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Thermal and ground-state entanglement in HeisenbergXX qubit rings
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~Received 2 April 2002; published 12 September 2002!

We study the entanglement of thermal and ground states in the HeisenbergXX qubit rings with a magnetic
field. A general result is found that for even-number rings, pairwise entanglement between nearest-neighbor
qubits is independent of both the sign of exchange interaction constants and the sign of magnetic fields. As an
example we study the entanglement in the four-qubit model and find that the ground state of this model without
magnetic fields is shown to be a four-body maximally entangled state measured by the squareN-bit concur-
rence.
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Quantum entanglement is an important prediction
quantum mechanics and constitutes indeed a valuable
source in quantum information processing@1#. Much efforts
have been devoted to the study and characterization o
Very recently one kind of natural entanglement, the therm
entanglement@2–7#, has been proposed and investigat
The investigations of this type of entanglement, ground-s
entanglement@8,9# in quantum spin models, and relation
@10,11# between quantum phase transition@12# and entangle-
ment provide a bridge between the quantum informat
theory and condensed-matter physics.

Consider a thermal equilibrium state in a canonical
semble. In this situation the system state is described by
Gibb’s density operator rT5exp(2H/kT)/Z, where Z
5tr@exp(2H/kT)# is the partition function,H is the system
Hamiltonian,k is Boltzmann’s constant that we hencefor
will take equal to 1, andT is the temperature. AsrT repre-
sents a thermal state, the entanglement in the state is c
thermal entanglement@2#. In a recent paper@6# we showed
that in the isotropic HeisenbergXXX model the thermal en
tanglement is completely determined by the partition fu
tion and is directly related to the internal energy. In gene
the entanglement cannot be determined only by the parti
function.

In this Brief Report, we consider a physical Heisenbe
XX N-qubit ring with a magnetic field and aim to obta
some general results about the thermal and ground-state
tanglement. We consider a four-qubit model as an exam
and examine in detail the properties of entanglement. B
the pairwise and many-body entanglements are conside

In our model the qubits interact via the following Ham
tonian @13#:

H~J,B!5J(
i 51

N

~s ixs i 11x1s iys i 11y!1B(
i 51

N

s iz , ~1!

wheresW i5(s ix ,s iy ,s iz) is the vector of Pauli matrices,J is
the exchange constant, andB is the magnetic field. The posi
tive and negativeJ correspond to the antiferromagnet
~AFM! and ferromagnetic~FM! cases, respectively. We a
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sume periodic boundary conditions, i.e.,N11[1. Therefore
the model has the symmetry of translational invariance.

It is easy to check that the commutator@H,Sz#50, ~rota-
tion symmetry about thez axis! which guarantees that re
duced density matrixr125tr3,4, . . . ,N(rT) of two nearest-
neighbor qubits, say qubit 1 and 2, for the thermal staterT
has the form@8#

r125S u1 0 0 0

0 w z 0

0 z w 0

0 0 0 u2

D ~2!

in the standard basis$u00&,u01&,u10&,u11&%. Here u i j &[u i &
^ u j &( i , j 50,1), u0& (u1&) denotes the state of spin-u
~-down!, andSz5( i 51

N s iz/2 are the collective spin operator
The Hamiltonian is invariant under the transformati
)n51

N/2 Sn,N2n11 , whereSi j is the swap operator for qubitsi
and j. This is reflection symmetry which implies that th
matrix elementz is a real number. For any operatorA12 act-
ing on qubits 1 and 2, we have the relation

tr12~A12r12!5tr1,2, . . . ,N~A12rT!. ~3!

Then the reduced density matrixr12 is directly related to
various correlation functions Gab5^s1as2b&
5tr1, . . . ,N(s1as2brT) (a5x,y,z). Precisely the matrix ele-
ments can be written in terms of the correlation functio
and the magnetizationM5tr(( i 51

N s izrT) as

u15tr1, . . . ,N~ u00&^00u!5 1
4 ~112M̄1Gzz!,

u25tr1, . . . ,N~ u11&^11u!5 1
4 ~122M̄1Gzz!, ~4!

z5tr1, . . . ,N~ u01&^10u!5 1
4 ~Gxx1Gyy!,

whereM̄5M /N is the magnetization per site. In deriving th
above equation, we have used the translational invarianc
the Hamiltonian.

Due to the fact@H,Sz#50 one hasGxx5Gyy . Then, the
concurrence@14# quantifying the entanglement of two qubi
is readily obtained as@8#

ty,
©2002 The American Physical Society02-1
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C5maxF0,UGxxU2 1

2
A~11Gzz!

224M̄2G , ~5!

which is determined by the correlation functionGxx ,Gzz,
and the magnetization. In the literature there are a lot
results on correlation functions@15# in various quantum spin
models, and they may be used for the calculations of
tanglement.

By using the translational invariance of the Hamiltoni
and the rotational symmetry about thez axis, we find a useful
relation

Gxx5~Ū2BM̄!/~2J!, ~6!

whereŪ5U/N is the internal energy per site andU is the
internal energy. From the partition function we can obtain
internal energy and the magnetization through the w
known relations

U52
1

Z

]Z

]b
,M52

1

Zb

]Z

]B
, ~7!

where b51/T. As a combination of Eqs.~6! and ~7! the
correlation functionGxx is solely determined by the partitio
function. Therefore the concurrence can be obtained from
partition function and the correlation functionGzz. We see
that the partition function itself is not sufficient for determi
ing the entanglement.

Except for the symmetries used in the above discuss
there are also other symmetries in our model. Consider
operator Lx[s1x^ s2x^ •••^ sNx satisfing Lx

251. We
have the commutator@s ias i 11a ,Lx#50 and anticommuta-
tor @s iz ,Lx#150. Then we immediately obtain

Gaa5tr$Lxs1as2aexp@2bH~J,B!#Lx%/Z

5tr$s1as2aexp@2bH~J,2B!#%/Z,

M̄5tr$Lxs1zexp@2bH~J,B!#Lx%/Z

52tr$s1zexp@2bH~J,2B!#%/Z.

These equations tell us that the correlation functionGaa and
the square of the magnetization is invariant under the tra
formationB→2B. From Eq.~5! and the invariance ofGaa

andM̄2 we find the following Proposition.
Proposition 1. The concurrence is invariant under t

transformation B→2B.
The proposition shows that the pairwise thermal entan

ment of the nearest-neighbor qubits is independent of
sign of the magnetic field. And it is valid for both the eve
and the odd number of qubits.

In Ref. @3#, we observe an interesting result that the pa
wise thermal entanglement for two-qubitXX model with a
magnetic field is independent of the sign of the excha
constantJ. Now we generalize this result to the case of
bitrary even-number qubits.

For the case of even-number qubits we have
03430
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H~2J,B!5LzH~J,B!Lz ,

Lz5s1z^ s3z^ •••^ sN21z .

The transformationLz changes the sign of the exchange co
stantJ. Note that the definition ofLz is different from that of
Lx . It is straightforward to prove

Gxx5tr~Lzs1xs2xe
2bH(J,B)Lz!52tr~s1xs2xe

2bH(2J,B)!,

Gzz5tr~Lzs1zs2ze
2bH(J,B)Lz!5tr~s1zs2ze

2bH(2J,B)!,

M̄5tr~s1ze
2bH(2J,B)!.

From these equations we see that the absolute valueuGxxu,
the correlation functionGzz, and the magnetization are in
variant under the transformationJ→2J. Hence from Eq.~5!
and Proposition 1 we arrive at the following Proposition.

Proposition 2. For the even-number XX model with
magnetic field the pairwise thermal entanglement of near
neighbor qubits is independent of the sign of exchange c
stant J and the sign of magnetic field B.

The proposition shows that the entanglement of AFM q
bit rings is the same as that of FM rings.

Now we consider the case of no magnetic fields. Then
magnetization will be zero and Eq.~5! reduces toC

5 1
2 max(0,uŪ/Ju2Gzz21). We can prove that the interna

energy is always negative. First, from the traceless prop
of the Hamiltonian, it is immediate to check that

lim
T→`

U5 lim
T→`

(
n

Ene2En /T

(
n

e2En /T

50, ~8!

where En is the eigenvalue of the HamiltonianH. In this
limit the correlation functionGxx and the magnetizationM
are also zero. Further from the fact that

]U/]T5~^H2&2^H&2!/T25~DH !2/T2.0 ~9!

we conclude thatU is always negative. Then we arrive at th
following Proposition.

Proposition 3. The concurrence of the nearest-neighb
qubits in the Heisenberg XX model without a magnetic fi
is given by

C5H 1

2
max@0,2Ū/J2Gzz21# for AFM,

1

2
max@0,Ū/J2Gzz21# for FM.

~10!

From the proposition we know that even for the case
no magnetic fields the partition function itself cannot det
mine the entanglement. In the limit ofT→0, the above equa
tion reduces to
2-2
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C5H 1

2
maxF0,2

E(0)

NJ
2Gzz

(0)21G for AFM,

1

2
maxF0,

E(0)

NJ
2Gzz

(0)21G for FM,

~11!

whereE(0) is the ground-state energy andGzz
(0) is the corre-

lation function on the ground state. Therefore the grou
state pairwise entanglement of the system is determined
both the ground-state energy and the correlation func
Gzz

(0) . Next we consider a four-qubitXX model as an ex-
ample.

To study the pairwise entanglement we need to solve
eigenvalue problems of the four-qubit Hamiltonian. We wo
in the invariant subspace spanned by vectors of fixed num
r of reversed spins. The subspacer 50 (r 54) is trivially
containing only one eigenstateu0000& (u1111&) with eigen-
value 4B (24B). The subspacer 51 is four dimensional.
The corresponding eigenvectors and eigenvalues are g
by

uk&5
1

2 (
n51

4

exp~2 inkp/2!un&0~k50, . . . ,3!, ~12!

and 4J cos(kp/2)12B, respectively. Here the ‘‘numbe
state’’ un&05T n21u1&0 , u1&05u1000&, and T is the cyclic
right shift operator that commutes with the HamiltonianH
@16#. Due to the fact thatH commutesLx , uk&85Lxuk& is
also a eigenstate with eigenvalue 4J cos(kp/2)22B. The
statesuk& and uk&8 are the so-calledW states@17# whose
corresponding concurrence is 1/2. We have diagonalized
Hamiltonian in the subspaces ofr 50,1,3,4. Now we diago-
nalize the Hamiltonian in the subspacer 52 and use the
following notations:

u1&15u1100&,un&15T n21u1&1~n51,2,3,4!,
~13!

u1&25u1010&,um&25T m21u1&2~m51,2!.

The action of the Hamiltonian is then described by

Hun&152J (
m51

2

um&2 ,Hum&252J(
n51

4

un&1 . ~14!

By diagonalizing the corresponding 636 matrix the eigen-
values and eigenstates are given by

E6564JA2,uC6&5
1

2A2
S (

n51

4

un&16A2 (
m51

2

um&2D ,

E150,uC1&5
1

A2
~ u1010&2u0101&),

E250,uC2&5
1

A2
~ u1100&2u0011&), ~15!
03430
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E350,uC3&5
1

A2
~ u1001&2u0110&),

E450,uC4&5
1

2
~ u1100&1u0011&2u1001&2u0110&).

From Eqs.~12! and ~15! all the eigenvalues are obtained
64B (1),62B (2), 4J62B (1),24J62B (1), 64JA2
(1),0 (4), where the numbers in the parentheses denote
degeneracy. Then the partition function simply follows as

Z5412cosh~4A2bJ!12 cosh~4bB!

14@11cosh~4bJ!#cosh~2bB!. ~16!

From Eqs.~7!, ~12!, ~15!, and ~16!, we get the internal en-
ergy, magnetization, and correlation functionGzz,

2ZŪ52JA2sinh~4A2bJ!12B sinh~4bB!

12B@11cosh~4bJ!#sinh~2bB!

14J sinh~4bJ!cosh~2bB!, ~17!

2ZM̄52 sinh~4bB!12@11cosh~4bJ!#sinh~2bB!,

ZGzz52 cosh~4bB!2cosh~4A2bJ!21.

Then according to the relation~6! the correlation function
Gxx is obtained as

GxxZ52A2sinh~4A2bJ!22 sinh~4bJ!cosh~2bB!.
~18!

The combination of Eqs.~17!, ~18!, and ~5! gives the exact
expression of the concurrence. It is easy to see that the
currence is independent of the sign ofJ and B, which is
consistent with the general result given by Proposition 2
even-number qubits.

Figure 1 gives a three-dimensional plot of the concurre
against the temperature and magnetic field. The excha
constantJ is chosen to be 1 in the following. We observe

FIG. 1. The concurrence against the temperature and mag
field. The parameterJ51.
2-3
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threshold temperatureTc52.363 38 after which the entangle
ment disappears. It is interesting to see that the thres
temperature is independent of the magnetic fieldB for our
four-qubit model. For two-qubitXX model the threshold
temperature is also independent ofB @3#. We further observe
that near the zero temperature there exists a dip when
magnetic field increases from zero. The dip is due to
energy level crossing at pointBc152(A221)50.828 43.
WhenB increases formB52 near the zero temperature th
entanglement disappears quickly since there is another l
crossing pointBc252 after which the ground state becom
u1111&. We also see that it is possible to increase entan
ment by increasing the temperature in the range of magn
field B.2.

Now we discuss the ground-state entanglement (T50).
WhenB,Bc1, the ground state isuC2& with the eigenvalue
E(0)524A2J. It is direct to check thatGzz

(0)521/2. Then
according to Eq.~11!, the concurrence is obtained asC
5A2/221/450.45711. WhenBc1,B,Bc2 the ground state
is uk52&8 and the corresponding concurrence is 1/2. Wh
B.Bc2 the ground state becomesu1111&, so there exists no
entanglement.

Thus far we have discussed thepairwise entanglementin
both the ground state and the thermal state. Now we dis
the many-body entanglement in the ground state. Rece
Coffmanet al. @18# used concurrence to examine three-qu
systems, and introduced the concept of the square 3-bit
currence as a way to quantify the amount of three way
tanglement in three-qubit systems. Later Wong and Ch
tensen@19# generalize the square 3-bit concurrence to
even-number squareN-bit concurrence. The squareN-bit
concurrence is defined as

t1,2, . . . ,N[u^cus1y^ s2y^ •••^ sNyuc* &u2, ~19!
ur

nt
ra

24
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with uc& a multiqubit pure state. The squareN-bit concur-
rence works only for an even number of qubits.

For the ground stateuC2& we haveuC2* &5uC2&, and

s1y^ s2y^ s3y^ s4yuC2&5uC2&, ~20!

i.e., the ground state is an eigenstate of the operators1y
^ s2y^ s3y^ s4y . Therefore we findt1,2, . . . ,451, which
means that the ground state has four-body maximal entan
ment. For another two ground states when varying the m
netic field it is easy to check thatt1,2, . . . ,450, which means
that the ground states have no genuine four-body entan
ment. Note that the ground stateuk52&8 has pairwise en-
tanglement, but no four-body entanglement.

In conclusion, we have found that the pairwise therm
entanglement of nearest-neighbor qubits is independen
the sign of exchange constants and the sign of magn
fields in theXX even-number qubit ring with a magnet
field. For determining the concurrence we need to know
only the partition function, but also one correlation functio
Gzz. For the four-qubit model we observe that there exist
threshold temperature that is independent of the magn
field. The effects of level crossing on the thermal entang
ment and ground-state entanglement are also discussed
nally we find that the ground state is a four-body maxima
entangled state according to the potential many-body
tanglement measure, the squareN-bit concurrence.
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