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First-arrival-time distributions for a Dirac electron in 1 +1 dimensions
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For the special case of freely evolving Dirac electrons ir-(0) dimensions, Feynman checkerboard paths
have previously been used to derive Wigner’s arrival-time distribution which includes all arrivals. Here, an
attempt is made to use these paths to determine the corresponding distribution of first-arrival times. Simple
analytic expressions are obtained for the relevant components of the first-arrival propagator. These are used to
investigate the relative importance of the first-arrival contribution to the Wigner arrival-time distribution and of
the contribution arising from interference between first and later, second, third, etcarrivals. It is found
that a distribution ofintrinsic) first-arrival times for a Dirac electron cannot in general be consistently defined
using checkerboard paths, not even approximately in the nonrelativistic regime.
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I. INTRODUCTION sketched, primarily to introduce the basic notation and con-
cepts used in the following sections. In Sec. Il the first-
In the past decade there has been considerable interestairival propagator for this special case is derived. Unfortu-
deriving and understanding arrival-time distributions fornately, there is interference between the1 and n>1
quantum particles, using a wide variety of approaclies  contributions to the arrival-time distribution so that the dis-
recent TEVieWS, see, Re"[g__g]] Here we focus on an ap- tribution of intrinsic first-arrival times cannot be ConSiStentIy
proach based on Feynman paft$ defined using this approach. Calculated results fornthel
Yamada and Takadb,6] applied the consistent histories and interference contributions are presented in Sec. IV for
approach, with Feynman paths as particle histories, to th&wo simple cases. Concluding remarks are made in Sec. V.
problem of deriving an intrinsic arrival-time distribution.

They considered the special case of a freely evolving nonrel- Il. CHECKERBOARD PATHS AND WIGNER'S

ativistic quantum particle in one spatial dimension. In Ref. ARRIVAL-TIME DISTRIBUTION EOR DIRAC

[5] they showed that within their approach one cannot clas- ELECTRONS

sify the histories according to the number of timethat a ) _ _ _
particle arrives at a given spatial poit X during a speci- Consider the (%*1)-dimensional free-electron Dirac

fied finite time interval because the amplitude foarrivals ~ €duation[10] in the form
is zero for every finiten. Their qualitative explanation was
that a typical Feynman path, being nondifferentiable in time, J J
intersectsX an infinite number of times in the given time inl—P(x,t)=H¥(x,t)=—ifico,— V(1)
interval, leaving zero amplitude for any finite value wof at X
They further suggested that this would also be the case for a
guantum particle propagating in three spatial dimensions in
the presence of a potential. .

TFr)le velocity assF())ciated with a typical Feynman path for aW"[_h Y )=[T. (1), ¥ (x)]" a two-component
nonrelativistic electron is infinite at almost every point on it. SP!NO" and
This is not the case for a relativistic electron—the velocity

—mEa, ¥ (x,t) (1)

associated with a Feynman pdth7] for a relativistic elec- 0 1 1 0
tron is finite at almost every point on it. Hence, such a path o= ) (}z:< ) 2)
will not intersectX an infinite number of times in a given 10 0 -1

finite time interval and the amplitude forarrivals need not _
be zero for every finite. This is the primary motivation for The velocity operator
the following attempt to derive the first-arrival-time distribu-
tion for a freely evolving Dirac electron in (£1) dimen-
sions. In Sec. ll, a checkerboard path derivafi®hof Wign-
er’s arrival-time distributiori9] which includes all arrivals is

o
X

>
i

i~ s -
= 5lAX=co, ®

o
—
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has the orthonormal eigenfunctions and the upper and lower components of the wave function
1 0 W (x,t) are, respectively, the amplitudes at,t) for the
X+=<O), X=(1> (4) right-going (+c¢) and left-going (-c) velocity eigenstates

x+ and x_. The four components of the retarded 2

with eigenvaluest ¢ and —c, respectively. Hence, propagator K(xg,tg;Xa,ta)=K(B;A) of the (1+1)-
dimensional free-electron Dirac equati@h) are labeled by

W (x,t) velocity directions ¢ or —) at (x5,t,) and at &g ,tg) and
W(x,t)z(w_(x,t)) =V OxFV-(XOx- O gre accordingly defined by

(W+(XBatB)):fw (K++(XBatB;XA1tA) K+(XBatsiantA)>(‘I’+(XAatA))
¥ _(Xg,tg) A K_+(Xg,tg:Xa,ta) Ko _(Xg,tg;Xa,ta) /| W _(Xa,ta) )

— o0

The left subscript,+ or —, on K denotes, respectively, a

right-going or left-going arrival akg at timetg while the Kga(B;A)=i(mc/27) lim RZO D 5q(R)
right subscript+ or — denotes, respectively a right-going or Nz ™
left-going departure fronx, at timet,. X(IMCAUA)R (a=+;8=%), (9)

Subtracting the Hermitean conjugate of Ead), multi-
plied from the right t_>y‘I'(x,t), _from Eq.(1) mu_ltiplied from where® 4,(R) is the number of3« paths withR noncom-
the left by the Hermitean conjugate Wf(x,t) gives the con-  yisary reversals. They also evaluated the four checkerboard
tinuity equation path integrals, obtaining the following closed-form expres-
sions for the components of the propagator:

9 T d T - _
SPIOGO WD+ WX ea P (D=0 ()

CtgatXga . [lBa
K++(B;A)=—2)\—|BA 1 )\—) (10
Cc Cc
It is assumed throughout the paper that the parameters of the
initial wave function are such that Dirac’s original identifi- Ctga—Xga . (lBa
cation of K——(B§A)=—m ek (11)
p(X,)=TT(x, )W (x,t)=|¥,(x,1)|2+|¥_(x,1)|> (7) i i
Ky —(B;A)=K_.(B;A)= XJO(A—), (12)
Cc C

and

R where\ .=7#/mcis the Compton wavelength of the electron,
I =c¥T(x,t) o, W (x,t) =c[ [ ¥, (x,)]= [P _(x,1)[?] Xga=(Xg—Xa), tga=(tg—ta), and Igpa=c7gp With 754
©® =tll-(v sa/c)?]Y? the proper time for a particle moving
with constant velocityw ga=Xga/tga. Jacobson and Schul-
with single-electron probability and probability current den- man also determined the number of reversBlg, that gives
sities, respectively, is an adequate approximation. the maximum contribution to the sum in E@). They ob-

In Feynman and Hibb’s classic book “Quantum Mechan-tained Ry=I1ga/\¢ and also showed that the sum is domi-
ics and Path Integrals[4] it is stated that the free-electron nated by terms having within ~Ré’2 of Ry [12]. The pic-
propagator K(Xg,tg;Xa,ta) can be constructed from a ture that emerge$7,13,14 is that in which the particle
model in which a particle going from, at timet, to xg at  always moves with speediand typically travels a distance
time tg is constrained to move diagonally in space time at~(tga/7ga) A=\, between reversals of direction; its mo-
constant speed in checker fashiori.e., forward in time tion is Brownian with diffusion constarit/m only on scales
with spatial increment: Ax with Ax=cAt=c(tg—1ta)/N much larger than this correlation distance.
for each ofN equal time stepAt>0) [11]. Each component Now consider the problem of deriving an expression for
of the propagator is obtained as tNe—<c limit of the sum  the distributionlI(T;X) of arrival timesT at the spatial point
over all N-step checkerboard paths joinings(ty) to  x=X for an ensemble of Dirac electrons all prepared in the
(xg,tg), with the first and last steps appropriately fixed, same initial stateV'(x,0). Following Yamada and Takagi, it
when the weight associated with a path havignoncom- is assumedhat the arrival-time distribution for the fictitious
pulsary reversals of direction or corners is taken to beparticles of the checkerboard modelith t,=0, xg= X, and
(imc?At/4)R. Jacobson and Schulmdid] regrouped the tg=T), should it be well defined, can be identified with the
sum-over-paths into a sum-oveyr-i.e., desired distribution for actual electrons. It should be noted
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that the expressioli7) for p(x,t) contains no+/— cross

terms arising from interference between paths arriving at

(x,t) with right-going (+) and those with left-going )

velocities. Hence, at least for the particles of the checker-

board model, the probability densip(x,t) can be decom-

posed into two contributions, one associated only with right-

going arrivals at X,t) and the other only with left-going
arrivals,  p(x,t)=p. (X,t) +p_(x,t) with  p.(X,t)
=|¥_.(x,1)|2. Now, recall that particles following checker-
board paths move only at spee@nd that the time between
reversals in their directions of motion s (tga/7ga)Nc/C

for those paths that make the dominant contribution to the

propagator. Hence, foAt much less than this correlation
time, nearly all of the particles in the spatial interja&{
—cAt, X] that are right-going at tim& — At should arrive at
x=X during the time interval T— At,T], giving the domi-
nant contribution to the number of right-going arrivalsxat
during that time interval. Taking the limikt—dt=0" this
leads to the prediction thap . (X, T)dt right-going particles
arrive at x=X during the infinitesimal time interva] T
—dt, T]. A similar argument applies for left-going particles
in [X,X+cAt] at time T—At. Hence, the distribution of
arrival timesT at the spatial poink=X is given by

H(T;X) =1, (T;X) + H_(T; X);
Tmax

whereT 4, 1S the maximum arrival time of practical interest.

PHYSICAL REVIEW A66, 042108 (2002

ty

Ax=A (c=1)

Cad

A

FIG. 1. Checkerboard grid withx=At in the x—t plane €
=1). Two paths with five corners, the last of which is compulsary,
are shown. The solid-line path with=+ and 8= — does not
contribute to the first-arrival propagatéf)(xg ,tg;Xa,ta) While
the dashed-line path witbh=— and 8=+ does contribute. The
restricted domain for evaluation of the first-arrival propagator is
bounded on the right by the vertical dashed line; its shape is shown
in grey.

A. Counting the number of first-arrival paths with r corners

Computation ofb§)(R) involves counting the number of
restricted Ba paths with a given number of corners in a
lattice. A path in the lattice of Fig. 2—obtained from Fig. 1
by clockwise rotation through 45and rescaling by a factor

For the special case of free motion in one spatial dimensiongf (22Ax) ~1—is built up of (1,0)= — and (0,1)=1 mo-
the general results presented without derivation or discussiofions, There are ne- and | motions because the paths of

by Wigner[9] simplify to Eq. (13) [8].
lll. FIRST-ARRIVAL PROPAGATOR FOR A DIRAC
PARTICLE IN (1+1) DIMENSIONS

The fundamental constants and ¢ are set to 1 in the
analysis of this section but restored in the final results.

Fig. 1 move only forward in time. Denote bylacorner, a
point on the path that is reached by-astep and is left by a
1 step and by a corner, a point that is reached by astep
and left by a— step. Denote by, the number of corners of
typel and byR, the number of corners of typrein a given
path. Any path in thes-v lattice with given initial and final
points (Ua,v ) and (Ug,vg) can be completely specified by

To begin, suppose that the spatial interval of interest igsjther the coordinates of itxcorners or by the coordinates of

divided intoM pieces each of lengthx=Xxg,/M, assuming
Xg>Xa. Suppose further that a particular path Mftime

steps consists d? spatial steps of lengthx to the right and
Q to the left so thaN=P+Q andM =P — Q. The resulting

illustrated in Fig. 1. Denote bl ;)(B;A) the component of
the propagatof9) associated with first arrivals a¢=xg at

its r corners. Both specifications are needed in the following
derivation of the first-arrival propagator.
First, consider the counting problem without aBy or

g - ] '9  first-arrival restrictions on the paths and including compul-

v
I-corner

time T=tg. It is constructed from only those paths that
reachxg for the first time at time tg. To computeK§) we
have to count the number @fa paths withR noncompulsary
reversals for the restricted space-time grid shown in Fig. 1.
For simplicity it is assumed that the initial wave function
¥ (x,to=0) is sufficiently well localized to the left okg

=X that K1) (B;A) and K (B;A) are the only compo-

(U, Ya)=(0,0)

(Us,8)=(10,5)

53

1,1

5.1

u

1.0

r=comer

l-comers r-corners
u=1,5,10 u=l
v=0,1,3 v=1,3

nents of the first-arrival propagator that need to be consid- FiG. 2. Example of an unrestricted path that would not be al-

ered. For xp,<xg the componentsK_,(B;A) and

lowed once first-arrival restrictions are introduced. Theand v

K__(B;A) of course have contributions only from multiple- sequences corresponding to the threerners and twe corners of

arrival paths.
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v
l-comer J :""-"""""I-;'(b,b)
r—corner ’_> :____,' . ’
0 — = rlind
on | | "
@,0) 0,0)

FIG. 3. A restricted path fromuy,vs)=(a,0) to (Ug,vg)
=(b,b) which has twad corners and three corners.
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=pg=Db, say, such thatv,=u; for all i. This number,
®|(R;;BA), is the numbel16) minus the number of paths
with R, I-corners such that;>v; for at least one. To cal-
culate the latter number, talketo be the largest integer such
thatu,>wv and build from(15) the following sequences:

UA+ l=a+ l$ul<u2 s <uk,l<Uk+l' s

<vR|$vB—1=b—1, (18
UA:O$1)1<02' <o <U<Ugg1q--- <UR|$UB:b.

The sequences are ordeff@d can be checked, see Rdf]]

enumeration of the number of paths in a lattice with a giver@nd there is a one-to-one correspondence between the double
number ofl or r corners is solved in the following manner Séguencesls) and the double sequencesd). The number

[15]. To count the number of paths witR, I-corners one
builds two vectoraus andv that contain the integan andv
coordinates of th&, corners of such a path:

u:(ul!UZ! EEEE) !uRl)y
V:(Ul,l}z, ...,URl). (14)
These coordinates satisify the inequalities
Uptlsu;<up---<ug<uUg, (15

UAsU:|_<U2' . '<UR|$UB_1,

where the sequences are strictly ordered. Denot@ By R,)
the number of paths witR, I-corners, where the labe/r”

of all the double sequencésd) is

b—a—-1
R—-1

b+1

R+1/’ (19

and thereforeb|(R, ;BA) is given by
b—a\/lb
R IR/

Now consider the computation of the corresponding num-
ber of restricted paths froma(0) to (b,b) with R, r-corners,
i.e.,,®,(R,;BA). Anecessary condition for such a path is, of
course, that all of itR, r corners be on the allowed>u

b—a—-1
R—1

b+1
R+1

Di(R :BA)=(

is a reminder that the paths are without restriction. This numside of the diagonal. However, this is not a sufficient condi-

ber may be evaluated by observing that there wge up
integers from which to choose the coordinates and g
—uvp from which to choose the coordinates. The required
number is then

Ug—Ua\ [ U VA
wr —
PR ( R )( R ) (10
Similarly, one obtains
Ug—Up|[Ug—Ua
wr _—
o= )R

Now consider only those paths which do wabss(touch-
ing is allowed for the momeptx=xg beforet=tgz. When
considering such restricted paths in thev lattice (see, Fig.

3) it is convenient to choose the bottom-right corner of the

accessible region as the origin of the-v coordinate system
so that the region below the diagons# v is out-of-bounds.

tion because it is possible for theorner between two con-
secutive suchr corners to be on the forbidden side of the
diagonal. An additional complication is that the firstorner
might precede the firstcorner and/or the lastcorner might
follow the lastr corner. A simple way to include such
corners in the analysis is to add the end-poingsO)
=(Uo,vo) and b,b)=(ur +1,vr +1) to the set o} r cor-
ners to obtain the set ofR,+2 points {(ug,vy),
(Ul,Ul), . ,(uRr,er),(uRr+1,URr+1)}. NOW, fOI‘ 1$|
<R,—1, (uj+1,v;) is the (diagnosti¢ | corner between the
consecutive r-cornersuf,v;) and U;+1,vi+1). Hence,
@, (R, ;BA) is the number(17) minus the number of paths
with R, r corners such that;, ;>uv; for at least one, with
0=<i=<R, to allow for paths for which the first and/or last
corner is arl corner. To calculate the latter number, tdki®
be the smallest integer such that, ;>v, and construct the
sequences

A=UpSU <Up< .. . <W<vp41< ... <URr$URr+1:b,

First consider the case in which the paths are specified by
the coordinates of their corners. This case is the easier of
the two becauskcorners are diagnostic, i.e., a necessary and
sufficient condition for a restricted path is that none oflits
corners be on the forbiddam>uv side of the diagonal. It is
thus required to calculate the number of paths V&th cor-
ners from (,v,) to (Ug,vg) With us=a, va=0 andug

I=vot1l=sv1<vo< ... <, <U 1< ...

<uRr$uRr+l_1:b_1. (21)

The total number of these double sequences is
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tB T tB r
4 x@
At | e At |
<,
’ (Q+2-P0)2 &x
ta —+— t
XA AX X l:A

FIG. 4. The dashed line demarcates the grid to be considered in ) ) ] )
the enumeration problem related Kéﬂ ) FIG. 5. The dashed line demarcates the grid to be considered in

the enumeration problem related k&") .

b-—a+1\/b—-1
R, R, ) (22 ®W (R) = -2 ) Q
** (R+1)/2)\ (R+1)/2
and thereforeb, (R, ;BA) is given by P-1 Q-1
\(R+1)2 (R+1)/2)
b—a\( b b-—a+1\/b—-1 P-1 Q-1
P, (R,;BA) = R, Rr)_ R, R, ) - (R+1)/2 ((R—l)/2)
23 P-2 Q
R | | | 24
Finally, consider the desirefl« first-arrival paths, which (R=1)2/1(R+1)/2

are not allowed taouch x=xg beforet=tg. The various
notationsA, (x,ta) and (Ua,vA)2"?Ax are reserved for the \yhere the identity
first point of a checkerboard path ar, (xg,tg) and
(ug,vg)2Y?Ax for the last point. Denote byA,, (Xa
+ aAX,tp+At) and @,,0)2Y?Ax the point on g8« path at
tme t=ty+At and by B, (xg—BAXtg—Al), (”—1>:(”) _(”—1)
(bg,bg)2Y2Ax the point at timet=tg— At. k k k—1
It is important to note that those paths which may touch
but do not cross the diagonak v, extending from (0,0) to
(bg.,bg), do not touchx=xg beforet=tg and hence are has been used. ,
first-arrival paths. Hence, the above expressions for FOr Ba=+—itis clear from Fig. 5 thatl§, ,b,)=(Q
®,(R,;BA) and®, (R, ;BA) with A, B, a, andb replaced by —1.Q—1), (UB!UB):(QiQ_l()la) (@-,0=(Q-P,0),
A,, Bg, a, and bf' respectively, can be used to evaluate(Ua,va)=(Q—P,—1) and @ (R) is equal to
@) and hencek . It is only necessary, for a given choice ®1(Ri;B.A-) with R=2R,. Hence, upon replacing by
of a and B, to determinea,,, by and the relation betweeR a_=Q-P, bbyb,=Q-1 andR, by R/2 in Eq. (20), it
andR, or R, , keeping in mind thaR includes only noncom-  follows that
pulsary corners.
For Ba=++ it is clear from Fig. 4 that i, ,b.)
=(QQ), (Ug,vg)=(Q+1Q), (Ua,va)=(Q+1-P,0) and o P-1\/Q-1 ( P-2 Q
(a+,0)=(Q+2-P,0). Then a |Itt|(?) thought leads to the OV (R)= R/2) R/2 (R=2)12/| (R+2)12)"
conclusion that the numberd®’”’ (R) is equal to (25)
o, (R,;B.A,) with the identificationR=2R,—1. Hence,
upon replacinggbya, =Q+2—P, bbyb,=Q, andR, by
(R+1)/2 in Eq.(23), it follows that with @) (1)=1.
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B. Evaluation of the propagators

The first-arrival-time propagators are expressed as

K (B;A) = lim > @M (R)(imADR, (26)
2)\(; N—o OddR=1
K(l)(BA)——Ilm > M (R)(imADR

2)\0 N—o €venR=0

C. The case ofk (},

In this case we have from E(6) and using the approximation}Y~n"/m!, that becomes exact as—,

" p(R+1)2 QR-D2 p(R-1)2 Q(R+1)12
K+ (B: A)‘TCN"L'L s (MY (R [R=Dl  [(R=D)72] [<R+1>/2]!)
i (PQ)(Rfl)/Z

"M i, IMADRP—Q) ey 27

This expression may be transformfgib] to

(HBA) 1 ~ Xea lea < (_)k(IBA ?

k
@ (R Xs _ 1BA BAl L
K (BA)=I lim 2ne) [RED2IT(R=D12]  Nolga 2Ne 6 2>\C) Kl(k+ 1)1

A IBA N-—o 0ddR=1

(28)

In the last lineR has been replaced byk2 1 and the limit  In fact all paths contributing to thi€ _ _(B;A) component of
N—oo taken. Comparison with the power series representathe propagator touch the line=xg at least twice and there-
tion of the Bessel function, fore this set of paths is complementary to that contributing to

B K (B;A) in the limit of N—oe.
EpRt
In(2)= o KI(k+n)!

Finally,
immediately gives

2k
) , (29)

K3 )(B;A) =K. . (B;A)—KH.(B;A)

=K__(B:A)
IBA Xpa— Ct |
KM (B;A)=— . | ZBA g ) (30) = TBA TBAy | BA.
BA 2Nclga Ne
D. The case ok (. KZ2(BiA) =K., _(B;A) — K. (B;A)
In this case we start with the expression B i c—uvga (|BA) »
H PR/2 QR/2 B 2)\(2 C+UBA 2 )\C ' ( )
KM (B; A)—— lim > (|mAt)R( =
| |
2N N evéni=0 (Ri2)! (R72)! IV. INTERFERENCE BETWEEN FIRST AND LATER
p(R=2)/2 Q(R+2)l2 ARRIVALS
" [(R—2)/2]' [(R+ 2)/2]!)' (3Y) The decomposition Kga(B:A)=KGA(B;A)

+KE3 - XB;A) according to first and Iate(nsecond third,

etc) arrivals of a particle atg attg leads |mmed|ately to the

corresponding  decompositionV 4(xg ,tg) = \If )(Xg ,tg)
32 +VE% )xg,tg) for the == components of the wave
functlon ¥ (xg,tg). Substitution of the latter expression,
with t,=0, xg=X, andtg=T, into the result(13) for the
arrival time distribution gives

Steps analogous to those above lead to

IA C—vpga

Iga
KEL(BIA) = 5| Jo| 3| + o3y Y2l
c

C+UBA )\C

C

An interesting equality emerges from the above results
namely,

O — 1T T 23,...yT- (1X2,3,...)T-
Ko 2 (BiA) =K - _(B:A)=K ) (BiA). @3 II(T; X)=TTW(T;X)+1I XT;X)+11 )(T,é)s.)

042108-6
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For the special case considered here in which the initial probability deméity;0) is negligible forx,= X,

X 2
H(l)(T;X)=CU dxa[ KE (X, Tixa, 0¥, (X4,0) + K (X, T;X0,00 ¥ _(Xa,0)] (36)
is the contribution of first arrivals,
X 2
H(Z'S*'“)(T;X)=CU dxa[ K@3 X, T:Xa, 00 1 (Xa, 00+ K@3 XX, T:X0,00 ¥ _(Xa,0)]
X 2
+CU_ AXA[ K @2 X, TiXa, 00 1W 4 (Xa,0) + K2 XX, T X0, 00 W _ (X4,0)] (37)
is the contribution of later arrivals and
X
H<1“’3’--->(T;X>=zcm[ f dXal K& (X, Ti%a, 0 W 1 (%a,0) + KL (X, T %2, 0 _ (Xa,001*
X
xf dxA[K(ff‘"")(X,T;XA,O)‘P+(XA,O)+K(ff""')(X,T;XA,O)\I'_(XA,O)]} (38

is the contribution due to interference between first and lateunder consideration the first-arrival-time distribution is well-

arrivals.[ C is the normalization factor appearing(3)]. Of  defined only in the limivga—c.

particular interest here is the magnitude of the interference Now, consider the nonrelativistic regime. With the defini-

contribution relative to the first-arrival contribution in the tions W. (X,t)=¢. (X,t)exp(~imct/4), ¢(x,t)=d. (X,t)

regimevga<c. +é_(xt) and  Ag(xt)=¢.(Xt)—¢_(Xt), the
First, however, briefly consider the regime in whigh, ~ (1+1)-dimensional free-electron Dirac equatiti) can be

is so close toc that the correlation distance\ 1 ~ Written as

—(vgal/c)?] Y2 for reversal of direction is sufficiently large

that for a typical checkerboard path there is insufficient time

for more than one arrival atg. To be more quantitative, izd¢(x,t)/dt=—ihCcIAP(X,t)/Ix—2mEH(x,t),

assume that the initial amplitud® _(x,,ta) of the —c ve-

locity eigenstate is completely negligible with respect to the

initial amplitude ¥, (x5,ts) of the +c eigenstate so that idA (X, 1)/ dt= —ificdp(x,t)/Ix. (39

one need consider onl ., (B;A) and K_, (B;A). Also,

for (xg,tg)=(X,T) and a,ta)=(Xa,0) assume that

Xga=X—Xa is very close toctgpa=cT for those values

of T for which II(T;X) is non-negligible and for those

values of x, for which p(x,0) is non-negligible. In g (39 to obtain the Schitinger equatiorifiaA ¢(x,t)/dt
th(lg3 regime, K2 (BIA)/K o (BiA)=1—412 and  __ (52/om) 2A d(x,t)/9x2. If one further assumes that
KEDABA)K, 1 (BIA)= 612, where vpa=(1-0)C  |Ag(x,t)|2>|h(x,1)|? and identifies 2Y2A ¢(x,t) with the
with  §<1. In addition, [K_,(B;A)/K, (B;A)]  schralinger wave functions(x,t) then the expressiond)

If i7 ol at is negligible with respect tordc?¢ (with ¢ fixed
at its actual value, not set equal to infinitthen ¢ can be
replaced by— (i#/2mc)dA ¢/dx in the second equation of

~(Iga’2ctga) Jo(lga/Nc)/J1(lgalNc) with lga and (8) immediately lead to the desired nonrelativistic
~(28)Yctga. If & is sufficiently small thalga<) then,  expressions,  pg(X,t)=|ws(x,1)|2 and  Jg(xt)
using the leading term in Eq29) for n=0 and forn=1, = (AIm)3[ & (x,t) dpg(X,1)/9x], respectively, for the non-

|[K_ 1 (B;A)/K, (B;A)|=~N\c/xga=Ac/(X—Xa) Which is relativistic probability and probability current densities. Con-
typically very much less than 1 for an initial wave packetsistent with these considerations is the following simple
W (xa,0) that is well-localized away from=X. Hence, at choice of initial {=0) wave function¥ (x,,0) for the non-
least to the extent that the concepts of single-particle probrelativistic regime: ¥, (X5,0)=—gW¥y(xa) and ¥ _(xa,0)
ability and probability current densities are still meaningful = (1—g?)Y2¥(x,) whereg is a real constant very close to
in the regime in whichyg» is very close ta, the interference 272 (see below and ¥q(x)=(27) Y4(Ax)~Y%exd
term is very small andI(T;X)=I1"(T;X) to a good ap- —(2AX) 4(x—xg)*>+ikex] is @ minimum-uncertainty-product
proximation. Strictly speaking, however, for the special casejaussian with initial centroicky, initial varianceAx, mean
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wave vectorky and varianceAk=1/2Ax. In the numerical that
calculations presented below the consigig chosen so that

the characteristic velocity (Xa,0)=J(Xa,0)/p(Xa,0)=(2¢> KM (B;A)K, 4 - _(B;A)=2vgal(CEvgp)~2vgalC
—1)c=v (independent ok,) is equal tovy=%ky/m with (40
Uo<c.

Now, from Egs.(10), (11) and(30) it immediately follows and from Eq.(12) and(32) it follows that

KEL(BA)  Jo(lgalhe) +[(C—vpp)/(C+vpa)1da(lgalNc)

Koo (B;A) Jo(lga/Nc)
Jo(lga/Ne) +d2(IgalNe) = (2vgalc) (lBA/)\c)
(41)
Jo(Isa/Nc)
|
In the regime vga/c<<1 under consideration|ga/\; Taking into account that—V¥ _(X,0)~W, (Xa,0) for

~Ctga/Ne=(Clvgn) (Xga/Ac) >Xga/\>1. Using the lead- |v(x,,0)|<c and that the terms involving® andk‘®) are
ing two terms in Hankel's asymptotic expansiofis/] of  negligible whenX—x,|>Ax then leads directly to the esti-
Jo(2) andJ,(z) for large argument, i.e., mates

IO(T;X)~(1/2)(2v/¢)?TI(T; X)=2(v/c)?TI(T; X),

2\ Y T 1 T (44)
Jo(z)w(5> Z[cos( z— Z) + 8y sm( z— Z) (|z|>1),
[TA%23 X T;X)~2(1/2) (2v/c)I(T; X) = 2(v/c)TI(T; X)
(45)
2\ 57\ 15 5
Jo(2)~ =z |9%% 7| 8z sin = (|zl>1) for the Gaussian wave function under consideration.
(42) should be noted thabga=(X—X,)/T has been approxi-
mated by
v which is consistent with X—Xxy)>AXx in the absence of
gives significant wave packet spreading. Figures 6 and
2.0 . . .
K& (B;A) (UBA)
Ki—/—+(BA) c
BA T Ac lga 7 L5 ¢ 1
e &) Texga oM, 4 ~
BA T Ae lga 7 :§
———|+=—-5s — =
)\C 4 8IBA )\C 4 :» L0 7
>
(43 g
=)
. . . = 05 .
For Iga/Ac=(4n+3)w/4 with n an integer, the right-hand
side of Eq.(43) is 1. However, in a well-designed arrival-
time experiment for the wave function under discussion one
would arrange thatX—Xxg)>Ax so thatp(x,,0) is com- 0.0 ! ! ! )
pletely negligible forx,=X and also thatAx>\. so that 02 04 06 03 10 12 14 16
there is negligible probability of generating particle- T,
antiparticle pairs. Hence\./xg would be extremely small FIG. 6. Arrival-time distributionH(T;O) (solid curve, scaled
over the important range ofga. Hence, the set ofg, val- first-arrival contributionl1®¥)(T;0)/2(v/c)? (dotted ling and scaled

ues where the right-hand side of E@3) is not close t0 jnterference contributiofl 23 --XT:0)/2(v/c) (dashed lingfor
2vga/c is of small measure and can be ignored when conhe initial gaussian wave function described in the tekg.
sidering integrals ovex,, provided thawga/c is notitself =100 A1, Ak=0.02 A ! and xo=—6Ax with Ax=1/2Ak;
extremely small(a rough estimate requires thatga/C  v/ic=v,/c=3.862x10"3; to=|xo|/vo=1.296x10 *sec; and
>)\C/167TXBA)' Tmax: 2t0
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120 - . . - tribution obtained with either approach can be cast in the
same form as in classical mechanics, namely,
100 | .
e I(T; X)=I1.(T;X) + I1_(T; X);
~ 89 ;
R Hi(T;X)EiJi(X,T)/J "I, (XD = I_(X, D],
S 60 0
s (46)
[}
E 4.0 whereJ, andJ_, respectively, are the right-going and left-
going components of the probability current densltyThe
20 decompositionJ=J, +J_ is not uniquely defined. The de-
composition associated with the fictitious particles of the
. checkerboard path approach, which move only at the speed

of light ¢, is J.=+c|W¥.|?, while that associated with the
Th, (assumepactual particles of the Bohm trajectory approach,
each of which moves at a variable speed that cannot exceed
FIG. 7. Arrival-time distributionII(T;0) (solid line), scaled ¢, is J.=JO[ =J], where® is the unit step function. The
first-arrival contribution1™)(T;0)/2(v/c)? (dotted ling and scaled  former decomposition leads to an arrival-time distribution
interference contributiofl(**23---XT,0)/2(v/c) (dashed lingfor TI(T:X) proportional to the probability density(X,T)
tfe 'n't"&"ill gaussian AVY‘?Ve Junit'on Adesc.”hbed n /;27(_ te'/x@' while the latter leads to one proportional to the absolute
;3'0/2:3 é?;]gﬁ- ¢ :in72)§>)<_16‘%5 ;(evcv_'tan%)r(_lz 3t vI€ " value of the probability current density, i.eJ(X,T)|. More-
° ' P ’ max— =t0- over, unless one or othéor both of the two components of
_ (1)1 5 ¥ (X,t) is zero for T;<t<T,, there are more arrivals—
’ (1§2‘)3W )results for II(T;0), II(T;0)/2(v/c)® and  many ‘more ifT,—T, is much larger than the Jacobson-
[==2%T;0)/2(v/c) obtained by numerical evaluation gchyiman correlation time—of the fictitious particles Yt

of Egs. (36) to (38) for gaussian wave packets withk/ko  quring that time interval than there are of the supposed actual
=0.02 and 0.2, respectively. In the former case the abOVBarticles of Bohm’s theory.

estimates are excellent approximations; in the latter case, gjyen the probability current densifi(x,t) and using the
even though_wave _packet spreading_is more important, thﬁoncrossing property of Bohm trajectories it is straightfor-
estimates still provide good approximations for the veryyard to decompose the intrinsic arrival-time distribution into
large differences in overall scale between the three quantiontributions from first arrivals, from second arrivals, etc.
ties. with no interference terms between different orders of arrival
[22]. In marked contrast to this, the decomposition based on
V. CONCLUDING REMARKS Feynman checkerboard paths in general contains a nonzero
interference term between first and lafee., second, third,

In summing up, it is interesting to make a qualitative etc) arrivals so that from the calculation one cannot extract a
comparison of the results of the Feynman path and Bohmwvell-defined intrinsic first-arrival-time distribution. In the
trajectory approaches for investigating arrival times for Diracnonrelativistic regime this interference term can be very
electrons. large compared to the first-arrival term. Because of this and

In Bohmian mechanicEl8—-20Q an electron is postulated the extremely small correlation length for reversal of direc-
to be an actually existing point-like particle and an accom+ion (=\. which is only about 10° of the diameter of an
panying wave which guides its motion. For a Dirac electronatom!), suppression of the interference term by decoherence
in the presence of a potenti®(r,t), the time evolution of [23] within a time interval much less thar,/c in duration
the guiding Wave\If(F,t) is described by the three- immediately following the instant of first arrival would be

dimensional(3D) Dirac equation and the trajectory of the V€Y difficult, if not impqssible, in a practical arriyal—time
pointlike particle is determined by the equation-of-motion measurement. Unless this can be achieved, assuming that the

~ =, - : first-arrival times of the fictitious particles of the checker-
dr(t)/dt=[I(r,)/p(r,)]lr—ry. It is further postulated board model are directly relevantpto the arrival times mea-
2 Sured in a time-of-flight experiment on actual electrons is not
initial stateWw (r,0), the probability of such a particleaving  jystified.
initial positionr@=r(t=0) is given byp(r(®,0). The vari-
ous properties stated below for the intrinsic arrival times of
the p?oinpt)like particles of Bohm’s theory follow readily from ACKNOWLEDGMENTS
the fact that, for a given initial wave function, trajectories  Support has been provided by Gobierno de Canarias
with different starting points®) never intersect or even (Grant No. PI2000/111 Ministerio de Ciencia y Tecnolda
touch each othg21]. (Grant No. BFM2001-3349and the Basque Government

Now, the expression for the intrinsic 1D arrival-time dis- (Grant No. PI-1999-28
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