PHYSICAL REVIEW A, 66, 033817 (2002
Stability of a semiconductor laser with a dispersive extended cavity
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We present a theoretical investigation of the stability properties of semiconductor lasers with strong feed-
back from dispersive extended cavities. Surprisingly, unstable behavior had been observed experimentally for
chirped fiber grating lasers, where the stability of the laser was found to depend uponetitation of the
fiber grating. We reproduce this finding through a linear stability analysis, demonstrating that the presence of
both the linewidth enhancement of the semiconductor diode, and a negative curvature of the phase of the
external cavity reflection coefficient are necessary for instability to occur. In order to explain the role of the
linewidth enhancement and phase curvature, we present a second approach based on more approximate model
wherein the field evolution is found to be described by an equation that resembles the nonlinédin§ehro
equation(NLSE); the curvature of the phase then corresponds to the dispersion coefficient of a usual NLSE,
and the linewidth enhancement factor corresponds to the nonlinear coefficient. We find an unstable regime
analogous to the anomalous dispersion regime of the usual NLSE, where the boundary between normal and
anomalous dispersion depends upon the width of the reflectivity spectrum. We also find that there is an
additional unstable region that arises due to the carrier dynamics, and has no analogy in systems with an
instantaneous nonlinearity. Further, for lasers with a negatively chirped grating, we find that oscillation tends
to occur on the red side of the reflection spectrum peak.
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[. INTRODUCTION analysis of dispersive extended cavity semiconductor lasers
[13] that examines, in particular, the role of the external re-
Extended cavity semiconductor lasers with strong disperflector dispersion.
sive external feedback are of current interest for many dif- e begin in Sec. Il with a presentation of the laser equa-
ferent technological applications, including fiber gratingtions that are used in the analyses of this paper. We adopt a
semiconductor lasers for wavelength division multiplexingmOdeI for the semiconductor diode developed eafliet],

o . ) . . “which is based on a standard coupled traveling-wave phe-
WDM) applicationd 1-7], diffraction grating coupled semi- . : ;
gondut):tof?asers fosr[ brogad range tun%bi[@y%] aspwell asa nomenological approach; aithough the diode model we adopt

. e ) ._is no more complicated to use than usual rate equation mod-
variety of other applications that require stable cw operatlorb|s[15,lq’ it is much more accurafd2]. It does not rely on

[10,11. Typically, these extended-cavity semiconductor la-the assumption that gain is uniform along the length of the
sers are composed of two elements: a semiconductor lasgode, an assumption that is typically made but often inap-
diode with an antireflectiofAR) coated facet and, coupled propriate[12], but instead assumes that any relevant time
to this facet, a strongly dispersive, passive, external reflectoscales of the problem of interest—such as, in the system we
that forms an extended laser cavity. The dispersive reflectagonsider here, the extended laser cavity round trip time, or
is chosen such that the width of its reflection spectrum ighe time scale of the growth of any instabilities—are much

much narrower than the width of the gain spectrum of thdonger than the round trip time of light in the diode itself.

semiconductor active medium, with the usual purpose of pro- DC bias

viding wavelength selectivity in order to ensure that the laser | /AR (a)
operates stably near a single longitudinal mode of the laser L) < I T T 1T
diode; this is often very effective. Quite unexpectedly, how- : :

ever, experiments showed that the stability of cw operation semiconductor fiber grating

of lasers using chirped fiber gratings as external reflectors is diode (negative chirp)

drastically altered by simply changing tleeientation of the

fiber grating[6]. For lasers with a fiber grating placed such I

that the index modulation period decreased with distance ® (b)
from the AR coated diode facéhegative grating chirp as <M1 T 1 |
drawn schematically in Fig.(&), stable single mode opera- fiber grating
tion occurred. However, the opposite grating orientation
(positive grating chirp as in Fig. 1b), produced significant
laser instability, resulting in a complicated multimode behav- £ 1. schematic drawings of antireflectiohR) coated semi-
ior. This at first seems counter intuitive, since the reflectivityconductor diodes coupled to chirped fiber gratings that form an
spectra of both gratings are identical. Only the sign of theextended laser cavity. Ife), the grating index of refraction modu-
phase curvature of the reflection coefficient is affected by thQation period decreases with distance from the AR fdoegative
directionality of the grating chirp, and this has been shown tchirp); this laser was found in experiments to operate in a stable,
play only a small role in large-scale current modulation dy-single mode. The grating ifb) has the opposite orientatigposi-
namics[12]. In this paper, we present a theoretical stabilitytive chirp and was found to be unstable in experiments.

semiconductor
diode (positive chirp)
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Additionally, the form of the model is such that it is easily agree well with the results of the Laplace transform formal-
applicable to the study of systems consisting of multiple elism of Sec. lIl.
ements, such as extended-cavity lasers. The laser equationsThe calculation of the modulational instability, even if
themselves are finally derived using an arbitrary complesslightly — less  accurate, is  quite  straightforward
reflection spectrum that describes the frequency domain réiumerically—in fact, far less cumbersome than using the
sponse of the dispersive external reflector. Laplace transform formalism. For this reason, and to allow a
In Sec. Il we perform a linear stability analysis of our full direct comparison with the known analytical results of the
laser equations, keeping the analytical form of the reflectiodnodulational instability of the usual NLSE, we use our sec-
spectrum completely arbitrary. Assuming that the laser is inio"d formalism to examine more closely laser stability as a
tially in cw operation, and oscillating at some nominal lasing’uUnction of the curvature of the reflection spectrum phase. In
frequency within the bandwidth of the dispersive reflector contrast to usual modulational instability results, we find that
we seek the response of the electric field to small perturbaN€ Stability is only possible for a bounded range of the dis-
tions from steady state. We find an expression for theP€rsion parameter. This bounded range is not symmetric
Laplace transform of the field response, and assess the s@20ut zero phase curvature, but is centered on the positive
bility of a particular cw mode of the laser simply by locating side. This suggests that Iase_rs with reflectprs_ Wlth positive
the singularities of the transform over the complex plane: wdPhase curvatures are more likely to fall within this stable

need not choose an explicit analytical form for the reflectionf@N9€ than lasers with negative curvature, as we would ex-
function, since here we do not consider the laser respon ct from experimental results described earlier. The lower

explicitly in the time domain. The singularities of the field Pound is set by both the width of the reflectivity spectrum
transform that are obtained correspond directly to the Fabry21d the linewidth enhancement factor of the diode, and is
Perot resonances of the extended laser cavity, and any inst&0@/0gous to the boundary between the anomalous and nor-
bility that would occur initiates from growth of the ampli- Mal dispersion regimes given by the usual NLSE. The upper
tude(s) of one(or more of these cavity modes. We find that, bound arises from the presence of carrier dynamics, and thus
for a negatively chirped fiber grating laser similar to the ex-N@S no correspondence to systems that are adequately de-
perimental configuration described aboi8, there are no scribed by an instantaneous non'lmeanty. Further, we find
exponentially growing solutions for a cw mode at the peak ofthat fo_r stable Iase_rs with a refle_ctlon ph_ase curvature corre-
the reflection spectrum. For a positively chirped fiber gratingSPonding to negatively chirped fiber gratings, the laser tends
laser, however, there are exponentially growing solutionsi© OPerate on the red side of the reflection spectrum.

indicating instability. Our conclusions are presented in Sec. V.
Though we can explain many features of the laser stabil-
ity and the behavior of the laser cavity resonances with the Il. LASER MODEL

Laplace transform formalism of Sec. Ill, we also seek a more ) )

physical understanding of the role of the external reflector N this section, we develop a model for the laser that
dispersion in stability determination. To this end, we presenfOMPines a description of the time domain response of a
in Sec. IV a more approximate laser model that further asdiode developed earli¢d2,14 with the frequency response

sumes that the time scale of the growth of instabilities i<of the dispersive reerctor._Since the coupling diode f_acet is
much longer than the round trip time of light in the total laser R coated, and the effective feedback strengths typical for
cavity, and uses a Taylor expansion of the reflection coeffith® dispersive reflectors we consider here allow the laser op-
cient in order to describe the dispersion with only a few€ration to occur in the strong feedback regime—often re-
parameters. We then find that the time evolution of the fielderred to as regime V in the literature on external cavity

is described by an equation resembling a nonlinear ‘Schrg>€émiconductor lasefd8,19—we can treat the extended la-
dinger equation(NLSE). Through an extension of well- S€rasa single cavity. The diode des_crlptlon we use is bas_ed
known work on other physical systems described by thé" @ Standard set of phenomenological, coupled partial dif-
usual NLSE[17], we can then describe the effects of the ferential equat|on$14,2(] _descnblng the dynamics of the
external cavity dispersion on laser dynamics. We find, forelectron-hole(carrien density,N(z,t), and the forward- and
example, that the curvature of the phase of the reflectiof@ckward-propagating envelope functiong,, (z,t) and
coefficient corresponds to the “dispersion coefficient” of the E-(2:t), defined by

usual NLSE, and that the semiconductor diode linewidth en- o o

hancement factor corresponds to the “nonlinear coefficient.” E(zH)=E (z,H)e*o* o'+ E_(z,t)e o> >+ c.c,,

The instabilities that occur in the cw solutions of our equa-

tions are seen to be analogous to the modulational instabilitwhereE(z,t) is the electric-field amplitude of the transverse
of uniform solutions of the NLSE. Unlike the usual modula- mode of interest. We later set the reference frequengyo
tional instability, however, the frequencies at which unstablébe the operating frequency of the laser, &gdhe associated
growth may occur in our system are limited to a discrete setwave number. The main assumption of the diode description
As we find with the Laplace transform formalism of Sec. Ill, [14] is that the round trip time of light within the diode itself
these frequencies correspond to the Fabry-Perot resonandesmuch shorter than other time scales of interest. For the
of the laser cavity—the modulational instability calculation laser we examine in this paper, these other time scales in-
then determines the growth or decay rates of these modes. &tude the laser round trip time and the characteristic times for
expected, we find that our modulational instability resultsgrowth of instabilities. Under this assumption, the diode dy-
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(a)

TABLE |. Semiconductor diode parameters.

J
d —E 0 =7 E (0 Parameter Symbol Typical value
-~ E 0 Differential gain a 2.22<10 % cn?
z=-L  z=0 Linewidth enhancement factor Be 2
k Carrier recombination time T, 1ns
Mode confinement factor r 0.34
N Effective waveguide thickness d 0.15um
(b) i Background index of refraction Ng 3.7
—=E (On=r HE 01 Diode length Lg 250 um
-—E (04 Reflectivity of back diode facet R? 1
| | B Group velocity in diode vg=c/ng 0.81x10° m/s
==L =0 Round trip time in diode Tg=2Lg4/vg 6.17 ps

FIG. 2. Schematic illustration ofa) steady state an¢b) dy-
namic operation of the semiconductor diode. The steady-state gaWhere e is the electronic charge and(t) is the time-
is characterized by, and the dynamical gain biy(t). dependent current density;(t) is the time-dependent re-

namics are found to be very well described by a single ordifléction function governing the gain of the diode, as illus-
nary differential equation for an average carrier density thafated in Fig. 2b), and is given explicitly by{12,14
depends on the field only at the diode AR facet, and a time-
dependent reflection function that gives an explicit relation-
ship between the output and input fields; the diode can thus
be treated as a “black box.” Unlike typical rate equation
models[15,16], uniformity in the carrier density and inten- The various diode parameters that appear in Egsand(2)
sity along the diode is not assumed; yet the form of theare identified in Table I, and have been discussed e&tligr
equations in this diode description are no more complicate¢h the context of the phenomenological modgl; is an ef-
than rate equations. fective photon density corresponding to the forward-
The dynamical equation and reflection coefficient that appropagating field, where
pear in the diode description are referenced to a particular

E.(01) — . .
=g g et O @)

steady state of the diode characterized by three parameters: _ ”S _ )

the bias current density, a steady-state diode reflection co- S+(0)= zwﬁwo|E+(0)| '

efficientrg., and an input fielde _(z=0), as illustrated in

Fig. 2(a), where the output field is related to the input by n?

E.(0)=rE_(0); wechoosez=0 to indicate the location S.(0h)=5——|E.(0D)?,
+ sc=—%/s 2mhw,

of the coupling between the diode and external reflector at
the AR coated diode facet. The diode steady-state quantiti§gheren. is the index of refraction in the unpumped gain

are all denoted by an overbar, and are found by solving the,egium. To simplify the subsequent analysis we have ex-
time-independent versions of the phenomenological equasyded gain compression from the diode model, although it
tions[12,14. Any steady state can be used for this referenceean pe included, and indeed is in the original diode descrip-
although in practice it is convenient to use the nominal opsjon, [14]. Since we consider only laser operation at a fixed
erating point of the laser. , _ bias current, the gain changes due to gain compression are
We define the average carrier density above steady stalgna during the evolution of the dynamics of the field and
by carrier density about their steady states. Gain compression is
1 (o o important, however, in the description of the large-scale cur-
Ny, (1) = L—J [N(z,t)—N(z)]dz rent modulation discussed earligr2].
97 ~Lg Next we consider the frequency domain response of the

. . — . . dispersive reflector. Defining the Fourier components of the
wherng IS the d'Od(.e Iengtth(z) is the stea.dy-sFate carmier fielg envelope functions at the diode-reflector boundary by
density profile that is the solution of the tlme—lnd_ependent

version of phenomenological equations for a giwkerand o -
rsc. The time evolution ofN,,(t) is then given by12,14 E.(00)= f 2. ¢ "YEL(00), ©)
-7 _p2
dNa, = ‘](t)_‘]_ ﬁjL i§+(0) 1+ @_ _1 l whereQ=w— w, is the detuning for frequency, the re-
dt ed Tn Tl Rlred  [rsd? flection coefficient is then expressed as a ratio of the reflec-

tor,

1+

1-R? 1
(1-R?) 1 "

2
—==3S,.(0}) -
Tl o Rlrsd(t)] |I’SC(t)|2

E_(0,Q)=T(Q)E,(0,Q). (4)
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t

160 :J' dt’r(t—t')E,(0t"). (6)
> 120 5 o
2 50 £ The response function
8 3 40
= 3] i
2 R r(t)zfﬁr(ﬂ)e"m

Lo

30 20 -10 0 10 20 30 is such thar (t)=0 for t<0, and forr (Q) defined over the

complex() plane, all the singularities must occur only in the
lower half plane.

1160 We now combine the responses of the diode and external
reflector to obtain the laser equations. First we find the dis-

2 120 e crete cw cavity modes of the las€l,,,, given by solutions to
> S
= Lso — ~
8 3 1=rs(Q)r(Q), )
= (3]
@ 40 _g- o
where the frequency dependencer gf is given explicitly in
Lo . . . .
earlier work[12,14). Denoting the nominal lasing frequency
30 -20 -10 0 10 20 30 by subscript “0,” we have by definitiof),=0. The value of
frequency detuning (GHz) rsc is thus set by the value of the reflection function at the

lasing moder ,=T(0). In steady state\,,=0 and the fields

(dashed lines corresponding to oppositely oriented fiber gratings &t thez=0 diode facet are given big.. (0). Tosimplify the -
that are similar to those used in the experiments of Moetoal.[6] ~ Subsequent analysis, we write the final form of the dynamical
The index profiles of botka) and(b) are Gaussian with a full width equa_t'ons n _terms of normalized carrier density and field
at half maximum(FWHM) of 1 cm, a(maximun) index modula-  functions, defined by

tion depth of 31075, and a uniform background index of 1.44;
the period of modulation at the center of the gratings corresponds to o(t)= ZLgFaNav(t)’
a vacuum wavelength of 1535 nm. The linear grating chirfdpis o

—1 Aicm, and for(b) is 1 A/cm. Et)=E,(01)/E.(0),

FIG. 3. Calculated reflection spectfaolid lineg and phases

) ~ ) ) o and in terms of a normalized field intensity
For a given reflectorr () can be determined in principle

through dir_egt measurement; more usuaII_y it is c_alculated §+=vgaTn§+(O);

from a realistic model of the reflector. For fiber gratings, for

example,T(Q) is easily calculated by solving a pair of thené=1 ando=0 in steady-state operation. The dynamical
coupled-mode equatiofigl]. Figures 8a) and 3b) show the equations then become
reflection coefficients and corresponding phases for nega-

tively and positively chirped fiber gratings similar to those T do s |1 (1-R?) 1
used in the experiments of Mortat al.[6,22]. Note that the U T —o()+2s.) 1+ R|_ | - |— 2

.. . . . r‘SC rSC
reflectivity spectrum is the same for both orientations, but
the corresponding phases have opposite curvature; we will — 1-R?) 1

2 (
see that it is the phase curvature that is important in the —2s.|&0)[7 1+ ROl Iroq2)’ ®
SC

determination of the stability of single mode operation. In

order to obtain a clearer qualitative understanding of the rolgyiained from Eq(1), and
of this curvature in stability in the following section, the

width of the reflection spectrum for this set of calculations is » dQ . ~
somewhat smaller than that of the fiber gratings used in the g(t):rSC(t)fine*'mr"(Q)g(Q)
experiments. In a later calculation, however, we do consider

a grating spectral width that corresponds to the experimental to, , ,

width. =rsc(t>fwdt rt—tEt’), )
We obtain from Eqs(3) and(4) the time domain response

of the reflector, given by obtained from Eqgs(2), (5), and (6), where the reflection

coefficient in terms obr(t) is
» dQ ~ _
E_(O,t)=fﬁwﬁef'ﬂq(ﬂ)&(om 5 rsc(t)=rscexp(;(1—iﬁc)a(t)). (10)
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Note that Eq.(9) is the time-dependent version of E{), and

where the dynamics of the fiel§{t) depends on all its pre-

vious values. Equation@)—(10) form the starting point for do(t) 5

our stability analyses that follow. gt = Do) - Tof[1+¢(t)[*-1] (13
IIl. LINEAR STABILITY ANALYSIS ~ T o () =T () + o (1)], (14)

As a first step in our examination of laser stability, we
perform a direct linear stability analysis of E¢8) and(9) in
order to characterize the response of the system to perturba-

respectively, where we have defined effective decay rates,

2
tions in the steady-state field and carrier density. In particu- Flzi 1+2§+( F,]2— E (1-R )|? |H
lar, we seek to find under what conditions the laser—initially Th > 2 R o
oscillating at some nominal frequency within the bandwidth
of the dispersive reflector—either returns to the cw operating 1| — (1-R% . _ )
mode as these perturbations decay away, or experiences a rz:T_n 25+<1+ T|r0|—|ro| ” (15

growth in the perturbations, leading to unstable behavior

such as mode hopping. Due to the relatively long externaine carrier decay ratg, arises from both carrier relaxation
cavity useq in the expenmen_ts of Morten al. [6].' t_here are (the “1”in the square brackejsand radiative recombination
many available external cavity resonances within the W'dth(the second term in the square brackefhe carrier-field

of the reflection spectrum that could be subject to unstabl%oup”ng coefficient’, can also be seen as an effective de-
growth.

We define the(normalized field deviation from steady
state by

p=é-1.
Then from Eqs(7), (9), (10) we obtain
Y(t)= (e(1/2)(l*iﬁc)tf(t) —-1)
e(12)(1-iBc)a(t)

t
+ —J, dt'r(t—t")p(t’), (12)

To

cay rate for the field itself in the following way. Taking the
derivative of Eq.(12), and then substituting Eq13) for
do/dt, we see that the resulting equation €p/dt includes
the term —I',[|1+ ¢(t)|>—1]/2. For a field that deviates
from cw, ¢#0, and this term causeg to relax back to
steady state. One can also show that,1is proportional to
an effective photon lifetime often used to describe cavity
losses in rate equation diode models, where the losses, oc-
curring both at the back facet of the diod®?j and at the
reflector 470|2), are assumed to be distributed evenly along
the diode length.

We now seek the response@fto a perturbation of steady

where, recall, the value of the reflection function at the op-giate occurring at=0, given by

erating mode is,. Keeping only the terms linear igr and
o, the field equatioril1) and the carrier density equatios)
become

1 1 [t
wﬂ)=5(1—IBJUG)+fiﬁderﬂ—tﬁ¢G’L
° (12)

N[ -

Se(1—-ipc)

o(0)=¢,

wheree is a small, real number. Taking the Laplace trans-
forms of Eqs(12) and(14), and subsequently solving for the

Laplace transformy(s) of the field deviation function(t),
we find

1—

T*
Mo

T*(is*)]

Both fp(s) and the reflection functions

T(is)EJ:r(t)e‘Stdt,

+1r2(1+i,3c){1—~—
2 r

= (16)

1 _ r*(is*)
+—1“2(1—|,8C){1— =
2 T

(o]

T(is)

[o]

S

|
'F*(is*)z[J:r(t)e_s*tdtr,

are defined over the compleplane. The values af on the
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(negative Ims axis correspond to those already defined in 20+
Eqg. (4) with Q =is. o
The linear stability of the laser can now be determined for o

a particular cw solution simply by finding the location of the 101 ° ¢

singularities of::b(s): any of these poles, located such that
Re(s,) >0 indicates exponentially growing solutions that os-
cillate with a frequency corresponding to Isgf. The poles’
locations can be found by plotting contoursiffs) over the
complexs plane, and this is easily accomplished given the °.
appropriate reflection spectrum. For example, the calculation °
&«
0.

Im(s)(GH2z)
.

-10

of T over the complex plane for fiber gratings is straightfor- 20 .
ward, and is easily accomplished by allowing the frequency 0.4 -0.2
variable appearing in the coupled-mode equations to become Re(s)(GHz)

complex. Ift is instead determined from measurement, and
is thus known for real frequencié¢and imaginars), then to FIG. 4. Singularities of the Laplace transform of the field devia-
use Eq(16) it would be necessary to extend this data by, fortion from steady statey(s), calculated over the complexplane

example, using a Taylor expansion?c(ﬂ) in order to make for a semiconductor diode coupled to an external nondispersive
the frequ’ency dependence explicit mirror. The diode is characterized by the parameters listed in Table

. : . . I. The pole ats=—T"; is not shown. The open circles indicate the
To gain some understanding of H46), we first consider pole locations for zero carrier-field coupling, and the filled circles

the special case where the external reflector is a nondispczt-

0

. - - . dicate the pole locations for the case where carrier-field coupling
sive mirror located some distance from the diode AR_ coatetk included. The external cavity roundtrip time is 388 ps.
facet. We only use this as a toy model here; to describe such
a physical system properly, we would of course have to take
into consideration the shape of the gain curve of the diod
For the reflection coefficient of the form

If we now reinstate the carrier-field coupling coefficient
eFZ, the poles must be found numerically. We plot these also
in Fig. 4 (filled circles, again for the diode parameters of
~ OT Table I. The poles are now located away from the imaginary
r(Q)=Ae™ ex, s axis in the left-hand plane, indicating that the amplitudes
) o ) ] of the oscillating resonances excited by the perturbation at
whereT, is the round trip time in the external cavity and =g do experience decay, and the laser then returns to the
|A|? is the mirror reflectivity, the time domain response is agriginal cw mode. The pole formerly &t 0, corresponding
delta functionr (t) = Ad(t— Tey), and from Eq(16) we ob- o the nominal operating frequency, has shifted leftward the

tain most of all the resonances, indicating that the decay rate is
the largest for perturbations in the amplitude of the operating

~ o1 e(1-iBc) mode. Moving to the frequencies further and further from the
¥(s)= 2 (s+T,)(1—e STex) +F2' (17) operating frequency, the singularities move closer and closer

to the imaginarys axis and thus experience smaller and

Note that the semiconductor linewidth enhancement factosmaller decay rates. To understand this, let us consider the
B¢, is irrelevant in determining the locations of the singu-eﬁeCt on the rate of change of the carrier density caused by a
larities here. field with amplitudey oscillating at a frequency). From

We examine first the case where there is no carrier-fieldEd. (14), we have
coupling by settingl',=0. The poles ofi(s) are then lo-
patgd as= —1“_1, ands=i(2wm/Tex9 for any integem as w: _Fla(t)_zrzmc(ﬁﬁﬁ 5), (18)
indicated in Fig. 4 by open circles, for a laser with diode dt
parameters listed in Table I. The pole-al’; (not shown in L
Fig. 4) gives an exponentially decaying term. The other polesvhere §= —arg¢. If Q is far from =0, then the second
are located on the imaginasgyaxis, and are equally distrib- term on the right-hand side is rapidly oscillating, and its
uted with a frequency spacingn2T.,;; these correspond to overall effect is negligible; the response is then indistinguish-
the Fabry-Perot resonances of the laser cavity. Since thegble from thel’,= 0 limit, where the poles are located on the
have a real part of zero, they neither decay nor grow. For &maginary axis.
perturbation at=0, the Fabry-Perot cavity modes are ini- We mention the qualitative features of two more special
tially excited, and they remain excited indefinitely as thecases that will be useful in interpreting the physics of the
field continues to oscillate at these frequencies with ampliactual problem of interest. We first consider an external cav-
tudes determined by the initial perturbation. Even the ampliity where the reflection function is such that the spectrum
tude of the nominal lasing mode at$m 0 is itself not fixed, along the imaginars axis is as those plotted in Figs(a}
as the real part of the pole location is also zero. This is noand 3b), but the reflection coefficient phase has zero curva-
surprising; in neglecting the carrier-field coupling we haveture. We examine, in particular, the stability of a cw solution
also neglected field decay. that coincides with the reflection spectrum peak. As shown in
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FIG. 5. Singularities ofj)(s) calculated for an external cavity FIG. 6. Singularitiedfilled circles and zerosopen circley of
laser with a reflectivity spectrum as shown by the solid lines ofg(s) calculated for an external cavity laser with a reflectivity spec-
Figs. 3a) and 3b), but with zero reflection phase curvature. The trum and corresponding phase as shown in Fig), but with the
diode parameters used are listed in Table I. linewidth enhancement parameter set to zero. The zero-pole pairs

corresponding to the “shadow” resonances are each shown as con-

Fig. 5, and like the previous example, all singularities arehected. The unpaired polégue Fabry-Perot resonangesre con-
located in the negative Replane, indicating that perturba- _nect(_ad to each other V\_/lth a _dotted line. The diode parameters used
tions decay and the field returns to its steady-state value. THB this calculation are listed in Table I.
resonance at Isx=0 has again a large decay rate, becoming
progressively smaller for frequencies farther and farther fronfind that the chirps along lmof the zero-pole pairs and the
Ims=0. Beyond a certain Isvalue, however, the singulari- Fabry-Perot resonances are opposite to those shown for posi-
ties are located progressively farther from the imaginary tive curvature in Fig. 6. In general, a nonzero phase curva-
axis and the decay rates become progressieefyer. This is  ture indicates dispersion in the external cavity round trip
a signature of thehapeof a reflectivity spectrum with finite time for cw light. For fiber gratings, the phase curvature
bandwidth, and results because at frequencies farther arafises mainly from the chirp of the local period of the refrac-
farther from the reflection spectrum peak, the loss due to ouive index modulation. Since this period varies with length,
coupling is greater and greater. Thus the amplitudes ofhe Bragg scattering condition is different at different loca-
modes excited far from Is+=0 experience faster decay for a tions along the grating. For a grating with a chirp such that
reflection spectrum with finite width, than they would for a the period decreases monotonically with distafregative
reflection spectrum that is completely flat. We will see thatchirp), as illustrated in Fig. (&), incident light at longer
this feature survives for the realistic system we consider bewavelengths has a shorter round trip than light at shorter
low. wavelengths. Since the derivative of the frequency depen-

But first we mention the results of a final special casedent round trip time gives the curvature of the phase, a nega-
where we consider a laser with dispersive loss such as thogtye fiber grating chirp then corresponds to positive phase
shown in Figs. 83) and 3b); we now include the effects of a curvature. Additionally, since the effective external cavity
nonzero phase curvature, but set the semiconductor linewidth
enhancement factg8, to zero. Here we find there ateo (a)

sets of singularities that correspond to the Fabry-Perot cavity [ | |1 1 ¢,>0
resonances, and one set of zeros, as shown in Fig. 6 for P P

positive phase curvature. The zero locatidopen circley long % short &

are given by the solutions 1 (is*) =T* , and one set of the

poles are located at nearly the same djnlocation as the (b)

zeros, indicated in Fig. 6 by filled circles connected to these T T T ] ™ .<0
zeros. These zero-pole pairs are distributed along=Im 2
—Re(2) such that the frequency spacing between the pairs ﬁ ﬁ

is chirped. In this case of postive phase curvature, the spac-
ing is larger for frequencies on the blue side of th(—:-‘ reflection FIG. 7. Schematic illustrations of linearly chirped fiber gratings.
spectrum (I8<0) than for those on the red side M  Grating () is negatively chirped; longer wavelengths match the
>0). The set of poles not associated with zeffdked circles  gragq scattering at a location closer to the starting point than
connected to each other with a dotted Jirzee also nonuni-  shorter wavelengths, and thus have a shorter laser round trip time.
formly distributed along Irs, but chirped in the opposite The corresponding reflection phase curvature is positive, so that
direction of the zero-pole pairs. These unpaired poles arg,>0. Grating(b) is positively chirped; shorter wavelengths then
identified with the usual Fabry-Perot cavity resonances. Corave a smaller round trip time, and the phase curvature is negative,
sidering instead a reflector with negative phase curvature, wand ¢,<0.
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length is larger for blue frequencies and smaller for red fre- 20+
guencies, blue Fabry-Perot modes are more closely spaced
than the red; this is what we find in Fig. 6. Conversely, a
grating period that increases with distaripesitive chirp, as
illustrated in Fig. Tb), corresponds to negative phase curva-
ture, and red Fabry-Perot modes are more closely spaced
than blue.

To understand the physical origin of the non-Fabry-Perot
poles—i.e., those associated with the zeros and distributed
along Ins with nonuniform mode distribution opposite to
that of the Fabry-Perot resonances—we consider the initial
and secondary laser responses to perturbation. We suppose
that initially the system responds through the excitation of
the “true” Fabry-Perot modes. Consider first only one of

these excited resonances, say at frequetlcyso that the FIG. 8. Singularities of}(s) calculated for two lasers consisting
field envelope deviation function is modified from its steady-of a diode described by parameters in Table | coupled to the chirped
state value of zero and is of the forg= Eefiﬁt; the total fibgr gratings chargcterized in Figs(aBanq 3b). The open circlgs
(real) forward-propagating electric field, and its intensity, is |nd|(_:ate pole locations for the laser with the nege_ttlvgly (_:hlrped
modulated from cw with a sinusoidal envelope function.9rating. All poles are located in the left-hand plane, indicating
Through stimulated emission, the field intensity acts as gat) stability. The filled circles give the pole locations for an iden-

. . . : tical laser, but with a grating with opposite orientation. The poles
source er the dI.Ode carrier density, evu.jent.from ELp). such that Ref) >0 are susceptible to growth, indicating instability.
The carrier density response to such a field is

stable |unstable

-20 T T
-0.8 -0.6

04 02 02

Re(s)(GHz)

0.0

a first measure of laser stability, we consider here the singu-

— 2r,r — QO -
o(t)=—|y| > 2_12 cogQt+6)+ F—sin(QtJr 5) larities in ¢(s) for a cw solution coinciding with the peak of
Ir'i+Q 1 the reflection spectrum. The open circles in Fig. 8 represent
.7 B the location of the poles for the laser with the negative grat-
-~y 22 L ([1-i1Q/T,]e % ing chirp; the singularities of(s) are all found in the left-
ri+o? hands plane indicating no growing solutions, suggesting that

this laser configuration is stable. The filled circles in Fig. 8

give the location of the poles of(s) for a laser with a

grating of opposite orientation. Here we see that there are
some modes that do indicate exponentially growing solu-
tions, suggesting that this laser is unstable. The linewidth

sm(;Jsl_chdal SeEpenfgenfﬁ'tlttLS clef?r ftrorp t%m) anql thz sec_; enhancement fact@,. thus plays a key role in the growth of
ond fin€ ot g.(19) that the effect of the carrier density instabilities since, at least in this linear analysis, instability
oscillation is to create new frequency components of th%oes not occur when we sgt=0

electric field at—(); it is these secondary excitations result-  Aithough our analysis demonstrates the roles of the cur-
ing from carrier-field coupling that are the origin of the zero-yature of the reflection coefficient phase and the semicon-
pole pairs, or “shadow” Fabry-Perot modes. Indeed, neglectyyctor linewidth enhancement in determining stability, it

ing this coupling by settind’,=0 results in a single set of goes not explain them. To study the stability analysis in more
poles, as can be seen from H@6). Note that for zero re-  detail, we could, for example, choose an analytic form for
flection phase curvatur@nd a symmetric spectrymwe do 7)) yhat includes the phase curvature as one of the
not see the extra zero-pole pair since the shadow mode freg, o aters—as we indeed do in the following section in an-
quencies are themselves Fabry-Perot modes. We see thig . approach—but we found that this does not provide

+H[1+iQ/T,]e" %10, (19)

In turn, o acts as a source for the field as evident in Eq.
(12), causing the envelope functiahitself to oscillate with

mathematically by putting* (is*)=r(is) in Eq. (16). In
both of these limits, the shadow poles #fare located in

precisely the same location as the zerosjofand they ef-
fectively cancel each other.
We now turn finally to the stability of the more general

much insight into the problem. We now turn to an approxi-
mate description of the laser based on E@—(10) that
does give such insight.

IV. MODIFIED NONLINEAR SCHRO DINGER EQUATION

case, by reinstituting the semiconductor linewidth enhance-

ment factorB.. In the previous special case wiiB.=0,
both sets of poles were located in the left-haylane indi-

A. Formalism

In this section we present a derivation and discussion of

cating laser stability, and this was regardless of the sign ofpproximate laser equations, obtained from our full laser

the phase curvature. Figure 8 shows the pole&z(sﬁ calcu-

model (8)—(10), where the field evolution is described by an

lated for the two lasers consisting of a diode as characterizeglquation that resembles a nonlinear Sdimger equation.

in Table I, coupled to chirped fiber gratings with reflection
spectra and phases as plotted in Figa) and 3b). Again, as

This allows us to describe and explain the effect on stability
of the phase curvature of the reflection coefficient, and other
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relevant parameters, in the context of the modulational insta- In the limit of no dispersion and no carrier dynamics, Eq.

bility of uniform solutions. To represent the reflection phase(21) would be satisfied by any periodic function bivith a
curvature of the extended cavity by one parameter, we aperiod of one. We then expect the solution forto be an
proximate the reflection function by a Taylor expansionaimost periodic function, with variations from periodicity
(12,19 due to dispersive effects and carrier dynamics. To capture
this, we seek a multiple scales analysis solutior aff the

?(Q):?oeXF{(_ y1+id) QA+ %(_ Yotichy) Q%+ |, form [23]

N . & =&ty .. ), (22)
where the dispersion parameters, ¢, are defined by o
5 where we define new independent time variables
B d"In[r(Q)| . -
Tn don Q:O, tm_|77| t,
for m=0,1,2 ..., where recall 7|<1; then
dMarg[T(Q
”:% ' 20 47 Ly 23)
0-0 toate ot

The external cavity round trip tim@r delay experienced by

; . The function¢ is assumed to vary significantly at most as
a long pulse centered at the operating frequeficy O is ¢ y sig y

given by ¢,. The parametes,, characterizes the round trip each of its arguments,, vary over unity. As the fastest time

time dispersion. For fiber gratingsy,>0 corresponds to Scaleto varies from 0 to 1, real time varies from 0 ¢ and
negative grating chirp, and,<0 to a positive grating chirp, ¢ advances by one laser round trip time. tAsvaries from 0

as noted in Fig. 7. The dispersion due to the shape of thto 1,t varies from O to¢, /| 7|, or many round trip times; it
reflectivity spectrum is described by the parametgrsand  is on this slower time scale that we expect the growth of
v,—the slope and curvature of the negative logarithm ofinstabilities to occur. We insert Eq&22) and (23) into Eq.
[T(Q)], respectively—where the width of the reflection spec-(21), and collect the terms that are multiplied by different
trum is proportional to §,) 2. For a laser operating fre- POWers of|77|;_ by requiring that the resulting equations be
quency coinciding with the reflectivity pealy, is zero. In  Satisfied to higher and higher order iml, we expect an
general, a lasing mode is on one side or the other of th@Symptotically better description of the dynamics. We further
reflectivity spectrum peak, the red side indicated by a negarequire that¢ be periodic inty with period unity

tive value of y;, and the blue side by a positive,. For

lasers with long external cavities, as in the experiments of Eto—1ti—[nl, .. V=&t ti=[nl,...), (29
Morton et al. [6], the cw mode spacing is sufficiently small ) )
that there is always a mode reasonably close to the peak, &9d sincg 7| <1, we make the expansion
v, is very small compared t@,. We find it useful for later PO )
. . . . . ~ ~ ~ ~ 01y - -
analysis to define the complex dispersion quantity o t—17l, .. V=&t .. ) —|7] = _
1
77:1 Y2—i¢ (25
2 dﬁ , Substituting, Eqgs(23), (22), (24), and (25) into the field

_ _ _equation(21), and collecting the terms of zeroth and first
and we note that for typical systems, especially those wittyrder in| 7|, we obtain

long external cavitied,n|<1. Rescaling the time variable in

terms of the delay timeb,,

et
R
the laser equation®, 10 become
£(1) =MD 1B() 1—i&li+ ni &t-1)
dt ' dt? '

(21)

wherey; =1y, /¢, and where we keep only the first order in

the expansion of the exponential function, since bpttand
| 7| are much smaller than one.

9é(to,t1) —1

¢ _e_(l/z)(l—i/a’c)tr(fo:El))g(fo,fl)
aty

| 7]

2

o~ a J a
—ngog(to,tl)Jfﬂmﬂto,tl),

where we have neglected terms of or{jeﬁfl, and we con-
sider only the two time scaldg andt;. Now defining

X:to,

T:E1/|77|’

we obtain for the field equation
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OEx,T) 1 . . &P . d
i == +iy)——=E&X,7)+ y1 — &(X
or 2 (¢2 72) 8X2 g( ’ T) Y1 IX g( ’ T)
=
+i(1—e WA B g(x, 1), (26) & _
2 loss gain loss
and for the carrier density equatid®) £
. J0(X,7)
Tn ax UV K
K=0
— (1-R?) 1 . .
= — (X, 1) +25, | 1+ ——— — — FIG. 9. lllustration of the effect on the laser field due to the
’ R|r Ired? reflection spectrum shape. For a nominal lasing frequency on the
red side of the spectrum peak, indicated by the open circle, then the
_ ) - R2) (W2 g o) shaded region of the spectrum indicates the frequencies that expe-
—2s.é(x, 7)1+ R|r_ | e T |r_ |2 , rience gain(i.e., less loss than the nominal lasing frequenghen
SCl SCl

the field is reflected from the external cavity. The unshaded regions
(27 indicate which frequencies experience greater loss than the nominal
lasing frequency. As a result of this selective loss, the carrier fre-
where T,=T,/¢1,7,= v,/ $2, and ¢,= ¢,/ 2. Note that  quency of the field shifts toward the reflection spectrum peak.
the form of Eq.(26) is very similar to that of a usual non-
linear Schrdinger equationNLSE). A standard method of these two effects are described by théme evolution ofé¢,
assessing stability of systems described by a NLSE igontained in ther dependence of the coefficients of the in-
through a modulational instability analysis, whereby thegjvidual frequency amplitudes, . In Eq. (28), k=0 labels
growth rates of frequencies near the carrier frequency is dehe nominal lasing frequency—i.e., the frequency at which
termined from the linearized equatiofis/]; we do this later e assume the laser is initially oscillating, which is some cw
in Sec. IV C. But first we turn to a discussion of the physicsfrequency solution within the bandwidth of the reflection
of Eq. (26), with particular emphasis on the differences be-spectrum; we then assess the stability properties of this par-

tween the usual NLSE and our Eq26) and (27). ticular cw mode solution.
First we present a discussion of the effects of dispersion
B. Discussion of the external reflector by considering only the dispersive

In this section, we highlight the effects of the dispersion!€MS in EA.(26), ignoring the nonlinearity. We rewrite Eq.
and nonlinearity in Eqs(26) and (27), particularly those as- (26) using the Fourier decompositid@8) to obtain[17]
pects not described by the usual NLSE. These include the o .
consequences of the periodicity of the figléh time variable T (1) =£,(0)eWIE(- 2 tidg) rg= vk, (29
x; the effects of the dispersion parameté[sandazz describ-
ing the shape of the reflectivity spectrum, as well as the usugeca|| that¢, appears in our equations as a result of the
dispersion parameter—given here by the phase curvatyre dispersion of the external cavity round trip time, so that upon
and the nature of the nonlinearity, which here is not instanevolution in 7, red and blue frequencies get separated in
taneous as in usual Kerr media, but arises due to carrigime, that is, across the field profile, causing pulse chirping.
dynamics. In the spirit of previous work on nonlinear pulseThe 7 evolution of the pulse spectrufd,(7)|2, however, is
propagation in optical fibefsl 7], we proceed by considering only affected by, and ,, as is evident from Eq(29).

each physical effect separately. N
Py P y Recall thaty, is the curvature of thénegative logarithm of

In Eqg. (26), ¢ is the normalized, forward-propagating la- ; )
ser field at a particular location within the laser caviy ( e reflection spectrum at the lasing mode, related to the

=0) and the variation of in x gives the field profile during SpPectral width, andy; is the slope, whose sign indicates the

one laser round trip time €x<1 where £(0,7) = £(1,7). position of the nominal lasing frequency with respect to the
The variation of¢ in time = then gives the evolution of this Peak of the reflection spectrum. As illustrated schematically
field profile defined over &x<1 in time 7. Since ¢ is N Fig. 9, mode frequencies with reflectivities larger than that

bounded inx with periodic boundary conditions, we may in Of the chosen nominal lasing mode experience “gaine.
general expres§ as a Fourier series less loss than the nominal lasing frequendydicated by the

shaded region, while those with smaller reflectivities experi-
~ . ence greater loss. This selective loss tends to shift the lasing
§(x,7)= 2 E(m)e (28) frequency to a mode closer to the reflection spectrum peak, if
such a cavity mode exists. For a mode with frequency cor-
where the normalized frequency is given ky=27rm for  responding to the peak of the reflectivity spectrum, then
integersm. Physically, the discrete values afidentify the =0 and all frequencies except that mode experience loss;
Fabry-Perot resonances of the laser cavity in the absence tfis causes a continual narrowing of the field spectrum as the
any carrier dynamics or dispersion. As we illustrate belowside modes’ amplitudes decay over time
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The fact that we have imposed periodic boundary condi-The effect ofy, on the 7 time evolved pulse is to shift the
tions on the field inx also alters somewhat the usual deSCfip'Centra| frequency closer to the peak of the reflection spec-
tion of the dispersive effects. Here, wavelengths with arym, and it finally reaches the peak whens s, in the limit
shorter round trip time eventually get so far ahead 0f the  of 3 continuous« variable. Note that this description of the
circle and catch up to the slower wavelengths again. In theyidth is valid only for a very dense cw mode distribution
absence of all physical effects except round trip time disperyithin the bandwidth of the reflection spectrum, correspond-
sion, the field profile then does not disperse indefinitely, bu;ng to a very long laser cavity.
eventually the initial profile is recovered. This periodicity in Finally, we turn to a discussion of the nonlinear term in
7 can be seen analytically by considering the general expreg=q. (26) arising from the semiconductor response, consider-

sion for £(x, ) in the time domain ing for simplicity only the first order in the expansion of the
- exponential functions involving the carrier density We
E(x,7)= 2 Egﬂm(O)e_izwmxeiz”mz(”‘%ﬂ), then obtain for Eq(26)
A sE(x, T 1
where we replaced with 27rm. Sincem varies along the set ar E(l_lﬁ‘:)a(x’ﬂg(x’ﬂ’ (31)

of all integers, we see that asvaries from 0 to Qrfﬁz)‘l, ) )
the exponent of the last term varies from O to an intege@Nd nNeglecting terms of order(||“~1), Eq.(27) becomes

multiple of 27, for all values ofm. The smaller theb, is, the o (X, 7) R R

longer it takes for the long and short wavelengths to separate =-To(x,7) = T[|&x,7]*~1], (32
IX

from each other, and subsequently reunite.

We now describe the evolution of ¢ in the special case wherel",=T'; ¢, and",=T',6, for the decay rate,, I',

for which we assume that the length of the external cavity I$efined by Eq(15). It is interesting to note that if we assume

L?(;){hlzr;gt’hzorézgt:tﬁgi gwegffneq 21”32?5 ;\gtnhs'g tgﬁ db?r?éjs- incorrectly) that the carrier relaxatiom, is so rapid that the
P y ' arriers are essentially always in steady state, i.e., the “adia-

then approximate a continuous frequency variable. In thig _.. . :
special limit, we conside(cf. Agrawal[17]) an initial field batic limit, then Eqs.(31) and (32) give
profile that is essentially uniform, but with a small, chirped IEX,7)

1
perturbation centered at=1/2, =— —
or 2

>

2

(1=iBIIE(X, 7[> = 11€(x,7).

=
[iN

2
&(x,00=1+ §oeXF< —(1+ic)w) , (30 In this limiting case, the nonlinearity then resembles a Kerr-
2x type nonlinearity.
. . . . Since we have seen in Sec. Il that laser operation is al-
wherex, quantifies the initial width of the perturbation in ways (linearly) stable for@.=0, we determine the effects of

time domain andC is some real valued parameter charactersemiconductor linewidth enhancement factor separately from
izing the initial chirp. Solving Eq(26) in frequency domain, the stimulated emission which provides gain or losstjn

Ifeepjng onIyAthe terms involving the dispersion parameteraepending upon the sign of. By considering only thé3,
$2, v2, andy,, then using thecontinuou$ Fourier trans-  term in the (+ig,.) factor in Eq.(31), we can construct an

form of Eq. (30) as the initial frequency spectrum, the analytic solution of Eq(31) given formally by
evolved field at timer>0 has arx-time profile width that is

dependent on the evolution timeand is given by

(0]

1 T
&(x,7)= f(X,O)eXD[ =i gﬁcf o(x,7")d7’
A~ -~ - -~ 0
o Xot2(yp+ Cp) T (Yot )2 TA(1+ CHIXS
Xo(7)= 1+ y,7(1+ C?)/x> ' The linewidth enhancement fact@;. can thus be identified

° with a self-phase modulation effect, sint&x,7)|? is un-

For x2(7)>x2, then the perturbation shape is broadened irchanged byr time evolution. Ther evolution does chirp the
field eventually returns to the steady state. Conversely, foffequencyAx that is given by
x2(7)<x2 the width of the perturbation in thedomain has P P 1 d0(x0)
decreased, and the pe.ak amplitude incregsed, signifying @ = — a_a”ig(“)]: - a—afdﬁ(x,o)ﬁ EBCT[?—"
growth of the perturbation. Thus perturbation decay occurs X X X 33
for ¢p,>— v,/C, and(initial) perturbation growth occurs for (33
$»<—7,IC. Since the overall effect of, is to narrow the  where we have used(x,0) in Eq.(33) sincea(x, 7) itself is
spectrum and thereby broaden the time domain profile, theonstant inr,
occurrence of either decay or growth of the perturbation de-
pe_nds not only upon the relative signs ¢ and_ the ini_tial o(x,7)= _f‘ZJXe—fl(X—X,)[|§(X/,0)|2_1]dX/:a_(X,0),
chirp C as for the usual NLSE, but also on their amplitudes. 0
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due to the invariance of¢|2. Then the initial field profile f*
&(x,0) influences the instantaneous frequency at all later 0= %+
times. While this seems to correspond to the usual self-phase
modulation of an NLSE with a Kerr-type nonlinearity, the
carrier dynamics themselves do play a role in laser stability
determination in our system, as we illustrate in the following
section.

L2 ) e (2l 02 Y
f +ix - 2

72+,3c¢2 2iBeyi/x 2f,
(b= 2iy1/k)2+ 753 Ti+ik|

(36)

Note that by substitutingw for £, Eq.(36) can be rewritten

in a form that corresponds more directly to the well-known

modulational instability results of the problem of pulse
In the previous section, we present a linear stability analypropagation in optical fibel7].

sis of the approximate Eq§26) and (27) and derive a sta- The discrete numerical solutions of E@6) correspond

bility condition that is analogous to, but not the same as, theélirectly with the singularities of Eq16) of the exact linear

modulational instability of uniform solutions of the usual stability analysis, confirming the multiple scales analysis

NLSE. First, we confirm that the linear stability results basedpresented in Sec. IV A. The Laplace variasl#om Sec. IlI

on Egs.(26) and(27) agree on the whole with those of the s identified here with {+ix)/¢;, so thats,Res=Rel and

exact model equations presented in Sec. Ill. Second, we exp,Ims=Im{+ «. The numerical solutions of both E¢36)

amine the region of dispersion parameters over which wend the singularities of Eq16), for parameters correspond-

would expect stable laser cw operation. ing to the two lasers described in the caption of Fig. 8, are
Writing Egs. (26) and(27) in terms of the field deviation shown together in Figs. 18 and 1@b) for the negative and

from steady-state functions=¢—1, then linearizing in both  positive grating chirps, respectively. Figure 10 shows that the

C. Modulational instability

o andy, we obtain solutions of Eq.(36) give the same qualitative features as
those described in Sec. lll, although the two methods do not
IP(X,7) 1( —iB)a(x,7)—i z,/f(x 7) give exactly the same resonance locations. Nevertheless, the
ar ¢ ’ 71 IX agreement is good enough to validate the discussion here and

in the previous section. The discrepancy can be understood
by noting that the more approximate solutions of E8f)
can be recovered from the exact linear stability analysis by
expanding the denominator of E¢L6) about a particular
mode, and keeping only the first orderanFor example, Eq.
= —Tyo(x,7) =T [ e(x, 1)+ ¢* (x,7)], (34) (36) gives the decay rate of the nominal lasing mode to be
—TI',/T';, as does the first-order expansion of thestn®
pole of Eq.(16).
recall bothe and ¢ vanish for steady state. To proceed, we There are some special cases in which there seem to be

(92

1. -
+3 (i) S uix ),

do(X,7)
X

assume that the field is of the form extra solutions to Eq.36) that do not correspond to poles of
Eqg. (16). In these special cases, the second set of poles
(X T):sleixxegr_’_szefixxe{*r (35) (shadow resonanceand the zeros of}(s) in Eq. (16) are

located at exactly the same position, both at solutions to

~ . _“‘* . .
where the quantity is some complex number that is to be r*(ls*)—r_o_, and S0 effectively cancel _each ther n th(_a
determined as a function ok. Again, the variablex exact stability analysis. Recall that physically this occurs if
—27m (for integersm) is discrete, corresponding to the We either ignore carrier-field couplirig,, or if the reflection
Fabry-Perot resonances of the laser cavity, and the nominapectrum is such that* (is*) =T (is), i.e., symmetric with
lasing mode is denoted by=0. The small numbers; and  no phase curvature. In these cases, the solutions of3By.
&, give the amplitude of the excitations gfat modesc and  gives both sets of poles, though in reality no shadow modes
— k resulting from some small perturbation a=0. The would be excited. We note that by choositgx, 7) to be of
response of the field to this side mode excitation is capturethe form Eq.(35), only the growth or decay behavior gf
by the field’s dependence on the longer time sealbrough  can be determined, and this corresponds only to the singu-
the determined value of [17]. For a givenk, Rel(x)>0 larities of ¢(s) of Eq. (16), but not the zeros. As long as we
indicates that the mode atexperiences exponential growth are not dealing with either of these special cases, however,
in the linear regime at a frequency corresponding-tbx  the two methods give the same qualitative results.
+Im{(«)], and thus the nominal lasing frequency is un- In the remainder of this section, we expand our discussion
stable to perturbations at this frequency. The Ipnovides a  of stability to include an examination ¢if) the stability as a
correction to the cavity resonance frequency, which arisefunction of phase curvature, again for a cw mode coinciding
due to effects of dispersion and carrier dynamics. Awith the reflection spectrum peak, afid the stability of cw
Rel(x)<0 then indicates that the amplitude of the mode atmodes at arbitrary location within the reflection spectrum
k experiences exponential decay, and thus the laser is staliandwidth, thus more fully assessing the stability of a par-
to excitations of the resonance at Substituting Eq(35 ticular laser. While the Laplace transform formalism of Sec.
into Eq. (34), we obtain the quadratic equation Il may be used to investigate these issues, we choose to use
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FIG. 10. (a) Comparison of the solutions fa@i(«) for continu-
ous(dotted line$ and discrete valuerossepof «, and the singu-

larities of ¢/(s) (open circles The external cavity reflector corre-

sponds to the reflection spectrum and phase of FHia). Bith ¢,

=770 pg and the laser diode parameters are as listed in Takti I.

Solutions for {(«x) for continuous (dotted line$ and discrete

(crossekvalues ofx, and singularities ofs(s) (filled circles cor-
responding to Fig. ®) with ¢,=—770 pZ. In both the casesy,

=354 pg.
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neglected(adiabatic limi} so that the nonlinearity is Kerr-
like, and where the nominal lasing frequency coincides with
the peak of the reflection spectrum so that=0. Then the
equation determinind(«) becomes

1., .
0=+ {+7($5+ %))

r, .
,\_2+ ')/2K2
I'y

Yot Bedby 2T
% x2 K2+732,33<;’2 A2
poty; I

Note that this is a quadratic equation of the form

. (37)

f(x)=x?+bx+c,

whereb and c are real valued coefficients, afd>0 since

the parametersy,, I';, andI', are all positive. Then for
b2/4—c<0 the roots off are complex with a negative real
part sinceb is positive, the roots are both real and negative
for 0<c=<b?/4, and both roots are real, but one root is posi-
tive, for c<0. From Eq.(37), we see then that this positive
root can only occur when

$2<— 72/ Be, (39)
and for frequencies satisfying
Yot Behs| 2T
< 2 Betd 22 (39)
doty; Iy

This unstable region o, given by Eq.(38) is then analo-
gous to the anomalous dispersion regime for negative disper-
sion parameter of the usual NLSE.

We now present a numerical example to examine the

range of¢, over which a laser would be stable when the
effects of carrier dynamics are included in the description.
For the reflectivity spectrurtsolid lineg shown in Figs. &)

and 3b), and diode parameters listed in Table |, we calculate
the parameters for a nominal lasing frequency at the peak of
the reflection spectrum; then,=354 pg, I';=14 ns %,

instead the modulational instability results of this section. It[',=22 ns'!, andB.=2. We then solve Eq236) for various

is much less cumbersome to obtain numerical solutions O\f/alues Of;ﬁz

{(k) using Eq.(36), than to calculate contours @f(s) and

th.en find the singularities, even if the former method is¢, tions of Eq/(36) such that Ref) >0, indicating instabil-
slightly less accurate. From E(B6), we may also make a ity. The range of«/27 over which Ré/(«))>0 is indicated

direct comparison with the well-known modulational insta-

bility of the usual NLSE.

We begin by seeking to understand how the width of th

keeping these other parameters constant, and
for each value ofp, determine whether or not there are any

as a function offﬁz by the shaded regions in Fig. 11. The
dotted line in Fig. 11 is the unstable frequency regi88)

reflection spectrum, characterized by the dispersion paranfor ¢. within the range(38) that we would expect in the

etery,, alters the modulational instability results of the usua
NLSE, especially in light of the discussion of the previous

|adiabatic limit. We find not only that there is instability for

< —7>1B., as expected, but that the stable range fs

section; recall that propagation of perturbed chirped pulsed!se bounded from above; this upper bound has an absolute
through the dispersive external cavity led to either thevalue much greater tham,/B., and must be the result of
growth or decay of the perturbations, depending not onlycarrier dynamics, since it is not present in the adiabatic limit.
upon the relative signs of the chirp and dispersion parametéfhe arrows in Fig. 11 indicate the values of the phase cur-

&», but on their amplitudes with respect 4. To proceed, i
we consider the special case where the carrier dynamics Xa) and 1@b); since the stable region for positiwg, is

vatures corresponding to the two laser configurations of Figs.

033817-13



L. RAMUNNO AND J. E. SIPE PHYSICAL REVIEW A66, 033817 (2002

5 (a)

adiabatic limit
'-,/ 1.0

max{Re(C)}

B
& . 0.5
= ; ~unstable
s : :
- I region
unstable stable & 0.0
. ran . § ;
14 region ange 15 10 5 0 5 10 15
0 _—— . (b)
-0.002 -0.001 0.000 0.001 0.002 0.4
2
¢, (ns)

reflectivity
o
n

FIG. 11. The frequency domains in termsfb)gc that are suscep-
tible to modulational instability are as indicated by the shaded re-
gions. Note that there is a bounded, stable rangg,dbr which all
excited resonances experience only decay. The dashed line gives the
boundary of thésingle predicted unstable frequency domain in the
adiabatic limit of no carrier dynamics. The arrows indicate the val- FIG. 12. (8) The maxima of Re{) as a function of nominal

ues of ¢, for the gratings of Fig. @) (right) and Fig. 3b) (left). lasing frequency, using the diode parameters listed in Table I, for
both the negatively chirped grating of Fig.aB (solid line) and the

then apparent how orientation of the chirped fiber gratinggvhich maxRe(())>0 are unstable to growth of side mode ampli-
would affect the laser stability. tudes. Note that only the negatively chirped grating has a stable

We finally examine the stability of nominal lasing fre- freﬂq”e_”‘?y range, we sie frcr)]'f_h), thp]re we p'Otdthg corr_esponing
quencies at arbitrary location within the range of the reflec—retegt'v'ty fpeCtg‘]m’ ¢ dat'otl 'stttﬁ € f:antg_;ijta c rteglo)rn%%h O'k. ‘
tion spectrum. Recall that in our previous numerical ex-cated mainly on the red side of the refiectivity spectrum. The Kinks

. . result from a mode hop in the discrete side madeorresponding
amples, we have assessed the stability properties of a W e maxRe(?))
mode coinciding with the reflection spectrum peak. By ex- '

tending the stability calculation for a particular laser to arbi-

trary frequency, we are more fully assessing the stabilit/@S€r With >0 is located on mainly theed side of the
properties. We determine for which nominal lasing frequenteflection spectrum peak4]. This can be understood by
cies there would be unstable growth in any of the sideconsidering the time evolution of a pulse of light, with fre-
modes: the range of frequencies for which there is only deduency off center from the reflection spectrum, as it propa-
cay in the side modes indicates the region where we woul@ates first through the external cavity, then subsequently
expect cw laser operation might occur naturally. For eacthrough the diode. As discussed in the previous section, for a
nominal lasing frequency, we must calculate the correspont{ﬁs'n%friqufetrr‘]cy thlat ;.S ”Cl’t at trf“ihreﬂefclt'otr_‘ _StpeC”UT peak,
L . S~ 2 e effect of the selective loss of the reflectivity spectrum is
'ng dispersion parameterg;, vz, ¢ and_ decay rgtefl, to pull the frequency toward the peak. Thus an initial fre-
I'; and then use these parameters to find the discrete SOlyy,ency on the red side of the spectrum will be pulled toward
tions {(«x) of Eq. (36). For each nominal lasing frequency, the plue, and vice versa. In either case, though, the amount of
we find from the solutiong(«) the greatest value of RE(  |oss experienced by the pulse decreases overall, causing a
over the domairk, e, the greaFest s@e mode eXponentla|corresponding increase in the photon density. In turn, the
growth rate for a particular nominal lasing frequency; thos&ncrease in photon density causes an increased depletion of
frequencies that are unstable have {Re¢(«)}>0. We plot  the carriers within the diode. Since the linewidth enhance-
in Figs. 12a) and 12b) both maxRe{(«)} and the reflec-  ment of the diode creates an instantaneous frequency shift
tivity spectrum as a functions frequency, wherenat depends on the rate of change of the carriers according
maxRe{(«)} =0 if no growing solutions are found. We see to Eq.(33), as we discussed earlier, there will be a red shift-
from Fig. 12a), not surprisingly, that for the laser with the ing that accompanies any decrease in the number of carriers.
negatively chirped grating whergé,>0 (solid line), there  For an initial frequency on the red side of the reflection spec-
exists a range of frequencies over which the laser wouldrum, then, these two effects tend to cancel each other out.
operate in stable cw operation, as indicated by the shadegor an initial frequency on the blue side, however, both the
region within the reflectivity spectrum in Fig. . For the reflector and the diode are causing red shifts in the fre-
positively chirped gratingdashed ling however, there is no  quency, which over many round trip times would result in a
such stable frequency range. hop of the lasing frequency to the red side of the reflectivity
Notice, however, that the stable frequency range for thepectrum.

o
=}

10 5 0 5 10 15

L3
3

frequency detuning (GHz)
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(a) V. CONCLUSIONS

We have presented an original description of the stability
/ properties of extended-cavity semiconductor lasers with dis-
persive loss, such as fiber grating semiconductor lasers. First,
without assuming uniform gain within the semiconductor di-
i ode, we derived an expression for the Laplace transform of
the electric-field response to small perturbations, written in
terms of an arbitrary reflection function for the dispersive
reflector. We used this formula to assess the stability of cw
operation with respect to growth or decay of side modes, and
deduced many laser properties from an examination of the
(b) growth or decay rates of these resonances. For example, we
found that carrier-field coupling results in a more rapid decay
of excited side modes closest to the nominal lasing fre-
0.2 quency, while, not surprisingly, the incorporation of a finite
reflection spectrum width causes modes farthest from the
spectrum peak to decay most rapidly, since they experience
L8 20 -0 g 10 20 the greatest loss. For reflection coefficients with nonzero
phase curvaturécorresponding to dispersion of the external
frequency detuning (GHz) cavity round trip time, the Fabry-Perot mode spacing itself
FIG. 13. (8) The maxima of Re{) as a function of nominal IS chirped, and secondary “shadow resonances” become ex-
lasing frequency, for a negativelgolid line) and positively(dashed  Cited due to the carrier-field interaction. This second set of
line) chirped grating, each with a Bragg wavelength at(@auss- resonances are also nonuniformly distributed along the fre-
ian shapefigrating center of 1535 nm, a FWHM of 1 cm, a maxi- quency axis, but with a chirp opposite to that of the primary
mum index modulation depth of 4€10°°, and a uniform back- resonances. We have also shown that in the absence of line-
ground index of 1.44. The linear chirps ate8.6 A/cm, and diode width enhancement in the semiconductor diode, the side
parameter.s are as Iistgd in Table I. These parameters correspondithdes always experience decay, indicating stability. In our
the experimental configurations of Mortat al. [6], though we  fina) example, we found that for chirped fiber grating lasers,
gg:l'; :ﬁ?;izt gr'gti?‘; ?,chkgrg;b(:g Trtheu;hnact;/ "’r‘gﬁg‘é OE?J}: ;I;;mneg%{s in the experimen{$], the orientation of the grating chirp
. t(and thus the sign of the reflection phase curvatisea

where we plot the corresponding reflectivity spectrum, we find tha . . L -
this stable rangéshaded regionis now located exclusively on the crucial parameter in the determination of laser stability, as

red side of the reflectivity spectrum. expected. _ _ '
In order to understand the role of the dispersion and line-
width enhancement factor in determining stability, we have
To further emphasize the assymetry of the stable freincluded a more approximate model that wrns out to be
guency range, we consider finally the stability of a diﬂ‘erent.mUCh more descriptive of the physical Processes _mvolv_ed n
set of lasers, again with oppositely oriented fiber gratings'[TnSéi?";Lyé IZ&sl:ﬁgn ot?or?ut:w;l:Iiiﬁzegcz?gac?fo?r?é ';n'ze?e:fvz(rj]
but now with fiber grating parameters corresponding directly; b P A L ot any
to the experiments of Mortoat al. [6]. The spectra of these instability is much longer than the round trip time of light in

two gratings have the same maximum reflectivity as in ourthe e_xtended Iaser cavity. We then derived an equatlc_nn for
he time evolution of the field that resembles a nonlinear

previous example, but a larger absolute grating chirp leadin chradinger equation. From this we found that the phase

to a larger spectral width. For this set of lasers, the calculaz . : .
) : . . _“curvature of the reflection spectrum is analogous to the dis-
tion of ¢ for the nominal lasing frequency at the reflection

trum K alone would indicate tasither orientation persion parameter of the NLSE, but unlike the usual modu-
spectrum peak-alone wou cate thettherorientatio ational instability results of the NLSE, stability occurs only
should result in stable cw operation. This does not give a ful

- o ) or a bounded range of this phase curvature. The lower
description of laser stability, however, since we need to cong g, nq of this range is determined by the reflection spectrum
sider the solutions of for the full range of frequencies \yigih and the linewidth enhancement factor, and is analo-
within the bandwidth of the reflector. We illustrate in Figs. gous to the boundary between anomalous and normal disper-
13(a) and 13b) that although the negatively chirped grating sjon in the usual NLSE; the upper bound results from carrier
cannot support stable cw operation at the reflection spectruglynamics, and is absent in the modulational instability re-
peak, it can support stable cw operation for a range of fresults of NLSEs with instantaneous nonlinearities. The range
quencies nowexclusivelyon the red side of the reflection is not symmetric about zero, but is centered on the positive
spectrum. Again, the laser with the positively chirped gratingside of the phase curvature scale. This is again in agreement
has no such stable frequency range. Thus, to explain theith what experiments indicate. Finally, we found that for
experimental results, it is necessary to consider this extendestable laser configurations, the laser oscillations tend to occur
calculation of laser stability. on the red side of the reflectivity spectrum. For parameters

0.4

0.2

max{Re(¢)}

0.0

.20 10 0 10 20

0.4

reflectivity
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