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Thermal and ground-state entanglement in Heisenberg<{X qubit rings
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We study the entanglement of thermal and ground states in the HeisexKeygbit rings with a magnetic
field. A general result is found that for even-number rings, pairwise entanglement between nearest-neighbor
qubits is independent of both the sign of exchange interaction constants and the sign of magnetic fields. As an
example we study the entanglement in the four-qubit model and find that the ground state of this model without
magnetic fields is shown to be a four-body maximally entangled state measured by theNsdpitacencur-
rence.
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Quantum entanglement is an important prediction ofsume periodic boundary conditions, i.841=1. Therefore
guantum mechanics and constitutes indeed a valuable réhe model has the symmetry of translational invariance.
source in quantum information processiig. Much efforts It is easy to check that the commutafét,S,]=0, (rota-
have been devoted to the study and characterization of ition symmetry about the axis) which guarantees that re-
Very recently one kind of natural entanglement, the thermatiuced density matrixpj,=trz,4 . n(p7) Of two nearest-
entanglemen{2—-7], has been proposed and investigated.neighbor qubits, say qubit 1 and 2, for the thermal state
The investigations of this type of entanglement, ground-stat@as the forn{8]
entanglemen{8,9] in quantum spin models, and relations

[10,17] between quantum phase transit[d?®] and entangle- u, 0 0 O

ment provide a bridge between the quantum information W z 0

theory and condensed-matter physics. p1o= 2)
Consider a thermal equilibrium state in a canonical en- z wo

semble. In this situation the system state is described by the 0O 0 u_

Gibb’s density operator pr=exp(—H/KkT)/Z, where Z

=trlexp(—H/KT)] is the partition functionH is the system in the standard basi§00),|01),|10),|11)}. Herelij)=|i)
Hamiltonian, k is Boltzmann’s constant that we henceforth ®|j)(i,j=0,1), |0) (]1)) denotes the state of spin-up
will take equal to 1, and is the temperature. Ag repre-  (-down), andS,=3. , 0,/2 are the collective spin operators.
sents a thermal state, the entanglement in the state is callgthe Hamiltonian is invariant under the transformation
thermal entanglemerj]. In a recent pap€l6] we showed Hr':‘/jlswfnﬂ, whereS;; is the swap operator for qubits
that in the isotropic HeisenbedyXX model the thermal en- and j. This is reflection symmetry which implies that the

tanglement is completely determined by the partition func-matrix element is a real number. For any operatér, act-
tion and is directly related to the internal energy. In generaling on qubits 1 and 2, we have the relation

the entanglement cannot be determined only by the partition
function.

In this Brief Report, we consider a physical Heisenberg trio(Arop12) =trio  N(AgapT). ()]
XX N-qubit ring with a magnetic field and aim to obtain _ o
some general results about the thermal and ground-state ehten the reduced density matrix, is directly related to
tanglement. We consider a four-qubit model as an exampl&arious correlation functions  G,p=(01,02p)
and examine in detail the properties of entanglement. Botfr tr1, ... nN(T1.028p7) (@=X,y,2). Precisely the matrix ele-
the pairwise and many-body entanglements are considerednents can be written in terms of the correlation functions

In our model the qubits interact via the following Hamil- and the magnetizatiom =tr(S{L,oy,p7) as
tonian[13]:

N N u,=tr;  n(]00)}00)=%(1+2M+G,,),

H(\]:B):le (UiXUi+lX+0.iyo.i+ly)+Bi:El oiz, (1)

N(1D(11)=%(1-2M+G,), (@

N(|Ol><10|): %(Gxx+ ny),

Wherez;i:(aix ,Tiy ,Ti7) IS the vector of Pauli matriced,is z=1tr,
the exchange constant, aBds the magnetic field. The posi- .
tive and negativeJ correspond to the antiferromagnetic whereM =M/N is the magnetization per site. In deriving the
(AFM) and ferromagneti€FM) cases, respectively. We as- above equation, we have used the translational invariance of
the Hamiltonian.
Due to the facfH,S,]=0 one hass,,=G,,. Then, the

*Present address: Department of Physics, Macquarie Universitgoncurrencgl4]| quantifying the entanglement of two qubits

Sidney, New South Wales 2109, Australia. is readily obtained ag3]
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CZmE{O, —Em , (5) H(=J3,B)=AH(J,B)A,,

2

which is determined by the correlation functi@,,,G,,,
and the magnetization. In the literature there are a lot offhe transformatior\ , changes the sign of the exchange con-
results on correlation functiof45] in various quantum spin stantJ. Note that the definition o\, is different from that of
models, and they may be used for the calculations of enA,. It is straightforward to prove
tanglement.

By using the translational invariance of the Hamiltonian G, =tr(A 1,0 PHUBIA )= —tr(o 0,0 PHTIB)),
and the rotational symmetry about thaxis, we find a useful
relation Gzz:tr(Azo'lzo'Zzei'BH(J'B)Az):tr(o'lzo'ZzeiﬁH(iJ’B))v

GXX

A=01,803,8 - Qoy-_1;.

Gy=(U—BM)/(2J), (6) M =tr( o e~ PH(-3.B))

Wheer: U/N is the internal energy per site atdlis the  From these equations we see that the absolute Vaug,
internal energy. From the partition function we can obtain thehe correlation functiorG,,, and the magnetization are in-
internal energy and the magnetization through the wellvariant under the transformatida- —J. Hence from Eq(5)

known relations and Proposition 1 we arrive at the following Proposition.
Proposition 2. For the even-number XX model with a
1oz 192 magnetic field the pairwise thermal entanglement of nearest-
U=- Va ﬁ’M ~ ZB B’ @) neighbor qubits is independent of the sign of exchange con-
stant J and the sign of magnetic field B
where B=1/T. As a combination of Eqs(6) and (7) the The proposition shows that the entanglement of AFM qu-

correlation functiorG,, is solely determined by the partition Dbit rings is the same as that of FM rings.
function. Therefore the concurrence can be obtained from the Now we consider the case of no magnetic fields. Then the
partition function and the correlation functidd,,. We see Magnetization will be zero and Eq5) reduces toC
that the partition function itself is not sufficient for determin- = max(0|U/J|—G,,—1). We can prove that the internal
ing the entanglement. energy is always negative. First, from the traceless property
Except for the symmetries used in the above discussionsf the Hamiltonian, it is immediate to check that
there are also other symmetries in our model. Consider the
operator Ay=01,®0,®--- @y, satisfing A2=1. We S Ee Elt
have the commutatdro; o, 1,,A]=0 and anticommuta- = S
tor[oi;,A«]+ =0. Then we immediately obtain imU=lim——=0, (8
T—» T—oo z e*En/T
Gaa:tr{AXUlaUZanIi_ IBH(‘]’ B)]AX}/Z n

=tr{o1,02.6xd —BH(I, —B) ]}/ Z, where E,, is the eigenvalue of the Hamiltoniad. In this

- limit the correlation functionG,, and the magnetizatiom
M =tr{Ao,exd — BH(J,B)]A}/Z are also zero. Further from the fact that

=—tr{oexd —BH(J,—B)]}/Z. AUIaT=((H?)—(H)?)/T?=(AH)%T?>>0 (9)

These equations tell us that the correlation funcp, and e conclude thal is always negative. Then we arrive at the

the square of the magnetization is invariant under the trangollowing Proposition.

formationB— —B. From Eq.(5) and the invariance d,,,, Proposition 3. The concurrence of the nearest-neighbor

andM? we find the following Proposition. qubits in the Heisenberg XX model without a magnetic field
Proposition 1. The concurrence is invariant under theis given by

transformation B- —B.

The proposition shows that the pairwise thermal entangle- 1 —
ment of the nearest-neighbor qubits is independent of the Ema{O,—U/J—GZZ— 1] for AFM,
sign of the magnetic field. And it is valid for both the even C= (10
. 1 o
and the odd number of qubits. “ma{0U/J-G,,~1] for EM
1 zz )

In Ref.[3], we observe an interesting result that the pair-
wise thermal entanglement for two-quiXtX model with a
magnetic field is independent of the sign of the exchange From the proposition we know that even for the case of
constant]. Now we generalize this result to the case of ar-no magnetic fields the partition function itself cannot deter-
bitrary even-number qubits. mine the entanglement. In the limit -0, the above equa-
For the case of even-number qubits we have tion reduces to
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1 E® o
— - - for AFM,
2ma>{0, NJ G,,/—1
€= 1 E) © (11) 0.
—| — — for FM,
2ma>{0,|\IJ G, 1} 0.
0.
whereE(© is the ground-state energy am? is the corre- C 0
lation function on the ground state. Therefore the ground- '
state pairwise entanglement of the system is determined by 0.

both the ground-state energy and the correlation function
G, Next we consider a four-qubXX model as an ex-
ample.

To study the pairwise entanglement we need to solve the
eigenvalue problems of the four-qubit Hamiltonian. We work
in the invariant subspace spanned by vectors of fixed number
r of f_eYEfsed SpIns. The subspace 0 (r=4) IS t”V_'a"y FIG. 1. The concurrence against the temperature and magnetic
containing only one eigenstate000 (|1111) with eigen-  fiey. The parametei=1.
value 8B (—4B). The subspace=1 is four dimensional.

The corresponding eigenvectors and eigenvalues are given

1
by E3=0,V¥3)=—=(|100)—|0110),
13 .

k=35 21 exp(—ink7/2)|n)o(k=0,...,3, (12

E,=0|¥,)= %(|110@+ 10011)—|1002) — |0110).

and 4] coskn/2)+2B, respectively. Here the “number
state” [n)o=7""11)g, |1)o=|1000, and 7 is the cyclic
right shift operator that commutes with the Hamiltoniln
[16]. Due to the fact thaH commutesA,, |k)'=A,|k) is
also a eigenstate with eigenvalud ébskn/2)—2B. The

From Egs.(12) and(15) all the eigenvalues are obtained as
+4B (1),%£2B (2), 4=2B (1),—4J+2B (1), =4J\2
(1),0 (4),where the numbers in the parentheses denote the
degeneracy. Then the partition function simply follows as

states|k) and |k)’ are the so-calledV states[17] whose Z=4+2cosli4283)+2 costi43B)
corresponding concurrence is 1/2. We have diagonalized the
Hamiltonian in the subspaces o 0,1,3,4. Now we diago- +4[1+cosh{43J)]cosi28B). (16)

nalize the Hamiltonian in the subspace2 and use the

following notations: From Egs.(7), (12), (15), and(16), we get the internal en-

ergy, magnetization, and correlation functi@n,,

[1)1=[1100,[n),=7"1)1(n=12.34, —ZU=2J\2sin(4/28J) + 2B sinh(48B)

(13
|1),=11010,|m),=7""11),(m=1,2). + 2B[1+ cosh{48J)]sinh(28B)
The action of the Hamiltonian is then described by +4J sinf(4J)cosi23B), (17)
2 4 —ZM=2 sinh(48B)+2[ 1+ cosi43J)]sinh(23B),

Hny, =232 |myy,Hm),=23> |n);. (14
m=1 n=1 ZG,,=2 costi4B8B) —cosh4+/28) — 1.

By diagonalizing the corresponding<@® matrix the eigen- Then according to the relatiof6) the correlation function

values and eigenstates are given by G,y is obtained as
1 (2 2 G, Z= —\2sinh(4+/283) — 2 sinh(48J)cosi28B).
E.=x4JV2,[¥.)=——=| X [n)y=\2 > |m),|, (18)
2\/5 n=1 m=1

The combination of Eq917), (18), and(5) gives the exact
expression of the concurrence. It is easy to see that the con-

E1:O,|\If1>=i(|101Q—|01OJ}), currence is @ndependent of the sign Hfand B, wh!qh is
J2 consistent with the general result given by Proposition 2 for
even-number qubits.
1 Figure 1 gives a three-dimensional plot of the concurrence
E,=0/V¥,)=—=(|1100 —|001D), (15  against the temperature and magnetic field. The exchange
V2 constant] is chosen to be 1 in the following. We observe a
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threshold temperatufg, = 2.363 38 after which the entangle- with |) a multiqubit pure state. The squakebit concur-
ment disappears. It is interesting to see that the thresholdnce works only for an even number of qubits.
temperature is independent of the magnetic figlébr our For the ground stateV _) we have|¥*)=|¥_), and
four-qubit model. For two-qubiiXX model the threshold
temperature is also independent®f3]. We further observe
that near the zero temperature there exists a dip when the
magnetic field increases from zero. The dip is due to the
energy level crossing at poir.,=2(2—1)=0.82843. i.e., the ground state is an eigenstate of the operaigr
WhenB increases fornB=2 near the zero temperature the ® o,y® 03y® 04, . Therefore we findry,  ~1, which
entanglement disappears quickly since there is another leveteans that the ground state has four-body maximal entangle-
crossing poinB,,=2 after which the ground state becomesment. For another two ground states when varying the mag-
[1111). We also see that it is possible to increase entangleretic field it is easy to check that ,  ~0, which means
ment by increasing the temperature in the range of magnetidat the ground states have no genuine four-body entangle-

(le®0'2y®g'3y®a'4y|\lf7>:|\I,,>, (20)

field B>2. ment. Note that the ground stafie=2)" has pairwise en-
Now we discuss the ground-state entanglemdnt Q).  tanglement, but no four-body entanglement.
WhenB<B,;, the ground state isV _) with the eigenvalue In conclusion, we have found that the pairwise thermal

E©=—4.2J. It is direct to check tha6{¥=—1/2. Then entanglement of nearest-neighbor qubits is independent of
according to Eq.(11), the concurrence is obtained &  the sign of exchange constants and the sign of magnetic
=\2/2—1/4=0.45711. WheB_, <B<B,, the ground state fields in the XX even-number qubit ring with a magnetic

is [k=2)" and the corresponding concurrence is 1/2. Wherfield. For determining the concurrence we need to know not

B>B,, the ground state becomkl11), so there exists no ©nly the partition function, but also one correlation function
entanglement. G,,. For the four-qubit model we observe that there exists a

Thus far we have discussed thairwise entanglemerih threshold temperature that is i_ndependent of the magnetic
both the ground state and the thermal state. Now we discudi§!d- The effects of level crossing on the thermal entangle-
the many-body entanglement in the ground state. Recent/{?€Nt and_ ground-state entanglemgnt are also dlscugsed. Fi-
Coffmanet al.[18] used concurrence to examine three-qubit"@lly we find that the ground state is a four-body maximally
systems, and introduced the concept of the square 3-bit cogntangled state according to the potential many-body en-
currence as a way to quantify the amount of three way entanglement measure, the squéakbit concurrence. .
tanglement in three-qubit systems. Later Wong and Chris- The authors thank Paolo Zanardi, Irene D'Amico,

tensen[19] generalize the square 3-bit concurrence to théiongchen Fu, Professor Allan 1. Solomon, Professor
even-number squardl-bit concurrence. The squams-bit ~ Joachim Stolze, Professor Guenter Mahler, and Professor
concurrence is defined as Vladimir Korepin for helpful discussions. This work was
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