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First-arrival-time distributions for a Dirac electron in 1 ¿1 dimensions
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For the special case of freely evolving Dirac electrons in (111) dimensions, Feynman checkerboard paths
have previously been used to derive Wigner’s arrival-time distribution which includes all arrivals. Here, an
attempt is made to use these paths to determine the corresponding distribution of first-arrival times. Simple
analytic expressions are obtained for the relevant components of the first-arrival propagator. These are used to
investigate the relative importance of the first-arrival contribution to the Wigner arrival-time distribution and of
the contribution arising from interference between first and later~i.e., second, third, etc.! arrivals. It is found
that a distribution of~intrinsic! first-arrival times for a Dirac electron cannot in general be consistently defined
using checkerboard paths, not even approximately in the nonrelativistic regime.
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I. INTRODUCTION

In the past decade there has been considerable intere
deriving and understanding arrival-time distributions f
quantum particles, using a wide variety of approaches@for
recent reviews, see, Refs.@1–3##. Here we focus on an ap
proach based on Feynman paths@4#.

Yamada and Takagi@5,6# applied the consistent historie
approach, with Feynman paths as particle histories, to
problem of deriving an intrinsic arrival-time distribution
They considered the special case of a freely evolving non
ativistic quantum particle in one spatial dimension. In R
@5# they showed that within their approach one cannot c
sify the histories according to the number of timesn that a
particle arrives at a given spatial pointx5X during a speci-
fied finite time interval because the amplitude forn arrivals
is zero for every finiten. Their qualitative explanation wa
that a typical Feynman path, being nondifferentiable in tim
intersectsX an infinite number of times in the given tim
interval, leaving zero amplitude for any finite value ofn.
They further suggested that this would also be the case f
quantum particle propagating in three spatial dimension
the presence of a potential.

The velocity associated with a typical Feynman path fo
nonrelativistic electron is infinite at almost every point on
This is not the case for a relativistic electron—the veloc
associated with a Feynman path@4,7# for a relativistic elec-
tron is finite at almost every point on it. Hence, such a p
will not intersectX an infinite number of times in a give
finite time interval and the amplitude forn arrivals need not
be zero for every finiten. This is the primary motivation for
the following attempt to derive the first-arrival-time distrib
tion for a freely evolving Dirac electron in (111) dimen-
sions. In Sec. II, a checkerboard path derivation@8# of Wign-
er’s arrival-time distribution@9# which includes all arrivals is
1050-2947/2002/66~4!/042108~10!/$20.00 66 0421
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sketched, primarily to introduce the basic notation and c
cepts used in the following sections. In Sec. III the fir
arrival propagator for this special case is derived. Unfor
nately, there is interference between then51 and n.1
contributions to the arrival-time distribution so that the d
tribution of intrinsic first-arrival times cannot be consisten
defined using this approach. Calculated results for then51
and interference contributions are presented in Sec. IV
two simple cases. Concluding remarks are made in Sec.

II. CHECKERBOARD PATHS AND WIGNER’S
ARRIVAL-TIME DISTRIBUTION FOR DIRAC

ELECTRONS

Consider the (111)-dimensional free-electron Dira
equation@10# in the form

i\1̂
]

]t
C~x,t !5ĤC~x,t !52 i\cŝz

]

]x
C~x,t !

2mc2ŝxC~x,t ! ~1!

with C(x,t)[@C1(x,t),C2(x,t)#T a two-component
spinor and

ŝx5S 0 1

1 0D , ŝz5S 1 0

0 21D . ~2!

The velocity operator

v̂[
dx̂

dt
5

i

\
@Ĥ,x̂#5cŝz ~3!
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has the orthonormal eigenfunctions

x15S 1

0D , x25S 0

1D ~4!

with eigenvalues1c and2c, respectively. Hence,

C~x,t !5S C1~x,t !

C2~x,t ! D 5C1~x,t !x11C2~x,t !x2 ~5!
a

r

f t
-

n-

n
n
a

a

t

d

be

04210
and the upper and lower components of the wave func
C(x,t) are, respectively, the amplitudes at (x,t) for the
right-going (1c) and left-going (2c) velocity eigenstates
x1 and x2 . The four components of the retarded 232
propagator K(xB ,tB ;xA ,tA)[K(B;A) of the (111)-
dimensional free-electron Dirac equation~1! are labeled by
velocity directions (1 or 2) at (xA ,tA) and at (xB ,tB) and
are accordingly defined by
S C1~xB ,tB!

C2~xB ,tB!
D 5E

2`

`

dxAS K11~xB ,tB ;xA ,tA! K12~xB ,tB ;xA ,tA!

K21~xB ,tB ;xA ,tA! K22~xB ,tB ;xA ,tA!
D S C1~xA ,tA!

C2~xA ,tA!
D .
oard
s-

n,

-

i-

e
-

for

the
t
s

e
ted
The left subscript,1 or 2, on K denotes, respectively,
right-going or left-going arrival atxB at time tB while the
right subscript1 or 2 denotes, respectively a right-going o
left-going departure fromxA at time tA .

Subtracting the Hermitean conjugate of Eq.~1!, multi-
plied from the right byC(x,t), from Eq.~1! multiplied from
the left by the Hermitean conjugate ofC(x,t) gives the con-
tinuity equation

]

]t
C†~x,t !C~x,t !1

]

]x
C†~x,t !cŝzC~x,t !50. ~6!

It is assumed throughout the paper that the parameters o
initial wave function are such that Dirac’s original identifi
cation of

r~x,t !5C†~x,t !C~x,t !5uC1~x,t !u21uC2~x,t !u2 ~7!

and

J~x,t !5cC†~x,t !ŝzC~x,t !5c@ uC1~x,t !u22uC2~x,t !u2#

~8!

with single-electron probability and probability current de
sities, respectively, is an adequate approximation.

In Feynman and Hibb’s classic book ‘‘Quantum Mecha
ics and Path Integrals’’@4# it is stated that the free-electro
propagator K(xB ,tB ;xA ,tA) can be constructed from
model in which a particle going fromxA at time tA to xB at
time tB is constrained to move diagonally in space time
constant speedc in checker fashion~i.e., forward in time
with spatial increment6Dx with Dx5cDt5c(tB2tA)/N
for each ofN equal time stepsDt.0) @11#. Each componen
of the propagator is obtained as theN→` limit of the sum
over all N-step checkerboard paths joining (xA ,tA) to
(xB ,tB), with the first and last steps appropriately fixe
when the weight associated with a path havingR ~noncom-
pulsary! reversals of direction or corners is taken to
( imc2Dt/\)R. Jacobson and Schulman@7# regrouped the
sum-over-paths into a sum-over-R, i.e.,
he

-

t

,

Kba~B;A!5 i ~mc/2\! lim
N→`

(
R>0

Fba~R!

3~ imc2Dt/\!R ~a56;b56 !, ~9!

whereFba(R) is the number ofba paths withR noncom-
pulsary reversals. They also evaluated the four checkerb
path integrals, obtaining the following closed-form expre
sions for the components of the propagator:

K11~B;A!52
ctBA1xBA

2lcl BA
J1S l BA

lc
D , ~10!

K22~B;A!52
ctBA2xBA

2lcl BA
J1S l BA

lc
D , ~11!

K12~B;A!5K21~B;A!5
i

2lc
J0S l BA

lc
D , ~12!

wherelc[\/mc is the Compton wavelength of the electro
xBA[(xB2xA), tBA[(tB2tA), and l BA[ctBA with tBA
[tBA@12(vBA /c)2#1/2 the proper time for a particle moving
with constant velocityvBA[xBA /tBA . Jacobson and Schul
man also determined the number of reversals,R0, that gives
the maximum contribution to the sum in Eq.~9!. They ob-
tainedR05 l BA /lc and also showed that the sum is dom
nated by terms havingR within 'R0

1/2 of R0 @12#. The pic-
ture that emerges@7,13,14# is that in which the particle
always moves with speedc and typically travels a distanc
'(tBA /tBA)lc>lc between reversals of direction; its mo
tion is Brownian with diffusion constant\/m only on scales
much larger than this correlation distance.

Now consider the problem of deriving an expression
the distributionP(T;X) of arrival timesT at the spatial point
x5X for an ensemble of Dirac electrons all prepared in
same initial stateC(x,0). Following Yamada and Takagi, i
is assumedthat the arrival-time distribution for the fictitiou
particles of the checkerboard model~with tA50, xB5X, and
tB5T), should it be well defined, can be identified with th
desired distribution for actual electrons. It should be no
8-2
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that the expression~7! for r(x,t) contains no1/2 cross
terms arising from interference between paths arriving
(x,t) with right-going (1) and those with left-going (2)
velocities. Hence, at least for the particles of the check
board model, the probability densityr(x,t) can be decom-
posed into two contributions, one associated only with rig
going arrivals at (x,t) and the other only with left-going
arrivals, r(x,t)5r1(x,t)1r2(x,t) with r6(x,t)
[uC6(x,t)u2. Now, recall that particles following checke
board paths move only at speedc and that the time betwee
reversals in their directions of motion is'(tBA /tBA)lc /c
for those paths that make the dominant contribution to
propagator. Hence, forDt much less than this correlatio
time, nearly all of the particles in the spatial interval@X
2cDt,X# that are right-going at timeT2Dt should arrive at
x5X during the time interval@T2Dt,T#, giving the domi-
nant contribution to the number of right-going arrivals atX
during that time interval. Taking the limitDt→dt501 this
leads to the prediction thatcr1(X,T)dt right-going particles
arrive at x5X during the infinitesimal time interval@T
2dt,T#. A similar argument applies for left-going particle
in @X,X1cDt# at time T2Dt. Hence, the distribution o
arrival timesT at the spatial pointx5X is given by

P~T;X!5P1~T;X!1P2~T;X!;

P6~T;X!5uC6~X,T!u2/E
0

Tmax
dtr~X,t !, ~13!

whereTmax is the maximum arrival time of practical interes
For the special case of free motion in one spatial dimens
the general results presented without derivation or discus
by Wigner @9# simplify to Eq. ~13! @8#.

III. FIRST-ARRIVAL PROPAGATOR FOR A DIRAC
PARTICLE IN „1¿1… DIMENSIONS

The fundamental constants\ and c are set to 1 in the
analysis of this section but restored in the final results.

To begin, suppose that the spatial interval of interes
divided intoM pieces each of lengthDx5xBA /M , assuming
xB.xA . Suppose further that a particular path ofN time
steps consists ofP spatial steps of lengthDx to the right and
Q to the left so thatN5P1Q andM5P2Q. The resulting
space-time grid of path segments available to the particl
illustrated in Fig. 1. Denote byKba

(1)(B;A) the component of
the propagator~9! associated with first arrivals atX5xB at
time T5tB . It is constructed from only those paths th
reachxB for the first time at time tB . To computeKba

(1) we
have to count the number ofba paths withR noncompulsary
reversals for the restricted space-time grid shown in Fig
For simplicity it is assumed that the initial wave functio
C(x,tA50) is sufficiently well localized to the left ofxB

5X that K11
(1) (B;A) and K12

(1) (B;A) are the only compo-
nents of the first-arrival propagator that need to be con
ered. For xA,xB the components K21(B;A) and
K22(B;A) of course have contributions only from multiple
arrival paths.
04210
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A. Counting the number of first-arrival paths with r corners

Computation ofFba
(1)(R) involves counting the number o

restrictedba paths with a given number of corners in
lattice. A path in the lattice of Fig. 2—obtained from Fig.
by clockwise rotation through 45o and rescaling by a facto
of (21/2Dx)21—is built up of (1,0)5→ and (0,1)5↑ mo-
tions. There are no← and ↓ motions because the paths
Fig. 1 move only forward in time. Denote by al corner, a
point on the path that is reached by a→ step and is left by a
↑ step and by ar corner, a point that is reached by a↑ step
and left by a→ step. Denote byRl the number of corners o
type l and byRr the number of corners of typer in a given
path. Any path in theu-v lattice with given initial and final
points (uA ,vA) and (uB ,vB) can be completely specified b
either the coordinates of itsl corners or by the coordinates o
its r corners. Both specifications are needed in the follow
derivation of the first-arrival propagator.

First, consider the counting problem without anyba or
first-arrival restrictions on the paths and including comp
sary as well as noncompulsary corners. In this simple c

FIG. 1. Checkerboard grid withDx5Dt in the x2t plane (c
51). Two paths with five corners, the last of which is compulsa
are shown. The solid-line path witha51 and b52 does not
contribute to the first-arrival propagatorK (1)(xB ,tB ;xA ,tA) while
the dashed-line path witha52 and b51 does contribute. The
restricted domain for evaluation of the first-arrival propagator
bounded on the right by the vertical dashed line; its shape is sh
in grey.

FIG. 2. Example of an unrestricted path that would not be
lowed once first-arrival restrictions are introduced. Theu and v
sequences corresponding to the threel corners and twor corners of
the path are indicated.
8-3
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enumeration of the number of paths in a lattice with a giv
number ofl or r corners is solved in the following manne
@15#. To count the number of paths withRl l-corners one
builds two vectorsu andv that contain the integeru andv
coordinates of theRl corners of such a path:

u5~u1 ,u2 , . . . ,uRl
!,

v5~v1 ,v2 , . . . ,vRl
!. ~14!

These coordinates satisify the inequalities

uA11<u1,u2•••,uRl
<uB , ~15!

vA<v1,v2•••,vRl
<vB21,

where the sequences are strictly ordered. Denote byF l
wr(Rl)

the number of paths withRl l-corners, where the label ‘‘wr ’’
is a reminder that the paths are without restriction. This nu
ber may be evaluated by observing that there areuB2uA
integers from which to choose theu coordinates andvB
2vA from which to choose thev coordinates. The require
number is then

F l
wr~Rl !5S uB2uA

Rl
D S vB2vA

Rl
D . ~16!

Similarly, one obtains

F r
wr~Rr !5S uB2uA

Rr
D S vB2vA

Rr
D . ~17!

Now consider only those paths which do notcross~touch-
ing is allowed for the moment! x5xB before t5tB . When
considering such restricted paths in theu2v lattice~see, Fig.
3! it is convenient to choose the bottom-right corner of t
accessible region as the origin of theu2v coordinate system
so that the region below the diagonalu5v is out-of-bounds.

First consider the case in which the paths are specified
the coordinates of theirl corners. This case is the easier
the two becausel corners are diagnostic, i.e., a necessary
sufficient condition for a restricted path is that none of itl
corners be on the forbiddenu.v side of the diagonal. It is
thus required to calculate the number of paths withRl l cor-
ners from (uA ,vA) to (uB ,vB) with uA5a, vA50 anduB

FIG. 3. A restricted path from (uA ,vA)5(a,0) to (uB ,vB)
5(b,b) which has twol corners and threer corners.
04210
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5vB5b, say, such thatv i>ui for all i. This number,
F l(Rl ;BA), is the number~16! minus the number of path
with Rl l-corners such thatui.v i for at least onei. To cal-
culate the latter number, takek to be the largest integer suc
that uk.vk and build from~15! the following sequences:

uA115a11<u1,u2•••,uk21,vk11•••

,vRl
<vB215b21, ~18!

vA50<v1,v2•••,vk,uk,uk11•••,uRl
<uB5b.

The sequences are ordered@as can be checked, see Ref.@15##
and there is a one-to-one correspondence between the do
sequences~15! and the double sequences~18!. The number
of all the double sequences~18! is

S b2a21

Rl21 D S b11

Rl11D , ~19!

and thereforeF l(Rl ;BA) is given by

F l~Rl ;BA!5S b2a

Rl
D S b

Rl
D 2S b2a21

Rl21 D S b11

Rl11D .

~20!

Now consider the computation of the corresponding nu
ber of restricted paths from (a,0) to (b,b) with Rr r-corners,
i.e.,F r(Rr ;BA). A necessary condition for such a path is,
course, that all of itsRr r corners be on the allowedv.u
side of the diagonal. However, this is not a sufficient con
tion because it is possible for thel corner between two con
secutive suchr corners to be on the forbidden side of th
diagonal. An additional complication is that the firstl corner
might precede the firstr corner and/or the lastl corner might
follow the last r corner. A simple way to include suchl
corners in the analysis is to add the end-points (a,0)
[(u0 ,v0) and (b,b)[(uRr11 ,vRr11) to the set ofRr r cor-

ners to obtain the set ofRr12 points $(u0 ,v0),
(u1 ,v1), . . . ,(uRr

,vRr
),(uRr11 ,vRr11)%. Now, for 1< i

<Rr21, (ui 11 ,v i) is the ~diagnostic! l corner between the
consecutive r-corners (ui ,v i) and (ui 11 ,v i 11). Hence,
F r(Rr ;BA) is the number~17! minus the number of path
with Rr r corners such thatui 11.v i for at least onei, with
0< i<Rr to allow for paths for which the first and/or las
corner is anl corner. To calculate the latter number, takek to
be the smallest integer such thatuk11.vk and construct the
sequences

a5u0<u1,u2, . . . ,uk,vk11, . . . ,vRr
<vRr115b,

15v011<v1,v2, . . . ,vk,uk11, . . .

,uRr
<uRr11215b21. ~21!

The total number of these double sequences is
8-4
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S b2a11

Rr
D S b21

Rr
D , ~22!

and thereforeF r(Rr ;BA) is given by

F r~Rr ;BA!5S b2a

Rr
D S b

Rr
D 2S b2a11

Rr
D S b21

Rr
D .

~23!

Finally, consider the desiredba first-arrival paths, which
are not allowed totouch x5xB before t5tB . The various
notationsA, (xA ,tA) and (uA ,vA)21/2Dx are reserved for the
first point of a checkerboard path andB, (xB ,tB) and
(uB ,vB)21/2Dx for the last point. Denote byAa , (xA
1aDx,tA1Dt) and (aa,0)21/2Dx the point on aba path at
time t5tA1Dt and by Bb , (xB2bDx,tB2Dt),
(bb ,bb)21/2Dx the point at timet5tB2Dt.

It is important to note that those paths which may tou
but do not cross the diagonalu5v, extending from (0,0) to
(bb ,bb), do not touchx5xB before t5tB and hence are
first-arrival paths. Hence, the above expressions
F l(Rl ;BA) andF r(Rr ;BA) with A, B, a, andb replaced by
Aa , Bb , aa and bb , respectively, can be used to evalua
Fba

(1) and henceKba
(1) . It is only necessary, for a given choic

of a andb, to determineaa , bb and the relation betweenR
andRl or Rr , keeping in mind thatR includes only noncom-
pulsary corners.

For ba511 it is clear from Fig. 4 that (b1 ,b1)
5(Q,Q), (uB ,vB)5(Q11,Q), (uA ,vA)5(Q112P,0) and
(a1,0)5(Q122P,0). Then a little thought leads to th
conclusion that the numberF11

(1) (R) is equal to
F r(Rr ;B1A1) with the identificationR52Rr21. Hence,
upon replacinga by a15Q122P, b by b15Q, andRr by
(R11)/2 in Eq.~23!, it follows that

FIG. 4. The dashed line demarcates the grid to be considere
the enumeration problem related toK11

(1) .
04210
h

r

F11
(1) ~R!5S P22

~R11!/2D S Q

~R11!/2D
2S P21

~R11!/2D S Q21

~R11!/2D
5S P21

~R11!/2D S Q21

~R21!/2D
2S P22

~R21!/2D S Q

~R11!/2D , ~24!

where the identity

S n21

k D 5S n

kD 2S n21

k21D
has been used.

For ba512 it is clear from Fig. 5 that (b1 ,b1)5(Q
21,Q21), (uB ,vB)5(Q,Q21), (a2,0)5(Q2P,0),
(uA ,vA)5(Q2P,21) and F12

(1) (R) is equal to
F l(Rl ;B1A2) with R52Rl . Hence, upon replacinga by
a25Q2P, b by b15Q21 andRl by R/2 in Eq. ~20!, it
follows that

F12
(1) ~R!5S P21

R/2 D S Q21

R/2 D 2S P22

~R22!/2D S Q

~R12!/2D ,

~25!

with F12
(1) (1)51.

in
FIG. 5. The dashed line demarcates the grid to be considere

the enumeration problem related toK12
(1) .
8-5
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B. Evaluation of the propagators

The first-arrival-time propagators are expressed as

K11
(1) ~B;A!5

i

2lc
lim

N→`
(

oddR>1
F11

(1) ~R!~ imDt !R, ~26!

K12
(1) ~B;A!5

i

2lc
lim
N→`

(
evenR>0

F12
(1) ~R!~ imDt !R.

C. The case ofK¿¿
„1…

In this case we have from Eq.~26! and using the approximation (m
n )'nm/m!, that becomes exact asn→`,

K11
(1) ~B;A!5

i

2lc
lim

N→`
(

oddR>1
~ imDt !RS P(R11)/2

@~R11!/2#!

Q(R21)/2

@~R21!/2#!
2

P(R21)/2

@~R21!/2#!

Q(R11)/2

@~R11!/2#! D
5

i

2lc
lim

N→`
(

oddR>1
~ imDt !R~P2Q!

~PQ!(R21)/2

@~R11!/2#! @~R21!/2#!
. ~27!

This expression may be transformed@16# to

K11
(1) ~B;A!5 i

xBA

lcl BA
lim

N→`
(

oddR>1
S i l BA

2lc
D R 1

@~R11!/2#! @~R21!/2#!
52

xBA

lcl BA

l BA

2lc
(
k50

`

~2 !kS l BA

2lc
D 2k 1

k! ~k11!!
. ~28!
nt

lt

-
to

,

In the last lineR has been replaced by 2k11 and the limit
N→` taken. Comparison with the power series represe
tion of the Bessel function,

Jn~z!5S z

2D n

(
k50

`
~2 !k

k! ~k1n!! S z

2D 2k

, ~29!

immediately gives

K11
(1) ~B;A!52

xBA

lcl BA
J1S l BA

lc
D . ~30!

D. The case ofK¿À
„1…

In this case we start with the expression

K12
(1) ~B;A!5

i

2lc
lim

N→`
(

evenR>0
~ imDt !RS PR/2

~R/2!!

QR/2

~R/2!!

2
P(R22)/2

@~R22!/2#!

Q(R12)/2

@~R12!/2#! D . ~31!

Steps analogous to those above lead to

K12
(1) ~B;A!5

i

2lc
FJ0S l BA

lc
D1

c2vBA

c1vBA
J2S l BA

lc
D G . ~32!

An interesting equality emerges from the above resu
namely,

K11~B;A!2K22~B;A!5K11
(1) ~B;A!. ~33!
04210
a-
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In fact all paths contributing to theK22(B;A) component of
the propagator touch the linex5xB at least twice and there
fore this set of paths is complementary to that contributing
K11

(1) (B;A) in the limit of N→`.
Finally,

K11
(2,3,•••)~B;A!5K11~B;A!2K11

(1) ~B;A!

5K22~B;A!

5
xBA2ctBA

2lcl BA
J1S l BA

lc
D ;

K12
(2,3,•••)~B;A!5K12~B;A!2K12

(1) ~B;A!

52
i

2lc

c2vBA

c1vBA
J2S l BA

lc
D . ~34!

IV. INTERFERENCE BETWEEN FIRST AND LATER
ARRIVALS

The decomposition Kba(B;A)5Kba
(1)(B;A)

1Kba
(2,3, . . . )(B;A) according to first and later~second, third,

etc.! arrivals of a particle atxB at tB leads immediately to the
corresponding decompositionCb(xB ,tB)5Cb

(1)(xB ,tB)
1Cb

(2,3, . . . )(xB ,tB) for the b56 components of the wave
function C(xB ,tB). Substitution of the latter expression
with tA50, xB5X, and tB5T, into the result~13! for the
arrival time distribution gives

P~T;X!5P (1)~T;X!1P (2,3, . . . )~T;X!1P (132,3, . . . )~T;X!.
~35!
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For the special case considered here in which the initial probability densityr(xA,0) is negligible forxA>X,

P (1)~T;X!5CU E
2`

X

dxA@K11
(1) ~X,T;xA,0!C1~xA,0!1K12

(1) ~X,T;xA,0!C2~xA,0!#U2

~36!

is the contribution of first arrivals,

P (2,3, . . . )~T;X!5CU E
2`

X

dxA@K11
(2,3, . . . )~X,T;xA,0!C1~xA,0!1K12

(2,3, . . . )~X,T;xA,0!C2~xA,0!#U2

1CU E
2`

X

dxA@K21
(2,3, . . . )~X,T;xA,0!#C1~xA,0!1K22

(2,3, . . . )~X,T;xA,0!C2~xA,0!]U2

~37!

is the contribution of later arrivals and

P (132,3, . . . )~T;X!52CRH E
2`

X

dxA@K11
(1) ~X,T;xA,0!C1~xA,0!1K12

(1) ~X,T;xA,0!C2~xA,0!#*

3E
2`

X

dxA@K11
(2,3, . . . )~X,T;xA,0!C1~xA,0!1K12

(2.3, . . . )~X,T;xA,0!C2~xA,0!#J ~38!
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is the contribution due to interference between first and la
arrivals.@C is the normalization factor appearing in~13!#. Of
particular interest here is the magnitude of the interfere
contribution relative to the first-arrival contribution in th
regimevBA!c.

First, however, briefly consider the regime in whichvBA

is so close to c that the correlation distancelc@1
2(vBA /c)2#21/2 for reversal of direction is sufficiently larg
that for a typical checkerboard path there is insufficient ti
for more than one arrival atxB . To be more quantitative
assume that the initial amplitudeC2(xA ,tA) of the 2c ve-
locity eigenstate is completely negligible with respect to
initial amplitude C1(xA ,tA) of the 1c eigenstate so tha
one need consider onlyK11(B;A) and K21(B;A). Also,
for (xB ,tB)5(X,T) and (xA ,tA)5(xA,0) assume tha
xBA5X2xA is very close toctBA5cT for those values
of T for which P(T;X) is non-negligible and for those
values of xA for which r(xA,0) is non-negligible. In
this regime, K11

(1) (B;A)/K11(B;A)'12d/2 and
K11

(2,3, . . . )(B;A)/K11(B;A)'d/2, where vBA[(12d)c
with d!1. In addition, uK21(B;A)/K11(B;A)u
'( l BA/2ctBA)J0( l BA /lc)/J1( l BA /lc) with l BA

'(2d)1/2ctBA . If d is sufficiently small thatl BA!lc then,
using the leading term in Eq.~29! for n50 and forn51,
uK21(B;A)/K11(B;A)u'lc /xBA5lc /(X2xA) which is
typically very much less than 1 for an initial wave pack
C(xA,0) that is well-localized away fromx5X. Hence, at
least to the extent that the concepts of single-particle pr
ability and probability current densities are still meaning
in the regime in whichvBA is very close toc, the interference
term is very small andP(T;X)5P (1)(T;X) to a good ap-
proximation. Strictly speaking, however, for the special ca
04210
r

e

e

e
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under consideration the first-arrival-time distribution is we
defined only in the limitvBA→c.

Now, consider the nonrelativistic regime. With the defin
tions C6(x,t)[f6(x,t)exp(2imc2t/\), f(x,t)[f1(x,t)
1f2(x,t) and Df(x,t)[f1(x,t)2f2(x,t), the
(111)-dimensional free-electron Dirac equation~1! can be
written as

i\]f~x,t !/]t52 i\c]Df~x,t !/]x22mc2f~x,t !,

i\]Df~x,t !/]t52 i\c]f~x,t !/]x. ~39!

If i\]f/]t is negligible with respect to 2mc2f ~with c fixed
at its actual value, not set equal to infinity! then f can be
replaced by2( i\/2mc)]Df/]x in the second equation o
Eq. ~39! to obtain the Schro¨dinger equationi\]Df(x,t)/]t
52(\2/2m)]2Df(x,t)/]x2. If one further assumes tha
uDf(x,t)u2@uf(x,t)u2 and identifies 221/2Df(x,t) with the
Schrödinger wave functioncS(x,t) then the expressions~7!
and ~8! immediately lead to the desired nonrelativist
expressions, rS(x,t)5ucS(x,t)u2 and JS(x,t)
5(\/m)I@cS* (x,t)]cS(x,t)/]x#, respectively, for the non-
relativistic probability and probability current densities. Co
sistent with these considerations is the following simp
choice of initial (t50) wave functionC(xA,0) for the non-
relativistic regime:C1(xA,0)52gC0(xA) and C2(xA,0)
5(12g2)1/2C0(xA) whereg is a real constant very close t
221/2 ~see below! and C0(x)5(2p)21/4(Dx)21/2exp@
2(2Dx)22(x2x0)

21ik0x# is a minimum-uncertainty-produc
gaussian with initial centroidx0, initial varianceDx, mean
8-7
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wave vectork0 and varianceDk51/2Dx. In the numerical
calculations presented below the constantg is chosen so tha
the characteristic velocityv(xA,0)[J(xA,0)/r(xA,0)5(2g2

21)c[v ~independent ofxA) is equal tov0[\k0 /m with
v0!c.

Now, from Eqs.~10!, ~11! and~30! it immediately follows
l-
n

e-
l

on

04210
that

K11
(1) ~B;A!/K11/22~B;A!52vBA /~c6vBA!'2vBA /c

~40!

and from Eq.~12! and ~32! it follows that
K12
(1) ~B;A!

K12/21~B;A!
5

J0~ l BA /lc!1@~c2vBA!/~c1vBA!#J2~ l BA /lc!

J0~ l BA /lc!

'
J0~ l BA /lc!1J2~ l BA /lc!2~2vBA /c!J2~ l BA /lc!

J0~ l BA /lc!
. ~41!
-

It

nd
In the regime vBA /c!1 under consideration,l BA /lc
'ctBA /lc5(c/vBA)(xBA /lc)@xBA /lc@1. Using the lead-
ing two terms in Hankel’s asymptotic expansions@17# of
J0(z) andJ2(z) for large argumentz, i.e.,

J0~z!'S 2

pzD
1/2FcosS z2

p

4 D1
1

8z
sinS z2

p

4 D G~ uzu@1!,

J2~z!'S 2

pzD
1/2FcosS z2

5p

4 D2
15

8z
sinS z2

5p

4 D G~ uzu@1!

~42!

gives

K12
(1) ~B;A!

K12/21~B;A!
'2S vBA

c D

3

cosS l BA

lc
2

p

4 D1
lc

16xBA
sinS l BA

lc
2

p

4 D
cosS l BA

lc
2

p

4 D1
lc

8l BA
sinS l BA

lc
2

p

4 D .

~43!

For l BA /lc5(4n13)p/4 with n an integer, the right-hand
side of Eq.~43! is 1. However, in a well-designed arriva
time experiment for the wave function under discussion o
would arrange that (X2x0)@Dx so thatr(xA,0) is com-
pletely negligible forxA>X and also thatDx@lc so that
there is negligible probability of generating particl
antiparticle pairs. Hence,lc /xBA would be extremely smal
over the important range ofxBA . Hence, the set ofxBA val-
ues where the right-hand side of Eq.~43! is not close to
2vBA /c is of small measure and can be ignored when c
sidering integrals overxA , provided thatvBA /c is not itself
extremely small ~a rough estimate requires thatvBA /c
@lc/16pxBA).
e

-

Taking into account that2C2(xA,0)'C1(xA,0) for
uv(xA,0)u!c and that the terms involvingK22

(1) andK21
(1) are

negligible whenuX2x0u@Dx then leads directly to the esti
mates

P (1)~T;X!'~1/2!~2v/c!2P~T;X!52~v/c!2P~T;X!,
~44!

P (132,3, . . . )~T;X!'2~1/2!~2v/c!P~T;X!52~v/c!P~T;X!
~45!

for the Gaussian wave function under consideration.
should be noted thatvBA5(X2xA)/T has been approxi-
mated by
v which is consistent with (X2x0)@Dx in the absence of
significant wave packet spreading. Figures 6 a

FIG. 6. Arrival-time distributionP(T;0) ~solid curve!, scaled
first-arrival contributionP (1)(T;0)/2(v/c)2 ~dotted line! and scaled
interference contributionP (132,3, . . . )(T;0)/2(v/c) ~dashed line! for
the initial gaussian wave function described in the text.k0

51.00 Å21, Dk50.02 Å21 and x0526Dx with Dx51/2Dk;
v/c5v0 /c53.86231023; t0[ux0u/v051.296310214 sec; and
Tmax52t0.
8-8
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7 show results for P(T;0), P (1)(T;0)/2(v/c)2 and
P (132,3, . . . )(T;0)/2(v/c) obtained by numerical evaluatio
of Eqs. ~36! to ~38! for gaussian wave packets withDk/k0
50.02 and 0.2, respectively. In the former case the ab
estimates are excellent approximations; in the latter c
even though wave packet spreading is more important,
estimates still provide good approximations for the ve
large differences in overall scale between the three qua
ties.

V. CONCLUDING REMARKS

In summing up, it is interesting to make a qualitati
comparison of the results of the Feynman path and Bo
trajectory approaches for investigating arrival times for Dir
electrons.

In Bohmian mechanics@18–20# an electron is postulate
to be an actually existing point-like particle and an acco
panying wave which guides its motion. For a Dirac electr
in the presence of a potentialV(rW,t), the time evolution of
the guiding wave C(rW,t) is described by the three
dimensional~3D! Dirac equation and the trajectory of th
pointlike particle is determined by the equation-of-moti
drW(t)/dt5@JW (rW,t)/r(rW,t)#urW5rW(t) . It is further postulated
that, for an ensemble of electrons all prepared in the sa
initial stateC(rW,0), the probability of such a particlehaving

initial position rW (0)[rW(t50) is given byr(rW (0),0). The vari-
ous properties stated below for the intrinsic arrival times
the pointlike particles of Bohm’s theory follow readily from
the fact that, for a given initial wave function, trajectori
with different starting pointsrW (0) never intersect or even
touch each other@21#.

Now, the expression for the intrinsic 1D arrival-time di

FIG. 7. Arrival-time distributionP(T;0) ~solid line!, scaled
first-arrival contributionP (1)(T;0)/2(v/c)2 ~dotted line! and scaled
interference contributionP (132,3, . . . )(T,0)/2(v/c) ~dashed line! for
the initial gaussian wave function described in the text.k0

51.00 Å21, Dk50.2 Å21 and x0528Dx with Dx51/2Dk; v/c
5v0 /c53.86231023; t051.728310215 sec; andTmax53t0.
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tribution obtained with either approach can be cast in
same form as in classical mechanics, namely,

P~T;X!5P1~T;X!1P2~T;X!;

P6~T;X![6J6~X,T!/E
0

Tmax
dt@J1~X,t !2J2~X,t !#,

~46!

whereJ1 andJ2 , respectively, are the right-going and lef
going components of the probability current densityJ. The
decompositionJ5J11J2 is not uniquely defined. The de
composition associated with the fictitious particles of t
checkerboard path approach, which move only at the sp
of light c, is J656cuC6u2, while that associated with the
~assumed! actual particles of the Bohm trajectory approac
each of which moves at a variable speed that cannot exc
c, is J65JQ@6J#, whereQ is the unit step function. The
former decomposition leads to an arrival-time distributi
P(T;X) proportional to the probability densityr(X,T)
while the latter leads to one proportional to the absol
value of the probability current density, i.e.,uJ(X,T)u. More-
over, unless one or other~or both! of the two components o
C(X,t) is zero for T1<t<T2, there are more arrivals—
many more if T22T1 is much larger than the Jacobso
Schulman correlation time—of the fictitious particles atX
during that time interval than there are of the supposed ac
particles of Bohm’s theory.

Given the probability current densityJ(x,t) and using the
noncrossing property of Bohm trajectories it is straightfo
ward to decompose the intrinsic arrival-time distribution in
contributions from first arrivals, from second arrivals, e
with no interference terms between different orders of arri
@22#. In marked contrast to this, the decomposition based
Feynman checkerboard paths in general contains a non
interference term between first and later~i.e., second, third,
etc.! arrivals so that from the calculation one cannot extrac
well-defined intrinsic first-arrival-time distribution. In th
nonrelativistic regime this interference term can be ve
large compared to the first-arrival term. Because of this a
the extremely small correlation length for reversal of dire
tion ('lc which is only about 1023 of the diameter of an
atom!!, suppression of the interference term by decohere
@23# within a time interval much less thanlc /c in duration
immediately following the instant of first arrival would b
very difficult, if not impossible, in a practical arrival-tim
measurement. Unless this can be achieved, assuming tha
first-arrival times of the fictitious particles of the checke
board model are directly relevant to the arrival times m
sured in a time-of-flight experiment on actual electrons is
justified.
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