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Laser diodes subject to a delayed optical feedback may exhibit high-frequency oscillating intensities as a
result of a beating between two external-cavity-mod&SMs). We analyze the conditions for the stability of
these microwave oscillations in the framework of the Lang-Kobayashi equations for a single-mode edge-
emitting semiconductor lasgR. Lang and K. Kobayashi, IEEE J. Quantum ElectiQ&-16, 347 (1980]. We
show that two different scenarios are possible. If the linewidth enhancement factor is relativelydar@e (

—5), the beating occurs between a stable E@\de and an unstable ECNantimode. The stability of the
time-periodic solution is then limited in parameter space. But if the linewidth enhancement factor is sufficiently
low (a=a.=1), a beating between two stable modes is possible allowing stable high-frequency oscillating
outputs.
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I. INTRODUCTION insight into this beating regime between ECMs. In addition
to the single-ECM solutions, two-ECM solutions of the LK
Semiconductor lasers subject to optical feedback from agquations are possible. Of particular engineering interest is
external cavity(EC) exhibit a variety of instabilities depend- the fact that these two-ECM solutions exhibit a rapidly os-
ing on the values of the laser parameters such as the E@llating intensity. The oscillations clearly result from a beat-
length, the feedback strength, or the pump parameter. THE89 between two single-ECMs and the frequency is propor-
coherence collapse reginjé] typically occurs in systems tional to the inverse of the external-cavity round-_trlp time.
with sufficiently long(1 cm and morgECs. Beyond a criti- The two-ECM solutions appear through a Hopf bifurcation

cal feedback rate, we note a sudden increase in linewidth 441dge connecting a stable ECMnode and an unstable
well as a drastic increase in the relative intensity noise. Cogaddle—type ECM(antimode. This means that the high-

herence collapse results from the interaction between the |,T[[equency outputs for the parameters considered in Refs.

X - 6,7] are only partially stable.
Ser relaxgtlon oscnlathn frequer?cy and the EC mdﬂ@M) . This raises the important question of the stability of a
frequencies. Its chaotic dynamics has been widely stud|eglW

. . 0-ECM solution. Is a stable beating between two ECMs
[2-3]. It disappears for short EG#ypically less than 5 min ossible in a semiconductor laser subject to optical feed-

as the ECM spacing becomes much larger than the 1asgf,cy- | this paper, we show that this is indeed the case for
relaxation oscillation frequency. particular values of the laser parameters. Using the LK equa-
However, Tager and Elenkrigl993 [6] and Tager and  ons, we determine analytical conditions for a stable beating
Petermann(1994 [7] found that another instability is pos- and we test our results by using a numerical continuation
sible for short ECs that results from a beating between twgnethod for delay differential equatiof&1].
ECMs. They studied the Lang-KobayashK) equationg 8] The existence of high-frequency two-ECM regimes has
that describe the dynamics of a single-mode edge-emittingnotivated a series of recent experimental and theoretical
laser subject to a weak to moderate optical feedback. Bgtudies. First, the beating between a mode and an antimode
numerical simulations and linear stability arguments, theyfound for short ECs also appear for long E[ag]. Second,
showed that an oscillatory instability resulting from the beat-experimental observations of two-ECM regimes were pos-
ing of two ECMs could lead to an efficient source in the sible for an edge-emitting laser subject to two optical feed-
microwave 20 GHz) region. The work by Tager and Pe- backs[13—-15. The mixed mode regime was shown to be
termann[7] on short ECs was motivated by the effects of partially stable and quasiperiodic outputs leading to low-
optical feedback due to reflection at fiber pigtails, in opticalfrequency fluctuation§ FF) were observed after its destabi-
fiber connectors. It led to interesting guidelines for the dedization[15], in good agreement with the thedri0,12. LFF
sign of high-speed laser diodes with an integrated passiveonsists of irregular fluctuations of the laser intensity on mi-
cavity where the EC is typically shof®]. crosecond to nanosecond time scales. These time scales are
Analytical studies of the LK equatiorjd0] have yielded long compared to the laser relaxation oscillation period and
the external-cavity round-trip time. Third, high-frequency os-
cillations have been experimentally observed in vertical-
*Corresponding author; cavity surface-emitting lase®CSELS subject to a polar-
Electronic address: Sciamanna@ telecom.fpms.ac.be ization rotating optical feedbadk 6]. Systematic numerical
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bifurcation studies of the rate equatioft7,18 have re- 1.6 @ ' ' ‘ ' '
vealed that these oscillations result from the interaction be- | l |
tween two stable ECMg$modes. In all these experimental ' v

and theoretical studies, only partially stable microwave os-<1.2} =
cillations were reported. In this paper, we examine the bifur-
cation diagram of the LK equations and determine the con-
ditions for stable microwave oscillations. Our analysis is 0.8
based on the stability properties of a particular poaailed ' ’ g
a two-ECM poinj at which two single-ECM solutions ex-
hibit identical intensities. Delayed laser systems admitting a 3]
large number of ECMs, such as the double cavity or the
VCSEL system, exhibit many of these two-ECM points and _ o}
are good candidates for efficient sources of stable microwave
oscillations. 5t o

The plan of the paper is as follows. In Sec. Il, we intro- ‘ . ‘C‘ - ‘
duce the dimensionless LK equatidi@ describing a semi- 0 002 004 006  0.08 0.1 012  0.14
conductor laser exposed to optical feedback from a flat ex- n

ternal mirror. The typical values of the photon and carrier FiG. 1. Bifurcation diagram of the first two single-ECM solu-
density decay rates then motivate an asymptotic analysis fons. Figuresa and (b) show the intensityY|?=A2 and the fre-
these equations. We omit all mathematical details for clarityquencyA = o6 of each ECM. They are obtained by changingnd

In Sec. lll, we discuss the Ieading order conditions for acomputingn 6 andA from Eqs,(4) and(5), respectively. The arrow
two-ECM beating in terms of the linewidth enhancementin Fig. 1(a) indicates the point where the two single ECMs admit
factor. We find that a stable beating is always possible if thehe same intensity and is called a two-ECM point. The values of the
linewidth enhancement factor is sufficiently low. Our conclu- parameters arB=1.155, §=18, «=4, andw = — arctang). The
sions are tested numerically in Sec. IV by determining thdirst ECM frequency is constani\g= w §) while the second ECM
bifurcation diagram of the steady and time-periodic intensityfrequency emerges from a limit point. At the two-ECM poil

1+

(/]

solutions. =—A;—2m.
Il. FORMULATION, EXTERNAL CAVITY MODES, linewidth enhancement factor, afdis typically anO(10°%)
AND BEATING BETWEEN MODES large parameter for semiconductor lasers. Equat®rihen

suggests that is a function of the slow time variabl 's.
The LK equationg8] describe a single longitudinal mode We shall take advantage of this observation in our analysis.

edge-emitting laser subject to a weak to moderate external A basic solution of the LK equationél) and (2) is a
optical feedback. Previous theoretical and numerical studiesingle-frequency solution of the form
of these equationsee Ref[19] and references thergihave
shown that we may benefit from the relative order of mag- )
nitudes of the laser parameters. They motivate asymptotic Y=Aexfi(o—0)s] 3
theories of the LK equations leading to simplified problems. )
The solutions of these problems highlight specific bifurcation@?d Z=B whereA, o, andB are constants. It is called an
scenarios responsible for the laser rich dynamics. The starECM solution. Substituting Eq(3) into Egs. (1) and (2)
ing point of any asymptotic analysis is to write dimension-!€ads to conditions foA, B, and o Specifically, the ECM
less equations. The LK dimensionless rate equations are twiequencyA=o ¢ admits the implicit solution
equations for the electrical field and the excess carrier

numberZ given by[20] A—wf

m0= = cogA) + sin(A) @
dy , .
gs = (Hie)ZY+ nexp—iwd)Y(s—0), (1) and the intensity of each ECM is given by
12 7 (1422)|V]? @) P+7ncogA)
ds ' A?= = ®)

1-2pcodA)”

In these equations, timeis measured in units of the photon
lifetime 7, (s=t/7p). The parameter$ and ¢ are defined as
T=r1,/7, and =7/7, where 7, and 7 are the carrier life-
time and the external round-trip time, respectively,
=wq7y is the angular frequency of the solitary lagey nor-
malized byrrjl, n=vy 7, is the feedback ratg normalized
by Tgl, P represents the excess pump current anid the Y=Aexdi(o;— w)s]+Aexdi(o,— w)s] (6)

Using Egs.(4) and(5), we may study how the ECM so-
lutions appear as we progressively increase the feedback rate
(see Fig. 1 Although Eq.(3) is an exact solution of Eq$l)
and(2), a two-ECM solution of the form
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andZ=B is not an exact solution of the LK equations. Nev- the linewidth enhancement factor and show that this case is
ertheless, it is the leading approximation of an asymptotigossible. A branch of stable two-ECM solutions connecting
solution valid for largeT [10]. This solution exists at and two stable bifurcation points is then possible.

near critical points where two single ECMs admit the same The conditions for a two-ECM point is documented in
intensity[10] (this point is indicated by an arrow in Fig).1 Ref.[10]. The critical ECM frequencied,, A, satisfy the
This point is called a two-ECM point and is described ana-following conditions:

lytically in the next section. Using Ed6), the intensity of

the laser field is Ai=wbh—(mn—A)[acot(A;)+1], (8
[Y|2= A2 +]Ag>+ 2| Aq]|Az]cog (01— 0p) s+ ], (7) Apy=—A;+2mn, 9)
where ¢ is a phase. By contrast to the single-ECM solutionwheren= ...—-2,—1,1,2 ... . Thecritical feedback rate is

(3), the intensity of the two-ECM solutio(®) is oscillating  given by

with extrema (A;|*|A,|)? and frequency|o;—a,|. In

Refs.[10,12, we showed that this solution emerges from a [ mn—Ay

first Hopf bifurcation located on atable ECM (modeand n= (sin(Al)) 0.

that it disappears at a second Hopf bifurcation located on an

unstable ECM (antimodeps a consequence, the two-ECM

solution (6) is only stable near the first Hopf bifurcation. In

this paper, however, we show that a branch of stable sol

tions connecting twestable ECMs (modes$ also possible.
As we shall demonstrate analytically in the following sec-

(10

The case illustrated in Fig. 1 correspondsnte —1. The

intensity of the first ECM branch of solutions increases
Ynonotonically. But the intensity of the second ECM branch
of solutions exhibits a limit or saddle-node bifurcation point.

. h bility of th ECM soluti d q b From this point emerges a stable and an unstable ECM solu-
tion, the stability of the two- solutions depends on they;,, ‘e ower parithe upper pajtcorresponds to the un-

Iocatlor_1 of th_e tWO'.ECM point with respect to the Sado_"e'stable(stable) solutions. The limit point satisfies the condi-
node bifurcation point that creates the single-ECM solutions.

) . - ) . o ion

in pairs of mode and antimode. A direct investigation would

be to determine analytically the stability of the two-ECM

solutions. In order to investigate the stability of Ef), we dy/dA=0 (12)

need to realize that in addition to the fast time of the ECMs

(time's), the solution of the linearized equations depends omyng using Eq(4), we obtain an equation for the ECM fre-

the SIOW t|me Sca|e§_1s andT_1/2S. The firSt SIOW t|me iS quency at the ||m|t point given by

obvious from Egs(1) and (2) sinceT appears in the left-

hand side of Eq(2) suggesting thaZ is a function ofT ~!s.

The second slow time is motivated by the relaxation oscilla- « cogA)+sin(A)+(w6—A)[cogA)—asSin(A)]=0.

tion frequency of the solitary laser defined bygro (12

=/2P/T. It suggests introducing a slow time scaled by

T2 The analysis is not a routine application of multiple A two-ECM point characterized by the two frequenciks

scale method$21,27 and will be described in detail else- andA, may coalesce with a limit point of mode 2. To deter-

where[23]. In the following section, we show that the loca- mine this point, we consider E¢8) with A;=—A,+27n

tion of the two-ECM point in parameter space is enough forand Eq.(12) with A=A,. They represent two equations for

anticipating two distinct bifurcation scenarios. A, and parameters and w6. To determine the functior
=a(wb) for the two-ECM limit point, we proceed as fol-

lll. STABLE AND UNSTABLE BEATING BETWEEN TWO lows. First we eliminates 6 from Eqgs.(8) and (12):

EXTERNAL-CAVITY MODES

wf=A,+(mn—A)[acof(A,)+1] (13
Figure 1 illustrates a case where the two-ECM point is
located on the low intensity part of the second ECM branch a COgA,)+sin(Ay)
of solutions. It corresponds to an unstable ECitimode =A (14

2_ . . .
[3]. A closed branch of two-ECM solutions connecting the codAz) ~asin(Az)

first and second ECMs through Hopf bifurcation points is
possible in the vicinity of this two-ECM pointl0]. The first .
and second Hopf bifurcation points are then located on th@2 given by
stable and unstable ECMs, respectively. Consequently, the

branch of two-ECM solutions connecting these points is a=
stable only in the vicinity of the first Hopf bifurcation point. sin(A;)

We address now the following issue: Can the two-ECM

point be located on the high intensity part of the secondJsing Eg. (13) for wf=w6(A,) and Eq. (15 for «

ECM branch of solutions, i.e., corresponding to a stable= a(A,), we have the solutiorr=a (w0) in parametric
ECM (mode? We shall examine this possibility in terms of form (— 7<A,<). The solution is displayed in Fig. 2.

After simplifying, we obtain a simple relation betwearand

Sin(A ;)
7TI’I—A2 '

CogA,)+

(15
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FIG. 2. Two-ECM limit point. The figure gives the critical value
of a at which a two-ECM point coalesces with a limit point of 815 017 0,15 (?15 017 019
single ECMs.a= a(w¥6) is obtained using Eq$15) and(13) with ) ' ’ ) T )
n=—1. We use the same values of the laser parameters as in Fig. 1. ) ) ) ) )
The dotted line corresponds to the particular valued FIG. 3. Numerical bifurcation diagram of the single and two-
= —arctang) used for all our bifurcation diagrams. We note that ECM solutions. Each figure represents the extrema of the intensity
maximal value remains close to=1. I=]Y|? as a function ofy. Full and broken lines correspond to

stable and unstable solutions, respectively. The stable and unstable

If we assume thaw6=—arctan@) as in Refs.[7,10] s_olutigns of Eqgs(1) and (2) hav<_a bgen obtained by using a con-
(dotted line in Fig. 2, we find a specific value af which is  tinuation method. The value af is given by(a) a=4, (b) a=2,
the root of (c) «=1.25, andd) «=1. The values of the fixed paramet&sf,
w6 are the same as in Fig. 1 afid=1710. All figures show a
closed branch of two-ECM solutions connecting two Hopf bifurca-
tion points (diamondg. This branch changes stability at a torus
bifurcation point(square. The torus bifurcation point progressively
If a<a, (a>ag), the two-ECM point is located on the moves to the right Hopf bifurcation point as progressively de-

creases. In Fig. (8) the closed branch of two-ECM solutions is
stable parunstable pajtof the second ECM branch of so- g-@

stable.
lutions. Consequently, we may expect a stable bridge of so-

lutions connecting the two single-ECM branchesifs suf-  proximation.o; ando, are the frequencies of the two ECMs
ficiently low. This hypothesis is investigated in the following whose intensities are equal at the two-ECM point. The two-
section by determining the bifurcation diagrams of the stabld=CM solution then changes stability through a torus bifurca-
steady and time-periodic intensity solutions for progressivelfion point (indicated by a square in Fig.).3At the torus
smaller values ofv. bifurcation point a new frequency appears that is propor-
tional to the laser relaxation oscillation frequency, i.e., is an
O(T~Y?) small quantity. Our continuation method allows to
IV. NUMERICAL BIFURCATION DIAGRAMS follow the two-ECM solution when it becomes unstable
In this section, we use a numerical continuation methodShown in dashed lineWe find that the branch of two-ECM
specially developed for delay differential equati¢ag] and ~ time-periodic dynamics ends at a Hopf bifurcation point on
concentrate on the bifurcation diagram of the two first ECM2n antimode. Modes and antimodes are therefore connected
solutions asz progressively increases. In addition to two tNfough a Hopf bifurcation bridge and the dynamics ob-
single-ECM branches of solutions, we find a branch of two_served along the bridge corresponds to a mixed ECM solu-
ECM solutions that connects the two single-ECM branchestlon .[10’12' : A
Because our numerical method allows the determination 0. Flgl-”e 4 shows atyplca_ll quasmenocjw output for the laser
. : X |§1tensnyIE|Y|2 and the field phase differenag(s) — ¢(s
sta_ble and unstable solutions and marks all bifurcation 1)+ wh. A slow modulation of the intensity oscillations
points, we may observe how the closed branch of two-ECM, jners at the relaxation oscillation frequency givert dy
solutions gradually stabilizes as we decreaseand as it

(%

l1-«a

5 =mN— arctarf«). (16

=2P/T/27. For the parameters considered in Fig. 3, it
passesy.. _ _ _ corresponds tdro~5.85 GHz if 7,=1 ps.
~ We first consider the case>a,; see Figs. @-9. The Figure 5 shows the optical spectra for the dynamical be-
first mode exhibits a Hopf bifurcatiofindicated by a dia-

ode _ ! { = | ¢ haviors that characterize the Hopf bifurcation bridge between
mond in Fig. 3 that gives rise to a time-periodic solution. 3 mode and an antimode. As we gradually increase the feed-
This time-periodic solution corresponds to a two-ECM solu-pack rate, the first ECMa) destabilizes to a two-ECM dy-

tion, with a frequency given byo;—o,|/2m, in first ap-  namics(b) and then quasiperiodic oscillations ocday. We

033809-4



STABLE MICROWAVE OSCILLATIONS DUE TO. .. PHYSICAL REVIEW A66, 033809 (2002

‘a ' ' ' solution changes stability to a quasiperiodic output, side
3 peaks appear around the main beating ECMs, with a fre-
' quency separation between the side and the main peaks ap-
-2

proximately corresponding tbrg. The recent experiments
’ ( on double cavity feedbackl5] are relative to bifurcation
bridges between a mode and an antimode, similar to what is
o 500 1000 1500 5000 2500 shown in Fig. 8a—0, and the transition between the two-
s ECM dynamics and the quasiperiodic behavior as presented
; : ; in the optical spectra of Fig.(&—9 has been confirmed ex-
L perimentally in Ref[15].
Whena decreases, the two-ECM point becomes closer to
the saddle-node bifurcation point that creates the pair of
h mode and antimode until it merges with this limit point for
-2r a=a.. As a passes through., the two-ECM point is now
‘ s : s located on a mode branch; see Figd)3 The torus bifurca-
0 500 1000 1500 2000 2500 ) L L :

s tion point disappears giving rise to a stable branch of solu-
tions connecting two stable ECM solutions. Figurée)5
shows the optical spectrum for the two-ECM solution. When
and the feedback rate ig=0.125. Figure 4) shows the laser we decre_ase the feedback, we i_solate the hi_ghest frequency
intensity| =|Y|? as a function of times while Fig. 4b) shows the peak, which CorreSpOHQS to the first mddee F!g. &)]. On
evolution of the field phase difference variabli(s)— ¢(s—7)  the other hand, increasing the feedback rate isolates the low-
+w6. Note that it periodically switches between rapid oscillations €St frequency peak, which corresponds to the second beating
located near one of the two single-ECM frequencies. mode[see Fig. ®)]. By contrast to the situation depicted in
Fig. 5(a—0, both beating ECMs can be isolated in the optical

see clearly that the microwave oscillations involve two-SPectra and quasiperiodic oscillations do not occur.

ECMs, but only the highest frequency peak which corre-

sponds to a mode can be isolated in Figa)5The lowest

frequency peak corresponds to an antimode, which is un- V. DISCUSSION

stable and therefore not available to experiment and/or direct

numerical integration of the rate equations. As the two-ECM  To summarize, we have performed a bifurcation analysis
of the LK equations and shown that stable microwave oscil-

Phase Difference (rad)

FIG. 4. Quasiperiodic dynamics after a torus bifurcation point of
the two-ECM solution. The parameters are the same as in fy. 3

6000 1500 lations can be generated in a semiconductor laser subject to
(a) (d) . . . L
4000 1000 o_p_tlcal feedback. These hlgh—frequer_lcy time-periodic inten-
2000 500 sities correspond to a two-ECM solution of the LK equations
and result from a beating between two stable EC(ds
2 9 a 50 o 0 o =m0 100 modeg. The stability of the microwave oscillations has been
;3000 o) 15007 analyzed in an asymptotic expansion of the LK equations
; 2000 1000 valid for large ratio between carrier and photon lifetime, and
g the validity of our theoretical assumptions has been checked
g 1000 JL 500 J\\ through numerical computations of stable and unstable time-
5 % 0 0 o 0 o0 s 1o  Periodic solutions. The main conclusion is that stable two-
& 3000 = 1500— ECM solutions(and therefore stable microwave oscillatipns
2000 1000 ® are possible for a sufficie_ntly Iov_st factor (c_vs a.=1). _
Low « factors are desirable since they improve the inten-
1000 500 . . .. .
sity modulation characteristics and reduce the chirp. &he
o]

%0 0 50 0 30 o 50 100 factor depends on the detuning between the emission wave-
Frequency (GHz) Frequency (GHz) length and the material gain peak. In Fabry-Perot type lasers
FIG. 5. Optical spectra. In the left column, the spectra corre-the emission wavelength is glv_en by the gain p_eak and the
spond to a mode-antimode bridge. The values of the parameters a?gntrm of a to a large extent is difficult. But d'_St“bUted'
the same as in Fig.(B), with 7,=1 ps, and(@ 7=0.12, (b) 7 eedback—type Iasers'or VCSELs for examplg emit at a wave-
=0.123,(c) =0.125. Figures G)—5(c) illustrate the typical spec- Iength that is determined by the grating period a_nd the laser
trum of a single ECM, a two-ECM, and a torus regime, respec-d€sign, and can strongly be detun.ed from.the gain peak. The
tively. In the right column, the spectra correspond to a stable modee factor can be further reduced using multiple quantum wells
mode bridge. The values of the parameters are the same as in Fig\ the active regioi24] or strain effects in the energy bands
3(d), with 7,=1 ps, andd) »=0.18,(e) 7=0.182,(f) »=0.185. [25]. It is worth noting that the influence of the factor on
Figures %d)—5(f) illustrate the spectrum of the first single ECM, the the dynamics of semiconductor lasers subject to optical feed-
two-ECM solution, and the second single ECM. back has been recently examined experimentally for long
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cavities[ 26,27, i.e., for external cavity round-trip time much increase the number of two-ECM points around which two-
larger than the relaxation oscillation period. We show heredECM solutions appear.

that the reduction of thex factor can transform the short

cavity induced instabilities into efficient sources of micro- ACKNOWLEDGMENTS
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