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Correlations in interfering electrons irradiated by nonclassical microwaves
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Electron interference in mesoscopic devices irradiated by external nonclassical microwaves is considered. In
the case of one-mode microwaves, it is shown that both the average intensity and the spectral density of the
interfering electrons are sensitive to the quantum noise of the microwaves. The results for various quantum
states of the microwaves are compared and contrasted with the classical case. Separable and entangled two-
mode microwaves are also considered and their effect on electron average intensity and autocorrelation, is
discussed.
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I. INTRODUCTION

Interference of electrons that encircle a magnetostatic
has been studied for a long time since the pioneering wor
Aharonov and Bohm@1#. It has applications in various con
texts, for example, in conductance oscillations in mesosco
rings @2#, neutron interferometry,@3# and ‘‘which-path’’ ex-
periments@4#.

A further development is the replacement of the mag
tostatic flux with an electromagnetic field. In this case,
electrons feel not only the vector potential, but also the e
tromagnetic field. Therefore, the objective in this ‘‘a
Aharonov-Bohm’’ effect is very different from the ‘‘dc
Aharonov-Bohm’’ effect~with magnetostatic flux!. In the lat-
ter case the physical reality of the vector potential has b
demonstrated and the subtleties of quantum mechanic
nontrivial topologies have been studied. The former c
constitutes a nonlinear device, where the interaction betw
the interfering electrons and the photons leads to interes
nonlinear phenomena@5#, such as amplification and fre
quency conversion. Indeed the nonlinearity can be see
the intensity of the interfering electrons, which is a sin
soidal function of the time-dependent magnetic flux. O
study is related to a recent work on the interaction of me
scopic devices with microwaves@6#.

One further step in this line of work is to use in the
experiments nonclassical microwaves, where the quan
noise is carefully controlled. In this case, we can quan
how the quantum noise destroys slightly the electron in
ference@7#. More generally, we have here two coupled qua
tum systems~photons and electrons! and we can study how
various quantum phenomena associated with the nonclas
electromagnetic field cause corresponding quantum phen
ena on the electrons. For example, we can study how
quantum statistics of photons affects the quantum statistic
the electrons, how the entanglement of two-mode noncla
cal microwaves affects the electron interference, etc.

In this paper we study how various types of nonclass
microwaves affect both the average intensity and the spe
density of the interfering electrons. The results are compa
with those for classical microwaves~Sec. II!. We also con-
sider two-mode microwaves with frequenciesv1 andv2 in
Sec. III, where we show that we get different results
rational and irrational values ofv1 /v2. We interpret these
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results in terms of emission and absorption of photons by
nonlinear device of the interfering electrons. This discuss
shows the potential use of the device for frequency conv
sion. Two-mode microwaves can be factorizable, separa
or entangled@8#. We study how such deep quantum pheno
ena in the microwaves can affect the electron interferen
The problem is complex and it is approached through
amples that demonstrate the effect. In particular, we comp
and contrast the effect on electron interference, of an
tangled microwave state with that of the corresponding se
rable microwave state. We conclude in Sec. IV with a d
cussion of our results.

II. ONE-MODE MICROWAVES

A. Classical microwaves

Interfering electric charges in mesoscopic devices that
low two different pathsC0 and C1 are considered. A mag
netic flux f is threading the surface between the two pat
This is referred to as the dc or ac Aharonov-Bohm expe
ment, according to whether the magnetic flux is time ind
pendent or time dependent, correspondingly. In the
Aharonov-Bohm experiment the electric charges feel onl
vector potential. In the ac Aharonov-Bohm experiment t
electric charges also feel an electric field, which is induc
according to Faraday’s law. The ac Aharonov-Bohm eff
can be realized experimentally: at low frequencies usin
solenoid with a suitable time-dependent current; or at h
frequencies using a waveguide, whose magnetic and ele
fields are perpendicular and parallel to the plane of the
paths, respectively~Fig. 1!.

Let c0 ,c1 be the electron wave functions with windin
numbers 0,1, respectively, in the absence of magnetic fi
The effect of the electromagnetic field is the phase fac
exp@ief(t)# and the intensity is

I ~ t !5uc01c1 exp@ ief~ t !#u2

5uc0u21uc1u212uc0uuc1uRe„exp$ i @s1ef~ t !#%…,

~1!

wheres5arg(c1)2arg(c0). Units in which kB5\5c51
are used throughout. For simplicity we consider the case
equal splitting, in whichuc0u25uc1u251/2 and lets50. In
this case we get
©2002 The American Physical Society13-1
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I ~ t !511cos@ef~ t !#. ~2!

In general, for a complex intensityI (t) the autocorrelation
function is defined as

G~t!5 lim
T→`

1

2TE2T

T

R~ t,t!dt, R~ t,t![I * ~ t !I ~ t1t!.

~3!

The following properties of the autocorrelation function a
well known:

G~2t!5G* ~t!, G~0!>0, uG~t!u<G~0!. ~4!

It will be explained later that these relations are also true
the case of nonclassical microwaves. The normalized a
correlation function is defined as

g~t!5
G~t!

G~0!
, 0<ug~t!u<1. ~5!

For one-mode microwaves, the autocorrelation funct
G(t) for the charges will be periodic with a period 2p/V,
whereV is, by definition, the frequency associated with t
periodic functionG(t). An expansion ofG(t) into a Fourier
series gives the spectral densitySK ,

SK5
V

2pE0

2p/V

G~t!exp~2 iKVt!dt,

G~t!5 (
K52`

`

SK exp~ iKVt!. ~6!

Equation~4! implies that the coefficientsSK are real num-
bers, for both classical and nonclassical microwaves.

We consider the case where the classical time-depen
flux is given by

f~ t !5f1 sin~vt !, ~7!

FIG. 1. ac Aharonov-Bohm phenomenon, where electrons in
fere in the presence of time-dependent magnetic flux~electromag-
netic field!. The electromagnetic field travels in the wavegui
shown, with the electric field parallel to the plane of the diagr
and the magnetic field perpendicular to it. The electrons follow
pathsC0 ,C1 as shown.
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and using Eqs.~2! and ~3! we find the autocorrelation func
tion

Gcl~t!5@11J0~ef1!#212 (
K51

`

@J2K~ef1!#2 cos~2Kvt!,

~8!

whereJK are Bessel functions. Comparison of Eqs.~6! and
~8! shows thatV52v and

S05@11J0~ef1!#2, SK5@J2K~ef1!#2. ~9!

We note thatSK5S2K . This is because in the classical ca
considered in this section,I (t) is real and consequentlyG(t)
is real. Therefore Eq.~4! shows thatG(t) is an even func-
tion, which implies thatSK5S2K . It is stressed that in the
nonclassical case considered next,G(t) is complex in gen-
eral andSKÞS2K .

B. Nonclassical microwaves

A monochromatic electromagnetic field of frequencyv is
considered, at temperatureskBT!\v. In quantized electro-
magnetic fields the vector potentialAi and the electric field
Ei are dual quantum variables. For a loopC5C02C1
~whereC0 andC1 are the paths corresponding to 0,1 win
ing!, which is small in comparison to the wavelength of t
microwaves, theAi and theEi can be integrated aroundC
and yield the magnetic fluxf5rCAidxi and the electromo-
tive force VEMF5rCEidxi , correspondingly, as dual quan
tum variables. The size of a mesoscopic device is usuall
the order of 0.1mm and is indeed much smaller than th
microwave wavelength. The annihilation operator is now
troduced asa5221/2j21(f1 iv21VEMF), and similarly the
creation operator, wherej is a constant proportional to th
area enclosed byC. The flux operator is consequently writte
as f(t)5exp(itH)f(0)exp(2itH), where H is the Hamil-
tonian that contains theva†a term and an interaction term
In the ‘‘external field approximation’’ the interaction term
which describes the back reaction from the electrons on
electromagnetic field, is neglected. This is a good appro
mation for external fields, which are strong in comparison
those produced dynamically by the currents in the me
scopic device~back reaction!. In this approximation the in-
teraction term can be ignored, and we get

f̂~ t !5
j

A2
@exp~ ivt !a†1exp~2 ivt !a#. ~10!

The phase factor exp(ief) is now the operator

exp@ ief̂~ t !#5D@ iq exp~ ivt !#, q5
je

A2
, ~11!

where D(l) is the displacement operatorD(l)5exp(la†

2l*a). The interference between the two electron beam
described by the intensity operator

r-

e

3-2



as
tio

in

te
ie
e
tr

e
h
tic
-
co
th
e
th

d

um-

es
-
s.

as

d
to

n-
ntly
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Î ~ t !511cos@ef̂~ t !#

511 1
2 D@ iq exp~ ivt !#1 1

2 D@2 iq exp~ ivt !#.

~12!

Let r be the density matrix describing the external noncl
sical microwaves. We can now calculate the expecta
value of the electron intensity

^I ~ t !&[Tr@r Î ~ t !#511 1
2 W̃~l!1 1

2 W̃~2l!;

l5 iq exp~ ivt !, ~13!

where Tr@rD(l)#[W̃(l) is the Weyl ~or characteristic!
function that has been studied by various authors includ
ourselves~e.g., Ref.@9#, and references therein!. The tilde in
the notation reflects the fact that the Weyl function is rela
to the Wigner function through a two-dimensional Four
transform. Physically the Tr@r Î (t)# describes the exchang
of photons between the electrons and the external elec
magnetic field. Expansion of the exponentials in Eq.~13!
gives an infinite sum of the terms of the typ
Tr@r(ae2 ivt)N(a†eivt)M# which describe processes in whic
the electrons emitM photons to the external electromagne
field and at the same time absorbN photons from the exter
nal electromagnetic field. Summation of the appropriate
efficients leads to Bessel functions that appear in most of
calculations throughout the paper. We note that a similar
pansion and a similar interpretation can also be made in
classical microwave case. However, in this case, instea
-
is
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creation and annihilation operators we have classical n
bers and the interpretation is perhaps less convincing.

Reference@10# has considered several density matric
and presented results forW̃(l). Using them we have calcu
lated ^I (t)& for various quantum states of the microwave
We are also interested in the quantity

R~ t,t![Tr@r Î †~ t ! Î ~ t1t!# , ~14!

which is calculated for various density matrices, as well
G(t) using Eq.~3!. The Fourier series of Eq.~6! leads to the
coefficientsSK .

We note that using the relation

G~t!5 lim
T→`

1

2TE2T

T

Tr@r Î †~ t ! Î ~ t1t!#dt ~15!

in conjunction with the fact that for any operatorÔ,
Tr(Ô†)5@Tr(Ô)#* , we proveG(2t)5G* (t) and therefore
the coefficientsSK are real numbers. As we already pointe
out, G(t) is in general complex. This is intimately related
the fact that the operatorsÎ †(t) and Î (t1t) do not commute.
In fact, the imaginary part of R(t,t) is
2 i (1/2)Tr„r@ Î (t), Î (t,t)#…. In the classical case, these qua
tities are not operators, they commute and conseque
R(t,t) is real.

1. Microwaves in coherent states

For coherent statesuA&5D(A)u0& the R(t,t) is
Rcoh~ t,t!511expS 2
q2

2 D cos@2quAu cos~vt2uA!#1expS 2
q2

2 D cos@2quAu cos~vt1vt2uA!#

1
1

2
exp$2q2@11exp~ ivt!#% cosF4q cosS vt

2 D uAu cosS vt1
vt

2
2uAD G

1
1

2
exp$2q2@12exp~ ivt!#% cosF4q sinS vt

2 D uAu sinS vt1
vt

2
2uAD G , ~16!
is
whereuA5arg(A). Using Eq.~15!, the electron autocorrela
tion function G(t) for microwaves in coherent states
found as

Gcoh~t!5112 expS 2
q2

2 D J0~2quAu!

1
1

2
exp$2q2@12exp~ ivt!#%J0F4q sinS vt

2 D uAuG
1

1

2
exp$2q2@11exp~ ivt!#%

3J0F4q cosS vt

2 D uAuG . ~17!
In contrast to the case of classical microwaves,Gcoh(t) is
now a complex function andSKÞS2K . This is a periodic
function with periodp/v and a Fourier series analysis
performed numerically as in Eq.~6!.

2. Microwaves in squeezed states

Squeezed states are defined as

uB;rq&5S~rq!uB&5S~rq!D~B!u0&, ~18!

S~rq!5expF2
r

4
exp~2 iq!a†21

r

4
exp~ iq!a2G , ~19!
3-3
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C. C. CHONG, D. I. TSOMOKOS, AND A. VOURDAS PHYSICAL REVIEW A66, 033813 ~2002!
where S(rq) is the squeezing operator. The expectat
value for the electronRsq(t,t) is given by

Rsq~ t,t!511exp~2Y1! cos~X1!1exp~2Y2! cos~X2!

1
1

2
exp@2 iq2 sin~vt!# exp~2Y3! cos~X3!

1
1

2
exp@ iq2 sin~vt!# exp~2Y4! cos~X4!,

~20!

whereYj andXj are given in the Appendix. Using this resu
we have calculated theGsq(t) numerically. It can easily be
verified that forr 50 the squeezed states results reduce to
coherent states results.Gsq(t) is a periodic function with
period p/v and a Fourier series analysis is performed n
merically as in Eq.~6!.

3. Microwaves in thermal states

For thermal states, theR(t,t) is

Rth~ t,t!5112 expF2
q2

2
cothS bv

2 D G1
1

2
expF iq2 sin~vt!

22q2 sin2S vt

2 D cothS bv

2 D G
1

1

2
expF2 iq2 sin~vt!

22q2 cos2S vt

2 D cothS bv

2 D G ~21!

and clearlyG th(t)5Rth(t). The G th(t) is a periodic func-
tion with periodp/v and its Fourier coefficients are calcu
lated numerically.

C. Results

Numerical results are presented for the four cases: cla
cal microwaves and nonclassical microwaves in coher
squeezed, and thermal states. For a meaningful compar
we consider the case where the average number of pho
^N& in coherent, squeezed, and thermal states is the sam

^N&5uAu25FsinhS r

2D G2

1FcoshS r

2D2sinhS r

2D G2

B2

5
1

exp~bv!21
. ~22!

For the classical case we tookf1
252uAu252^N&. In all re-

sults of Figs. 2 to 5,v51024 ~which in our units is eV!,
^N&5100, r 55.5.

Figure 2 shows thêI (t)& as a function ofvt. In Fig. 3,
the absolute value of the normalized autocorrelation func
ug(t)u @Eq. ~5!# is shown as a function ofvt. The period of
ug(t)u is p/v ~i.e.,V52v) and the plots are presented fro
0 to p. As explained earlier,g(t) is real in the case o
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classical microwaves, but it is complex in general, in t
case of nonclassical microwaves. This is shown explicitly
Fig. 4, which includes the imaginary parts ofg(t) for all
cases, as a function ofvt. Figure 5 shows the Fourier coe
ficientsSK (K522, . . . ,2).

The results quantify the effect of quantum noise on int
ference. All microwaves that we have considered have
same average number of photons and they differ in the qu
tum noise. For the classical microwaves~where the concep
of the number of photons is not applicable! the amplitude is
equal to the amplitude of the microwaves in the coher
state. These four types of microwaves lead to different e
tron interference results. Figure 2 shows clearly that^I (t)& is
different in all these cases. Figure 3 shows that the abso
normalized electron autocorrelations are different, with
exception of the classical result which is almost identical
the coherent result. The imaginary part of the electron au
correlation~Fig. 4! distinguishes the classical from the no

FIG. 2. ^I (t)& as a function ofvt for v51024, ^N&5100, r
55.5. We use units where\5kB5c51.

FIG. 3. ug(t)u as a function ofvt for v51024, ^N&5100, r
55.5. We use units where\5kB5c51.
3-4
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CORRELATIONS IN INTERFERING ELECTRONS . . . PHYSICAL REVIEW A 66, 033813 ~2002!
classical microwave cases. It is zero for classical microwa
and takes various distinct nonzero values for different ty
of nonclassical microwaves. The same effect can also
seen through the spectral density coefficientsSK in Fig. 5,
which are simply the Fourier transform of the electron au
correlation function@Eq. ~6!#.

III. TWO-MODE MICROWAVES

A. Classical microwaves

The case of classical two-mode microwaves

f~ t !5f1 sin~v1t !1f2 sin~v2t ! ~23!

is considered. In this case, Eq.~2! gives the electron intensity

I ~ t !511cos@ef1 sin~v1t !1ef2 sin~v2t !#, ~24!

which is a periodic function. The autocorrelation function
different in the two cases where the ratiov1 /v2 takes ratio-
nal and irrational values. The physical reason for this is t

FIG. 4. Im@g(t)# as a function ofvt for v51024, ^N&
5100, r 55.5. We use units where\5kB5c51.
03381
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in the rational case, wherev1 /v25P/Q and P,Q are
coprime integers, the nonlinear system can act as a frequ
converter by absorbingQ photons of frequencyv1 and emit-
ting P photons of frequencyv2. The relationQv15Pv2
expresses the conservation of energy. In the irrational c
the system cannot act as a frequency converter simply
cause there is no analogous relation for the conservatio
energy.

Combining Eqs.~3! and~24! it is found that in the case o
irrational v1 /v2, the autocorrelation is

G ir ~t!5112J0~ef1!J0~ef2!1 (
n,k52`

`

m~t!

3@Jn~ef1!#2@J2k2n~ef2!#2, ~25!

wherem(t)5exp„2 i @nv11(2k2n)v2#t…. In the case that
the ratiov1 /v25P/Q ~rational!, the autocorrelation is

FIG. 5. SK (K522, . . . ,2) for v51024, ^N&5100, r 55.5.
The four columns of each value ofK represent from left to right
classical, coherent, thermal, and squeezed microwaves. We
units where\5kB5c51.
G ra~t!511 (
n52`

`

JQn~ef1!J2Pn~ef2!1 (
n52`

`

JQn~2ef1!JPn~ef2!

1
1

4 (
n,m,N52`

`

n~t!Jn~ef1!Jm~ef2!JNQ2n~ef1!JNP2m~ef2!1
1

4 (
n,m,N52`

`

n~t!Jn~ef1!Jm~ef2!

3JNQ2n~2ef1!JNP2m~2ef2!1
1

4 (
n,m,N52`

`

n~t!Jn~2ef1!Jm~2ef2!JNQ2n~ef1!JNP2m~ef2!

1
1

4 (
n,m,N52`

`

n~t!Jn~2ef1!Jm~2ef2!JNQ2n~2ef1!JNP2m~2ef2!, ~26!
3-5
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C. C. CHONG, D. I. TSOMOKOS, AND A. VOURDAS PHYSICAL REVIEW A66, 033813 ~2002!
wheren(t)5exp@i(NQ2n)v1t1i(NP2m)v2t#. It is interest-
ing to explain the results of Eqs.~25! and ~26! taking into
account the interpretation of the expansion of the expon
tials in terms of the emission/absorption of photons@dis-
cussed after Eq.~13!# in conjunction with the above com
ments about frequency conversion. For example, in the
term of Eq. ~26! for the rational case, the system emitsn
photons of frequencyv1 at time t @related to an exponentia
exp(inv1t)]; emits NQ2n photons of frequencyv1 at time
(t1t) „related to an exponential exp@i(NQ2n)v1(t1t)#…; ab-
sorbsm photons of frequencyv2 at time t @related to an
exponential exp(2imuv2ut)]; and absorbsNP2m photons of
frequency v2 at time (t1t) „related to an exponentia
exp@2i(NP2m)uv2u(t1t)#…. Taking into account the relation
v1 /v252P/Q we see that the product of these expone
tials is the factorn(t). Similarly, in the last term of Eq.~25!
for the irrational case, the system emitsn photons of fre-
quencyv1 at time t; absorbsn photons of frequencyv1 at
time (t1t); absorbs (2k2n) photons of frequencyv2 at
time t; and emits (2k2n) photons of frequencyv2 at time
(t1t). In this case there is no transfer of energy~frequency
conversion! between the two frequencies. As previously, t
factorm(t) is related to the exponentials associated with
absorption/emission of photons. Clearly, the electron au
correlation is a periodic function oft only in the rational
case.

B. Entangled two-mode microwaves

We next consider nonclassical two-mode microwaves.
are particularly interested in studying how entangled tw
mode microwaves affect the electron interference. For
reason we consider the entangled stateus&5221/2(u01&
1u10&) where u01&,u10& are two mode number eigenstate
For comparison, we also consider the separable~disen-
tangled! state

rsep5
1
2 ~ u01&^01u1u10&^10u!. ~27!

Clearly, the density matrix of the entangled staterent
5us&^su can be written as

rent5rsep1
1
2 ~ u01&^10u1u10&^01u!. ~28!

In this case, using Eq.~13! with

Î ~ t !511 1
2 D1~l1!D2~l2!1 1

2 D1~2l1!D2~2l2!;

l j5 iq exp~ iv j t ! ~29!

for two modes (j 51,2) we find that

^I ~ t !&sep511~12q2! exp~2q2!, ~30!

^I ~ t !&ent5^I ~ t !&sep2q2 exp~2q2! cos@~v12v2!t#.
~31!
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These results are presented in Fig. 6. It is seen that for
example we considered,^I (t)&sep is constant in time, while
^I (t)&ent is an oscillatory function of time.R(t,t) has also
been calculated using Eq.~14!. In the separable case, th
result does not depend ont and therefore

Gsep~t!5Rsep~ t,t!511~222q2!exp~2q2!

1 1
2 @122q2~s1

21s2
2!#exp@ iq2~d11d2!#

3exp@22q2~s1
21s2

2!#1 1
2 @122q2~c1

21c2
2!#

3exp@2 iq2~d11d2!#exp@22q2~c1
21c2

2!#,

~32!

where dj5sin(vjt), sj5sin(vjt/2), cj5cos(vjt/2) and
j 51,2. This is a periodic function oft only if the ratio

FIG. 7. uGsep(t)u as a function ofv2t for the case of Eq.~27!.
We use units where\5kB5c51.

FIG. 6. ^I (t)& as a function oft(v12v2) for the separable and
entangled cases of Eqs.~27! and ~28!. We use units where\5kB

5c51.
3-6
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of v1 /v2 is rational. Indeed, it can easily be verified th
if v1 /v25P/Q, where P and Q are coprime integers
then the period is (2pP)/v15(2pQ)/v2. The Gsep(t)
is a quasiperiodic function oft, if the ratio of v1 /v2 is
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03381
irrational. In Fig. 7, we present the absolute value ofGsep(t)
as a function of v2t for the casev151.231024, v2
51024.

In the entangled~nonseparable! microwave case
Rent~ t,t!5Rsep~ t,t!2q2 exp~2q2! cos@~v12v2!t#2q2 exp~2q2! cos@~v12v2!~ t1t!#22q2s1s2 exp@ iq2~d11d2!#

3exp@22q2~s1
21s2

2!# cosF ~v12v2!S t1
t

2D G22q2c1c2 exp@2 iq2~d11d2!# exp@22q2~c1
21c2

2!#

3cosF ~v12v2!S t1
t

2D G . ~33!
With regard to the periodicity ofRent(t,t) as a function oft,
similar comments can be made as forGsep(t). We note that
Rsep(t,t) is independent oft while Rent(t,t) is equal to
Rsep(t,t) plus an extra term that is a periodic function ot
with period (2p)/(v12v2). Therefore, integration with re
spect tot leads to the result thatGent(t)5Gsep(t).

IV. DISCUSSION

There has been a lot of work in the last few years on
interaction of mesoscopic devices with microwaves~e.g.,
Ref. @6#!. In this, paper we have considered nonclassical
crowaves that are carefully prepared in a particular quan
state and where the quantum noise is carefully control
We have studied how quantum phenomena in the mic
waves affect quantum phenomena in the interfering e
trons.

We have quantified the effect of the quantum noise
electron interference. More specifically we have calcula
both the average intensity and the spectral density of
interference electrons for several types of nonclassical
crowaves~Figs. 2–5!. A comparison of the results with th
case of classical microwaves demonstrates clearly the in
ence of the quantum noise on the interference. The non
value of Im@g(t)# in Fig. 4 is a purely quantum-mechanic
result due to the noncommutativity of the quantu
mechanical operatorsÎ (t) and Î (t1t). This quantity is zero
in the classical case.

We have also considered two-mode microwaves, wh
we have shown that we get different results for rational a
irrational values of the ratiov1 /v2. We have interpreted
these results in terms of emission and absorption of pho
by the nonlinear device of the interfering electrons. We ha
also considered both separable and entangled microw
and quantified their effect on the interference~Figs. 6 and 7!.
The different results in these two cases demonstrate how
deep quantum phenomenon of microwave entanglemen
fects electron interference.

APPENDIX

The terms entering the squeezed states result in Eq.~20!
are
e

i-
m
d.
-

c-

n
d
e
i-

u-
ro

-

re
d

ns
e
es

he
f-

Y15
q2

2
@cosh~r !2sinh~r ! cos~2vt1q!#,

X152quBuFcoshS r

2D cos~vt2uB!2sinhS r

2D
3cos~vt1uA1q!G ,

Y25
q2

2
@cosh~r !2sinh~r ! cos~2vt12vt1q!#,

X252quBuFcoshS r

2D cos~vt1vt2uB!2sinhS r

2D
3cos~vt1vt1uB1q!G ,

Y352q2 cos2S vt

2 D @cosh~r !2sinh~r ! cos~2vt1vt1q!#,

X354quBu cosS vt

2 D FcoshS r

2D cosS vt1
vt

2
2uBD

2sinhS r

2D cosS vt1
vt

2
1uB1q D G ,

Y452q2 sin2S vt

2 D @cosh~r !1sinh~r ! cos~2vt1vt1q!#,

X454quBu sinS vt

2 D FcoshS r

2D sinS vt1
vt

2
2uBD

2sinhS r

2D sinS vt1
vt

2
1uB1q D G .
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