?> giving q(x)
) . L, =(2%\"Y7/o)Ju(x). Substituting in Eq(2.9) results in
V(X)=T enlo N A m" 7 m the following target potential:
V((x)) 8m|m 4\ m 3 .
1 [V 5[V VOO == (enV2ToN) w30 ™= g5 ()™ g G(m).
“8o|V 3y | 29

Since the potential should be independent of the indexe
X)=[ * o2m(x)V(a(x)) 14 X)), cpnclude that the parametefis_ proportion.al toe,. From _
n(x) =[x o mOONAXDTTYn(@(x)) dimensional arguments and using the available parameters in
the problem, we choose to write it as= (V27/\?)e,. Thus,
we end up with the following expression for the target po-
tential

whereV(q)=d)(q)/dq. Requiring that the first term in the
potential expression above be independent of the imdeik
result in a constraint on the parametemelating it to the
reference energy spectrusy, . Due to the fact that the ex- 1 3 1
pression ofF(q’) is homogeneous i with zero degree, V(x)=— F,u(x)‘l— T,u(x)‘“r 8—G(m).
then the last term in the expression of the potential in Eq. T d m

(2.9 will always be independent af. Consequentlyr will - \joreqver, the transformation function now readgx)
not appear in the target problem quantities, thus acting as a _1\/71 .
dummy parameter introduced only to facilitate the calcula-——» ~ V2u(X)/(n+3). The energy spectrum and eigen-
tion. states wave functions become

We should point out, however, that it is generally possible E,=—1/2:2(n+1)2
that other choices af(x) might be found which could result " 2
in a constant term on the right-hand side of E2,6) to be b0(X)
interpreted as the enerdyand, thus, resulting in other solu- ' "

tions. =A[M(X)w(x) ]+ U2 (\2(x)/(n+3)).

The problem can, therefore, be stated as follows: “Given

a position-dependent mass(x) and a well-known exactly Note thato, as expected, disappears from the final results.
solvable system, described by E.3), we seek to find all

potentials,V(x), in the class defined by and m that will 1Il. COULOMB AND MORSE POTENTIAL CLASSES
result in an exact solution of the system described by Eq. _ _ _
(2.2). That is, we search for all PCT functiong(x), each In this section we repeat briefly the same development,

satisfying Eq(2.6) and thus resulting in a canonical map thatWhich was carried out above, for the Coulomb and Morse
gives V(x), E,, and ¢,(x) of a corresponding target sys- reference potentials. We start with the one-dimensional Cou-
tem.” We start by illustrating the solution of the problem for lomb problem, which has the following potential function,
the oscillator class. That is by takingy) = sA*y2, wherex ~ €nergy spectrum, and wave functidiz9]:

is the oscillator strength parameter. The energy eigenvalues

and the corresponding wave functions for the reference prob- Wy)==2ly,

lem are[20] en=—222(n+1)?,

—\2 1
en=A7(N+3) N=012.. dn(y)=aye UL 2Zy/(n+1)) n=0,1,2,..,
‘ﬂn(y):ane_)\ Y /ZHn()\Y)

where Z is the particle’s charge number ahd(x) is the
whereH, (x) is the Hermite polynomial21] anda, is the  generalized Laguerre polynomig1]. The two possible so-
normalization constant. The two possible solutions are fotutions are the following. For Coulomb potential 1g’'j?
oscillator 1, §')?=m. Substituting in Eq.(2.8) gives the =m. In this case we obtain, using E(.8), the following
following target potential: target potential:
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V(0= a?u(x) T+ -G
(X)=—au(x) "+ g - G(m),

where «a is a real parameter. The resulting energy spectrum

and wave functions are

E,= —(a?7)?I(n+1)?,

bn(X) = Aam(x) Huu(x) @ 7RO DLL2272 (%) (N
+1)), n=0,1,2,....
For Coulomb potential 2,’)?V(q)=—m/a?. In this case

W(y) = 2/Zy giving q(x) = (7/20)?Z " *u(x)?. Substitution
in Eg. (2.9 gives the following target potential:

3 1
V(x)=en(r/2Z0?)? M(X)2+ g2 H(x)" 2+ am C(m).

Thus, we conclude that* is proportional tos, and choose

to write it as o*=—3(7%/Z)%¢, giving the transformation
function q(x)=[(n+1)/Z]u(x)? and the target potential

1 3 , 1
V)= 52 m(x)*+ g u(X) "+ g G(m).

PHYSICAL REVIEW A 66, 042116 (2002

1 1
V(0= 55l 20— g2+ o G(m),

-1 §2
En=5=(é-2n- 1)%+ 52 (3.1

Bn(X)=Agm(x) Ve~ (72010

xexp(—e 2R LETA (e ),

wheren=0,1,2,...0nax-

For the sake of completeness, the three-dimensi@il
problem will be formally addressed. However, an illustrative
3D example for mass functions of powers of the radius will
be given in the Appendix. The Hamiltonid@.1) for a three-
dimensional problem with spherical symmetry gives the fol-
lowing radial wave equation:

d>  €(€+1) m’(l

-t =
d_l’z r mir

d
dr) 2m[V(r) - E1]¢<r>=o,
(3.2

where ¢ is the angular-momentum quantum number,
=dm(r)/dr and, as usual, we write the radial wave func-

The energy spectrum and wave functions, obtained using E¢ons x(r)=¢(r)/r. On the other hand, the time-

(2.9), are as follows:
E,=2(n+1)/7
bn(X) =AM Y (x) ¥ LY 2(%)2),

n=0,1,2,....

Next, we will address the Morse class of potentials. Th|s
class has the following reference potential, energy spectrum,

and wave function$22]:

A’2
Wy) =7 (e V=2,

2 N2¢2
&n= . > (§-2n— 1)+ §

Un(y)= ane—(g—Zn—l))\y

Xexti— b PLE M He D),

n=0,1,2,... Nax:

where\ and ¢ are the Morse oscillator positive parameters

and n,,,, is the largest integer which issg/2. Due to the

independent radial Schdinger wave equation for a constant
mass and angular momentufnreads

d? L(L+1)
a7 2[V(p)—e]{#(p)=0.

Acting on this last equation by the transformatipr q(r)

nd(p) =g(r)¢(r) results in the following wave equation:

d2 ’ " d " 1\ 2
( ,9 4 ) +(9 a"g q )

a5l (5 5] e

—2(q’)2[v(q(r))—s]J¢(r)=0-

Identifying this with the wave equatioK3.2) gives g(r)
=+/q’'/m and the following:

V(r)— —[Wq)—e]+

€(€+1) (q')? £(£+1)(q’>2
2mr>  m 2m | q

!

1
+m+m[F(m)—F(Q')],

(3.3

complicated expression of the transformation function in the

case where d')?V(q)=m/o? [23], we will only consider

Therefore, given a radial effective-mass functiofr), Eqg.

the case whereq()?=m. For this latter case we obtain, (3.3) will be used to determin&/(r) and E for a selected
using Eq.(2.8) with =71, the target problem described by transformation functiomg(r). This will be illustrated in one

the following:

of the examples in the Appendix.
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IV. SUMMARY

In conclusion, we give a brief summary of our findings.
Starting with the time-independent Schinger equation for
a constant mass problem, point canonical transformation
maps it into one with position-dependent effective mass. The
resulting mass is a function of the transformation. However,
the effective-mass distribution could also have been selected
in advance[satisfying the solvability condition, Eq2.7)]
resulting in a constraint on the transformation. In any case,
the PCT map will give the potential function for the problem
with spatially dependent mass. Moreover, if the original ref-
erence problenithe one with constant masis exactly solv-
able, then the same PCT map gives the solutienergy
spectrum and wave functipmf the target problentthe one
with variable mass We considered three classes of reference
potentials: the Oscillator, Coulomb, and Morse classes. One-

PHYSICAL REVIEW A 66, 042116 (2002

2

) Vg w(0/(n+1/2

dn(X)=A, 1+ x2 (X

x<Ho(V2u00/(n+3)).

For Coulomb potential 1,

V(X) =~ au(x) 1+ U(x),

E,=—(a?1)?(n+1)2,

2
B0 = A\ Ty ) I

XLa(2a*7u(x)/(n+1)).

dimensional and three-dimensional problems were discussed. FOr Coulomb potential 2,

In the Appendix several illustrative examples are given. The
advantage of the present method over other methods is in the
ease of obtaining a closed analytic form for the wave func-
tion of the problem with position-dependent mass.

APPENDIX: ILLUSTRATIVE EXAMPLES

We illustrate the utility of the PCT method developed in
this paper by few examples. For the sake of comparison with

1 2 3 -2
V(= 52002+ g7 p(x) "2+ U(X),

E,=2(n+1)/7

')’+X2 _ 2
bal(X) = An \ Tz #(0 % O LE (X)),

other methods some examples will be used to reproduce ear- Example 2 We consider the smooth mass stapx)=1
lier results by other authors. However, new examples Wi||+tanh(yx), which becomes abrupt asbecomes |arge_ This

also be presented to demonstrate the wide range and easegample was considered by Dekar, Chetouani, and Ham-
application of the method. mann [10] for a potential that has the same shape of a

Example 1m(x) =[(y+x%)/(1+x%) 1% whereyis areal smooth step. Here, we are interested in the bound states.
constant parameter. This position-dependent mass was stugherefore, we will select two exactly solvable systems with
ied in Refs[11] and[14]. We will give four different exactly  this mass step but for potentials that differ from that in Ref.
solvable systems with this mass distribution. The potentiaf10]. In this case, Eq(2.7) gives

function, energy spectrum, and wave functions will be writ-
ten down for all these systems. The integral in &437) gives w(X)= (V2] ry)tanh [ 1+ tanH yx)/v2].
The PCT method results in several solvable systems of

w(X)=7"x+(y—1)tan 1x]. Using the results of the de-
velopment in Secs. Il and I, we obtain the following:

which we choose the following:
For Oscillator 1,

For Oscillator 1,

V(x)=3a’u(x)*+U(x), 2 7+ tanH yx)

32 [sinh( yx) + cost{ yx) ]2

VOO =}a?u(x)?-
Eq=(al7)(n+}),

. En=(alT)(n+})
_ 2
a0 =Ar\ 1,28 ™ PH(Varu(0), I
bn(X)=An[ 1+ tanh( yx) ¥ «O"2H (Jaru(x)).
3xA+2(2—y)x2—y For Coulomb potential 1,

pav: :
(749 V0= — (-1 Y 7+ tanh( yx)

32 [sinh( yx) +cosh yx)]?’

where U(x)= G;rr:((:))) =( y; !

For Oscillator 2,
E,= —(a?1)?(n+1)3,

1 3
V()= = 57 () 1= o () "2+ U(X), .,
2T2 327’2 ¢n(x):An[l_i_tanr(,yx)]l/{ul(x)e*a “u(x)/(n+1)
E,=—1/272(n+1)?2 XLEQa2m?u(x)/(n+1)).
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Example 3 We consider the asymptotically vanishing (a) v=1+y/2 andy+# —2.
mass m(x)=(y+x%) 1. In this case u(x)=7 tIn(x
+y+x%). Among the many possible exactly solvable sys-

(¢4
tems with this mass that could be obtained by the PCT V(r)=§C2r7+2,
method, we may choose the following:
Oscillator 1,
v+2
’ E,=—=—C(2n+A+1),
1.2 2 1% +2y >
V(X)=3a°u(X)*—35 iy
bo(r)=A,(£r) AT YRA+ (D2
En(al7)(n+3),
n 2 xexp — (&r)" 22]Ly ((£r)7F3),
= 2) = g amn(x)%2
Da(X)=An(y+x2) V= amn0T2y ([aru(x)). where A(€)=|y+2|~AC(E 1)+ (7=1)% C is a real

Example 4 We consider in this example the Morse classPOtential coupling parameter, and
and takem(x)=tanh@x)2. This gives u(x)=In[cosh{x)],
where\ = 7~ 1. Using the set of equatiori8.1) we obtain the
target system defined by the following set of quantities:

y+2

ZCYC) 1U(y+2)

2

V(x)= 3[cosmx)*2—§]2— 7[sinho\x)*z

C
V(r)y=—3%—r"172
+5 sinh(Ax) 4], *a
\? , N2& E C22 1
En=- 7 (E=2n=1)% ==, " 22 (T A+ 122
dn(X)=An|tanh( A x)|[coshax)]~(¢~2n—D Pn(1)=An(£qr) LT YA LI
Xe—l/Z COSMXX)ZLﬁ—Zn—l(COSK)\X)—2). Xexn:_(gnr)l-%— 7/2/2]L§A((§nr)l+ y/Z),

Example 5 In this last example we tackle the three- _ 2 U(1+ y12)
dimensional problem and take the 3D isotropic oscillator aé/vheregn—[4\/ZC/(y+2) (n+A+1/2)] and A (€)

o ' ) Is as above.
reference, which is defined by the followifg0]: The singular casen(r)=ar~2, which corresponds tey

4o =—2, is solved by takingj(r) =X "1 In(r) giving the follow-
W(p)=2z\"p%, ing Swave (¢ =0) solution:
—\2 3 2
enmAENTETR) V(r)= %m(r)hr %In(r)‘z.
Un(p) =a5(Ap) £+ Te NITLL I\ 2p2),
E,=a Y(2n+A+%),
We consider the radial dependent mags)=ar? and take

the PCT functiong(r)=r", whereq, v, and v are nonzero q&n(r):Anr*1’2In(r)A“’2exp[—In(r)2/2]Lﬁ(In(r)2),

real parameters. By substitution in E@.3 we obtain the

following two solutions: whereA=2"1/1+4aC?
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