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Correlations in interfering electrons irradiated by nonclassical microwaves
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Electron interference in mesoscopic devices irradiated by external nonclassical microwaves is considered. In
the case of one-mode microwaves, it is shown that both the average intensity and the spectral density of the
interfering electrons are sensitive to the quantum noise of the microwaves. The results for various quantum
states of the microwaves are compared and contrasted with the classical case. Separable and entangled two-
mode microwaves are also considered and their effect on electron average intensity and autocorrelation, is
discussed.
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I. INTRODUCTION results in terms of emission and absorption of photons by the
nonlinear device of the interfering electrons. This discussion
Interference of electrons that encircle a magnetostatic flughows the potential use of the device for frequency conver-
has been studied for a long time since the pioneering work o$ion. Two-mode microwaves can be factorizable, separable,
Aharonov and Bohnf1]. It has applications in various con- ©OF entangled8]. We study how such deep quantum phenom-
texts, for example, in conductance oscillations in mesoscopign@ in the microwaves can affect the electron interference.
rings [2], neutron interferometry3] and “which-path” ex- ~ The problem is complex and it is approached through ex-
periments 4]. amples that demonstrate the effect. In particular, we compare
A further development is the replacement of the magneand contrast the effect on electron interference, qf an en-
tostatic flux with an electromagnetic field. In this case, thet@ngled microwave state with that of the corresponding sepa-
electrons feel not only the vector potential, but also the electable microwave state. We conclude in Sec. IV with a dis-
tromagnetic field. Therefore, the objective in this “ac Cussion of our results.
Aharonov-Bohm” effect is very different from the “dc
Aharonov-Bohm” effect(with magnetostatic flux In the lat-
ter case the physical reality of the vector potential has been A. Classical microwaves
demonstrated and the subtleties of quantum mechanics in
nontrivial topologies have been studied. The former case
constitutes a nonlinear device, where the interaction betwee
the interfering electrons and the photons leads to interestin
nonlinear phenomen@s], such as amplification and fre-
guency conversion. Indeed the nonlinearity can be seen i

Il. ONE-MODE MICROWAVES

Interfering electric charges in mesoscopic devices that fol-
w two different pathsC, and C, are considered. A mag-
etic flux ¢ is threading the surface between the two paths.
his is referred to as the dc or ac Aharonov-Bohm experi-
ment, according to whether the magnetic flux is time inde-
the intensity of the interfering electrons, which is a sinu—pendent or time dep_endent, correspondmgly. In the dc
soidal function of the time-dependent magnetic flux. Ou haronov-Bohm experiment the electric charges f_eel only a
study is related to a recent work on the interaction of mesoY &Ctor potential. In the ac Aharonc_)v-E_sohm experiment the
scopic devices with microwave]. eIectrlc_ charges also lfeel an electric field, which is induced

One further step in this line of work is to use in theseaccOrdlng tq Faradayg law. The ac Aharonov-Bphm effect
experiments nonclassical microwaves, where the quantur‘ﬁan be_ rea_llzed expenme_ntally: at low frequenc.les using a
noise is carefully controlled. In this case, we can quan,[ifysolenmd with a suitable time-dependent current; or at high

how the quantum noise destroys slightly the electron interfrequenues using a waveguide, whose magnetic and eleciric

ferencg 7]. More generally, we have here two coupled quan-f'zlt?]‘z arreespgcr:%(\e/g?;‘:ciularl)and parallel to the plane of the two
tum systemgphotons and electropsind we can study how P L t P be th g-l .t functi ith windi
various quantum phenomena associated with the nonclassical el iho, 4, be the electron wave functions with winding

electromagnetic field cause corresponding quantum pheno umbers 0,1, respectively, in the absence of magnetic field.

ena on the electrons. For example, we can study how th he_effect of the e_Iectro_ma_gnetic field is the phase factor
guantum statistics of photons affects the quantum statistics cﬁx;ﬂe(ﬁ(t)] and the intensity is

the el_ectrons, how the entanglemen'; of two-mode nonclassi- ()= o+ ¢y exlied(t)]|2

cal microwaves affects the electron interference, etc.

In this paper we study how various types of nonclassical =|do| %+ | 1|2+ 2| ho| | 1| Re(eXPi[ o+ (1) ]}),
microwaves affect both the average intensity and the spectral 1)
density of the interfering electrons. The results are compared
with those for classical microwavéSec. ). We also con- where o=arg(;) —arg(yp). Units in whichkg=A=c=1
sider two-mode microwaves with frequencies andw, in  are used throughout. For simplicity we consider the case of
Sec. Ill, where we show that we get different results forequal splitting, in whicH yg|2=|y|>=1/2 and leto=0. In
rational and irrational values ab,/w,. We interpret these this case we get
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B and using Egs(2) and(3) we find the autocorrelation func-
- - tion
c € .
0
J—4u Pa(7)=[1+3o(e¢1) ?+2 2, [Jo(eby)]* cot 2K w1),
—Z —> ®
c, 1 ) I whereJi are Bessel functions. Comparison of E(®). and
(] (8) shows that)=2w and
scroen So=[1+Jo(eh)]®,  Sk=[Jk(ed1)]*. 9

FIG. 1. ac Aharonov-Bohm phenomenon, where electrons interVe note thatSc=S_y . This is because in the classical case
fere in the presence of time-dependent magnetic fectromag- ~ considered in this sectioh(t) is real and consequently( )
netic field. The electromagnetic field travels in the waveguideis real. Therefore Eq4) shows thatl’(7) is an even func-
shown, with the electric field parallel to the plane of the diagramtion, which implies thaiS¢=S_ . It is stressed that in the
and the magnetic field perpendicular to it. The electrons follow thenonclassical case considered ndx{r) is complex in gen-

pathsC,,C; as shown. eral andSx#S_g .
I(t)=1+codeq(t)]. v B. Nonclassical microwaves
In general, for a complex intensityt) the autocorrelation A monochromatic electromagnetic field of frequenaeys
function is defined as considered, at temperaturkgT <A w. In quantized electro-
magnetic fields the vector potentid| and the electric field

1T . E; are dual quantum variables. For a logp=Cy,—C;
I'(7)=lim 5= 7TR(t'T)dt’ R(t,)=1"(O1(t+ 7). (whereC, andC, are the paths corresponding to 0,1 wind-
3) ing), which is small in comparison to the wavelength of the
microwaves, theA; and theE; can be integrated arourd
The following properties of the autocorrelation function are@nd yield the magnetic flu=4A;dx and the electromo-
well known: tive force Vegye=9cE;dx;, correspondingly, as dual quan-
tum variables. The size of a mesoscopic device is usually of
(—7n=I*(7), TI(0)=0, |[I'(n|<I'(0). (4 the order of 0.1um and is indeed much smaller than the
microwave wavelength. The annihilation operator is now in-
It will be explained later that these relations are also true inroduced aa=2"Y%¢"(¢+iw *Vgye), and similarly the
the case of nonclassical microwaves. The normalized autareation operator, wheré is a constant proportional to the

T—oo

correlation function is defined as area enclosed b§. The flux operator is consequently written
as ¢(t)=exp(tH)»(0)exp(itH), where H is the Hamil-

(r)= 0<|y(n|=1 (5) tonian that contains thea'a term and an interaction term.

Y rao)’ Y | In the “external field approximation” the interaction term,

which describes the back reaction from the electrons on the
For one-mode microwaves, the autocorrelation functiorelectromagnetic field, is neglected. This is a good approxi-
I'(7) for the charges will be periodic with a period72},  mation for external fields, which are strong in comparison to
where(} is, by definition, the frequency associated with thethose produced dynamically by the currents in the meso-
periodic functionl’(7). An expansion of’(7) into a Fourier  scopic device(back reaction In this approximation the in-

series gives the spectral dens8y, teraction term can be ignored, and we get
QO (270 _ A ¢
Sﬁgfo ['(7)exp(—iKQ7)d7, ¢(t)=E[exp(iwt)a“rexq—iwt)a]. (10)
T(r)= 3 ScexpiKQn. 6) The phase factor exjg) is now the operator
K=—o
. - . . : : e
Equation(4) implies that the coefficient§g are real num- exdieg(t)]=D[igexpiwt)], q=-—=, (11
bers, for both classical and nonclassical microwaves. V2
We consider the case where the classical time-dependent
flux is given by where D()\) is the displacement operat@(\)=expQa’
—\*a). The interference between the two electron beams is
(1) = ¢y sin(wt), (7)  described by the intensity operator
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T(t)=1+codedp(t)] creation and annihilation operators we have classical num-
bers and the interpretation is perhaps less convincing.
=1+3D[iq expiwt)]+ D[ —igexpliot)]. Reference[10] has considered several density matrices

(12) and presented results f@¥(\). Using them we have calcu-
lated (I(t)) for various quantum states of the microwaves.
Let p be the density matrix describing the external nonclas\We are also interested in the quantity
sical microwaves. We can now calculate the expectation

value of the electron intensity R(t,)=Trpl (DI (t+7)], (14)
(Y=Trpl(t)]=1+ W) + 3 W(—)N); which is calculated for various density matrices, as well as
I'(7) using Eq.(3). The Fourier series of E@6) leads to the
N=iq exp(iwt), (13)  coefficientsSy .

We note that using the relation
where TEpD(N\)]=W()\) is the Weyl (or characteristic
function that has been studied by various authors including
ourselvege.g., Ref[9], and references thergirThe tilde in
the notation reflects the fact that the Weyl function is related
to the Wigner function through a two-dimensional Fourieriy conjunction with the fact that for any operat®,

transform. Physically the Tpi(t)] describes the exchange Tr(O")=[Tr(®)]*, we provel'(— 7)=I*(7) and therefore
of photons between the electrons and the external electrgne coefficientsS, are real numbers. As we already pointed
magnetic field. Expansion of the exponentials in E¥3)  out, I'(7) is in general complex. This is intimately related to

gives an infinite sum of the terms of the type th o -
Ot Ng ot ity M . . . . e fact that the operatoté(t) andl (t+ 7) do not commute.
Tr p(ae™'“YN(a'e'“")"] which describe processes in which In  fact, the imaginary part of R(t,7) is

the electrons emi#l photons to the external electromagnetic P .
field and at the same time absdsbphotons from the exter- 1 (1/2)Trp[1(t),1(t,7)]). In the classical case, these quan-
nal electromagnetic field. Summation of the appropriate colilieS aré not operators, they commute and consequently
efficients leads to Bessel functions that appear in most of th&(t,7) is real.
calculations throughout the paper. We note that a similar ex-

pansion and a similar interpretation can also be made in the

classical microwave case. However, in this case, instead of For coherent statg#\)=D(A)|0) the R(t,7) is

T

I'(r)= Iim% T pl T(H)1(t+ 7)]dt (15)
-T

T—oo

1. Microwaves in coherent states

2 2
Rcoh(t,r)=1+ex;{ - %) cog 2q|A| cof wt— 0A)]+exp< - %) cog2q|A| cof wt+wT—6,)]

1 2 . wT wT
+§exp[—q [1+expioT)]} cos{4q c05<7)|A| cos( wt+7—9A)
1 2 . .| wT i wT
+3 exp{—q°[l—expior)]} cos{4qsm(7)|A| sin wt+7—0A) , (16)

whered,=arg(A). Using Eq.(15), the electron autocorrela- In contrast to the case of classical microwavEg,(7) is
tion function I'(7) for microwaves in coherent states is now a complex function an®c#S_x . This is a periodic
found as function with period7/w and a Fourier series analysis is

9 performed numerically as in E¢6).

q
Feon(m)=1+2 eXF< - 7) JO(2q|A|)
2. Microwaves in squeezed states

+ %exp{—qz[l—exp(iwr)]}.lo 4q sin(%) |A|} Squeezed states are defined as

+%exp{—q2[1+exqiw7)]} |B;rd)=S(r9)|B)=S(r9)D(B)|0), (18)
wT r r

X Jo| 49 COE{?)W}- 17 S(rﬁ)=ex;{—zexp(—iq_‘})a*2+z exp(i9)a2|, (19
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where S(r¥9) is the squeezing operator. The expectation

value for the electroiRg((t, 7) is given by

Rsq(t,7)=1+exp(— Y1) cog Xy) +exp(—Y;) cogX,)

+ % exd —ig?sin(wr)] exp(—Y3) cog Xs3)

+ % exdig?sifw7)] exp(—Y,) cogXy),

(20

whereY; andX; are given in the Appendix. Using this result
we have calculated thEg,(7) numerically. It can easily be

verified that forr =0 the squeezed states results reduce to the

coherent states resultssi(7) is a periodic function with

period 7/ w and a Fourier series analysis is performed nu-

merically as in Eq(6).
3. Microwaves in thermal states
For thermal states, thig(t,7) is

1,
+§ex ig°sin(wr)

9> [Bw
Rip(t,7)=1+2 exr{ - ?Coti'<7

-2q° sinz< %T) cotl‘( B;)

1 o
+5 exp{—lqzsm(wr)

g2 or Bo
2q cosZ( > )cot)-( > )
and clearlyl'yy(7) =Rin(7). TheT'y(7) is a periodic func-

tion with period#w/w and its Fourier coefficients are calcu-
lated numerically.

(21)

C. Results

PHYSICAL REVIEW &6, 033813 (2002
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FIG. 2. (I(t)) as a function ofwt for =104, (N)=100, r
=5.5. We use units wherk=kg=c=1.

classical microwaves, but it is complex in general, in the
case of nonclassical microwaves. This is shown explicitly in
Fig. 4, which includes the imaginary parts ¢fr) for all
cases, as a function afr. Figure 5 shows the Fourier coef-
ficientsSx (K=-2,...,2).

The results quantify the effect of quantum noise on inter-
ference. All microwaves that we have considered have the
same average number of photons and they differ in the quan-
tum noise. For the classical microwav@ghere the concept
of the number of photons is not applicabtbe amplitude is
equal to the amplitude of the microwaves in the coherent
state. These four types of microwaves lead to different elec-
tron interference results. Figure 2 shows clearly thét)) is
different in all these cases. Figure 3 shows that the absolute
normalized electron autocorrelations are different, with the
exception of the classical result which is almost identical to
the coherent result. The imaginary part of the electron auto-
correlation(Fig. 4) distinguishes the classical from the non-

Numerical results are presented for the four cases: classi- 4 4
cal microwaves and nonclassical microwaves in coherent

squeezed, and thermal states. For a meaningful comparisor 19

we consider the case where the average number of photor
(N) in coherent, squeezed, and thermal states is the same,

r\]? r r\1? 0.8
=|Al?2=| sinh = _| —ainh — 2

(N)=1A| sm%(z + cosr{z) smf(zﬂ B o7
1 . 0.6
exp Bw)—1" 05
For the classical case we to@k=2|A|?=2(N). In all re- 0.4

sults of Figs. 2 to 5w=10* (which in our units is eV,
(N)=100, r=5.5. 03

Figure 2 shows thél(t)) as a function ofwt. In Fig. 3, 0

) ] ) 2
the absolute value of the normalized autocorrelation function 0

|v(7)| [Eqg. (5)] is shown as a function af 7. The period of

x

o Classical
—— Coherent

Thermal
Squeezed

|¥(7)|is mlw (i.e.,Q0=2w) and the plots are presented from  FIG. 3. |y(7)| as a function ofw for @=10"%, (N)=100, r
0 to 7. As explained earlier;y(7) is real in the case of =5.5. We use units wherk=kg=c=1.
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FIG. 4. In{y(7)] as a function ofwr for w=10"% (N)
=100, r=5.5. We use units wherk=kg=c=1. FIG. 5. S (K=-2,...,2) foro=10"% (N)=100, r=5.5.
The four columns of each value &f represent from left to right
classical, coherent, thermal, and squeezed microwaves. We use
classical microwave cases. It is zero for classical microwavesnits wherei =kg=c=1.
and takes various distinct nonzero values for different types
of nonclassical microwaves. The same effect can also be . _
seen through the spectral density coefficieBtsin Fig. 5, n the r{:monal case, Whera’ll‘"2_P/Q and P.Q are
which are simply the Fourier transform of the electron auto--OPNMe Integers, th? nonlinear system can act as a frequency
correlation functiorEq. (6)]. cpnverter by absorbin@ photons of frequer_1c;o1 and emit-
ting P photons of frequencyw,. The relationQw,=Pw,
expresses the conservation of energy. In the irrational case,
the system cannot act as a frequency converter simply be-
A. Classical microwaves cause there is no analogous relation for the conservation of
energy.
Combining Eqs(3) and(24) it is found that in the case of
irrational w, / w5, the autocorrelation is

IIl. TWO-MODE MICROWAVES

The case of classical two-mode microwaves

(1) = p1sin(w1t) + ¢, Sin(w,t) (23

o

i idered. In thi , i the electron intensit
is considered. In this case, EQ) gives the electron intensity F"(T):1+2‘]°(e¢1)‘]°(e¢2)+nyi§,w u(7)

I(t)=1+cog e, Sin(wit)+edssin(wst)], 24

v tedismosredzsme). (29 X[In(€h1) 1L Iz n(eh2) 12 (25
which is a periodic function. The autocorrelation function is
different in the two cases where the ratiq/w, takes ratio- whereu(7)=exp(—i[nw;+(2k—n)w,]7). In the case that
nal and irrational values. The physical reason for this is thathe ratiow;/w,=P/Q (rationa), the autocorrelation is

() =1+ 2 Jon(€h)d pr(€2)+ 2 Jon(~ed1)Ipn(edr)

1 < 1 <
T2 2 vDIn(ed)In(ed)Ingn(ebD)Inpm(ed) 7 X w(1)In(edn)In(edy)

[’

1
XIng-n(—€d1)Inp-m(—€¢2) + . mNE V(7)In(—€¢1)Im(—ed2)Ing-n(€h1)Inp-m(€d2)

©

1
7 2 UDIn(—edn)In(—ed2)Ing-n(—ed1)Inp-m(—edy), (26

n,mN=—o
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wherev(7) =exgi(NQ—N)w,7+i(NP—m)w,7]. It is interest-
ing to explain the results of Eq$25) and (26) taking into

account the interpretation of the expansion of the exponen:

tials in terms of the emission/absorption of photduss-
cussed after Eq(13)] in conjunction with the above com-

ments about frequency conversion. For example, in the las

term of Eq.(26) for the rational case, the system emits
photons of frequency; at timet [related to an exponential
expinw;t)]; emits NQ—n photons of frequency; at time
(t+ 7) (related to an exponential fNQ—n)w,(t+7)]); ab-
sorbsm photons of frequency, at timet [related to an
exponential exptim|w,|t)]; and absorbd P—m photons of
frequency w, at time (+7) (related to an exponential
exd —i(NP—m)|w,|(t+7)]). Taking into account the relation

wi/w,=—P/Q we see that the product of these exponen-

tials is the factow (7). Similarly, in the last term of E¢25)

for the irrational case, the system emitsphotons of fre-
guencyw; at timet; absorbsn photons of frequencw; at
time (t+ 7); absorbs (R—n) photons of frequency, at
time t; and emits (R—n) photons of frequencw, at time
(t+ 7). In this case there is no transfer of eneffequency
conversion between the two frequencies. As previously, the

factor u(7) is related to the exponentials associated with the

absorption/emission of photons. Clearly,
correlation is a periodic function of only in the rational
case.

B. Entangled two-mode microwaves

the electron auto-

PHYSICAL REVIEW &6, 033813 (2002

1.95f

1.9f
A

£1.85t
A\

1.8f

1.75f — entangled

o separable

1.7
0

1'0 12
((x)1 -(oz)t

FIG. 6. (I(t)) as a function ot(w,— w,) for the separable and

entangled cases of EqR7) and (28). We use units wheré =kg

T
example we consideredl (t))sep iS constant in time, while

(I(t)Yent Is an oscillatory function of timeR(t,7) has also

been calculated using E@l4). In the separable case, the

result does not depend drand therefore

l_‘sep( T)= Rsep(ta 7)=1+(2- 2q2)exp( - qz)

We next consider nonclassical two-mode microwaves. We

are particularly interested in studying how entangled two-
mode microwaves affect the electron interference. For this

reason we consider the entangled stise=2"1%(]01)
+]10y) where|01),/10) are two mode number eigenstates.
For comparison, we also consider the separallisen-
tangled state

Psep:%(|01><01|+|10><10|)- (27)

Clearly, the density matrix of the entangled staig,;
=|s)(s| can be written as

Pent:Psep+%(|01><10|+|1O><01|)- (28)
In this case, using Eq13) with
1(t)=1+3D1(A1)Do(\2) +3D1(—A1)Do(—\p);
\j=iq expiw;t) (29
for two modes {=1,2) we find that
<|(t)>sep:1+(l_q2) exp(—qz), (30

<| (t)>ent:<| (t)>sep_ q2 exp(— qz) cog (w1 — wy)t].
(31)

+3[1-29%(sT+s5) Jexdig®(d; +d,)]

xex] —202(st+s5)]+ 3[1-2¢%(ci+c))]

X exd —iq?(d,+d,) Jexd —292(c+c3)],
(32)

where d;=sin(w;7), sj=sin(w;72), c;=cos;72) and
j=1,2. This is a periodic function of only if the ratio

3.664

3.662

3.6481

3'6460 10 20 25 30

FIG. 7. |T'sef 7)| as a function ofw,7 for the case of Eq(27).
We use units wheré =kg=c=1.
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of w,/w, is rational. Indeed, it can easily be verified thatirrational. In Fig. 7, we present the absolute valué“g);;{r)

if w,/w,=PIQ, where P and Q are coprime integers, as a function ofw,r for the casew;=1.2x10 % w,
then the period is (2P)/w,=(27Q)/w,. The I'se(7) =104
is a quasiperiodic function of, if the ratio of w,/w, is In the entanglednonseparablemicrowave case

Rent(t,7)=Rsed t, ) — g% exp( —0?) cog (w1~ w,)t]— g% exp( — %) cog (w1 — wo) (t+ 7)]—20%s;5; exiq®(dy +dy) ]

22 2 T 2 2 202, 2
xexd—2q (51+32)]005{(w1—w2) t+ 5] |~297°cico exp —ig7(dy +dy) ] exd —2g7(ci+ o) ]
T
XCO{(wl—wz) t+§ (33)
|
With regard to the periodicity dR.,(t,7) as a function ofr, q? _
similar comments can be made as . {7). We note that Y1=~[coshir) —sinf(r) cos 2wt + §)],

Rsedt,7) is independent ot while Rq,(t,7) is equal to

Rsedt,7) plus an extra term that is a periodic functiontof

with period (27)/(w,— w,). Therefore, integration with re-

spect tot leads to the result thdte,(7) =sed 7). X1=2q|B|

r
COos E

X cod wt+ 4+ 9) |,

cof wt—0g) — sinl‘(%)

IV. DISCUSSION

There has been a lot of work in the last few years on the

r
cofwt+wr—0g)— Siﬂl’(i)

interaction of mesoscopic devices with microwavesg.,
crowaves that are carefully prepared in a particular quantum Y2=q—[coshr)—sinr(r) cog2wt+ 207+ 9]
state and where the quantum noise is carefully controlled. 2
We have studied how quantum phenomena in the micro-
waves affect quantum phenomena in the interfering elec- ;
cosh =

We have quantified the effect of the quantum noise on "(2
electron interference. More specifically we have calculated
both the average intensity and the spectral density of the XcoJwt+ w7+ Og+ )|,
interference electrons for several types of nonclassical mi-
case of classical microwaves demonstrates clearly the influ-
ence of the quantum noise on the interference. The nonzery, =2q? cod
value of Imj y(7)] in Fig. 4 is a purely quantum-mechanical
result due to the noncommutativity of the quantum-

Ref.[6]). In this, paper we have considered nonclassical mi- 2
trons. X,=2q|B]|
crowaves(Figs. 2—5. A comparison of the results with the

mechanical operatofigt) andi(t+ 7). This quantity is zero

)[cosr(r) sinh(r) cog2wt+wr+9)],

in the classical case. X3=4q|B| cos( 77) cosl‘(% co{ ot+ %T - 03)
We have also considered two-mode microwaves, where

we have shown that we get different results for rational and r o7

irrational values of the ratiav,/w,. We have interpreted —sin){§> cos( wt+ 7+ Og+ 0

these results in terms of emission and absorption of photons

by the nonlinear device of the interfering electrons. We have

also considered both separable and entangled microwaves

and quantified their effect on the interfereri€égs. 6 and 7. Y,=2q2 S|n2(
The different results in these two cases demonstrate how the

deep quantum phenomenon of microwave entanglement af-

[coshr)+sinh(r) cog2wt+ wT+ 9)],

fects electron interference. T r or
X4=4q|B|sin(7) cosf{z sin wt+7—03)
APPENDIX
The terms entering the squeezed states result inZ8Y. —sint‘(i) sinl ot + w_T+ Gt I
are 2 2 B
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