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Stability of a semiconductor laser with a dispersive extended cavity

L. Ramunno and J. E. Sipe
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 30 April 2002; published 26 September 2002!

We present a theoretical investigation of the stability properties of semiconductor lasers with strong feed-
back from dispersive extended cavities. Surprisingly, unstable behavior had been observed experimentally for
chirped fiber grating lasers, where the stability of the laser was found to depend upon theorientationof the
fiber grating. We reproduce this finding through a linear stability analysis, demonstrating that the presence of
both the linewidth enhancement of the semiconductor diode, and a negative curvature of the phase of the
external cavity reflection coefficient are necessary for instability to occur. In order to explain the role of the
linewidth enhancement and phase curvature, we present a second approach based on more approximate model
wherein the field evolution is found to be described by an equation that resembles the nonlinear Schro¨dinger
equation~NLSE!; the curvature of the phase then corresponds to the dispersion coefficient of a usual NLSE,
and the linewidth enhancement factor corresponds to the nonlinear coefficient. We find an unstable regime
analogous to the anomalous dispersion regime of the usual NLSE, where the boundary between normal and
anomalous dispersion depends upon the width of the reflectivity spectrum. We also find that there is an
additional unstable region that arises due to the carrier dynamics, and has no analogy in systems with an
instantaneous nonlinearity. Further, for lasers with a negatively chirped grating, we find that oscillation tends
to occur on the red side of the reflection spectrum peak.

DOI: 10.1103/PhysRevA.66.033817 PACS number~s!: 42.55.Px, 42.60.Mi
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I. INTRODUCTION

Extended cavity semiconductor lasers with strong disp
sive external feedback are of current interest for many
ferent technological applications, including fiber grati
semiconductor lasers for wavelength division multiplexi
~WDM! applications@1–7#, diffraction grating coupled semi
conductor lasers for broad range tunability@8,9#, as well as a
variety of other applications that require stable cw operat
@10,11#. Typically, these extended-cavity semiconductor
sers are composed of two elements: a semiconductor
diode with an antireflection~AR! coated facet and, couple
to this facet, a strongly dispersive, passive, external refle
that forms an extended laser cavity. The dispersive refle
is chosen such that the width of its reflection spectrum
much narrower than the width of the gain spectrum of
semiconductor active medium, with the usual purpose of p
viding wavelength selectivity in order to ensure that the la
operates stably near a single longitudinal mode of the la
diode; this is often very effective. Quite unexpectedly, ho
ever, experiments showed that the stability of cw operat
of lasers using chirped fiber gratings as external reflector
drastically altered by simply changing theorientationof the
fiber grating@6#. For lasers with a fiber grating placed su
that the index modulation period decreased with dista
from the AR coated diode facet~negative grating chirp!, as
drawn schematically in Fig. 1~a!, stable single mode opera
tion occurred. However, the opposite grating orientat
~positive grating chirp!, as in Fig. 1~b!, produced significant
laser instability, resulting in a complicated multimode beha
ior. This at first seems counter intuitive, since the reflectiv
spectra of both gratings are identical. Only the sign of
phase curvature of the reflection coefficient is affected by
directionality of the grating chirp, and this has been shown
play only a small role in large-scale current modulation d
namics@12#. In this paper, we present a theoretical stabil
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analysis of dispersive extended cavity semiconductor la
@13# that examines, in particular, the role of the external
flector dispersion.

We begin in Sec. II with a presentation of the laser eq
tions that are used in the analyses of this paper. We ado
model for the semiconductor diode developed earlier@14#,
which is based on a standard coupled traveling-wave p
nomenological approach; although the diode model we ad
is no more complicated to use than usual rate equation m
els @15,16#, it is much more accurate@12#. It does not rely on
the assumption that gain is uniform along the length of
diode, an assumption that is typically made but often in
propriate @12#, but instead assumes that any relevant ti
scales of the problem of interest—such as, in the system
consider here, the extended laser cavity round trip time
the time scale of the growth of any instabilities—are mu
longer than the round trip time of light in the diode itse

FIG. 1. Schematic drawings of antireflection~AR! coated semi-
conductor diodes coupled to chirped fiber gratings that form
extended laser cavity. In~a!, the grating index of refraction modu
lation period decreases with distance from the AR facet~negative
chirp!; this laser was found in experiments to operate in a sta
single mode. The grating in~b! has the opposite orientation~posi-
tive chirp! and was found to be unstable in experiments.
©2002 The American Physical Society17-1
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L. RAMUNNO AND J. E. SIPE PHYSICAL REVIEW A66, 033817 ~2002!
Additionally, the form of the model is such that it is easi
applicable to the study of systems consisting of multiple
ements, such as extended-cavity lasers. The laser equa
themselves are finally derived using an arbitrary comp
reflection spectrum that describes the frequency domain
sponse of the dispersive external reflector.

In Sec. III we perform a linear stability analysis of our fu
laser equations, keeping the analytical form of the reflect
spectrum completely arbitrary. Assuming that the laser is
tially in cw operation, and oscillating at some nominal lasi
frequency within the bandwidth of the dispersive reflect
we seek the response of the electric field to small pertu
tions from steady state. We find an expression for
Laplace transform of the field response, and assess the
bility of a particular cw mode of the laser simply by locatin
the singularities of the transform over the complex plane;
need not choose an explicit analytical form for the reflect
function, since here we do not consider the laser respo
explicitly in the time domain. The singularities of the fie
transform that are obtained correspond directly to the Fa
Perot resonances of the extended laser cavity, and any i
bility that would occur initiates from growth of the ampl
tude~s! of one~or more! of these cavity modes. We find tha
for a negatively chirped fiber grating laser similar to the e
perimental configuration described above@6#, there are no
exponentially growing solutions for a cw mode at the peak
the reflection spectrum. For a positively chirped fiber grat
laser, however, there are exponentially growing solutio
indicating instability.

Though we can explain many features of the laser sta
ity and the behavior of the laser cavity resonances with
Laplace transform formalism of Sec. III, we also seek a m
physical understanding of the role of the external reflec
dispersion in stability determination. To this end, we pres
in Sec. IV a more approximate laser model that further
sumes that the time scale of the growth of instabilities
much longer than the round trip time of light in the total las
cavity, and uses a Taylor expansion of the reflection coe
cient in order to describe the dispersion with only a fe
parameters. We then find that the time evolution of the fi
is described by an equation resembling a nonlinear Sc¨-
dinger equation~NLSE!. Through an extension of well
known work on other physical systems described by
usual NLSE@17#, we can then describe the effects of t
external cavity dispersion on laser dynamics. We find,
example, that the curvature of the phase of the reflec
coefficient corresponds to the ‘‘dispersion coefficient’’ of t
usual NLSE, and that the semiconductor diode linewidth
hancement factor corresponds to the ‘‘nonlinear coefficien
The instabilities that occur in the cw solutions of our equ
tions are seen to be analogous to the modulational instab
of uniform solutions of the NLSE. Unlike the usual modul
tional instability, however, the frequencies at which unsta
growth may occur in our system are limited to a discrete
As we find with the Laplace transform formalism of Sec. I
these frequencies correspond to the Fabry-Perot resona
of the laser cavity—the modulational instability calculatio
then determines the growth or decay rates of these mode
expected, we find that our modulational instability resu
03381
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agree well with the results of the Laplace transform form
ism of Sec. III.

The calculation of the modulational instability, even
slightly less accurate, is quite straightforwa
numerically—in fact, far less cumbersome than using
Laplace transform formalism. For this reason, and to allow
direct comparison with the known analytical results of t
modulational instability of the usual NLSE, we use our se
ond formalism to examine more closely laser stability a
function of the curvature of the reflection spectrum phase
contrast to usual modulational instability results, we find th
the stability is only possible for a bounded range of the d
persion parameter. This bounded range is not symme
about zero phase curvature, but is centered on the pos
side. This suggests that lasers with reflectors with posi
phase curvatures are more likely to fall within this stab
range than lasers with negative curvature, as we would
pect from experimental results described earlier. The low
bound is set by both the width of the reflectivity spectru
and the linewidth enhancement factor of the diode, and
analogous to the boundary between the anomalous and
mal dispersion regimes given by the usual NLSE. The up
bound arises from the presence of carrier dynamics, and
has no correspondence to systems that are adequately
scribed by an instantaneous nonlinearity. Further, we fi
that for stable lasers with a reflection phase curvature co
sponding to negatively chirped fiber gratings, the laser te
to operate on the red side of the reflection spectrum.

Our conclusions are presented in Sec. V.

II. LASER MODEL

In this section, we develop a model for the laser th
combines a description of the time domain response o
diode developed earlier@12,14# with the frequency respons
of the dispersive reflector. Since the coupling diode face
AR coated, and the effective feedback strengths typical
the dispersive reflectors we consider here allow the laser
eration to occur in the strong feedback regime—often
ferred to as regime V in the literature on external cav
semiconductor lasers@18,19#—we can treat the extended la
ser as a single cavity. The diode description we use is ba
on a standard set of phenomenological, coupled partial
ferential equations@14,20# describing the dynamics of th
electron-hole~carrier! density,N(z,t), and the forward- and
backward-propagating envelope functions,E1(z,t) and
E2(z,t), defined by

E~z,t !5E1~z,t !eikoz2 ivot1E2~z,t !e2 ikoz2 ivot1c.c.,

whereE(z,t) is the electric-field amplitude of the transver
mode of interest. We later set the reference frequencyvo to
be the operating frequency of the laser, andko the associated
wave number. The main assumption of the diode descrip
@14# is that the round trip time of light within the diode itse
is much shorter than other time scales of interest. For
laser we examine in this paper, these other time scales
clude the laser round trip time and the characteristic times
growth of instabilities. Under this assumption, the diode d
7-2
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STABILITY OF A SEMICONDUCTOR LASER WITH A . . . PHYSICAL REVIEW A66, 033817 ~2002!
namics are found to be very well described by a single o
nary differential equation for an average carrier density t
depends on the field only at the diode AR facet, and a tim
dependent reflection function that gives an explicit relatio
ship between the output and input fields; the diode can t
be treated as a ‘‘black box.’’ Unlike typical rate equatio
models@15,16#, uniformity in the carrier density and inten
sity along the diode is not assumed; yet the form of
equations in this diode description are no more complica
than rate equations.

The dynamical equation and reflection coefficient that
pear in the diode description are referenced to a partic
steady state of the diode characterized by three parame
the bias current densityJ̄, a steady-state diode reflection c
efficient r̄ sc , and an input fieldĒ2(z50), as illustrated in
Fig. 2~a!, where the output field is related to the input b
Ē1(0)5 r̄ scĒ2(0); we choosez50 to indicate the location
of the coupling between the diode and external reflecto
the AR coated diode facet. The diode steady-state quant
are all denoted by an overbar, and are found by solving
time-independent versions of the phenomenological eq
tions @12,14#. Any steady state can be used for this referen
although in practice it is convenient to use the nominal
erating point of the laser.

We define the average carrier density above steady s
by

Nav~ t !5
1

Lg
E

2Lg

0

@N~z,t !2N̄~z!#dz,

whereLg is the diode length;N̄(z) is the steady-state carrie
density profile that is the solution of the time-independ
version of phenomenological equations for a givenJ̄ and
r̄ sc . The time evolution ofNav(t) is then given by@12,14#

dNav

dt
5

J~ t !2 J̄

ed
2

Nav

Tn
1

2

TgG
S̄1~0!F11

~12R2!

Ru r̄ scu
2

1

u r̄ scu2G
2

2

TgG
S1~0,t !F11

~12R2!

Rur sc~ t !u
2

1

ur sc~ t !u2G , ~1!

FIG. 2. Schematic illustration of~a! steady state and~b! dy-
namic operation of the semiconductor diode. The steady-state

is characterized byr̄ sc , and the dynamical gain byr sc(t).
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where e is the electronic charge andJ(t) is the time-
dependent current density;r sc(t) is the time-dependent re
flection function governing the gain of the diode, as illu
trated in Fig. 2~b!, and is given explicitly by@12,14#

r sc~ t ![
E1~0,t !

E2~0,t !
5 r̄ sce

(12 ibc)LgGaNav(t). ~2!

The various diode parameters that appear in Eqs.~1! and~2!
are identified in Table I, and have been discussed earlier@14#
in the context of the phenomenological model;S1 is an ef-
fective photon density corresponding to the forwar
propagating field, where

S̄1~0!5
ng

2

2p\vo
uĒ1~0!u2,

S1~0,t !5
ng

2

2p\vo
uE1~0,t !u2,

where ng is the index of refraction in the unpumped ga
medium. To simplify the subsequent analysis we have
cluded gain compression from the diode model, althoug
can be included, and indeed is in the original diode desc
tion @14#. Since we consider only laser operation at a fix
bias current, the gain changes due to gain compression
small during the evolution of the dynamics of the field a
carrier density about their steady states. Gain compressio
important, however, in the description of the large-scale c
rent modulation discussed earlier@12#.

Next we consider the frequency domain response of
dispersive reflector. Defining the Fourier components of
field envelope functions at the diode-reflector boundary b

E6~0,t !5E dV

2p
e2 iVtẼ6~0,V!, ~3!

whereV[v2vo is the detuning for frequencyv, the re-
flection coefficient is then expressed as a ratio of the refl
tor,

Ẽ2~0,V!5 r̃ ~V!Ẽ1~0,V!. ~4!

in

TABLE I. Semiconductor diode parameters.

Parameter Symbol Typical value

Differential gain a 2.22310216 cm2

Linewidth enhancement factor bc 2
Carrier recombination time Tn 1 ns
Mode confinement factor G 0.34
Effective waveguide thickness d 0.15mm
Background index of refraction ng 3.7
Diode length Lg 250 mm
Reflectivity of back diode facet R2 1
Group velocity in diode vg[c/ng 0.813108 m/s
Round trip time in diode Tg[2Lg /vg 6.17 ps
7-3
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L. RAMUNNO AND J. E. SIPE PHYSICAL REVIEW A66, 033817 ~2002!
For a given reflector,r̃ (V) can be determined in principl
through direct measurement; more usually it is calcula
from a realistic model of the reflector. For fiber gratings,

example, r̃ (V) is easily calculated by solving a pair o
coupled-mode equations@21#. Figures 3~a! and 3~b! show the
reflection coefficients and corresponding phases for ne
tively and positively chirped fiber gratings similar to tho
used in the experiments of Mortonet al. @6,22#. Note that the
reflectivity spectrum is the same for both orientations,
the corresponding phases have opposite curvature; we
see that it is the phase curvature that is important in
determination of the stability of single mode operation.
order to obtain a clearer qualitative understanding of the
of this curvature in stability in the following section, th
width of the reflection spectrum for this set of calculations
somewhat smaller than that of the fiber gratings used in
experiments. In a later calculation, however, we do cons
a grating spectral width that corresponds to the experime
width.

We obtain from Eqs.~3! and~4! the time domain respons
of the reflector, given by

E2~0,t !5E
2`

` dV

2p
e2 iVt r̃ ~V!Ẽ1~0,V! ~5!

FIG. 3. Calculated reflection spectra~solid lines! and phases
~dashed lines! corresponding to oppositely oriented fiber gratin
that are similar to those used in the experiments of Mortonet al. @6#
The index profiles of both~a! and~b! are Gaussian with a full width
at half maximum~FWHM! of 1 cm, a~maximum! index modula-
tion depth of 331025, and a uniform background index of 1.44
the period of modulation at the center of the gratings correspond
a vacuum wavelength of 1535 nm. The linear grating chirp for~a! is
21 Å/cm, and for~b! is 1 Å/cm.
03381
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t

dt8r ~ t2t8!E1~0,t8!. ~6!

The response function

r ~ t ![E dV

2p
r ~V!e2 iVt

is such thatr (t)50 for t,0, and forr̃ (V) defined over the
complexV plane, all the singularities must occur only in th
lower half plane.

We now combine the responses of the diode and exte
reflector to obtain the laser equations. First we find the d
crete cw cavity modes of the laser,Vm , given by solutions to

15 r̄ sc~V! r̃ ~V!, ~7!

where the frequency dependence ofr̄ sc is given explicitly in
earlier work@12,14#. Denoting the nominal lasing frequenc
by subscript ‘‘0,’’ we have by definitionV050. The value of
r̄ sc is thus set by the value of the reflection function at t
lasing mode,r̃ o[ r̃ (0). In steady state,Nav50 and the fields
at thez50 diode facet are given byĒ6(0). To simplify the
subsequent analysis, we write the final form of the dynam
equations in terms of normalized carrier density and fi
functions, defined by

s~ t !52LgGaNav~ t !,

j~ t !5E1~0,t !/Ē1~0!,

and in terms of a normalized field intensity

s̄15vgaTnS̄1~0!;

thenj51 ands50 in steady-state operation. The dynamic
equations then become

Tn

ds

dt
52s~ t !12s̄1F11

~12R2!

Ru r̄ scu
2

1

u r̄ scu2
G

22s̄1uj~ t !u2F11
~12R2!

Rur sc~ t !u
2

1

ur sc~ t !u2
G , ~8!

obtained from Eq.~1!, and

j~ t !5r sc~ t !E
2`

` dV

2p
e2 iVt r̃ ~V!j̃~V!

5r sc~ t !E
2`

t

dt8r ~ t2t8!j~ t8!, ~9!

obtained from Eqs.~2!, ~5!, and ~6!, where the reflection
coefficient in terms ofs(t) is

r sc~ t !5 r̄ scexpS 1

2
~12 ibc!s~ t ! D . ~10!

to
7-4
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Note that Eq.~9! is the time-dependent version of Eq.~7!,
where the dynamics of the fieldj(t) depends on all its pre
vious values. Equations~8!–~10! form the starting point for
our stability analyses that follow.

III. LINEAR STABILITY ANALYSIS

As a first step in our examination of laser stability, w
perform a direct linear stability analysis of Eqs.~8! and~9! in
order to characterize the response of the system to pertu
tions in the steady-state field and carrier density. In parti
lar, we seek to find under what conditions the laser—initia
oscillating at some nominal frequency within the bandwid
of the dispersive reflector—either returns to the cw opera
mode as these perturbations decay away, or experienc
growth in the perturbations, leading to unstable behav
such as mode hopping. Due to the relatively long exter
cavity used in the experiments of Mortonet al. @6#, there are
many available external cavity resonances within the wi
of the reflection spectrum that could be subject to unsta
growth.

We define the~normalized! field deviation from steady
state by

c5j21.

Then from Eqs.~7!, ~9!, ~10! we obtain

c~ t !5~e(1/2)(12 ibc)s(t)21!

1
e(1/2)(12 ibc)s(t)

r̃ o
E

2`

t

dt8r ~ t2t8!c~ t8!, ~11!

where, recall, the value of the reflection function at the o
erating mode isr̃ o . Keeping only the terms linear inc and
s, the field equation~11! and the carrier density equation~8!
become

c~ t !5
1

2
~12 ibc!s~ t !1

1

r̃ o
E

2`

t

dt8r ~ t2t8!c~ t8!,

~12!
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ds~ t !

dt
52G1s~ t !2G2@ u11c~ t !u221# ~13!

.2G1s~ t !2G2@c~ t !1c* ~ t !#, ~14!

respectively, where we have defined effective decay rate

G15
1

Tn
F112s̄1S u r̃ ou22

1

2

~12R2!

R
u r̃ ou D G ,

G25
1

Tn
F2s̄1S 11

~12R2!

R
u r̃ ou2u r̃ ou2D G . ~15!

The carrier decay rateG1 arises from both carrier relaxatio
~the ‘‘1’’ in the square brackets! and radiative recombination
~the second term in the square brackets!. The carrier-field
coupling coefficientG2 can also be seen as an effective d
cay rate for the field itself in the following way. Taking th
derivative of Eq.~12!, and then substituting Eq.~13! for
ds/dt, we see that the resulting equation fordc/dt includes
the term 2G2@ u11c(t)u221#/2. For a field that deviates
from cw, cÞ0, and this term causesc to relax back to
steady state. One can also show that 1/G2 is proportional to
an effective photon lifetime often used to describe cav
losses in rate equation diode models, where the losses
curring both at the back facet of the diode (R2) and at the
reflector (u r̃ ou2), are assumed to be distributed evenly alo
the diode length.

We now seek the response ofc to a perturbation of steady
state occurring att50, given by

s~0!5«,

where« is a small, real number. Taking the Laplace tran
forms of Eqs.~12! and~14!, and subsequently solving for th
Laplace transformĉ(s) of the field deviation functionc(t),
we find
ĉ~s!5

1

2
«~12 ibc!F12

r̃ * ~ is* !

r̃ o*
G

~s1G1!F12
r̃ ~ is!

r̃ o
GF12

r̃ * ~ is* !

r̃ o*
G1

1

2
G2~11 ibc!F12

r̃ ~ is!

r̃ o
G1

1

2
G2~12 ibc!F12

r̃ * ~ is* !

r̃ o*
G . ~16!
Both ĉ(s) and the reflection functions

r̃ ~ is![E
0

`

r ~ t !e2stdt,
r̃ * ~ is* ![F E
0

`

r ~ t !e2s* tdtG* ,

are defined over the complexs plane. The values ofr̃ on the
7-5
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L. RAMUNNO AND J. E. SIPE PHYSICAL REVIEW A66, 033817 ~2002!
~negative! Ims axis correspond to those already defined
Eq. ~4! with V5 is.

The linear stability of the laser can now be determined
a particular cw solution simply by finding the location of th
singularities ofĉ(s): any of these polessp located such tha
Re(sp).0 indicates exponentially growing solutions that o
cillate with a frequency corresponding to Im(sp). The poles’
locations can be found by plotting contours ofĉ(s) over the
complexs plane, and this is easily accomplished given t
appropriate reflection spectrum. For example, the calcula
of r̃ over the complex plane for fiber gratings is straightfo
ward, and is easily accomplished by allowing the frequen
variable appearing in the coupled-mode equations to bec
complex. If r̃ is instead determined from measurement, a
is thus known for real frequencies~and imaginarys), then to
use Eq.~16! it would be necessary to extend this data by,
example, using a Taylor expansion ofr̃ (V) in order to make
the frequency dependence explicit.

To gain some understanding of Eq.~16!, we first consider
the special case where the external reflector is a nondis
sive mirror located some distance from the diode AR coa
facet. We only use this as a toy model here; to describe s
a physical system properly, we would of course have to t
into consideration the shape of the gain curve of the dio
For the reflection coefficient of the form

r̃ ~V!5AeiVText,

whereText is the round trip time in the external cavity an
uAu2 is the mirror reflectivity, the time domain response is
delta functionr (t)5Ad(t2Text), and from Eq.~16! we ob-
tain

ĉ~s!5
1

2

«~12 ibc!

~s1G1!~12e2sText!1G2

. ~17!

Note that the semiconductor linewidth enhancement fac
bc , is irrelevant in determining the locations of the sing
larities here.

We examine first the case where there is no carrier-fi
coupling by settingG250. The poles ofĉ(s) are then lo-
cated ats52G1, ands5 i (2pm/Text) for any integerm, as
indicated in Fig. 4 by open circles, for a laser with dio
parameters listed in Table I. The pole at2G1 ~not shown in
Fig. 4! gives an exponentially decaying term. The other po
are located on the imaginarys-axis, and are equally distrib
uted with a frequency spacing 2p/Text ; these correspond to
the Fabry-Perot resonances of the laser cavity. Since
have a real part of zero, they neither decay nor grow. Fo
perturbation att50, the Fabry-Perot cavity modes are in
tially excited, and they remain excited indefinitely as t
field continues to oscillate at these frequencies with am
tudes determined by the initial perturbation. Even the am
tude of the nominal lasing mode at Ims50 is itself not fixed,
as the real part of the pole location is also zero. This is
surprising; in neglecting the carrier-field coupling we ha
also neglected field decay.
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If we now reinstate the carrier-field coupling coefficie
G2, the poles must be found numerically. We plot these a
in Fig. 4 ~filled circles!, again for the diode parameters o
Table I. The poles are now located away from the imagin
s axis in the left-hands plane, indicating that the amplitude
of the oscillating resonances excited by the perturbation
t50 do experience decay, and the laser then returns to
original cw mode. The pole formerly ats50, corresponding
to the nominal operating frequency, has shifted leftward
most of all the resonances, indicating that the decay rat
the largest for perturbations in the amplitude of the operat
mode. Moving to the frequencies further and further from t
operating frequency, the singularities move closer and clo
to the imaginarys axis and thus experience smaller a
smaller decay rates. To understand this, let us consider
effect on the rate of change of the carrier density caused
field with amplitudec̄ oscillating at a frequencyV̄. From
Eq. ~14!, we have

ds~ t !

dt
52G1s~ t !22G2uc̄ucos~V̄t1d!, ~18!

whered52argc̄. If V̄ is far from V50, then the second
term on the right-hand side is rapidly oscillating, and
overall effect is negligible; the response is then indistingui
able from theG250 limit, where the poles are located on th
imaginary axis.

We mention the qualitative features of two more spec
cases that will be useful in interpreting the physics of t
actual problem of interest. We first consider an external c
ity where the reflection function is such that the spectr
along the imaginarys axis is as those plotted in Figs. 3~a!
and 3~b!, but the reflection coefficient phase has zero cur
ture. We examine, in particular, the stability of a cw soluti
that coincides with the reflection spectrum peak. As shown

FIG. 4. Singularities of the Laplace transform of the field dev

tion from steady state,ĉ(s), calculated over the complexs plane
for a semiconductor diode coupled to an external nondisper
mirror. The diode is characterized by the parameters listed in Ta
I. The pole ats52G1 is not shown. The open circles indicate th
pole locations for zero carrier-field coupling, and the filled circl
indicate the pole locations for the case where carrier-field coup
is included. The external cavity roundtrip time is 388 ps.
7-6
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STABILITY OF A SEMICONDUCTOR LASER WITH A . . . PHYSICAL REVIEW A66, 033817 ~2002!
Fig. 5, and like the previous example, all singularities a
located in the negative Res plane, indicating that perturba
tions decay and the field returns to its steady-state value.
resonance at Ims50 has again a large decay rate, becom
progressively smaller for frequencies farther and farther fr
Ims50. Beyond a certain Ims value, however, the singulari
ties are located progressively farther from the imaginars
axis and the decay rates become progressivelylarger. This is
a signature of theshapeof a reflectivity spectrum with finite
bandwidth, and results because at frequencies farther
farther from the reflection spectrum peak, the loss due to
coupling is greater and greater. Thus the amplitudes
modes excited far from Ims50 experience faster decay for
reflection spectrum with finite width, than they would for
reflection spectrum that is completely flat. We will see th
this feature survives for the realistic system we consider
low.

But first we mention the results of a final special ca
where we consider a laser with dispersive loss such as t
shown in Figs. 3~a! and 3~b!; we now include the effects of a
nonzero phase curvature, but set the semiconductor linew
enhancement factorbc to zero. Here we find there aretwo
sets of singularities that correspond to the Fabry-Perot ca
resonances, and one set of zeros, as shown in Fig. 6
positive phase curvature. The zero locations~open circles!
are given by the solutions tor̃ * ( is* )5 r̃ o* , and one set of the
poles are located at nearly the same Im(s) location as the
zeros, indicated in Fig. 6 by filled circles connected to th
zeros. These zero-pole pairs are distributed along Ims5
2Re(V) such that the frequency spacing between the p
is chirped. In this case of postive phase curvature, the s
ing is larger for frequencies on the blue side of the reflect
spectrum (Ims,0) than for those on the red side (Ims
.0). The set of poles not associated with zeros~filled circles
connected to each other with a dotted line! are also nonuni-
formly distributed along Ims, but chirped in the opposite
direction of the zero-pole pairs. These unpaired poles
identified with the usual Fabry-Perot cavity resonances. C
sidering instead a reflector with negative phase curvature

FIG. 5. Singularities ofĉ(s) calculated for an external cavit
laser with a reflectivity spectrum as shown by the solid lines
Figs. 3~a! and 3~b!, but with zero reflection phase curvature. T
diode parameters used are listed in Table I.
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find that the chirps along Ims of the zero-pole pairs and th
Fabry-Perot resonances are opposite to those shown for
tive curvature in Fig. 6. In general, a nonzero phase cur
ture indicates dispersion in the external cavity round t
time for cw light. For fiber gratings, the phase curvatu
arises mainly from the chirp of the local period of the refra
tive index modulation. Since this period varies with leng
the Bragg scattering condition is different at different loc
tions along the grating. For a grating with a chirp such th
the period decreases monotonically with distance~negative
chirp!, as illustrated in Fig. 7~a!, incident light at longer
wavelengths has a shorter round trip than light at sho
wavelengths. Since the derivative of the frequency dep
dent round trip time gives the curvature of the phase, a ne
tive fiber grating chirp then corresponds to positive pha
curvature. Additionally, since the effective external cav

f

FIG. 6. Singularities~filled circles! and zeros~open circles! of

ĉ(s) calculated for an external cavity laser with a reflectivity spe
trum and corresponding phase as shown in Fig. 3~a!, but with the
linewidth enhancement parameter set to zero. The zero-pole p
corresponding to the ‘‘shadow’’ resonances are each shown as
nected. The unpaired poles~true Fabry-Perot resonances! are con-
nected to each other with a dotted line. The diode parameters
in this calculation are listed in Table I.

FIG. 7. Schematic illustrations of linearly chirped fiber grating
Grating ~a! is negatively chirped; longer wavelengths match t
Bragg scattering at a location closer to the starting point th
shorter wavelengths, and thus have a shorter laser round trip t
The corresponding reflection phase curvature is positive, so
f2.0. Grating~b! is positively chirped; shorter wavelengths the
have a smaller round trip time, and the phase curvature is nega
andf2,0.
7-7
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L. RAMUNNO AND J. E. SIPE PHYSICAL REVIEW A66, 033817 ~2002!
length is larger for blue frequencies and smaller for red f
quencies, blue Fabry-Perot modes are more closely sp
than the red; this is what we find in Fig. 6. Conversely
grating period that increases with distance~positive chirp!, as
illustrated in Fig. 7~b!, corresponds to negative phase curv
ture, and red Fabry-Perot modes are more closely spa
than blue.

To understand the physical origin of the non-Fabry-Pe
poles—i.e., those associated with the zeros and distrib
along Ims with nonuniform mode distribution opposite t
that of the Fabry-Perot resonances—we consider the in
and secondary laser responses to perturbation. We sup
that initially the system responds through the excitation
the ‘‘true’’ Fabry-Perot modes. Consider first only one
these excited resonances, say at frequencyV̄, so that the
field envelope deviation function is modified from its stead
state value of zero and is of the formc5c̄e2 i V̄t; the total
~real! forward-propagating electric field, and its intensity,
modulated from cw with a sinusoidal envelope functio
Through stimulated emission, the field intensity acts a
source for the diode carrier density, evident from Eq.~18!.
The carrier density response to such a field is

s~ t !52uc̄u
2G2G1

G1
21V̄2 S cos~V̄t1d!1

V̄

G1
sin~V̄t1d! D

52uc̄u
G2G1

G1
21V̄2

~@12 i V̄/G1#eidei V̄t

1@11 i V̄/G1#e2 ide2 i V̄t!. ~19!

In turn, s acts as a source for the fieldc, as evident in Eq.
~12!, causing the envelope functionc itself to oscillate with
sinusoidal dependence. It is clear from Eq.~12! and the sec-
ond line of Eq. ~19! that the effect of the carrier densit
oscillation is to create new frequency components of
electric field at2V̄; it is these secondary excitations resu
ing from carrier-field coupling that are the origin of the zer
pole pairs, or ‘‘shadow’’ Fabry-Perot modes. Indeed, negle
ing this coupling by settingG250 results in a single set o
poles, as can be seen from Eq.~16!. Note that for zero re-
flection phase curvature~and a symmetric spectrum!, we do
not see the extra zero-pole pair since the shadow mode
quencies are themselves Fabry-Perot modes. We see
mathematically by puttingr̃ * ( is* )5 r̃ ( is) in Eq. ~16!. In
both of these limits, the shadow poles ofĉ are located in
precisely the same location as the zeros ofĉ, and they ef-
fectively cancel each other.

We now turn finally to the stability of the more gener
case, by reinstituting the semiconductor linewidth enhan
ment factorbc . In the previous special case withbc50,
both sets of poles were located in the left-hands plane indi-
cating laser stability, and this was regardless of the sign
the phase curvature. Figure 8 shows the poles ofĉ(s) calcu-
lated for the two lasers consisting of a diode as character
in Table I, coupled to chirped fiber gratings with reflectio
spectra and phases as plotted in Figs. 3~a! and 3~b!. Again, as
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a first measure of laser stability, we consider here the sin
larities in ĉ(s) for a cw solution coinciding with the peak o
the reflection spectrum. The open circles in Fig. 8 repres
the location of the poles for the laser with the negative gr
ing chirp; the singularities ofĉ(s) are all found in the left-
hands plane indicating no growing solutions, suggesting th
this laser configuration is stable. The filled circles in Fig.
give the location of the poles ofĉ(s) for a laser with a
grating of opposite orientation. Here we see that there
some modes that do indicate exponentially growing so
tions, suggesting that this laser is unstable. The linewi
enhancement factorbc thus plays a key role in the growth o
instabilities since, at least in this linear analysis, instabi
does not occur when we setbc50.

Although our analysis demonstrates the roles of the c
vature of the reflection coefficient phase and the semic
ductor linewidth enhancement in determining stability,
does not explain them. To study the stability analysis in m
detail, we could, for example, choose an analytic form
r̃ (V) that includes the phase curvature as one of
parameters—as we indeed do in the following section in
other approach—but we found that this does not prov
much insight into the problem. We now turn to an appro
mate description of the laser based on Eqs.~8!–~10! that
does give such insight.

IV. MODIFIED NONLINEAR SCHRO¨ DINGER EQUATION

A. Formalism

In this section we present a derivation and discussion
approximate laser equations, obtained from our full la
model~8!–~10!, where the field evolution is described by a
equation that resembles a nonlinear Schro¨dinger equation.
This allows us to describe and explain the effect on stabi
of the phase curvature of the reflection coefficient, and ot

FIG. 8. Singularities ofĉ(s) calculated for two lasers consistin
of a diode described by parameters in Table I coupled to the chir
fiber gratings characterized in Figs. 3~a! and 3~b!. The open circles
indicate pole locations for the laser with the negatively chirp
grating. All poles are located in the left-hand plane, indicating~lin-
ear! stability. The filled circles give the pole locations for an ide
tical laser, but with a grating with opposite orientation. The po
such that Re(s).0 are susceptible to growth, indicating instabilit
7-8
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STABILITY OF A SEMICONDUCTOR LASER WITH A . . . PHYSICAL REVIEW A66, 033817 ~2002!
relevant parameters, in the context of the modulational in
bility of uniform solutions. To represent the reflection pha
curvature of the extended cavity by one parameter, we
proximate the reflection function by a Taylor expansi
@12,15#

r̃ ~V!5 r̃ oexpF (2g11 if1)V1
1

2
(2g21 if2)V21•••G ,

where the dispersion parametersgn , fn are defined by

gn52
dnlnu r̃ ~V!u

dVn U
V50

,

fn5
dnarg@ r̃ ~V!#

dVn U
V50

. ~20!

The external cavity round trip time~or delay! experienced by
a long pulse centered at the operating frequencyV50 is
given byf1. The parameterf2, characterizes the round tri
time dispersion. For fiber gratings,f2.0 corresponds to
negative grating chirp, andf2,0 to a positive grating chirp
as noted in Fig. 7. The dispersion due to the shape of
reflectivity spectrum is described by the parametersg1 and
g2—the slope and curvature of the negative logarithm
u r̃ (V)u, respectively—where the width of the reflection spe
trum is proportional to (g2)21/2. For a laser operating fre
quency coinciding with the reflectivity peak,g1 is zero. In
general, a lasing mode is on one side or the other of
reflectivity spectrum peak, the red side indicated by a ne
tive value of g1, and the blue side by a positiveg1. For
lasers with long external cavities, as in the experiments
Morton et al. @6#, the cw mode spacing is sufficiently sma
that there is always a mode reasonably close to the pea
g1 is very small compared tof1. We find it useful for later
analysis to define the complex dispersion quantity

h[
1

2

g22 if2

f1
2

,

and we note that for typical systems, especially those w
long external cavities,uhu!1. Rescaling the time variable i
terms of the delay timef1,

t̂[
t

f1
,

the laser equations~9, 10! become

j~ t̂ !5e(1/2)(12 ibc)s( t̂ )F12 i ĝ1

d

d t̂
1h

d2

d t̂2Gj~ t̂21!,

~21!

whereĝ1[g1 /f1, and where we keep only the first order
the expansion of the exponential function, since bothĝ1 and
uhu are much smaller than one.
03381
a-
e
p-

e

f
-

e
a-

f

so

h

In the limit of no dispersion and no carrier dynamics, E
~21! would be satisfied by any periodic function oft̂ with a
period of one. We then expect the solution forj to be an
almost periodic function, with variations from periodicit
due to dispersive effects and carrier dynamics. To cap
this, we seek a multiple scales analysis solution ofj of the
form @23#

j~ t̂ !5j~ t̂0 , t̂1 , . . . !, ~22!

where we define new independent time variables

t̂m5uhumt̂ ,

for m50,1,2, . . . , where recalluhu!1; then

d

d t̂
5

]

] t̂0

1uhu
]

] t̂1

1•••. ~23!

The functionj is assumed to vary significantly at most
each of its argumentst̂m vary over unity. As the fastest time
scalet̂0 varies from 0 to 1, real time varies from 0 tof1 and
j advances by one laser round trip time. Ast̂1 varies from 0
to 1, t varies from 0 tof1 /uhu, or many round trip times; it
is on this slower time scale that we expect the growth
instabilities to occur. We insert Eqs.~22! and ~23! into Eq.
~21!, and collect the terms that are multiplied by differe
powers ofuhu; by requiring that the resulting equations b
satisfied to higher and higher order inuhu, we expect an
asymptotically better description of the dynamics. We furth
require thatj be periodic int̂0 with period unity

j~ t̂021,t̂12uhu, . . . !5j~ t̂0 , t̂12uhu, . . . !, ~24!

and sinceuhu!1, we make the expansion

j~ t̂0 , t̂12uhu, . . . !.j~ t̂0 , t̂1 , . . . !2uhu
]j~ t̂0 , t̂1 , . . . !

] t̂1

.

~25!

Substituting, Eqs.~23!, ~22!, ~24!, and ~25! into the field
equation~21!, and collecting the terms of zeroth and fir
order in uhu, we obtain

uhu
]j~ t̂0 , t̂1!

] t̂1

5~12e2(1/2)(12 ibc)s( t̂0 , t̂1)!j~ t̂0 , t̂1!

2 i ĝ1

]

] t̂0

j~ t̂0 , t̂1!1h
]2

~] t̂0!2
j~ t̂0 , t̂1!,

where we have neglected terms of orderuhuĝ1, and we con-
sider only the two time scalest̂0 and t̂1. Now defining

x5 t̂0 ,

t5 t̂1 /uhu,

we obtain for the field equation
7-9
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L. RAMUNNO AND J. E. SIPE PHYSICAL REVIEW A66, 033817 ~2002!
i
]j~x,t!

]t
5

1

2
~f̂21 i ĝ2!

]2

]x2
j~x,t!1ĝ1

]

]x
j~x,t!

1 i ~12e2(1/2)(12 ibc)s(x,t)!j~x,t!, ~26!

and for the carrier density equation~8!

T̂n

]s~x,t!

]x

52s~x,t!12s̄1F11
~12R2!

Ru r̄ scu
2

1

u r̄ scu2
G

22s̄1uj~x,t!u2F11
~12R2!

Ru r̄ scu
e2(1/2)s(x,t)2

e2s(x,t)

u r̄ scu2
G ,

~27!

where T̂n5Tn /f1 ,ĝ25g2 /f1
2, and f̂25f2 /f1

2. Note that
the form of Eq.~26! is very similar to that of a usual non
linear Schro¨dinger equation~NLSE!. A standard method o
assessing stability of systems described by a NLSE
through a modulational instability analysis, whereby t
growth rates of frequencies near the carrier frequency is
termined from the linearized equations@17#; we do this later
in Sec. IV C. But first we turn to a discussion of the phys
of Eq. ~26!, with particular emphasis on the differences b
tween the usual NLSE and our Eqs.~26! and ~27!.

B. Discussion

In this section, we highlight the effects of the dispersi
and nonlinearity in Eqs.~26! and~27!, particularly those as-
pects not described by the usual NLSE. These include
consequences of the periodicity of the fieldj in time variable
x; the effects of the dispersion parametersĝ1 andĝ2 describ-
ing the shape of the reflectivity spectrum, as well as the us
dispersion parameter—given here by the phase curvaturef̂2;
and the nature of the nonlinearity, which here is not inst
taneous as in usual Kerr media, but arises due to ca
dynamics. In the spirit of previous work on nonlinear pul
propagation in optical fibers@17#, we proceed by considerin
each physical effect separately.

In Eq. ~26!, j is the normalized, forward-propagating la
ser field at a particular location within the laser cavityz
50) and the variation ofj in x gives the field profile during
one laser round trip time 0<x,1 where j(0,t)5j(1,t).
The variation ofj in time t then gives the evolution of this
field profile defined over 0<x,1 in time t. Since j is
bounded inx with periodic boundary conditions, we may i
general expressj as a Fourier series

j~x,t!5(
k

j̃k~t!e2 ikx, ~28!

where the normalized frequency is given byk52pm for
integersm. Physically, the discrete values ofk identify the
Fabry-Perot resonances of the laser cavity in the absenc
any carrier dynamics or dispersion. As we illustrate belo
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these two effects are described by thet time evolution ofj,
contained in thet dependence of the coefficients of the i
dividual frequency amplitudesj̃k . In Eq. ~28!, k50 labels
the nominal lasing frequency—i.e., the frequency at wh
we assume the laser is initially oscillating, which is some
frequency solution within the bandwidth of the reflectio
spectrum; we then assess the stability properties of this
ticular cw mode solution.

First we present a discussion of the effects of dispers
of the external reflector by considering only the dispers
terms in Eq.~26!, ignoring the nonlinearity. We rewrite Eq
~26! using the Fourier decomposition~28! to obtain@17#

j̃k~t!5 j̃k~0!e(1/2)k2(2ĝ21 i f̂2)te2ĝ1kt. ~29!

Recall thatf̂2 appears in our equations as a result of t
dispersion of the external cavity round trip time, so that up
evolution in t, red and blue frequencies get separated ix
time, that is, across the field profile, causing pulse chirpi
The t evolution of the pulse spectrumu j̃k(t)u2, however, is
only affected byĝ2 and ĝ1, as is evident from Eq.~29!.
Recall thatĝ2 is the curvature of the~negative! logarithm of
the reflection spectrum at the lasing mode, related to
spectral width, andĝ1 is the slope, whose sign indicates th
position of the nominal lasing frequency with respect to t
peak of the reflection spectrum. As illustrated schematica
in Fig. 9, mode frequencies with reflectivities larger than th
of the chosen nominal lasing mode experience ‘‘gain’’~i.e.
less loss than the nominal lasing frequency!, indicated by the
shaded region, while those with smaller reflectivities expe
ence greater loss. This selective loss tends to shift the la
frequency to a mode closer to the reflection spectrum pea
such a cavity mode exists. For a mode with frequency c
responding to the peak of the reflectivity spectrum, thenĝ1
50 and all frequencies except that mode experience l
this causes a continual narrowing of the field spectrum as
side modes’ amplitudes decay over timet.

FIG. 9. Illustration of the effect on the laser field due to t
reflection spectrum shape. For a nominal lasing frequency on
red side of the spectrum peak, indicated by the open circle, then
shaded region of the spectrum indicates the frequencies that e
rience gain~i.e., less loss than the nominal lasing frequency! when
the field is reflected from the external cavity. The unshaded reg
indicate which frequencies experience greater loss than the nom
lasing frequency. As a result of this selective loss, the carrier
quency of the field shifts toward the reflection spectrum peak.
7-10
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STABILITY OF A SEMICONDUCTOR LASER WITH A . . . PHYSICAL REVIEW A66, 033817 ~2002!
The fact that we have imposed periodic boundary con
tions on the field inx also alters somewhat the usual descr
tion of the dispersive effects. Here, wavelengths with
shorter round trip time eventually get so far ahead inx of the
wavelengths with a longer round trip time that they come f
circle and catch up to the slower wavelengths again. In
absence of all physical effects except round trip time disp
sion, the field profile then does not disperse indefinitely,
eventually the initial profile is recovered. This periodicity
t can be seen analytically by considering the general exp
sion for j(x,t) in the time domain

j~x,t!5 (
m52`

`

j̃2pm~0!e2 i2pmxei2pm2(pf̂2t),

where we replacedk with 2pm. Sincem varies along the se
of all integers, we see that ast varies from 0 to (pf̂2)21,
the exponent of the last term varies from 0 to an inte
multiple of 2p, for all values ofm. The smaller thef̂2 is, the
longer it takes for the long and short wavelengths to sepa
from each other, and subsequently reunite.

We now describe thet evolution ofj in the special case
for which we assume that the length of the external cavity
very long, so that the cw mode solutions within the ban
width of the reflection spectrum are very dense, and th
then approximate a continuous frequency variable. In
special limit, we consider~cf. Agrawal @17#! an initial field
profile that is essentially uniform, but with a small, chirp
perturbation centered atx51/2,

j~x,0!511joexpS 2~11 iC !
~x21/2!2

2xo
2 D , ~30!

wherexo quantifies the initial width of the perturbation inx
time domain andC is some real valued parameter charact
izing the initial chirp. Solving Eq.~26! in frequency domain,
keeping only the terms involving the dispersion parame
f̂2 , ĝ2, and ĝ1, then using the~continuous! Fourier trans-
form of Eq. ~30! as the initial frequency spectrum, th
evolved field at timet.0 has anx-time profile width that is
dependent on the evolution timet and is given by

xo
2~t!5

xo
212~ ĝ21Cf̂2!t1~ ĝ21f̂2!2t2~11C2!/xo

2

11ĝ2t~11C2!/xo
2

.

For xo
2(t).xo

2 , then the perturbation shape is broadened
thex domain, with a diminished peak amplitude, and thus
field eventually returns to the steady state. Conversely,
xo

2(t),xo
2 the width of the perturbation in thex domain has

decreased, and the peak amplitude increased, signifyin
growth of the perturbation. Thus perturbation decay occ
for f̂2.2ĝ2 /C, and~initial! perturbation growth occurs fo
f̂2,2ĝ2 /C. Since the overall effect ofĝ2 is to narrow the
spectrum and thereby broaden the time domain profile,
occurrence of either decay or growth of the perturbation
pends not only upon the relative signs off̂2 and the initial
chirp C as for the usual NLSE, but also on their amplitud
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The effect ofĝ1 on thet time evolved pulse is to shift the
central frequency closer to the peak of the reflection sp
trum, and it finally reaches the peak whent→`, in the limit
of a continuousk variable. Note that this description of th
narrowing or broadening inx domain of the perturbation
width is valid only for a very dense cw mode distributio
within the bandwidth of the reflection spectrum, correspon
ing to a very long laser cavity.

Finally, we turn to a discussion of the nonlinear term
Eq. ~26! arising from the semiconductor response, consid
ing for simplicity only the first order in the expansion of th
exponential functions involving the carrier densitys. We
then obtain for Eq.~26!

]j~x,t!

]t
5

1

2
~12 ibc!s~x,t!j~x,t!, ~31!

and neglecting terms of orders(uju221), Eq.~27! becomes

]s~x,t!

]x
52Ĝ1s~x,t!2Ĝ2@ uj~x,t!u221#, ~32!

whereĜ1[G1f1 and Ĝ2[G2f1 for the decay ratesG1 , G2
defined by Eq.~15!. It is interesting to note that if we assum
~incorrectly! that the carrier relaxationTn is so rapid that the
carriers are essentially always in steady state, i.e., the ‘‘a
batic’’ limit, then Eqs.~31! and ~32! give

]j~x,t!

]t
52

1

2

Ĝ2

Ĝ1

~12 ibc!@ uj~x,t!u221#j~x,t!.

In this limiting case, the nonlinearity then resembles a Ke
type nonlinearity.

Since we have seen in Sec. III that laser operation is
ways~linearly! stable forbc50, we determine the effects o
semiconductor linewidth enhancement factor separately f
the stimulated emission which provides gain or loss inj,
depending upon the sign ofs. By considering only theibc
term in the (12 ibc) factor in Eq.~31!, we can construct an
analytic solution of Eq.~31! given formally by

j~x,t!5j~x,0!expF2 i
1

2
bcE

0

t

s~x,t8!dt8G .
The linewidth enhancement factorbc can thus be identified
with a self-phase modulation effect, sinceuj(x,t)u2 is un-
changed byt time evolution. Thet evolution does chirp the
initial field profile, however, and creates an instantane
frequencyDk that is given by

Dk52
]

]x
arg@j~x,t!#52

]

]x
arg@j~x,0!#1

1

2
bct

]s~x,0!

]x
,

~33!

where we have useds(x,0) in Eq.~33! sinces(x,t) itself is
constant int,

s~x,t!52Ĝ2E
0

x

e2Ĝ1(x2x8)@ uj~x8,0!u221#dx85s~x,0!,
7-11
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L. RAMUNNO AND J. E. SIPE PHYSICAL REVIEW A66, 033817 ~2002!
due to the invariance ofuju2. Then the initial field profile
j(x,0) influences the instantaneous frequency at all latet
times. While this seems to correspond to the usual self-ph
modulation of an NLSE with a Kerr-type nonlinearity, th
carrier dynamics themselves do play a role in laser stab
determination in our system, as we illustrate in the followi
section.

C. Modulational instability

In the previous section, we present a linear stability ana
sis of the approximate Eqs.~26! and ~27! and derive a sta-
bility condition that is analogous to, but not the same as,
modulational instability of uniform solutions of the usu
NLSE. First, we confirm that the linear stability results bas
on Eqs.~26! and ~27! agree on the whole with those of th
exact model equations presented in Sec. III. Second, we
amine the region of dispersion parameters over which
would expect stable laser cw operation.

Writing Eqs.~26! and ~27! in terms of the field deviation
from steady-state function,c[j21, then linearizing in both
s andc, we obtain

]c~x,t!

]t
5

1

2
~12 ibc!s~x,t!2 i ĝ1

]

]x
c~x,t!

1
1

2
~ ĝ22 i f̂2!

]2

]x2
c~x,t!,

]s~x,t!

]x
52Ĝ1s~x,t!2Ĝ2@c~x,t!1c* ~x,t!#, ~34!

recall boths andc vanish for steady state. To proceed, w
assume that the field is of the form

c~x,t!5«1eikxezt1«2e2 ikxez* t, ~35!

where the quantityz is some complex number that is to b
determined as a function ofk. Again, the variablek
52pm ~for integersm) is discrete, corresponding to th
Fabry-Perot resonances of the laser cavity, and the nom
lasing mode is denoted byk50. The small numbers«1 and
«2 give the amplitude of the excitations ofc at modesk and
2k resulting from some small perturbation att50. The
response of the field to this side mode excitation is captu
by the field’s dependence on the longer time scalet through
the determined value ofz @17#. For a givenk, Rez(k).0
indicates that the mode atk experiences exponential growt
in the linear regime at a frequency corresponding to2@k
1Imz(k)#, and thus the nominal lasing frequency is u
stable to perturbations at this frequency. The Imz provides a
correction to the cavity resonance frequency, which ari
due to effects of dispersion and carrier dynamics.
Rez(k),0 then indicates that the amplitude of the mode
k experiences exponential decay, and thus the laser is s
to excitations of the resonance atk. Substituting Eq.~35!
into Eq. ~34!, we obtain the quadratic equation
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05z21S Ĝ2

Ĝ11 ik
1ĝ2k2D z1

1

4
@~f̂222i ĝ1 /k!21ĝ2

2#k2

3Fk21
ĝ21bcf̂222ibcĝ1 /k

~f̂222i ĝ1 /k!21ĝ2
2

2Ĝ2

Ĝ11 ik
G . ~36!

Note that by substitutingiv for z, Eq. ~36! can be rewritten
in a form that corresponds more directly to the well-know
modulational instability results of the problem of puls
propagation in optical fiber@17#.

The discrete numerical solutions of Eq.~36! correspond
directly with the singularities of Eq.~16! of the exact linear
stability analysis, confirming the multiple scales analy
presented in Sec. IV A. The Laplace variables from Sec. III
is identified here with (z1 ik)/f1 , so thatf1Res5Rez and
f1Ims5Imz1k. The numerical solutions of both Eq.~36!
and the singularities of Eq.~16!, for parameters correspond
ing to the two lasers described in the caption of Fig. 8,
shown together in Figs. 10~a! and 10~b! for the negative and
positive grating chirps, respectively. Figure 10 shows that
solutions of Eq.~36! give the same qualitative features
those described in Sec. III, although the two methods do
give exactly the same resonance locations. Nevertheless
agreement is good enough to validate the discussion here
in the previous section. The discrepancy can be unders
by noting that the more approximate solutions of Eq.~36!
can be recovered from the exact linear stability analysis
expanding the denominator of Eq.~16! about a particular
mode, and keeping only the first order ins. For example, Eq.
~36! gives the decay rate of the nominal lasing mode to
2Ĝ2 /Ĝ1, as does the first-order expansion of the Ims50
pole of Eq.~16!.

There are some special cases in which there seem t
extra solutions to Eq.~36! that do not correspond to poles o
Eq. ~16!. In these special cases, the second set of p
~shadow resonances! and the zeros ofĉ(s) in Eq. ~16! are
located at exactly the same position, both at solutions
r̃ * ( is* )5 r̃ o* , and so effectively cancel each other in th
exact stability analysis. Recall that physically this occurs
we either ignore carrier-field couplingĜ2, or if the reflection
spectrum is such thatr̃ * ( is* )5 r̃ ( is), i.e., symmetric with
no phase curvature. In these cases, the solutions of Eq.~36!
gives both sets of poles, though in reality no shadow mo
would be excited. We note that by choosingc(x,t) to be of
the form Eq.~35!, only the growth or decay behavior ofc
can be determined, and this corresponds only to the sin
larities of ĉ(s) of Eq. ~16!, but not the zeros. As long as w
are not dealing with either of these special cases, howe
the two methods give the same qualitative results.

In the remainder of this section, we expand our discuss
of stability to include an examination of~i! the stability as a
function of phase curvature, again for a cw mode coincid
with the reflection spectrum peak, and~ii ! the stability of cw
modes at arbitrary location within the reflection spectru
bandwidth, thus more fully assessing the stability of a p
ticular laser. While the Laplace transform formalism of Se
III may be used to investigate these issues, we choose to
7-12
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STABILITY OF A SEMICONDUCTOR LASER WITH A . . . PHYSICAL REVIEW A66, 033817 ~2002!
instead the modulational instability results of this section
is much less cumbersome to obtain numerical solutions
z(k) using Eq.~36!, than to calculate contours ofĉ(s) and
then find the singularities, even if the former method
slightly less accurate. From Eq.~36!, we may also make a
direct comparison with the well-known modulational inst
bility of the usual NLSE.

We begin by seeking to understand how the width of
reflection spectrum, characterized by the dispersion par
eterĝ2, alters the modulational instability results of the usu
NLSE, especially in light of the discussion of the previo
section; recall that propagation of perturbed chirped pu
through the dispersive external cavity led to either
growth or decay of the perturbations, depending not o
upon the relative signs of the chirp and dispersion param
f̂2, but on their amplitudes with respect toĝ2. To proceed,
we consider the special case where the carrier dynamic

FIG. 10. ~a! Comparison of the solutions forz(k) for continu-
ous~dotted lines! and discrete values~crosses! of k, and the singu-

larities of ĉ(s) ~open circles!. The external cavity reflector corre
sponds to the reflection spectrum and phase of Fig. 3~a! with f2

5770 ps2 and the laser diode parameters are as listed in Table I~b!
Solutions for z(k) for continuous ~dotted lines! and discrete

~crosses! values ofk, and singularities ofĉ(s) ~filled circles! cor-
responding to Fig. 3~b! with f252770 ps2. In both the cases,g2

5354 ps2.
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neglected~adiabatic limit! so that the nonlinearity is Kerr
like, and where the nominal lasing frequency coincides w
the peak of the reflection spectrum so thatĝ150. Then the
equation determiningz(k) becomes

05z21S Ĝ2

Ĝ1

1ĝ2k2D z1
1

4
~f̂2

21ĝ2
2!

3k2Fk21
ĝ21bcf̂2

f̂2
21ĝ2

2

2Ĝ2

Ĝ1
G . ~37!

Note that this is a quadratic equation of the form

f ~x!5x21bx1c,

whereb and c are real valued coefficients, andb.0 since
the parametersĝ2 , Ĝ1, and Ĝ2 are all positive. Then for
b2/42c,0 the roots off are complex with a negative rea
part sinceb is positive, the roots are both real and negat
for 0,c<b2/4, and both roots are real, but one root is po
tive, for c,0. From Eq.~37!, we see then that this positiv
root can only occur when

f̂2,2ĝ2 /bc , ~38!

and for frequencies satisfying

uku,Auĝ21bcf̂2u

f̂2
21ĝ2

2

2Ĝ2

Ĝ1

. ~39!

This unstable region off̂2 given by Eq.~38! is then analo-
gous to the anomalous dispersion regime for negative dis
sion parameter of the usual NLSE.

We now present a numerical example to examine
range off̂2 over which a laser would be stable when t
effects of carrier dynamics are included in the descripti
For the reflectivity spectrum~solid lines! shown in Figs. 3~a!
and 3~b!, and diode parameters listed in Table I, we calcul
the parameters for a nominal lasing frequency at the pea
the reflection spectrum; theng25354 ps2, G1514 ns21,
G2522 ns21, andbc52. We then solve Eq.~36! for various
values off̂2, keeping these other parameters constant,
for each value off̂2 determine whether or not there are a
solutions of Eq.~36! such that Re(z).0, indicating instabil-
ity. The range ofk/2p over which Re„z(k)….0 is indicated
as a function off̂2 by the shaded regions in Fig. 11. Th
dotted line in Fig. 11 is the unstable frequency region~39!

for f̂2 within the range~38! that we would expect in the
adiabatic limit. We find not only that there is instability fo
f̂2,2ĝ2 /bc , as expected, but that the stable range off̂2 is
also bounded from above; this upper bound has an abso
value much greater thanĝ2 /bc , and must be the result o
carrier dynamics, since it is not present in the adiabatic lim
The arrows in Fig. 11 indicate the values of the phase c
vatures corresponding to the two laser configurations of F
10~a! and 10~b!; since the stable region for positivef̂2 is
7-13
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L. RAMUNNO AND J. E. SIPE PHYSICAL REVIEW A66, 033817 ~2002!
much larger than the stable region for negativef̂2, then it is
then apparent how orientation of the chirped fiber gratin
would affect the laser stability.

We finally examine the stability of nominal lasing fre
quencies at arbitrary location within the range of the refl
tion spectrum. Recall that in our previous numerical e
amples, we have assessed the stability properties of a
mode coinciding with the reflection spectrum peak. By e
tending the stability calculation for a particular laser to ar
trary frequency, we are more fully assessing the stab
properties. We determine for which nominal lasing freque
cies there would be unstable growth in any of the s
modes: the range of frequencies for which there is only
cay in the side modes indicates the region where we wo
expect cw laser operation might occur naturally. For ea
nominal lasing frequency, we must calculate the correspo
ing dispersion parametersĝ1 , ĝ2 , f̂2 and decay ratesĜ1 ,
Ĝ2 and then use these parameters to find the discrete s
tions z(k) of Eq. ~36!. For each nominal lasing frequenc
we find from the solutionsz(k) the greatest value of Re(z)
over the domaink, i.e., the greatest side mode exponen
growth rate for a particular nominal lasing frequency; tho
frequencies that are unstable have max$Rez(k)%.0. We plot
in Figs. 12~a! and 12~b! both max$Rez(k)% and the reflec-
tivity spectrum as a functions frequency, whe
max$Rez(k)%50 if no growing solutions are found. We se
from Fig. 12~a!, not surprisingly, that for the laser with th
negatively chirped grating wheref̂2.0 ~solid line!, there
exists a range of frequencies over which the laser wo
operate in stable cw operation, as indicated by the sha
region within the reflectivity spectrum in Fig. 12~b!. For the
positively chirped grating~dashed line!, however, there is no
such stable frequency range.

Notice, however, that the stable frequency range for

FIG. 11. The frequency domains in terms off̂2 that are suscep
tible to modulational instability are as indicated by the shaded

gions. Note that there is a bounded, stable range off̂2 for which all
excited resonances experience only decay. The dashed line give
boundary of the~single! predicted unstable frequency domain in t
adiabatic limit of no carrier dynamics. The arrows indicate the v

ues off̂2 for the gratings of Fig. 3~a! ~right! and Fig. 3~b! ~left!.
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laser with f̂2.0 is located on mainly thered side of the
reflection spectrum peak@24#. This can be understood b
considering the time evolution of a pulse of light, with fre
quency off center from the reflection spectrum, as it pro
gates first through the external cavity, then subseque
through the diode. As discussed in the previous section, f
lasing frequency that is not at the reflection spectrum pe
the effect of the selective loss of the reflectivity spectrum
to pull the frequency toward the peak. Thus an initial fr
quency on the red side of the spectrum will be pulled tow
the blue, and vice versa. In either case, though, the amou
loss experienced by the pulse decreases overall, causi
corresponding increase in the photon density. In turn,
increase in photon density causes an increased depletio
the carriers within the diode. Since the linewidth enhan
ment of the diode creates an instantaneous frequency
that depends on the rate of change of the carriers accor
to Eq. ~33!, as we discussed earlier, there will be a red sh
ing that accompanies any decrease in the number of carr
For an initial frequency on the red side of the reflection sp
trum, then, these two effects tend to cancel each other
For an initial frequency on the blue side, however, both
reflector and the diode are causing red shifts in the
quency, which over many round trip times would result in
hop of the lasing frequency to the red side of the reflectiv
spectrum.

-

the

- FIG. 12. ~a! The maxima of Re(z) as a function of nominal
lasing frequency, using the diode parameters listed in Table I,
both the negatively chirped grating of Fig. 3~a! ~solid line! and the
positively chirped grating of Fig. 3~b! ~dashed line!. Frequencies for
which max„Re(z)….0 are unstable to growth of side mode amp
tudes. Note that only the negatively chirped grating has a sta
frequency range; we see from~b!, where we plot the correspondin
reflectivity spectrum, that this stable range~shaded region! is lo-
cated mainly on the red side of the reflectivity spectrum. The kin
result from a mode hop in the discrete side modek corresponding
to the max„Re(z)….
7-14
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STABILITY OF A SEMICONDUCTOR LASER WITH A . . . PHYSICAL REVIEW A66, 033817 ~2002!
To further emphasize the assymetry of the stable
quency range, we consider finally the stability of a differe
set of lasers, again with oppositely oriented fiber gratin
but now with fiber grating parameters corresponding direc
to the experiments of Mortonet al. @6#. The spectra of these
two gratings have the same maximum reflectivity as in
previous example, but a larger absolute grating chirp lead
to a larger spectral width. For this set of lasers, the calc
tion of z for the nominal lasing frequency at the reflectio
spectrum peak alone would indicate thatneither orientation
should result in stable cw operation. This does not give a
description of laser stability, however, since we need to c
sider the solutions ofz for the full range of frequencies
within the bandwidth of the reflector. We illustrate in Fig
13~a! and 13~b! that although the negatively chirped gratin
cannot support stable cw operation at the reflection spect
peak, it can support stable cw operation for a range of
quencies nowexclusivelyon the red side of the reflectio
spectrum. Again, the laser with the positively chirped grat
has no such stable frequency range. Thus, to explain
experimental results, it is necessary to consider this exten
calculation of laser stability.

FIG. 13. ~a! The maxima of Re(z) as a function of nominal
lasing frequency, for a negatively~solid line! and positively~dashed
line! chirped grating, each with a Bragg wavelength at the~Gauss-
ian shaped! grating center of 1535 nm, a FWHM of 1 cm, a max
mum index modulation depth of 4.831025, and a uniform back-
ground index of 1.44. The linear chirps are63.6 Å/cm, and diode
parameters are as listed in Table I. These parameters correspo
the experimental configurations of Mortonet al. @6#, though we
again neglect the dc background. Note that, again, only the n
tively chirped grating has a stable frequency range. But from~b!,
where we plot the corresponding reflectivity spectrum, we find t
this stable range~shaded region! is now located exclusively on the
red side of the reflectivity spectrum.
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V. CONCLUSIONS

We have presented an original description of the stabi
properties of extended-cavity semiconductor lasers with
persive loss, such as fiber grating semiconductor lasers. F
without assuming uniform gain within the semiconductor
ode, we derived an expression for the Laplace transform
the electric-field response to small perturbations, written
terms of an arbitrary reflection function for the dispersi
reflector. We used this formula to assess the stability of
operation with respect to growth or decay of side modes,
deduced many laser properties from an examination of
growth or decay rates of these resonances. For example
found that carrier-field coupling results in a more rapid dec
of excited side modes closest to the nominal lasing f
quency, while, not surprisingly, the incorporation of a fini
reflection spectrum width causes modes farthest from
spectrum peak to decay most rapidly, since they experie
the greatest loss. For reflection coefficients with nonz
phase curvature~corresponding to dispersion of the extern
cavity round trip time!, the Fabry-Perot mode spacing itse
is chirped, and secondary ‘‘shadow resonances’’ become
cited due to the carrier-field interaction. This second set
resonances are also nonuniformly distributed along the
quency axis, but with a chirp opposite to that of the prima
resonances. We have also shown that in the absence of
width enhancement in the semiconductor diode, the s
modes always experience decay, indicating stability. In
final example, we found that for chirped fiber grating lase
as in the experiments@6#, the orientation of the grating chirp
~and thus the sign of the reflection phase curvature! is a
crucial parameter in the determination of laser stability,
expected.

In order to understand the role of the dispersion and li
width enhancement factor in determining stability, we ha
included a more approximate model that turns out to
much more descriptive of the physical processes involved
instability. Based on our full laser equations, it is deriv
under the assumption that time scale of the onset of
instability is much longer than the round trip time of light
the extended laser cavity. We then derived an equation
the time evolution of the field that resembles a nonline
Schrödinger equation. From this we found that the pha
curvature of the reflection spectrum is analogous to the
persion parameter of the NLSE, but unlike the usual mo
lational instability results of the NLSE, stability occurs on
for a bounded range of this phase curvature. The low
bound of this range is determined by the reflection spectr
width and the linewidth enhancement factor, and is ana
gous to the boundary between anomalous and normal dis
sion in the usual NLSE; the upper bound results from car
dynamics, and is absent in the modulational instability
sults of NLSEs with instantaneous nonlinearities. The ran
is not symmetric about zero, but is centered on the posi
side of the phase curvature scale. This is again in agreem
with what experiments indicate. Finally, we found that f
stable laser configurations, the laser oscillations tend to oc
on the red side of the reflectivity spectrum. For paramet

d to

a-

t
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corresponding to the experiments of Mortonet al. @6#, only
the laser with a negatively chirped grating is stable, and la
oscillation in this case occurs exclusively on the red side
the reflection spectrum peak.
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