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Solutions of the nonrelativistic wave equation with position-dependent effective mass
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Physics Department, King Fahd University of Petroleum & Minerals, Box 5047, Dhahran 31261, Saudi Arabia
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Given a spatially dependent mass distribution, we obtain potential functions for exactly solvable nonrela-
tivistic problems. The energy spectrum of the bound states and their wave functions are written down explic-
itly. This is accomplished by mapping the wave equation for these systems into well-known exactly solvable
Schrödinger equations with constant mass using point canonical transformation. The Oscillator, Coulomb, and
Morse class of potentials are considered.
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I. INTRODUCTION

Exact solutions of the wave equation are important
cause of the conceptual understanding of physics that
only be brought about by such solutions. These solutions
also valuable means for checking and improving models
numerical methods being introduced for solving complica
physical problems. Exactly solvable problems fall within d
tinct classes of shape invariant potentials@1#. Each class car-
ries a representation of a dynamical symmetry group.
potentials in a given class, along with their correspond
solutions ~energy spectrum and wave functions!, can be
mapped into one another by point canonical transforma
~PCT! @2#. Henceforth, only one problem~the ‘‘reference
problem’’! in a given class needs to be solved to obtain
lutions of all others in the class. PCT maintains the fun
tional form of the problem~i.e., shape invariance of the po
tential!. In other words, it leaves the canonical form of t
wave equation invariant. As a result, a correspondence
among the potential parameters, angular momentum, and
ergy of the two problems~the new and reference problem! is
obtained. Using the parameter substitution map and
bound states spectrum of the reference problem one can
ily and directly obtain the spectra of all other potentials
the class. Moreover, the wave functions are obtained
simple transformations of those of the reference problem.
alternative approach is to start with a problem whose ex
solution is well established, then apply to it PCTs that p
serve the structure of the wave equation resulting in exa
solvable problems that belong to the same class as that o
original ~reference! problem. Thus the reference proble
acts as a seed for generating new exact solutions. This
proach is suitable for searching solutions of a given clas
problems by making an exhaustive study of all PCTs t
maintain shape invariance of the given wave equation.

Supersymmetric quantum mechanics@3# and potential al-
gebras@4# are two among other methods beside PCT that
used in the search for exact solutions of the wave equat
In nonrelativistic quantum mechanics withconstant mass,
this development was carried out over the years by m
authors, where several classes of shape invariant poten
were accounted for and tabulated@1#. It was also extended to
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new classes of conditionally exactly@5# and quasiexactly@6#
solvable potentials where all or, respectively, part of the
ergy spectrum is known. The relativistic extension of th
development has been established only recently@7–9#. One
of these relativistic classes, which includes the Dira
Oscillator, Dirac-Coulomb, and Dirac-Morse potentials, w
investigated and found to carry a representation of a su
algebra which is a graded extension of so~2,1! Lie algebra.
Each of these relativistic problems could be mapped into
another by an ‘‘extended point canonical transformat
~XPCT!’’ @9#.

Recently, several contributions have emerged in the lite
ture where some of the above-mentioned development
nonrelativistic quantum mechanics were extended to the c
of spatially dependent mass@10–14#. The motivation for ob-
taining exact solutions of the wave equation with positio
dependent mass comes from the wide range of applicat
of these solutions in various areas of material science
condensed matter. Such applications are found in the s
of electronic properties of semiconductors@15#, quantum
dots @16#, 3He clusters@17#, quantum liquids@18#, semicon-
ductor heterostructures@19#, etc. The one-dimensiona
Schrödinger equation with smooth mass and potential st
was solved exactly by Dekar, Chetouani, and Hammann@10#.
The usual formalism of supersymmetric quantum mechan
was extended by Plastinoet al., to the Schro¨dinger equation
with position-dependent effective mass@11#. Shape invari-
ance was also addressed in this setting and the energy sp
were obtained algebraically for several examples. Coordin
transformation in supersymmetric quantum mechanics w
used in Ref.@12# to generate isospectral potentials for sy
tems with position-dependent mass. The ordering ambig
of the mass and momentum operator and its effect on
exact solutions was addressed in Ref.@13# where several
examples are considered. so~2,1! Lie algebra as a spectrum
generating algebra and as a potential algebra was use
Ref. @14# to obtain exact solutions of the effective-mass wa
equation.

In all cited works above, except for Ref.@10#, the main
concern was primarily focused on obtaining the energy sp
trum and potential function for a given mass distributio
The wave functions, on the other hand, were either writ
down formally as solutions to a Schro¨dinger equation with
constant mass whose potential is quite involved, or f
lower states were obtained by successive application of
©2002 The American Physical Society16-1
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raising operators on the ground state which is often not
difficult to obtain. The exception is in the work by Deka
Chetouani, and Hammann@10# where the authors went ad
mirably at great length to solve for the wave function
terms of the Heun’s function after transforming the wa
equation to a Fuchsian equation with four singularities. F
thermore, in most of the developments mentioned above
integrability condition on the effective mass or potent
functions was given. That is, no constraints were imposed
the mass or the potential such that the problem beco
exactly solvable. Nor a general criterion was given for t
proper selection of these functions such that they beco
compatible with the formalism. That is why most of the e
amples given there are either limited or repetitive. Here
follow an alternative approach to the solution of the proble
Starting from a well-known exactly solvable Schro¨dinger
equation with constant mass~the reference problem; e.g., th
harmonic oscillator! we apply a point canonical transforma
tion to map it into a wave equation with the given spatia
dependent mass~the target problem!. Therefore, the resulting
map will give not only the energy spectrum of the targ
problem, but also the corresponding wave functions in te
of those of the reference problem. Obviously, these will
written in terms of the familiar orthogonal polynomials~e.g.,
Laguerre, Jacobi, etc.! but with arguments and/or indices th
may not always be simple but easily derivable. The canon
map will also give the associated target potential funct
belonging to the class that is defined by the reference po
tial and the target mass function. Moreover, we find a c
straint for the analytic solvability of the problem that th
square root of the mass function should be analytically in
grable. We will consider three classes of reference potent
the Oscillator, Coulomb, and Morse classes. The details
the method will be presented in the case of the oscilla
class while only a brief summary will be given for the oth
two classes. It is to be noted that the same development
be applied to other classes of shape invariant potentials.
class that includes Rosen-Morse, Scarf, Eckart, and Po¨schl-
Teller potentials could be of prime significance.

The paper is organized as follows. In Sec. II, the gene
development of the formalism will be presented and app
to the oscillator class. A summary in the case of the Coulo
and Morse classes will be given in Sec. III where we a
address the problem in three dimensions. To demonstrate
use of the method and illustrate the utility of our finding
few examples will be given in the Appendix for a selected
of mass distributions satisfying, of course, the solvabi
constraint. The paper concludes with a short summary
results.

II. ACTION OF THE PCT MAP ON THE SCHRO ¨ DINGER
EQUATION: APPLICATION TO THE OSCILLATOR

CLASS

Following the consensus among the majority of the wo
done on the subject we will adopt the symmetric ordering
the momentum and mass as given by the following Ham
tonian:
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H5
1

2 FPW
1

M ~rW !
PW G1V~rW !52

\2

2m0
F¹W 1

m~rW !
¹W G1V~rW !,

~2.1!

wherem(rW) andV(rW) are real functions of the configuratio
space coordinates. Using atomic units (m05\51), this
Hamiltonian results in the following time-independent wa
equation in one dimension:

H d2

dx22
m8

m

d

dx
22m@V~x!2E#J f~x!50, ~2.2!

whereE is the energy eigenvalue andm8[dm/dx. On the
other hand, the one-dimensional time-independent Sc¨-
dinger wave equation with constant mass, potential funct
V, and energy« reads

H d2

dy222@V~y!2«#J c~y!50. ~2.3!

We apply to this last equation the following transformatio

y5q~x!, c~y!5g~x!f~x!. ~2.4!

If the result is a mapping into Eq.~2.2! then this transforma-
tion will be referred to as PCT. Now, the action of Eq.~2.4!
on Eq. ~2.3! maps it into the following second-order differ
ential equation:

H d2

dx2 1S 2
g8

g
2

q9

q8D d

dx
1S g9

g
2

q9

q8

g8

g D
22~q8!2@V„q~x!…2«#J f~x!50.

By identifying this with Eq.~2.2! we obtain the following
conditions on the transformation~2.4! to be a PCT:

g~x!5Aq8/m, ~2.5!

V~x!2E5
~q8!2

m
@V~q!2«#1

1

4m
@F~m!2F~q8!#,

~2.6!

where F(z)5z9/z2(3/2)(z8/z)2. We define the following
dimensionless integral~modulo a constant!, which will ap-
pear frequently in subsequent developments:

m~x!5~1/t!E Am~x!dx, ~2.7!

wheret is a length scale parameter. Now, givenm(x) then a
choice of transformation functionq(x) will determineg(x),
as given by Eq.~2.5!, and will be used in Eq.~2.6! to deduce
the energy spectrumE and potential functionV(x) for the
target problem. To this end, we consider two possibilities
q(x) that will result in a constant term on the right-hand si
of Eq. ~2.6!, which will be identified with the energyE. The
first is by taking (q8)25m, giving q(x)5tm(x), and result-
ing in the following energy spectrum, potential and wa
function for the target problem
6-2
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En5«n ,

V~x!5V„tm~x!…1
1

8m Fm9

m
2

7

4 S m8

m D 2G ,
fn~x!5m~x!1/4cn„tm~x!…. ~2.8!

The second possibility is by taking (q8)2V(q)56m/s2 giv-
ing q(x)5W21

„tm(x)/s…, whereW(y)5*A6V(y)dy and
s is another scale parameter. The results in this case a
follows:

En571/s2,

V~x!57
«n /s2

V„q~x!…
1

1

8m Fm9

m
2

7

4 S m8

m D 2G
6

1

8s2V FV5V2
5

4
S Ṽ
VD 2G , ~2.9!

fn~x!5@6s2m~x!V„q~x!…#1/4cn„q~x!…,

whereṼ(q)[dV(q)/dq. Requiring that the first term in the
potential expression above be independent of the indexn will
result in a constraint on the parameters relating it to the
reference energy spectrum«n . Due to the fact that the ex
pression ofF(q8) is homogeneous inq with zero degree,
then the last term in the expression of the potential in
~2.9! will always be independent ofs. Consequently,s will
not appear in the target problem quantities, thus acting
dummy parameter introduced only to facilitate the calcu
tion.

We should point out, however, that it is generally possi
that other choices ofq(x) might be found which could resul
in a constant term on the right-hand side of Eq.~2.6! to be
interpreted as the energyE and, thus, resulting in other solu
tions.

The problem can, therefore, be stated as follows: ‘‘Giv
a position-dependent massm(x) and a well-known exactly
solvable system, described by Eq.~2.3!, we seek to find all
potentials,V(x), in the class defined byV and m that will
result in an exact solution of the system described by
~2.2!. That is, we search for all PCT functions,q(x), each
satisfying Eq.~2.6! and thus resulting in a canonical map th
gives V(x), En , and fn(x) of a corresponding target sys
tem.’’ We start by illustrating the solution of the problem fo
the oscillator class. That is by takingV(y)5 1

2 l4y2, wherel
is the oscillator strength parameter. The energy eigenva
and the corresponding wave functions for the reference p
lem are@20#

«n5l2~n1 1
2 !

cn~y!5ane2l2y2/2Hn~ly!
n50,1,2,... ,

whereHn(x) is the Hermite polynomial@21# and an is the
normalization constant. The two possible solutions are
oscillator 1, (q8)25m. Substituting in Eq.~2.8! gives the
following target potential:
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V~x!5 1
2 a2m~x!21

1

8m
G~m!,

where a is a real coupling parameter andG(z)5z9/z
2 7

4 (z8/z)2. The resulting energy spectrum and associa
wave functions of the target problem are as follows:

En5~a/t!~n1 1
2 !,

fn~x!5Anm~x!1/4e2atm~x!2/2Hn„Aatm~x!…
n50,1,2,... ,

whereAn is the normalization constant. The other solution
as follows: For oscillator 2, (q8)2V(q)5m/s2. For the os-
cillator class W(y)5(l2/2&)y2 giving q(x)
5(23/4l21At/s)Am(x). Substituting in Eq.~2.9! results in
the following target potential:

V~x!52~«n /&tsl2!m~x!212
3

32t2 m~x!221
1

8m
G~m!.

Since the potential should be independent of the indexn, we
conclude that the parameters is proportional to«n . From
dimensional arguments and using the available paramete
the problem, we choose to write it ass5(&t/l2)«n . Thus,
we end up with the following expression for the target p
tential

V~x!52
1

2t2 m~x!212
3

32t2 m~x!221
1

8m
G~m!.

Moreover, the transformation function now readsq(x)

5l21A2m(x)/(n1 1
2 ). The energy spectrum and eige

states wave functions become

En521/2t2~n1 1
2 !2

fn~x!

5An@m~x!m~x!#1/4e2m~x!/~n11/2!Hn~A2m~x!/~n1 1
2 !!.

Note thats, as expected, disappears from the final result

III. COULOMB AND MORSE POTENTIAL CLASSES

In this section we repeat briefly the same developme
which was carried out above, for the Coulomb and Mo
reference potentials. We start with the one-dimensional C
lomb problem, which has the following potential functio
energy spectrum, and wave functions@20#:

V~y!52Z/y,

«n52Z2/2~n11!2,

cn~y!5anye2Zy/~n11!Ln
1
„2Zy/~n11!… n50,1,2,... ,

where Z is the particle’s charge number andLn
v(x) is the

generalized Laguerre polynomial@21#. The two possible so-
lutions are the following. For Coulomb potential 1, (q8)2

5m. In this case we obtain, using Eq.~2.8!, the following
target potential:
6-3
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V~x!52a2m~x!211
1

8m
G~m!,

wherea is a real parameter. The resulting energy spectr
and wave functions are

En52~a2t!2/~n11!2,

fn~x!5Anm~x!1/4m~x!e2a2t2m~x!/~n11!Ln
1
„2a2t2m~x!/~n

11!…, n50,1,2,... .

For Coulomb potential 2, (q8)2V(q)52m/s2. In this case
W(y)52AZy giving q(x)5(t/2s)2Z21m(x)2. Substitution
in Eq. ~2.9! gives the following target potential:

V~x!5«n~t/2Zs2!2m~x!21
3

8t2 m~x!221
1

8m
G~m!.

Thus, we conclude thats4 is proportional to«n and choose
to write it as s452 1

2 (t2/Z)2«n giving the transformation
function q(x)5@(n11)/Z#m(x)2 and the target potential

V~x!5
1

2t2 m~x!21
3

8t2 m~x!221
1

8m
G~m!.

The energy spectrum and wave functions, obtained using
~2.9!, are as follows:

En52~n11!/t2,

fn~x!5Anm~x!1/4m~x!3/2e2m~x!2
Ln

1~2m~x!2!,

n50,1,2,... .

Next, we will address the Morse class of potentials. T
class has the following reference potential, energy spectr
and wave functions@22#:

V~y!5
l2

2
~e22ly2j!2,

«n52
l2

2
~j22n21!21

l2j2

2
,

cn~y!5ane2~j22n21!ly

3exp~2 1
2 e22ly!Ln

j22n21~e22ly!,

n50,1,2,... ,nmax,

wherel and j are the Morse oscillator positive paramete
and nmax is the largest integer which is<j/2. Due to the
complicated expression of the transformation function in
case where (q8)2V(q)5m/s2 @23#, we will only consider
the case where (q8)25m. For this latter case we obtain
using Eq.~2.8! with l5t21, the target problem described b
the following:
04211
m

q.

s
,

e

V~x!5
1

2t2 @e22m~x!2j#21
1

8m
G~m!,

En5
21

2t2 ~j22n21!21
j2

2t2 , ~3.1!

fn~x!5Anm~x!1/4e2~j22n21!m~x!

3exp~2e22m~x!/2!Ln
j22n21~e22m~x!!,

wheren50,1,2,...,nmax.
For the sake of completeness, the three-dimensional~3D!

problem will be formally addressed. However, an illustrati
3D example for mass functions of powers of the radius w
be given in the Appendix. The Hamiltonian~2.1! for a three-
dimensional problem with spherical symmetry gives the f
lowing radial wave equation:

H d2

dr22
,~,11!

r 2 1
m8

m S 1

r
2

d

dr D22m@V~r !2E#J f~r !50,

~3.2!

where , is the angular-momentum quantum number,m8
[dm(r )/dr and, as usual, we write the radial wave fun
tions x(r )5f(r )/r . On the other hand, the time
independent radial Schro¨dinger wave equation for a consta
mass and angular momentumL reads

H d2

dr22
L~L11!

r2 22@V~r!2«#J c~r!50.

Acting on this last equation by the transformationr5q(r )
andc(r)5g(r )f(r ) results in the following wave equation

H d2

dr2 1S 2
g8

g
2

q9

q8D d

dr
1S g9

g
2

q9

q8

g8

g D2L~L11!S q8

q D 2

22~q8!2@V„q~r !…2«#J f~r !50.

Identifying this with the wave equation~3.2! gives g(r )
5Aq8/m and the following:

V~r !2E1
,~,11!

2mr2 5
~q8!2

m
@V~q!2«#1

L~L11!

2m S q8

q D 2

1
m8

2m2r
1

1

4m
@F~m!2F~q8!#,

~3.3!

Therefore, given a radial effective-mass functionm(r ), Eq.
~3.3! will be used to determineV(r ) and E for a selected
transformation functionq(r ). This will be illustrated in one
of the examples in the Appendix.
6-4
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IV. SUMMARY

In conclusion, we give a brief summary of our finding
Starting with the time-independent Schro¨dinger equation for
a constant mass problem, point canonical transforma
maps it into one with position-dependent effective mass. T
resulting mass is a function of the transformation. Howev
the effective-mass distribution could also have been sele
in advance@satisfying the solvability condition, Eq.~2.7!#
resulting in a constraint on the transformation. In any ca
the PCT map will give the potential function for the proble
with spatially dependent mass. Moreover, if the original r
erence problem~the one with constant mass! is exactly solv-
able, then the same PCT map gives the solution~energy
spectrum and wave function! of the target problem~the one
with variable mass!. We considered three classes of referen
potentials: the Oscillator, Coulomb, and Morse classes. O
dimensional and three-dimensional problems were discus
In the Appendix several illustrative examples are given. T
advantage of the present method over other methods is in
ease of obtaining a closed analytic form for the wave fu
tion of the problem with position-dependent mass.

APPENDIX: ILLUSTRATIVE EXAMPLES

We illustrate the utility of the PCT method developed
this paper by few examples. For the sake of comparison w
other methods some examples will be used to reproduce
lier results by other authors. However, new examples w
also be presented to demonstrate the wide range and ea
application of the method.

Example 1. m(x)5@(g1x2)/(11x2)#2, whereg is a real
constant parameter. This position-dependent mass was
ied in Refs.@11# and@14#. We will give four different exactly
solvable systems with this mass distribution. The poten
function, energy spectrum, and wave functions will be w
ten down for all these systems. The integral in Eq.~2.7! gives
m(x)5t21@x1(g21)tan21 x#. Using the results of the de
velopment in Secs. II and III, we obtain the following:

For Oscillator 1,

V~x!5 1
2 a2m~x!21U~x!,

En5~a/t!~n1 1
2 !,

fn~x!5AnAg1x2

11x2 e2atm~x!2/2Hn„Aatm~x!…,

where U~x!5
G„m~x!…

8m~x!
5S g21

2 D 3x412~22g!x22g

~g1x2!4 .

For Oscillator 2,

V~x!52
1

2t2 m~x!212
3

32t2 m~x!221U~x!,

En521/2t2~n1 1
2 !2,
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fn~x!5AnAg1x2

11x2 m~x!1/4e2m~x!/~n11/2!

3Hn~A2m~x!/~n1 1
2 !!.

For Coulomb potential 1,

V~x!52a2m~x!211U~x!,

En52~a2t!2/~n11!2,

fn~x!5AnAg1x2

11x2 m~x!e2a2t2m~x!/~n11!

3Ln
1~2a2t2m~x!/~n11!! .

For Coulomb potential 2,

V~x!5
1

2t2 m~x!21
3

8t2 m~x!221U~x!,

En52~n11!/t2,

fn~x!5AnAg1x2

11x2 m~x!3/2e2m~x!2
Ln

1
„2m~x!2

….

Example 2. We consider the smooth mass stepm(x)51
1tanh(gx), which becomes abrupt asg becomes large. This
example was considered by Dekar, Chetouani, and H
mann @10# for a potential that has the same shape o
smooth step. Here, we are interested in the bound sta
Therefore, we will select two exactly solvable systems w
this mass step but for potentials that differ from that in R
@10#. In this case, Eq.~2.7! gives

m~x!5~&/tg!tanh21@A11tanh~gx!/&#.

The PCT method results in several solvable systems
which we choose the following:

For Oscillator 1,

V~x!5 1
2 a2m~x!22

g2

32

71tanh~gx!

@sinh~gx!1cosh~gx!#2

En5~a/t!~n1 1
2 !

fn~x!5An@11tanh~gx!#1/4e2atm~x!2/2Hn„Aatm~x!….

For Coulomb potential 1,

V~x!52a2m~x!212
g2

32

71tanh~gx!

@sinh~gx!1cosh~gx!#2 ,

En52~a2t!2/~n11!2,

fn~x!5An@11tanh~gx!#1/4m~x!e2a2t2m~x!/~n11!

3Ln
1
„2a2t2m~x!/~n11!….
6-5
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Example 3. We consider the asymptotically vanishin
mass m(x)5(g1x2)21. In this case m(x)5t21 ln(x
1Ag1x2). Among the many possible exactly solvable sy
tems with this mass that could be obtained by the P
method, we may choose the following:

Oscillator 1,

V~x!5 1
2 a2m~x!22 1

8

x212g

x21g
,

En~a/t!~n1 1
2 !,

fn~x!5An~g1x2!21/4e2atm~x!2/2Hn„Aatm~x!….

Example 4. We consider in this example the Morse cla
and takem(x)5tanh(lx)2. This givesm(x)5 ln@cosh(lx)#,
wherel5t21. Using the set of equations~3.1! we obtain the
target system defined by the following set of quantities:

V~x!5
l2

2
@cosh~lx!222j#22

l2

2
@sinh~lx!22

1 5
4 sinh~lx!24],

En52
l2

2
~j22n21!21

l2j2

2
,

fn~x!5AnAutanh~lx!u@cosh~lx!#2~j22n21!

3e21/2 cosh~lx!2
Ln

j22n21
„cosh~lx!22

….

Example 5. In this last example we tackle the thre
dimensional problem and take the 3D isotropic oscillator
reference, which is defined by the following@20#:

V~r!5 1
2 l4r2,

«n5l2~2n1L1 3
2 !,

cn~r!5an~lr!L11e2l2r2/2Ln
L11/2~l2r2!.

We consider the radial dependent massm(r )5ar g and take
the PCT functionq(r )5r n, wherea, g, andn are nonzero
real parameters. By substitution in Eq.~3.3! we obtain the
following two solutions:
d

04211
-
T

s

~a! n511g/2 andgÞ22.

V~r !5
a

2
C2r g12,

En5
g12

2
C~2n1L11!,

fn~r !5An~jr !~11g/2!L1~g11!/2

3exp@2~jr !g12/2#Ln
L
„~jr !g12

…,

where L(,)5ug12u21A4,(,11)1(g21)2, C is a real
potential coupling parameter, and

j5S 2aC

g12D 1/~g12!

.

~b! n5 1
2 1g/4 andgÞ22.

V~r !52 1
2

C

Aa
r 212g/2,

En52
C2/2

~g12!2

1

~n1L11/2!2 ,

fn~r !5An~jnr !~11g/2!L1~11g!/2

3exp@2~jnr !11g/2/2#Ln
2L
„~jnr !11g/2

…,

wherejn5@4AaC/(g12)2(n1L11/2)#1/(11g/2) andL(,)
is as above.

The singular casem(r )5ar 22, which corresponds tog
522, is solved by takingq(r )5l21 ln(r) giving the follow-
ing S wave (,50) solution:

V~r !5
1

2a
ln~r !21

C2

2
ln~r !22.

En5a21~2n1L1 17
8 !,

fn~r !5Anr 21/2 ln~r !L11/2exp@2 ln~r !2/2#Ln
L
„ln~r !2

…,

whereL5221A114aC2.
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