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Quantum electromagnetic field in a three-dimensional oscillating cavity
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We compute the photon creation inside a perfectly conducting, three-dimensional oscillating cavity, taking
the polarization of the electromagnetic field into account. As the boundary conditions for this field are both of
Dirichlet and(generalizefiNeumann type, we analyze as a preliminary step the dynamical Casimir effect for
a scalar field satisfying generalized Neumann boundary conditions. We show that particle production is en-
hanced with respect to the case of Dirichlet boundary conditions. Then we consider the transverse electric and
transverse magnetic polarizations of the electromagnetic field. For resonant frequencies, the total number of
photons grows exponentially in time for both polarizations, the rate being greater for transverse magnetic
modes.
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[. INTRODUCTION to strong intermode interactions, in three dimensions the
spectrum is in general nonequidistant, and only a few modes

The existence of an attractive force between two unsmay be coupled. The relevance of this coupling has been
charged, perfectly conducting parallel plates was predictegointed out only recentlysee Refs[13,15) . The aim of this
by Casimir in 194§ 1] and has recently been measured at thePaper is to extend the results of REf3] to the realistic case
15% precision level using state-of-the-art cantilej@ks A Of the electromagnetic field, properly taking into account the
similar force between a conducting plane and a sphere hd¥larization of the different moddsransverse electri€TE)
also been measured with progressively higher precision i@nd transverse magneti€M) polarizations.
the last years using torsion balan¢8$ atomic force micro- As we will see in Sec. Il, the electromagnetic field in-
scoped4], and capacitance bridgés, 6], with the latter ref-  volves both Dirichlet andgeneralizetl Neumann boundary
erence showing the relevance of Casimir forces in nanotecteonditions. For this reason, it is of interest to analyze the
nology. For a recent review of experimental and theoreticafase of a massless scalar field satisfying this latter type of
developments, see Réf]. boundary conditions, which we do in Sec. lll. Assuming a

The dynamical effect consists in the generation of photongesonant vibration of the cavity and using multiple scale
due to the instability of the vacuum state of the electromaganalysis[16] we will show that the number of particles pro-
netic field in the presence of time-dependent boundaries. IHuced is much larger than for Dirichlet boundary conditions.
the literature it is referred to as dynamical Casimir eff@t We study in detail the resonant case in which the cavity
or motion-induced radiatiofi9]. The dynamical effect has oOscillates at twice the frequency of some field mode. In Sec.
been recently reviewed in RdfL0]. Up till now no concrete 1V we show that TE modes of the electromagnetic field be-
experiment has been performed to confirm this photon gerhave as a scalar field with Dirichlet boundary conditions,
eration, but an experimental verification is not out of reachWhile TM modes are analogous to the scalar case with Neu-
From the theoretical point of view it is widely accepted thatmann boundary conditions. Sec. V contains our main conclu-
the most favorable configuration in order to observe the pheSIons.
nomenon is a vibrating cavity in which it is possible to pro-
d_Lljlc? resonant effects between the mechanical and field os- Il. THE BOUNDARY CONDITIONS
cillations.

Many previous papers have focused their attention in the We consider a rectangular cavity formed by perfectly con-
scalar field quantization within a one-dimensional cavityducting walls with dimensions.,,L,, andL,. The wall
[11,12. Recently, we analyzed in detail the case of a threeplaced atx=L, is at rest fort<<O and begins to move fol-
dimensional cavity{13], but still considering a scalar field lowing a given trajectoryL,(t), att=0. We assume this
(in this and othef{14] previous works Dirichlet boundary trajectory as prescribed for the problefmot a dynamical
conditions are assumgdlhe main difference between one variable and that it works as a time-dependent boundary
and three-dimensional cavities is that, while in one dimen-condition for the field. Moreover, we will assume a nonrela-
sion the cavity’s frequency spectrum is equidistant and lead8vistic motion of the wall withL,(t)=Lg[ 1+ ef(t)] with

e€<1 andf(t) a bounded function. We use unfis=c=1.
Let us consider the problem of finding the electromag-
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wave equatioiJA=0. For the static walls, the boundary ~ A{™)(x,{y=0L,},zt)=3d,A{™ (x,{y=0L,},z)=0,
conditions are the usual ones

E=0; B, =0, 1) A§TM)(x,y,{Z=0,Lz},t)=0ZA§TM)(X,y,{Z=0,Lz},t)=0.(8)
where| and_L, respectively, denote the components of the
field, parallel and perpendicular to the wall. Note that theseFrom these boundary conditions it is clear that the behavior
conditions follow from Faraday’s law and from the fact that of each component of the TE vector field is related to the
the divergence of the magnetic field vanishé®., the problem of a scalar field subjected to Dirichlet boundary
source-free Maxwell equations conditions. For the TM vector field it is necessary to deal
On the moving wall, these boundary conditions must bewith the generalized Neumann boundary conditions given in
imposed in a Lorentz frame in which the mirror is instanta-Eq, (6). The former problem was extensively studied in our

neously at rest. As the mirror moves in theirection, it will  previous papef13], and the latter will be treated in the fol-
be convenient to decompose the electromagnetic fields intewing section.
TE and TM modes with respect to tixeaxis. The TE fields In the derivation of the boundary conditions above we

are defined as the solutions to Maxwell equations withhave assumed that the perfect conductor boundary conditions
E(T™.%=0. Analogously, the TM fields satisfB(™).x  must be imposed in the Lorentz frame in which the moving

=0. mirror is instantaneously at rest. This is the usual procedure
It is useful to introduce alifferent vector potential for (see Refs[17—-19). One might argue that the acceleration of
each polarization through the equatidis,1§ the mirror could induce modifications to the boundary con-
ditions. However, this is not the case. The boundary condi-
E(M=—-gA®, BIO=vxAlB), (2)  tions can be imposed in a noninertial frame in which the
mirror is at rest all the time. In this frame, the electromag-
BM =g AM, EM =y x AW, ) netic tensorF,, is written asF,,=A,.,—A,.,, where ;

Both potential tisfy the Coulomb nd have vani denotes the covariant derivative. It is easy to show that the
oth potentials satisfy the Coulo gauge a ave va Sh(Sonnection coefficients contained in the covariant derivative

ing x component. A®\-x=0 ande =0, the vector potentials - cancel out, and theR ,, can be written using ordinary de-
are invariant under a boost in thedirection. The same is rivatives, F,,=d,A,—d,A,. The source-free Maxwell
true for the Coulomb gauge. In terms of these potentials, thgqyations follow from this identity, and therefore have the
boundary conditions are relatively simgteg]. Let us denote  same form both in the noninertial frame and in the instanta-
by S the laboratory frame and bg’ the instantaneous co- peous Lorentz frame. Consequently there are no corrections
mOVing fl’ame. InS’ the TE vector potentia| SatiSfieS DiI’iCh- to the boundary Conditions due to the acce|eration Of the
let boundary conditionA’(™®)(x'=0y’,z’,t")=0. There-  mirror.

fore, on the moving mirror,

ATEx=L,(t),y,z,t]=0. (4) IIl. SCALAR FIELD WITH NEUMANN BOUNDARY
CONDITIONS

On the other hand, the TM vector potential satisfies ) ]
Let us consider the problem of a massless scalar field

n“'aM/A'(TM(x’=O,y’,z’,t’)=o, (5  ¢(xt) satisfying the wave equationl =0 and (general-
ized Neumann boundary conditions on all surfaces of the
Wheren“'=(0,1,0,0). As a consequence, for a nonrelativis-cavity. In tr)e comoving frame the Neumann boundary con-
tic motion of the mirror, dition isn* 4, ¢'=0. In the laboratory frame, this condi-
tion becomesn*d,, ¢=0, wheren#=(L,,1,0,0). Therefore

n“g, AT x=L,(t),y,z1] we have

=[x+ L) JAM[x=L,(1),y,2,] _
Ixp(x=0y,2,t)=0; (dx+ L) [x=Ly(1),y,z,t]=0;

=0, (6)
i.e., a “generalized” Neumann boundary condition with dyp(x,{y=0L},z,t)=0; 9,4(x,y,{z=0L,},1)=0.
=(L,,1,0,0). On the static mirrors the boundary conditions ©

for the TE vector potential are given by

A. Instantaneous basis
ATB)(x=0y,z,t)=0, ! I
The Fourier expansion of the field for an arbitrary mo-
A§TE)(x,y,{z= O,LZ},t)=A§TE)(X,{y=O,Ly},z,t)=O. (7) ~ ment of time can be written in terms of creation and annihi-
lation operators as
For the TM potential we have

_ in
ﬁxAgM)(X=0,y,Z,t)=&XA§,TM)(X=O,y,Z,t)=O, ¢(X,t)—; a,un(x,t)+H.c., (10
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t t=const line, in such a way that it is orthogonal to the world-

L, (0) lines of the mirrors ak=0 andx=L,(t) (see Fig. 1L The
variable ¢ is defined as the distance, on the line-const,
from x=0 to x. In these coordinates, the generalized bound-
ary condition on the two mirrors becomes the standard one,
namely d:¢p(§,y,2,7)=0 both até=0 and até=I(7),
wherel (%) is the value of the coordinaté on the moving
mirror. Therefore, an instantaneous basis to describe the field

t=const

(14)

2 k,m
FIG. 1. Worldlines of the mirrors along the x direction. The line X \/L:CO{ L Z|.
n=const is orthogonal to the worldlinesyat 0 andx=L,(t), and z z

the coordinate measures the distance from the static mirror along To find a concrete form for the new coordinates we write

the = const line. n=t+g(x,t). Therefore¢ is given by

where the mode functions,(x,t) form a complete orthonor- Y

mal set of solutions of the wave equation with Neumann £= fxdx’ \/1+ g'“(x',t) (15
boundary conditions. When<0 (static cavity each field 0 [1+g(x',1)]%

mode is determined by three nonnegative integgrs,,
andn,. Namely,
At this point it is important to note that, since we are

1 2 Ny 2 considering motions of the wall that are snidll(¢) ] devia-
Un(X,t<0)= N L—COS(L—X> O tions from the initial static position, terms of ord@( e?) or
20n T bx X y higher will be neglected in what follows. Moreovey(x,t)
Noar 2 n,m ' =0(¢€), E=x+0(€?), andl(5)=Ly(t)+0O(e?). With this
xcos(ﬁ—y) \/L:cos< 1 z) e ont) in mind, it is easy to show that, in order to fulfill the assumed
y z z orthogonality between the lingg=const and the mirrors’
(11)  worldlines, the functiorg(x,t) must satisfy
\/ n 2 [ny\? [n,\? _ _
W= (L_x +(L—y) + I—_z , (12 g(x=0;t)=0; g[x=L,(t),t]=0;

with the shorthanch=(n,,n,,n;). In order to satisfy the
boundary conditions for>0 it is useful to expand the mode
functions in Eq.(10) with respect to annstantaneous basis
If the boundary condition on the moving mirror were the e are many solutions to the above conditions, that can be
instantaneous Neumann conditiopg[ x=L,(t),y,z,t]=0, written in the form

the trivial choice for the instantaneous basis would be

gHI(x=01)=0; d,g[x=Ly(t),t]=—L.  (16)

-2 cos( K \/icos(ky—wy) 9060 =Ly (DL (OU[X/LL(D)], a7
Ly(t) Ly(t) Ly Ly
x \Eco “r, (13 \Where v(0)=v(1)=0, v'(0)=0, andv’(1)=—1 (the
L, L, )’ prime denotes derivation with respectxp For example, a

possible solution is (z) = 3(z2— z*). The freedom of select-

However, as the generalized Neumann condition in @y. ing the functiong(x,t) means that one can choose different
involves the time derivative of the field, the situation is moreinstantaneous basis to describe the same field, and for each
complex. of them one has in principle a different set of modes. How-

We consider new variablesp(¢) in the (t,x) plane in  ever, physical quantities like the number of created particles
order to reduce the problem of generalized Neumann boundr the energy density inside the cavity should not depend on
ary conditions to the case of “standar@’e., no time deriva- the choice ofg(x,t). We will keep a general function as a
tive of the field Neumann boudary conditions, for which we benchmark for our calculations.
know how to choose the instantaneous basis. We define the Finally, the mode functions in Eq10) can be expanded
line »=const as a slight modification of the correspondingin terms of the instantaneous basis Ety) as
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~ (n) (n)
—; [Qk’(D)+ Q" (Ha(x,1)] Lx(t)cos< Lx(t)x)

E; [QW () + QM ()X, 1)l X, L(D)],

where the function®{"”(t) depend on the choice fgy(x,t).
The initial conditions are given by

(n) _ 1 ~(N) - _j “n
QA0) == AP(O)= =1\ denr (19

provided thatL,(t) and L,(t) are continuous at=0, and
that the initial acceleratiof,(0)=0(€?). In this way we

PHYSICAL REVIEW A 66, 033811 (2002

(18)
|
Lx(t) Ly Ls
rjk:jo de'0 dyJ0 dzv ¢y, (23)
) Ly(t) Ly L,
njkzLx(t)fo dxf0 dyfO dz
X[(0"— wfv) didr+20" ¢ di]. (24)

ensure that each field mode and its time derivative are alsblere, w; is the frequency of the mode evaluatedeatO. As

continuous functions &at=0.

B. Dynamical equations

We now study the trajectory.,(t)=Lo[ 1+ esin(Qt)].
The equations for the mod€X;(t) can be obtained from Eq.
(18), sinceu,(x,t>0)=0. We first apply the Dalamber-
tian, and then multiply byp, and integrate over the cavity.
To orderO(€?), the equations read

Q&“>+w§<t)Q<k“>=—2x<t)§ g,-kam—x(t); g Q"
—2M(OLE(1) X ri QM
J

—; QM[r i A (H)LZ(t) = N (1) 7]

—mm(t); ra Q" (20)
where
wk(t):qT\/< L)lj(xt) 2+ k—‘; 2+(—ZZ 2, (21)
A=Y (22
Lu(D)

Istrictly speaking, we should add kg(t) some decaying function
in order to meet the continuity conditionstat 0. Since we will be

before, the prime denotes derivation with respeck.tdhe
coefficientsgy, are defined by

L [y (Lo 3¢,
gjk:Lx(t)f dxf dyf dz— ¢y
0 0 0o JdLg
- 2j2 . .
(—1)kFix — i O I KeFEy,
- S A €1
~ i, ki, it K=]x

Had we considered Dirichlet boundary conditions on the
static walls =0,L,;z=0.,) we would have obtained the
same dynamical equations for the mod@g(t); i.e., the
form of the equations only depends on the boundary condi-
tions imposed along the direction. This is because the co-
efficientsry , 7, andgy do not depend on the particular
form of the ¢, in the planey-z, as long as they are properly
normalized in this plane. However, when Dirichlet boundary
conditions onx=0 andx=L,(t) are considered, the equa-
tions for the modes are differefgee Ref[13] and Eqs(48)
and(49) below]. Note that the coefficientgy, for Neumann
boundary conditions are different from those for Dirichlet
boundary conditions.

When the mirror returns to its initial position fortg,,
the rhs of Eq.(20) vanishes and the solution reads

QU (t> ) = ALV i+ BVe i, (26)
with A{" and B{" being some constant coefficients to be
determined by the continuity conditions &ttg,,. The
number of particles in the modeis given by

interested in a resonant behavior of the field, this additional func-

tion will not contribute, being irrelevant for what follows. For a

more detailed discussion of this point see R&8].

(M= En: 2w AP (27)
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C. Multiple scale analysis placing this into Eq.(20) we obtain, as zeroth order
: 0)_ iw —iw
In order to find a solution to EG20) we use the multiple ~ Solution, QP O=A(7)e .kt+B(kn)(T)_e ot The func-
scale analysis techniq(i26], which we have already applied tions A{’(7) and B{"(7) will be obtained from imposing
in our previous papef13]. We first introduce a second that no secularities appear in the equation@P ™). This
time scaler=et and expandQ{V=Q{"(®+ Q"™ Re- reads

.. . k| 2 .
QM+ w2Q(M W= —25 QMO+ 2 L—*) sin(Q) QM@+ 20 cog 01) Q@ — QZsin( Q1) QM)
0

—2L302si( Q)1 g 02QM @+ L3O cod Q1)1 02Q @+ L3O cog Q1) Q| Qr  + — e

0

075003, g4 Q020 o1 F, g4 QN O-2L507sn 0, ric0fQf

+L20 cos(m)E ro?QM@+120 cos{m)Z QM , (28)

Q%ry+ — !
jk L2 ik
0

where we have used that, to zeroth ord@{?(®= — w2Q(M©®
The equations foA{"(7) andB{"(7) are obtained imposing the condition that any term in the right-hand side d28y.
with a time dependency of the forer'“k' must vanish. We get

dA(" 1 | Kem? Q
—s\: == 5|5~ 20¢| B (2w~ Q)+2 ( 0+ 5 | ikt Bk j, B @) | 8~ 0= 0+ Q)5 — B(”)
k
Q
+j;< —( gjk 5k Jyékj W;j 5(0)k wj;— Q) A(n)'l'];k ( ?) gik_5kyiy5kzizwj
X 8wy — wj+Q &A(“) (29)
(wx— w; )Zwk i

and an analogous equation B{" , obtained by the interchangé™ —B{" . Note that Eq(29) is independent of(x,t). This
nontrivial check of our calculations follows from two identities we used to derive(Eg), namely,

1 2 2n1(n) Lx(® Ly L. 2. 1\r (n)
—z—kaokak S 2w—Q) . dx . dy . dz(¢pv')' = w By (2w — ), (30
1 Lx(t) I—y L, , , , , 2
werk+L2 ik = Jl) dXJO dYJO dZv' ¢jdx+v(Pud] — b)) ]’ = L 5k 5k (31
I
where we have used the boundary conditionf0)=0 and dB™ 1 [Kk2m?
v'(1)=-1. K | 2202 A (32)
dr 2wy |_(2) k|7
D. Examples

i i ) (n)
Let us consider the “parametric resonant case,” in which!t I €asy to check from these equations thgt’ and B

H ANT ; _ 2
the external frequencl is twice the frequency of an unper- 9% exponentlally ae’’ ,ZWI;h a rateAy=(1/2w\) (i
turbed modek, Q= 2wy. A second modé will be coupled ~ +@p), Wherewp=wi—kim?/L§. It is interesting to com-
to the modek iff |wy* w;|=€. We first assume this is not pare this rate with that for D|r|chlet conditions, which is

the case. Therefore the evolutlon equations become given by p=(1/2w) (wi— p) [13]. We have

dA{" 1

dT B 2wk

ke A 0>+ w?
S 202 |B(", NPy (33
Lo —w
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For a given mode, the rate for Neumann boundary conditionghat this is the case if-{ 1)*"Ix=+1. However, in the op-
is always bigger than the rate for Dirichlet conditions.

Let us now assume the existence of one modej sthyat

satisfiesw;= 3wy and j,=ky, j,=k,. We obtain forA{"

posite casehc>0, and the growth rate for coupled modes is
bigger than\ y=a/2wy, .
A relevant case where two modes are coupled is the cubic

andB{" cavity Ly=L,=L,=L. We fix Q as twice the lowest cavity
frequency,
dA 1 [K2m? -
[ n
dr 2wy O —20 Bk 277\/§
szw(lvlyl):T' (39)
1 j2q?
+— (—1)kx+lxjx—2—6w§ A", _ _
Zwk Lo The fundamental modk=(1,1,1) is coupled tg=(5,1,1)
because w(s11y=3w(1,1,1)- Only these two modes are
dB{" 1 [k2n? coupled, since there does not exist in the spectrum any mode
4 "3 ——2wg | A s satisfying ws=5w(11,1). For this particular case, the four
T @k Lo eigenvalues are
1 202
5o (—1)kxﬂx—“2 —6wg |B". (34
@ Lo 4J_ (£5+6.35). (40)

We also assume that the spectrum is such that the inde

only coupled to the modk. The equations foAj(”) and Bj(”)

are therefore

Had we neglected the intermode coupling, we would have
concluded that the growth rate in the fundamental mode
would be\ =2.57/+/3L. The growth rate in the coupled case

2
dA™ __ 1 (1)t XW2+2w2 A is one half of this.
dr 6wy (2) k| One striking new feature is the possibility to enhance the
i exponential growth rate by means of mode coupling, pro-
dB™ 1 k2772 vided that the two coupled modes satisfy )% ly=—1.
l (—1)tix——+202|B{™. (35) Asan example let us consider a cavity with dimensibps
dr 6“’k L3 =L,=4L,. We set the external frequency to be
We write the system of equations in matrix form )
T
0=2w = (41
dv(r (0.1.1)
d(T) = MV(7), (36) VL,
where If this is the case, then the modte=(0,1,1) is coupled tg
=(1,1,1). The four eigenvalues are
A(kn)(T) 0 a b o ;
8
| B 1 /200D , — o (1% \31] 42)
V()= A | 2ol ¢ 0 0 0] 7 x
i
(n) 0 c 0 O . . .
B;"(7) This means that the exponential growth is at the rate

where a=[—kZm?/L3+2w?],

b=[(=1)"Ix(jZm?/LE)

0.74x/L,, which is more than twice the value we would had
predicted had we neglected the coupling/ (/8L,).

—6w:], andc=—1[(— 1) I (K27?/L3)+ 2w?Z] . The so-

lution to this system can be easily obtained after diagonaliz-

ing the matrixM. The eigenvalues are given by IV. THE ELECTROMAGNETIC FIELD
A. Transverse electric modes

(38) For the TE case, the expansion of the vector potential for
an arbitrary moment of time, in terms of creation and anni-

We note that the exponential growth rate in the uncouplecglIlatlon operators, can be written as

case is given byy=a/2w, . When two modes are coupled,
the rate is given by the real part of the biggest eigenvalue in
Eq. (38). When a®+4bc<0, the rate is half the one ex-
pected for the resonant mode when the coupling is neglected,
as for Dirichlet boundary conditiorfd.3]. It is easy to show Fort<0 the cavity is static, and each field mode is given by

1
= m(iai \/a2+4bc).
k

ATB(x,t)= >, amul™(x,t)+H.c. (43)
n
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1 8 n
(TE) _ . X
u x,t<0)= \/ (O,a sm(—x
n ( ) (_an L L LZ n LX
n n n
><c05<—yy)sin( Zz),,Bn sin( )
Ly L,

Lx
)cos( anz) ) g iont (44)
Ly L, ’

wheren,, n,, andn, are integers such that,=1, n,n,

X

=0, andny,n, cannot be simultaneously zero. The constants g;=
a, and B, are components of the polarization vector for the
eIectromagnetic field, satisfying the normalization condition

a —I—Bn
+B.n,/L,=

Whent>0, we expand the mode functions in E¢.3)
with respect to arinstantaneous basis

1, and the Coulomb gauge condition,n, /L,

u(™®(x,t>0)

2 ( mn,

——sin L0

(TE)
L0 ) y2),

(49)

= g Q1)

where(I)‘kIEZ) is

D"y, 2)=\/—— 4 0,0 CO iy sin Trk
Kyt S L,L,| K L, %)

. [ Ky k, 46
By sin L—yy co L zl. (46)

The functlonstI)(TE) form a complete set satisfying
f dyf dZ(D(TEZ) (I)(TE)*_akyjyb‘kzjz' (47)

From the above Ec{45) it is easy to obtain the dynamical
equations for the modask 1e- We get

u™)(x,t<0)=

1 8 (O 7Ny
oy VLR,

N
)sm(—y
xLy

Ly

Heren,, ny, andn, are nonnegative integers, angandn,
cannot be simultaneously zero.
On the other hand, whet0 we introduce an instanta-

neous basis similar to that of the scalar field in Sec. Ill. We

write

7-rnZ Ny mny
co Lz z|, Byco L_XX co L_y

PHYSICAL REVIEW A 66, 033811(2002
Q(kn)TE+ wﬁ(t) Q(kn')I'E_ Zk(t); Yk QJ(nT)E
t); 9y QMe(t), (48

where

XJX

( 1)k xtix
—0Ojk= Jx x
0 ifky=]y.

5k1 O, IFkeFx,

(49

As expected, these equations are exactly those corresponding
to a scalar field satisfying Dirichlet boundary conditions on
the surfacex=0,L,(t) [13]. Therefore, the number of cre-
ated photons in the TE mode equals the number of created
Dirichlet scalar particles.

As an example, let us consider the parametric resonant
case()=2w, for a cubic cavity. For uncoupled modes
(such as either of the two fundamental TE modés,
=(1,1,0) anck=(1,01)), thenumber of TE photons grows
exponentially as

(N1 =SintF(Apet), (50)
where \ is the growth rate for Dirichlet scalar particles,
introduced in Sec. Il D. For the above mentioned fundamen-
tal modes,\p=m/2+2L. The first coupled TE mode ik
=(1,1,1), which only couples to the TE mope (5,1,1). At
large timeset/L>1 the number of TE photons in those
modes grows agNj tg)~ (N e)~e%*!' [13].

B. Transverse magnetic modes

The expansion in terms of creation and annihilation op-
erators is again of the form E43), but now fort<0 each
field mode is given by

u{™ (x,t>0)= 2 QD)+ QM (D g(x,t))

« 2 { TNy
VL “ L

) ”M’(y 2, (52

033811-7



CROCCE, DALVIT, AND MAZZITELLI PHYSICAL REVIEW A 66, 033811 (2002

where the functionsb(le'l’B are similar to their TE counter- Ay 0ot ol

parts(they can be obtained by interchanging cos and sin in )\—TE— 2 2 (54
the rhs of Eq(46). Since all TE modes haug =0, the first @k @p
mode of the cavity that can be excited by the external frefor g cavity withL =L, =L, w2=2w2 SON7y=5\1e. We

quency is a TM mode. In particular, for a cavity such thatcan estimate the number of created TE and TM photons
Ly<Ly,L, only TM modes can be excited. given by Eqs.(50) and (53) using typical values for the
From the above equation, it is now clear that the dynamimaximal dimensionless displacementhat may be obtained
cal evolution of the TM modes is that of a scalar field satis-in conceivable future experiments. For 3D cubic cavities of
fying generalized Neumann boundary conditions. As a conlinear dimensions of the order of 1-10 cm, the lowest reso-
sequence, the number of created photons in the TM modeant frequency is of the order of GHz. It may turn out to be
equals the number of created Neumann scalar particlegery difficult, if not impossible, to make the cavity oscillate
Again, let us consider the parametric resonant cése asa whole at such a high frequency. To overcome this diffi-
=2w, for a cubic cavity. For uncouplel modes[such as culty a different experimental scenario was proposed in Ref.
either of the two fundamental TM modeds=(0,1,0) anck  [12], consisting of strong acoustic waves excited on the sur-

—(0,01)], the number of TM photons grows exponentially face of the cavity wall. Typical materials cannot bear relative
as amplitude deformations in excess &f,,=10 2. This sets a

limit to the maximum velocity of the boundaryymax
=Snats~50 m/s, @ is the speed of sound in the mateyjal
(N Tm) =SINFP(\ et), (53) and consequently to the maximal dimensionless displace-
ment e€na=vma/{lL. For example, for a cavity withL
=10 cm whose lowest modg.e., either of the two TM
where A is the growth rate for Neumann scalar particles,modes k=(0,1,0) or k=(0,0,1)] is being excited @
also introduced in Sec. llID. For the fundamental modes=2sc/L=18 GHz), we getfmaﬁlo*B_ Even for a value
Ay=m/L. The first coupled TM mode ik=(0,1,1), which  of ¢, ten times smaller than this, one gets an exponentially
only couples to the TM modg=(4,1,1). For large times large number of created photons\Vi ry)=sint?(10t/s)
(et/L>1) the number of particles in these modes grows asvhich, after 1 sec, gives a total of approximately pbotons
(N )=~ (N; tm)~e**'-. The next coupled TM mode is created in that mode. We can also compare the number of
the same as the TE mode, namé&ly (1,1,1), coupled tqQ photons produced for an uncoupled mégeommon to both
=(5,1,1). The exponential growth g\, rm)~(Njtm)  kind of polarizations TE and TM. For example, for the mode
~e*>U/L the growth rate for these modes being greater thak=(1,1,0) one gets(\ te)~sint?(3t/s) and (N 1)
that for the TE case. ~sint(10t/s), which after one second produces a total of
10? TE photons and FOTM photons. For the case of two
coupled modes we have found that, for Neumann boundary
V. DISCUSSION conditions, the coupling can enhance the exponential growth.
This contrasts with the case of Dirichlet boundary condi-

In this paper we have computed the resonant photon cre:

ation inside a three-dimensional oscillating cavity taking theliONS: in which the coupling always suppresses the exponen-

vector nature of the electromagnetic field into account. Pre'Elal _growthl. Thige f_acts fmﬁy ge reley ar|1tcfor.ar? evf(fa ntual ex-
vious works studied the case of a scalar field with Dirichletpelwer;ta VE” ication c_’dt € dynamica as(ljmlrl € ec(tj._ .
boundary conditions. As the electromagnetic field involves the above considerations assume ideal conditions,
both Neumann and Dirichlet boundary conditions, we firstSUCh as pgrfectly conduct[ng plates, exact parametric reso-
analyzed a massless scalar field satisfygeneralizetNeu- nant ColndIEOF\Q =f2wr|l<, arbltran;} Iarge!il) faptor for the cav- f
mann boundary conditions. We have shown that in this cas& (N° ead?‘_ge orp otomlsno (tj ermal noise, etc. Some o

it is also possible to expand the field modes in terms of ar'€S€ conditions were relaxed in our previous pdpie,
instantaneous basis, the difference with the Dirichlet casé/N€r® we analyzed, for Dirichlet boundary conditions, the
being that the expansion is not uniqgue—it depends on aﬁnhancement of photon creation dge o finite temperature
arbitrary functiong(x,t) satisfying the boundary conditions effects, slightly off-resonance sﬂgatn_ans, the case Of three
Eq. (16). However, physical quantities like the number of coupled modes, etc. The _generallzatlon o_f these findings to
created particles or the energy density inside the cavity ar'€ électromagnetic case is not too complicated, and we ex-
independent of the choice of such a function. After treating?©Ct Similar conclusions. Given our results for the dynamical
the Neumann scalar case we considered the full electroma ehavior of TE and_TM modes, .'t is also po_SS|bIe_to study the
netic problem and showed that the TE modes of the elecr ull '(.alectromagnetl_c problem in three dimensional leaky
magnetic field are essentially described by a Dirichlet scalaf@Vities along the lines d20].

field, while the TM modes correspond to a Neumann scalar
field.

We have studied in detail the resonant situatids 2wy We are grateful to D. Harari, F. Lombardo, R. Onofrio,
for two cases: an uncoupled resonant mode and two coupleshd M. Thibeault for useful comments. The work of FDM
resonant modes. In both cases, the exponential growth afas supported by Universidad de Buenos Aires, Conicet, and
created photons is greater for TM modes. For the uncoupledgencia Nacional de PromogioCientfica y Tecnolgica,
case, we have found that Argentina.
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