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Spin squeezing and entanglement in spinor condensates
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We analyze quantum correlation properties of a spinof<tX) Bose-Einstein condensate using the Gell-
Mann realization of S{B) symmetry. We show that previously discussed phenomena of condensate fragmen-
tation and spin mixing can be explained in terms of the hypercharge symmetry. The ground state of a spinor-1
condensate is found to be fragmented for ferromagnetic interactions. The notion of two-bosonic-mode squeez-
ing is generalized to the two-spitu¢V) squeezing within the S@3) formalism. Spin squeezing in the isospin
subspaceT) is found and is numerically investigated. We also provide results for the stationary states of
spinor-1 condensates.
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- INTRODUCTION En=AINIINI2, i#]e(xy.2). D

The availability of atomic Bose-Einstein condensatesThis definition can be essentially read off from the Heisen-
(BEC) with spin degrees of freedom has stimulated muchberg uncertainty relatiod J;AJ;=[(Jy)/2| for the collective
recent interest because of their applications in quantum inangular-momentum components of the two-level atomic
formation physics. Atomic spinor-1 condensategperfine  system.
spin f=1 for each atomwere first realized by transferring ~ When in a squeezed stagg<1, the quantum fluctuation
spin-polarized BEC prepared in a magnetic trap into a farof one collective angular-momentum component becomes
off-resonant optical trapl] and more recently in an all op- lower than the Helgenberg limited value at the cost of in-
tical trap[2]. Spinor-1 condensate can be treated as a threé:_reased fluctuation in the other co_mppnent._The_general fam-
component order parameter, one for each Zeemally of two-level atomic states satisfying this criterion was
component of the hyperfine manifold. Early theoretical stugfound to be Bloch states, or $2) coherent states. These
ies have clarified rotationally invariant descriptions including “Sduéezed statesfin the sense of Eq1)] are obtained by
elastic s-wave collisionf3—7]. Recent investigations reveal SIMply rotating the collectivéDicke) state|J, = J) in space
that such a system also possesses complex ground-sta&$l- When it comes to taking advantage of atomic squeezed
structures and can exhibit novel dynamical effelds-9), states in spectroscopy, it turned out to_be that it is possmle to
such as fragmentatiofL0], spin mixing, and entanglement d_e_termlne more u;eful set of states with new squeezing con-
[3,7,11). This paper contains further analysis of such quanditions [17]. In particular, for Ramsey oscillatory field spec-

tum correlation properties of a spinor-1 condengate1.  troscopy, a new squeezing parameter],
For a spin-half {=1/2) atomic system, a rotationally in- -
variant Hamiltonian is known not to induce spin squeezing £r=2JAJ, /1(J)| (2)

as the total spin is conservgti3]. For a spinor-1 condensate, . lled thy th | ; ;
it was found that its Hamiltonian becomes rotationally in- IS calfled for withJ, the angular-momentum component nor-

variant if the single(spatia)-mode approximation is made to Mal to the(J), i.e., in the direction of the unit vectoralong
its order parameters, i.e., assumitig, ()= ¢(r)ay with ~ Wwhich A(n-J) is minimized. The squeezing conditiofk
- . o <1 is not straightforwardly determined by the Heisenberg
the same mode functios(r) [3,7]. (@ is the annihilation e rainty relation. Instead, it is defined by requiring the
operator for atoms in Zeeman statg==,0.) However, improvement of signal-to-noise ratio in a typical Ramsey
various nonlinear processes do occur within different subspectroscopy. It was later shown that the same criterion is
spaces of the full S(3) structure of a spinor-1 condensate. also applicable for improving the phase sensitivity of a
In this paper, we verify the existence of spin squeezing in theiach-zehnder interferometgt4]. £x=1 for Bloch states or
isospin subgroupl2]. SU(2) coherent states.

Historically, atomic squeezed states were first considered An independent refinement &f, was suggested by Kita-
for a SyStem of two-level atoms. Even in this SImple(SlJ gawa and Uedilg] to make it independent of angu|ar-
case, it was found that some operational definitions of spifnomentum coordinate system or specific measurement
squeezing can become system dependent. Depending on t§¢hemes. They emphasized that collective spin squeezing
context in which the concept of squeezing is applied, differ-should reflect quantum correlations between individual

ent definitions aris¢14]. Squeezing in atomic variables was atomic spins and defined a squeezing parameter
first introduced through reduced fluctuations in the atomic

(Paul) operators of the systed5] such that atomic reso- gq:AJL/\/‘]_/Z 3
nance fluorescence in the far-field zone is squeezed. In this

case, it is useful and convenient to define the atomic squeets measure such correlatioidhe factorJ/2 in the denomi-

ing parameter according to nator represents the variance of a Bloch state, which comes
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from simply adding up the variance of each individual spinazimuthal phasep,=¢.— ¢_, which is conjugate td,.
(1/2)]. When quantum correlations exist among differentQuantum mechanically they satisfy,,¢,]=i. Thus from
atomic spins, the variance of certain component of the col$J,6¢,=1 and 6N, _=2(AJ)Y2 we find 6¢, _
lective spin can become lower thdf2. This leads naturally ~<A\]§>1/2/|<\]X>| [19]. Therefore, for spin squeezed states,
to the criterion{,<1 for spin squeezing. Instead of simple one achieves higher angular resolution and reduced particle
rotation of Dicke states, more complicated “axis twisting” partitioning noise. In a three-component system, we can
schemes are required to generate squeezed states safisfydigilarly associate the three number differemge- N; with
this criteria[19]. We notg that.thlls definition is directly re- three subspace pseudospieach of spin-1/21j, T andV
lated to the spectroscopic definition &s= (J/[(J)]) &g __such thatN,—N_=2T,, N,—Ny=2Vs and N —N,
More recently,_ a p_artlcular type of quantum cor_relatlon,zzus‘ The phase differences can then be similarly ex-
namely the multiparticle entanglement, becomes 'mporta'%ressed in terms of componettis,, Vy,, andT, . When

for quantum information physics. To relate atomic squeezin emanding noise reduction in such a(3system. we need

to entanglement, a more stringent criterion for atomiC, consider squeezing in the three spin-1/2 subsystems. One

squeezing which combines the quantum correlation deﬁn"may naively expect that results from the above discussed
tion yvi'Fh the inseparability requirement of system densitysu(z) squeezing can be applied to each of the three sub-
matrix is given by[18] systems, and collectively, one can simply demand that
- 2, <1 to be satisfied simultaneously. In reality this does not
2_ (23)A(ny-J) 4) work as the three spin-1/2 subsystems do not commute with
¢ (n,-J)2+(ny-J)? each other. This is also the fundamental reason that makes it
difficult to generate and detect quantum correlations in a full
SU(3) system. Furthermore, due to the above noncommuting
) . S s s nature, the three S@) subspins cannot be squeezed inde-
fact identical toég along the direction(n;-J)=0. It was  ,opqently of each other. Previous discussions of a spinor-1
proven rigorously that whe§e<1, the ““?" state of thel . condensate entanglement are always limited to just one
two-level atoms becomes inseparable, i.e., entangled in du2) subspace, usually in the limit,~ N, i.e., one mode is

general sense. All three d_efinitions above apply to a tWOhighly populated. Approximately, this limit destroys the un-
component(two leve) atomic system. Many complications derlying noncommutative algebra amorid,¥,T) and sim-

arise when attempt is made to ex.tend spin. squeezi_ng 1o ﬁiifies the problem to that of a usual two-mode (8Usys-
spinor-1 SW3) system. Under certain restrictive condmons,t

¢e has been used recently to discuss a two-mode entangle- gne of the major results of this paper is that the effective
ment in a spinor-1 condensdtél].

X L - Hamiltonian of a general spinor-1 condensate can be decom-
A related problem to spin squeezing is its efficient gen-

eration and detection. In accordance with their respectivgOsed as
definitions for SUW2) systems, several physical mechanisms )
have been proposed along this direction. Kitegawa and Ueda H=%xkuT3+ixgp(U+V,i+H.cC), (5)
considered a model HamiltonialHKuzthf that can be
realized via the Coulomb interaction between electrons in thevhich involves both the Kitagawa-Ued&U) and Barnett-
two arms of an interferometdil3]. Barnett and Dupertuis Dupertuis (BD) type of spin squeezing simultaneously. In
suggested that spin squeezing can be achieved in a two-atanther words, all three fictitious spins can indeed be found
system described bigp=i%(g*J;.J,. —H.c.) [20]. The  squeezed in a spinor-1 condensate, as the above two distinct
use of a pseudospin two-component atomic condensate sysenlinearities commute with each other, and therefore
tem has also been suggestedB]. Recently, two different squeeze all three SB) subspaces simultaneously. We find
groups considered atomispin) squeezing and entanglement that the BD-type interaction dominates whaly is large;
in a spinor-1 condensate, under the assumption that one @fhile in the opposite limit the KU-type squeezing governs.
the components is highly populated such that quantum progFor intermediate values dfi, it is necessary to consider a
erties are important only among the remaining two sparselgeneralized spin squeezing for the three-mode spinor-1 sys-
populated componen{d1,12. Our aim in this study is to tem. To achieve this, we provide a criterion for theV
remove such a restrictive condition, and consider the fulkwo-spin squeezing based on reduced quantum fluctuations
guantum correlations within a spinor-1 condensate. imposed by the BD-type nonlinearity. When such a condition
Let us consider a general three-component system labeldd satisfied, the state of a spinor-1 condensate as a
byi,je{+,—,0}. For spectroscopic and interferometric ap- macroscopic-coherent quantum object becomes useful for
plications the observables of interest are the relative numbehree-mode spectroscopic and interferometric applications.
of particles N;—N; (particle partitioning and the corre- We further show that this condition also corresponds to a
sponding phase differenceg— ¢; with their measurements two-mode entanglement in terms of the Holstein-Primakopf
limited by noises oN;;=([A(N;—N;)]»¥ and &¢;  bosonic modes, and it reduces to previous results in the large
=<[A(¢i—¢j)]2)1’z. For a two-component system, the par- Ny limit [11,12. Squeezing inTl spin is particularly useful
ticle partitioning becomes the collective angular-momentunfor quantum information applications based on collective
projection asN, —N_=2J, in the standard Schwinger rep- (Dicke) states|J,J,). These states are in fact stationary in a
resentation; the relative phase becomes the correspondisginor-1 condensate and can be manipulated via external

with the n; being mutually orthogonal unit vectorg, is in
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control fields [7]. Since J,=N,—-N_=2T;, such AY-2 NG Y+2a
T-squeezed states ensure well-defined Dicke states. : : :
In our study of spin squeezing in a spinor-1 condensate as
outlined in this paper, we present a systematic approach by
recognizing the J,V,T) pseudospin subspaces as the Gell-
Mann (quark realization of the SI(B) algebra[21]. Similar
recognitions are found useful in the recent discussions of
guantum and semiclassical dynamics of three coupled atomic
condensate$22], where the BD-type two-spin squeezing
nonlinearity was absent. Earlier investigations of three-level
atomic systems also made efficient use of the density matrix FIG. 1. The action oGy in T5-Y space. Any point is coupled
and expressed atomic Hamiltonians in terms(lgenera- only to its next-nearest neighpors alomng axis thrgugh a two step
tors[23,24). The main difference between our approdoh processV. U, on theY line Wlth T3 unchanged in the Qnd. Note
spinor-1 BEQ and those of earlier studies are the envelopinghatV+ andU.. commute with each other and the conjugate pro-
Weyl-Heisenberg algebra of the bosonic operators, whictfeSs 1S also shown.
leads to subsequently much larger Hilbert space of the sys-
tem. In addition to spin squeezing, we also investigate other =X.. of the s2) algebra. Let us emphasize that we dall
guantum correlation effects, e.g., condensate fragmentatiooperators the isospin and operators the hypercharge only
with the theoretical framework. We show that previous theo-because of their formal resemblar{&i]. U andV subalge-
ries based upon the $8) rotational symmetry group cannot bras will be calledJ andV spin, respectively. We then have
give a decomposition of angular-momentum operator with_ , =2(V,.+U_), L,=2Ts, and
nonlinearities that could easily be considered for spin
squeezing.

L2=4T2+E(N—e J(N—€_)—2(Y—Y()?+G
3 2 + — 0 Y

Il. SU(3) FORMULATION FOR SPINOR-1 BEC (12)

We shall treat the spinor-1 BEC under the single-mode
approximatior{ 7]. It should be noted that the validity of it is Gy=2(V,U,+H.c), (12
now reasonably well understogd, 11,25, and for ferromag-
netic interactions, it is in fact exact as shown receh2y]. With €. = — 3/2+ \/5 andY,=—N/6— 1/4. ForN>1 this
Under the single-mode approximati¢dl], a spinor-1 con- gives Yo~ —N/6, V\;hiCh corresponds tmy,=N/2. Using
densate is described by the Hamiltonian [To,V.]=+V./2 and [Ts,U.]=5U./2, we find
H=,uN—)\;N(N+1)+)\g(L2—2N), (6) [Ts_,GY]=O consistept witH H,L,]=0. I_-|ence the Hamil-
tonian (6) separates into three commuting patts- Hy[N]
whereN=n +n_+n, is the total number of atoms and the +H+[T3]+Hy[Y]. To our knowledge, this decomposition
collective angular momenturfL) with the familiar raising has not been discussed before. In Re@], a model ofH
(lowering operatorL , = ﬁ(aﬂaﬁaﬁa,) (L_=L"), L, =X(T§+3Y2)' has .been cons.idered for both the quantum
=n,—n_, andn;=ala;. u is the chemical potentiah ., and the semiclassical dynamics ¥fas well as for S(B)
are renormalized interaction coefficients, related to variou§oherent states. We note that the decompositidn differs
. - from the Casimir relation for the two-mode cd&6]. In fact,
swave scattering lengths angl(r) [3,7]. a. o can form a . S ) C 2
similar Schwinger representation of &Y in the following W'th the spin smgk_et pair operatdk—(aQ—Za;a_)/\@ as
manner: defined by Koashi and Uedg8], we find L*=N(N+1)
—ATA. We note that, neitheHo«LL>2—2N [7] nor HocN(N
—1)—A'A [4] can lead to any simple recognition of the
T+:aT+a_ ; T3=§(n+—n_), (7 nonlinear coupling among the various spin components.
By denoting the simultaneous eigenstates of commuting
operators K,Y,T3) as|N,T3,Y), we find

V., V3 1
( =alay, Zz(ni—no), (8)
U, Us v+)|NT v \/(N Y)(N T Y .
T3,Y)= ——Y || =*Ts+ =+
N=n,+n_+ng, 9) U, 3Y) 3 3= %2
1 ><NT+EY+1
Y=§(n++n_—2n0). (10 T ’

The linear combinationsX.+X; (X=T,U,V) together i.e., Gy only couples next-nearest neighbors alongYtaxis
with T3 andY resemble the set of eight generators of(®U through off-axial hopping as depicted in Fig[47]. Perhaps
in spherical representatiorT . 3, U. 3, and V. 3 fulfill it is not surprising that operatois. , U, andV.. are sim-
commutation relations [ X, ,X_]=2X5; and [X3,X.] ply the off-diagonal elements of the single-particle density
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FIG. 2. The ground-state expansion coefficiefi{&) = (ng)
as a function ofng for N=1000 atoms in thél;=0 block. The
solid curve is the approximate analytical result Etp) while the
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numerical result. Since the Hamiltonian is block diagonal in
evenng and oddng spaces, we find two degenerate ground
states with even and odg, components, respectively. These
ground-state pairs have opposite phases as seen in Fig. 2.
The approximate result here applies for a value of eMen
which leads to an eveng within the T;=0 block. Hence,
only the evemg block of the Hamiltonian should be consid-
ered when compared with the Fig. 2. We will also show
below that under the single-mode approximation, the exact
ground state foN>1 is generally a fragmented state with
(ngy=N/2. We note the structural resemblance to the Schro
dinger cat statésuperposition of two macroscopic quantum
state$ separated in the angular momentum found in two-
component BECs with Josephson-type coup(i2g,29.

In a spinor-1 condensate as considered here, we find that
the dynamical behavior can be characterized Yoy N/3
—ng, which can be expressed ¥s-2(U3+V3)/3. Since the
azimuthal phases are conjugate to angular-momeumtpro-

other curves are obtained by an exact diagonalization procedure. jection operators, the catlike ground states predicted here re-

operatorpW=aLa,,, while N, T;, andY are related to the
diagonal elementdl.. , V., andU .. all raise and lower the
T3 value by(1 or 1/2.

As an example, we consider the simple case of The
=0 block along the line in Fig. 1 of the Hamiltonid6) for
\,<0, the ferromagnetic cas@s in 8’Rb [2]). The polar

case ofA,>0 (as in #Na BEC[1]) has been discussed in

Ref. [3]. Dropping the constanitly[N] and writing in the
units of [\/|, the Hamiltonian becomes
H=2(Y—Yg)2—2ty(|Y+2){Y|+H.c), (13

where ty=(N/3-Y)(N/3+Y/2+1). Following the tight-
binding procedure for the restricted two-mode casednd

semble the angular-momentum cat states of a two-
component condensate in its conjugate phase spaces. Finally,
we note that the symmetry poiMy can be adjusted by ex-
ternal control fields that contribute terms proportionahto,

to the Hamiltonian, and can be absorbed into tie-{Y)?

term through a newy asn. =N/3+Y/2=T; andnyg=N/3

=Y.

We have now seen that the Hamiltonian of the system
effectively describes a one-dimensional dynamics along the
Y axis, similar to that of a diffusive random walk process but
now with an attractoffor A ;<<0)Y,. Hence, we exped{, to
influence population dynamics in a similar manner as it af-
fects the fragmentation. FAr;=0, it is known that popula-
tions oscillate around time-averaged valugs=N/2 and
n-=N/4, which are the same as the results we found for the

—) discussed in Refl9], its eigenstates can be found by fragmented ground states. We conclude that steady-state val-

determining thes(Y) of |#)==v#(Y)|Y) through a differ-
ence equation

Ed(Y)=2(Y=Yo)?¢(Y) = 2Lty (Y= 2) + ty (Y + 2()1]4)

In the continuum limit and up to the first order @(|Y|/N),
the equivalent differential form becomes

E Py 1oy (Y=Yo)?
—+1l|y=—2——-——+———¢. (15
(8\(3 v Y2 Yo dY  4Y3 v 19
Its ground state is therefore
V2(Y=Yo)® Y=Y
exp —
8| Yol 41Yy|
= Y), (16
14) 2: (] Yol/V2)4* v

which gives a diagona{p,,) with (ng)=N/2 and(n.)
=N/4, i.e., a fragmented staf8,10]. To check the validity

ues of population oscillations as well as fragmentation is
determined by the hypercharge symmetry poiigt which
can be shifted by external fields.

IIl. TWO-SPIN AND ISOSPIN SQUEEZING

The form of Gy suggests the existence of two-mode
squeezing as was also noted recently by Deaal. [11],
who studied a spinor-1 condensate initially prepared in the
Fock state with onlym;=0 state populated. During the time
when the total number of excitations into states= =1 are
negligible, the spin-mixing term@Gy) in the Hamiltonian
simply reduces to a two-mode squeezing nonlinearity via
<n0>(a1af+ H.c.). This creates a continuous variable-type
entanglement, or mode entanglement in the second quantiza-
tion form. In order to relate continuous variable-type en-
tanglement to measurable spectroscopic spin squeezing and
particle entanglement, Ref11] first showed that in the low
excitation limit, the two-mode entanglement criterion can
also be expressed in terms of spin squeezing parameters for
Ly

of this approximate analytical result, we also solved the same In order to use the two-level SP) definition for spin

problem for N=10% within the T3=0 block by an exact

squeezing ofL,,, new pseudosping. were introduced

diagonalization procedure. The results are compared in Figvithin the the two-level subsystenis-1)=|—1) and |0).
2. We see that the analytical result agrees well with the exacthey found that wherL,~0, the system Hamiltonian be-
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comes effectively H=X,(L?—2N)~\}(L5+L))~ (3%, X2=(e'*U_+H.c)/2, (19)
+J§y), which causes each spin-1/2 subsystem to be
squeezed via the single-axis twisting scheme. For the inde- Xa:(eiavi_i_H.C.)/\/E (20)

pendent single-axis twisting scheme to work efficiently in
achieving substantial spin squeezing, the commutator
[Jixy s d—y]=(T-—=T,)/4xT,, needs to be small. Hence,
squeezing in the isospin is essential to achieve this two-mode
squeezing goal. Without it, large quantum fluctuationd jn atmli_ (xatmz_xat 2y p, (22)
would destroy the two-mode squeezing.

Unfortunately, both the relationship between the two-prom j,=V—-U and J.,=(3Y/2+T,)/2, we find Q%
mode squeezing and spin squeezing as well as the interpre:—ﬁ(a)"‘]» with ﬁ(a):(;OSa sina, 0). If U andV wer_e
tation in terms of a dual single-axis twisting fails to be ad- - ' i

. oo .~ .~ .~ not correlated, their respective quantum noises would con-
equate for higher excitations under more realistic situations,

Indeed, for the extreme opposite casengfen. ~N/2, the trll?ute to that ofJ.. addltlvely: Existence of quantum corre-
o ) . . . lations between th&) andV spins would reduce the quantum
Hamiltonian describes a single-mode amplitude squeezing

it reduces toGY~(a$2+H.c.). Anywhere in between these Fuctuation inJ.. . Thus, the §.) spin squeezing is achieved

two extreme limits, we propose a different type of squeezing?gaFNo'Spm U-V) squeezing. FroU_,V_]=0, we find

two-spin squeezing, as a generalization of single-spin

squeezing by taking into account quantum correlations for

mode-entanglement applications. (AQ$)2+(AQg+w/2)2: E [(AX§)2+(AX§*”’Z)2]
We first note that the two extreme types of squeezing in a=uv

Gy can be handled at arbitrary levels of excitation by intro-

QY =(XZ+X9)/2, (21)

ducing a new two-spin squeezing operator via +Cuy (23
tt with the U-V correlation function
aral, ng>n. an
K,=V, U,~ 1 _
T | a3, ng<n., Cy=e 2%V, U, )2+c.c. (24)
K_=K!, (18)  denote the correlations amongrV spins to the quadrature

noise, which reduces the uncertainty bound when two-spin
with [K K, ]=2Ks. The squeezing mechanism in Hamil- squeezing occurs. We find a lower bound for the quadrature
— +1— .

tonian (6) is now understood to be a generalized BD-type"?'S€ a%gzuyv[(_AXg)z“LgAx(g:;/;)z]’ by noting that
squeezing via th&/, U, +H.c. nonlinearity inGy. This is L Xs Xy " 1=2iVs, [X{,X{"™]=~2iUs, and [(Ug)|
significantly more complicated than the two-bosonic-mode™ [(Va)|=[(Us+V3)[=3[(Y)[/2. We finally find
squeezing as the two spits and V have a noncommuting
algebra. The mode entanglement of approximate bosonic (AQY)2+(AQ* ™) 2=3(Y)|/4+Cy, . (25
modesa’, =a. a}/\(ny) of Ref.[11] can in fact be general-
ized to mode entanglement between exactly bosonidherefore, taking into consideration the important spin-spin
Holstein-Primakoff mode$30], a,—,, defined throughx , correlation between different particles similar to the spin-1/2
=al\/S,— N, andX3=N,—S,/2, in the spinS,/2 realization case[19], we can introduce th&-V squeezing condition as
of corresponding §@2) algebras ofU andV spins with N, "
=ala,. The squeezing treatment with the exact bosonic . AQDZ+(AQET™H?
modesay anda, remains to be more complicated than the Sup = (Y)]
usual two-bosonic-mode squeezing as it also suffers from the
underlying noncommutative algebra. This representation resimilar to the continuous variable systdi®l]. This is the
duces to the usual SU,1) two-mode squeezing or amplitude central result of this paper on the two-spin squeezing in a
squeezing in the appropriatg, limits. At low excitations  spinor-1 condensate.
whenny~N, we haveX;~—N/2, S;~(no), andN,~0. In The significance of spin-spin correlation function to spin
this caseX_~/(ng)a, and Gy= 2(n0>(azaz+ H.c.) dem- squeezing and entanglement for a two-mode system was pre-
onstrates the two-mod&U(1,1)] squeezing as in Ref11].  viously discussed in Ref.32], where they showed that a
In the largeny scheme of Ref[11], such modes are sparsely negative, finite correlation parameter causes spin squeezing
populated, sincea’’a’,=n,(1+ny)/n,. In the opposite and entanglement of the atomic states. With the Holstein-
case of large .., we are in the strong excitation regime with Primakoff relations, it is straightforward to show this condi-
N,~1,S,,,~(n.), which gives effective modes to be tion contracts into £)2+(¢&**™%)2<2 whenn,—N. Thus
alag/\/n. with large occupations. Eqg. (26) generalizes the two-mode entanglement criterion
In order to define two-spin squeezing introduced viakhe (£%)2+(£*" ™22 2 at low excitationg11] to arbitrary lev-
operators in a similar way to the two-mode bosonic squeezels of excitation for two-spin squeezing. For completeness,
ing, we introduce Hermitian quadrature operators we note the squeezing parameter Jor spins ard 11]

<3/4, (26)
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N((AO% )2 of stationary states in the fully quantum-mechanical frame-
((AQ%)%) : , : o
o /2>2 < >2, (27)  work for their use in squeezing-entanglement applications.
QL ™) +(Jus

while the Heisenberg uncertainty relation gives

AQYAQY* "’2>|<Ji3>|/2. For many-particle entanglement  We now present some results on the numerical investiga-

of three-level atoms, the criterion is given by eitlger<1. tion of isospin squeezing. If the condensate atom nurhber
TheU-V squeezing discussed above displays existence a6 fixed, a generic state |#(0))= (aoag+ a_al

nonlinear interactions withinfamong U, andV subspace of +«_a’)N|0,0,0//\/N!, can be prepared with Raman pulses

Eq. (6). One may also contemplate for a one-axis isospi1], where |0,0,0) is the vacuum in the Fock basis

twisting (throughT?) of the particular form of.? (11). How-  |ng,n_,n,) and «;=|a;|€'% complex. Using m=n,

ever, the dynamics of spinor-1 BEC becomes considerably-n_, we can write

more complicated because of off-axis hopping processes

(¢%)%=

IV. RESULTS AND DISCUSSIONS

along the hypercharge axias in Fig. 3. Due to the non- - N— N+m
commutativity of subspin system&J(V,T), squeezing and W(O)):% Inm @) Zk'T_k’ 2 >
entanglement appear even without essentially any axis twist-

ing. In fact, even whe3=0, squeezing within the isospin where&z(ao,a, Ja.), k=0,1,...,(N—|m[)/2 for even

subgroup can still happen as th&V two-spin squeezing N+m 2k=1.3 N—|m|) for oddN+m, and
interaction would redistribute the noise also for the isospin ' R '

subspace, in addition to theg-V spin space. To appreciate U= \JCZKCIN MIZIK 20 [(N=m)I2]—k f [(N+m)i2] &
this fact, let us consider the rotation operator involving only ~ *'Nmk N ~N-2k U + '
U-V spins and employ the SB) disentangling theorem to

obtain whereC|'= () denotes the binomial coefficient. The basis

transformation coefficients between angular momentum and
Fock states are available from Ré¢85], written in more

ol =L _ L 2\L,a— 7" L_
Ri{]=e"+ e+ (1+|n[9) e . (28 compact forms as

with »={¢tan{/|¢|. Using [V, ,U_]=T, and [V, ,T,]

) N—m N+m
=[U_,T,.]=0, we find [Im)="2>, Gimk 2k,T—k,T—k>, (32)
K
e7]LJr — end§V+en\f§U,e— 7T /\c‘f- (29)
with
Hence, we arrive at NI
(-1 m
3 o3 > % s, % = k
R[g’]:e\’2’7V+e"2’7UfRT[n]e*‘“2” U+ef\«217 V,’ (30) GImk 2 SIZ 4" kr

with a rotation operator within isospin space VR  and the symbolic notation
=exp(— 7T, IN2)(1+]|7|?)?Teexp(— 7*T_/\/2). This result

reflects the nature of Euler-angle rotations in three dimen-
sions for a spin-1 system. We thus conclude that squeezing in

NIm

_ 2 2k—2 | —2k+2 N—-1)/2—
}—Jc;rchcl "y A e e

J. through redistributing the noise via rotations is always kr
accompanied by a redistribution of the noise in the isospin Xcl(lfzm%?kﬂ/‘/C&Nsz)/z_kclzfm- (32)
subspace.

Squeezing and many-particle entanglement via the isospie note |=N,N—2, ... N—2[N/2] with [n]=n,n—1/2
can be checked using the usual spin squeezing criteriofgy n= even, odd, and r=may0ok—(l
which for both T squeezing and the above derivetlV — —m|)/2], ... mifk,(N-1)/2], m=0,=1,... *I. k
squeezing are independent of their respective initial condi=0 1, ... ,\N—|m[)/2 for |+m= even and R
tions. Hence, we have now greater freedom to consider &1 3 .. (N—|m|) for |+m= odd. The normalization is

suitably prepared spinor-1 condensate to achieve manyjiven by

particle and/or mode entanglement for quantum information

applications as well as various type of spin squeezing for 1 (Nh2 g

atom interferometry and spectroscopy applications in the —= 2 —.CJZJ-C'(NH),Z,]-. (33
long-time limit with more macroscopic populations in &ll S j=o 4

=1 three-component states can occur. In the limiting case . ) ) ]

discussed before either,~N or n.~N is required to be Simpler analytic results exist for special cases, e.g.,
large, the quantum statgsnodes of interest are always
sparsely populated. More generally, one can use Raman Grmk=2KCECI 2 el ™, (34
coupled laser pulses on a spinor-1 condensate to generate

states with arbitrary populations in each mode and with arwhich takes an asymptotic for@yq= \/CZNE/ZN*l whenN
bitrary initial phases. This allows then for the consideration>1. We also find
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N/2 102 _ i | _
(no)= 53 2 Cl(2K)=N72, (35 : 3
) ) T ¢=2n/3 T
the same result as obtained previously from &d). 10' B _
These expressions allow us to express the initial state as i E
|$(0)) =2 im#him(0)[Im), with WO 3
o [l e M
_ k(2 10" & =
Yim(0)=Anm(er— @) % 75(@)GrumiGimic,  (36) _ E

ANm: CglﬁmaQme)lzalJ\i+m/2’ (37) 10_1 | [ |
0 0.25 0.5 0.75 1

andn= a(z)/(Za_a+). Whenn=1, it becomes an eigenstate At

of Hamiltonian(6) as =, GnmiGimk— Sni- This generalizes

the stationary state of Rgf7] into the quantum regime. The FIG. 3. Time-dependent squeezing parametetpat27/3 for
condition for stationarity becomesdg=46_+ 6, and|a_|  N=100 atomsP,=1/3, andé=m/2.

+|a,|=1 (since|ag|?+|a_|?+|a.|?=1). For the special

case ofs;=0 anda_=a, , we obtaina=1/2, in complete  system, particle partitioning noise and phase sensitivity can
agreement with earlier resulfZ]. By defining Pj=|aj|2 as  only be controlled by the modes involved directly. Here, the
spin component populations, we find that stationary statem;=0 mode actually does not belong to the isospin group,
require Po=1/2 wheneverP _=P_ . This is, however, not yet it still influences the isospin noise properties. In contrast
sufficient without establishing the phase constraint foundo the two-mode resuliN.=J+J,=N/2*+2T;, a three-
above, which becomes particularly useful as it provides fomode system hadN.=N/3+(U3+V3+x2T3)/2. A direct
more freedom in state preparation using Raman coupled laneasurement dfl . or N_ will uncover all noise terms due
ser fields. As an example, we now consider isospin squeezing quantum correlations among the various spin components.
with the same form of initial states as in R¢¥] for ¢y A measurement ofl, —N_, on the other hand, is similar to
=Poe'”? and a.=\1-P,. This gives(T(0))=N(1 the two-mode case as the result it is only affected by the
—Py)/2 as the only nonvanishing isospin componéatt noise in the isospin. Whem;=0, the influence of then;
=0). The population in then;=0 component then acts as a =0 mode population is reflected in the two-spin squeezing
knob between the two extreme squeezing-type discussed eanteraction between th&) and V spins, which in turn also
lier as well as between th&, and T terms. In the special redistributes the noise in isospin.

case of within thél';=0 block, we find that the dynamics of In Fig. 5, results of two-spin squeezing are shown for
the system is determined only along the hyperchaige various initial Fock state$N_,Ng,N,) of a spinor-1 con-
axis. Previous study in Ref11] with initial state |O,Ng,0) densate. The lack of oscillations in Fig(al is due to
results in spin-mixing dynamics, due to whibly was found  nonoscillatory behavior afiy for the particular initial condi-

to quickly reduce to some value without further oscillationstions used here. The solid curves are for the two-mode en-
or recovery. In our scheme, we fimg . all exhibits collapse tanglement criterion of Ref[11], valid only when N,

and revival patterns, so do&asY=N/3—n,. Even for the >N. . We see that when the initial states are such Mhat
T;=0 block, we have seen redistribution of noise among thenodes are not near empty, the achievable two-spin or two-
U-V components affects fluctuations in the isospin as wellmode squeezing essentially diminishes. However, there is a
The squeezing parameter

, 10
N(A(T})?) | I
§2¢=Ty,2, (38) (@)
<Tx> +<Tz> An
%% 00 IV L
is analogous tofy (27) but for isospinT'=R[¢]T after
rotated aroundk axis by an anglep. Isospin squeezing is -
then characterized b, <1. At ¢=27/3, this occurs after a 107 | |
very short timesee Fig. 3. It is especially interesting to note T (b) ! ! '
that £, exhibits collapse and revival patterns. The optimal c v - Sd b
angle ¢, for maximal squeezingminimal ¢,) [18,26,33 o - : _
is shown in Fig. 4. It oscillates around its time-averaged 0 | | | i
value~2m/3. In general, we find, achieves its minimum 0 0.25 0.5 0.75 1
sooner and the minimum is smaller with decreasing values of At
a

0 or increasing values d?.

This effect is clearly unique to three-mode systems. In  FIG. 4. (a) The same as in Fig. 2 but for the optimized squeez-
usual population spectroscog.g., Ramsey typeor in in-  ing parametertb) the optimal anglep,,;i, that maximizes squeezing
terferometry(e.g., of Mach-Zehnder typdor a two-mode  as in(a).
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FIG. 5. Time-dependentJ-V squeezing parametefdashed
curve and two-mode entanglement criterigsolid curve for N
=100 atoms initially prepared in a Fock state af(0)
=IN_,Ng,N,): |0,100,0 in (a),]1,98,1) in (b), |25,50,25in (c),  squeezing. Its relation to mode entanglemght] in the
and|50,0,50 in (d). Holstein-Primakoff representation is also pointed out. We
have presented results for condensate fragmentation and
also turning point, when squeezing is again recoveréd.if ~ Spin-mixing phenomena in terms of the hypercharge symme-
becomes significantly populated. Hence, we have found Y and provided general phase-amplitude conditions for sta-
squeezing regime when the initial conditions are such thafionary states in the full quantum regime. _
N.>N,. The results are almost equivalent to the chige In a typical experiment, a small magnetic-field gradient
>N. considered in Ref11]. This new initial condition gen- My be availabl¢34], which resglts in an effective Hamil-
erates the two-mode entanglement via two-spin squeezin@nian [9] Hg=a(T,+T_)+BT5—ygTs, instead of Eq.
between theU-V spin modes, i.e., between the Holstein- (6), With , B, and yg various renormalized parameters. In
Primakoff bosons. It should be noted that the two-mode enthis case isospin squeezing still occurs through the one-axis
tanglement criterion in terms of spin squeezing parameter§Visting nonlinearity{ 19]. _
(£2)2 has been derived fdi,>N. in Ref.[11]. We show Spln squeezing parameters can be measured directly by
here that this criterion is also satisfied in the opposite case df€ interferometry or Ramsey spectroscdf)]. Alterna-
No<N. . This observation emphasizes that the/ squeez- tVely, the isospin(T) squeezing in spinor-1 condensate can
ing criterion and the corresponding mode entanglement cafiSO P& observed experimentally with light scattering. Using
be sought for other initial conditions when the criterion of R@man coupled laser fields, an interaction of the tipe
Ref.[11] is no longer applicable. For that aim, we considerzg(T+J*T+H;rC-) can be engineere35,36, where J_
an initial statg25, 0, 75 as shown in Fig. 6, where thé-v = V2(aLas+aa,) is an angular-momentum operator, with
squeezing is indeed found. ap,as,a. the annihilation operators for anti-Stokes, Stokes,
and pump photons. The interactibti allows for the map-
ping of spin correlations into photon correlations as the total
V. CONCLUSION angular momentunT;+J, is conserved. The solutions for

We have provided a comprehensive treatment of quanturﬂg—(t) depend on the initial conditiond_(0) and T_(0)
correlations in a spinor-1 condensate. Although no nonlineay32:36- Therefore, the quadrature operators of scattered pho-
interaction is apparent in the spinor condensate HamiltoniafPns are directly related to initial condensate spin quadratures
when single-mode approximation is made, interesting quar@"d @ homodyne measurement for Stokes parameters of the
tum correlations do develop within subgroups of the(ju Raman field can reveal isospin squeeZigg].
system. We have analyzed a spinor-1 condensate in terms of
its T-, U-, andV-spin components. We have found and char-
acterized squeezing within one particular subgroup, similar We thank Dr. Su Yi for helpful discussions. This work
to that of the isospin structure and we have numerically inwas supported by a grant from NSA, ARDA, and DARPA
vestigated its dynamics in terms of collapses and revivalsunder ARO Contract No. DAAD19-01-1-0667, and by the
We have developed thg-V spin squeezing as a generaliza- NSF under Grant No. PHY-0113831. Partial support from the
tion of the often adopted spin-1/2 squeeZzjfig] to two-spin  NSF of China is also acknowledged.

FIG. 6. Same as Fig. 5 but now for the initial staf€0)
=125,0,75.
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