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Effective-action approach to a trapped Bose gas
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The effective-action formalism is applied to a gas of bosons. The equations describing the condensate and
the excitations are obtained using the loop expansion for the effective action. For a homogeneous gas, the
expansion in terms of the diluteness parameter is identified in terms of the loop expansion. The loop expansion
and the limits of validity of the well-known Bogoliubo\. Phys.(Moscow 11, 23 (1947)] and Popov(Zh.

Eksp. Teor. Fiz47, 1759(1964) [Sov. Phys. JETRO, 1185(1965]) equations are examined analytically for

a homogeneous dilute Bose gas and numerically for a gas trapped in a harmonic-oscillator potential. The
expansion to one-loop order, and hence the Bogoliubov equation, is shown to be valid for the zero-temperature
trapped gas as long as the characteristic length of the trapping potential excesdgatreescattering length.
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[. INTRODUCTION temperatures by incorporating terms containing the excited-
state operators to lowest order in the interaction potential

The dilute Bose gas has been subject to extensive study8l-
for more than half a century, originally in an attempt to un- A Surge of interest in the dilute Bose gas due to the ex-

derstand liquid He 11, but also as an interesting many-bodyPerimental creation of gaseous Bose-Einstein condensates
system in its own right. In 1947, Bogoliubov showed how tooccurred in the mid-19909]. The atomic condensates in the

describe Bose-Einstein condensation as a state of brok gxperiments are confined in external potentials, which poses
: . . ; Hew theoretical challenges; especially, the Beliaev expansion
symmetry, in Wh_'Ch_ the expectatlon_ values Of the field OPEa4, the diluteness parameten,a’ is untenable when the den-
tors are nonvanishing due to the single-particle state of lowgiiy js inhomogeneous. The renormalization of the potential
est energy being macroscopically occupied, i.e., the annihiygg generalized to a trapped system by Proukakisl.
lation and creation operators for the lowest-energy mode cafi0,11. Leading-order corrections to the Gross-Pitaevskii
be treated as numberg1]. In modern terminology, the ex- equation for a trapped Bose gas were studied by Stenholm
pectation value of the field operator is the order parametell2]. The finite temperature Beliaev-Popov theory was ap-
and describes the density of the condensed bosons. Blied to a trapped gas by Fedichev and ShlyapniKi8i.
Bogoliubov's treatment, the physical quantities were ex- Recent experiments on trapped Bose gases have em-
panded in the diluteness paramet@,a®, wheren, denotes ployed Feshbach resonances to probe the regime of large

: - . i Scattering length, and hence large values of the diluteness
fehneer(z;/nzl'[tgteof ;’:;O?SS t?lCeCLsJ-F\)/\)//;r\]/ge tzc?a:?gvriisgt Z?lglti pirr:gle;arametefm,lﬂ. It is therefore of importance to understand

" , . . the low-density approximations to the exact equations of mo-
Bogoliubov’s theory is therefore only valid for homogeneous;i,n and the corrections thereto. In this paper, we shall em-

dilute Bose gases. The inhomogeneous Bose gas was studigghy the two-particle irreducible effective-action approach,
by Grosq 2] and Pitaevski[3], who independently derived a and show that it provides an efficient systematic scheme for
nonlinear equation determining the condensate density. fealing with both homogeneous Bose gases and trapped
field-theoretic diagrammatic treatment was applied by Beli-Bose gases. We show how the effective-action formalism can
aev to the zero-temperature homogeneous dilute Bose gdse used to derive the equations of motion for the dilute Bose
showing how to go beyond Bogoliubov’s approximation in agas, and more important, that the loop expansion can be used
systematic expansion in the diluteness paramefesa®  to determine the limits of validity of approximations to the
[4,5]; and also showing how repeated scattering leads to exact equations of motion in the trapped case.
renormalization of the interaction between the bosons. This The paper is organized as follows. The model and the
renormalization was in Beliaev's treatment a cumbersomeéwo-particle irreducible effective-action approach are intro-
issue, where diagrams expressed in terms of the propagatduced in Sec. Il. The homogeneous dilute Bose gas is con-
for the noninteracting particles are intermixed with diagramssidered in Sec. I, and it is shown that the effective-action
where the propagator contains the interaction potential. Beapproach proves efficient for deriving the familiar equations
liaev's diagrammatic scheme was extended to finite temperasf motion. In Sec. IV, we demonstrate how the renormaliza-
tures by Popov and Faddef®], and was subsequently em- tion of the interaction potential due to repeated scattering is
ployed to extend the Bogoliubov theory to finite conveniently carried out in the effective-action formalism. In
Sec. V, the effective-action approach is applied to the trapped
Bose gas. The main results of the paper are presented in Sec.
*Present address: Helsinki Institute of Physics, P. O. Box 64, FINVI, where the equations of motion are solved numerically in
00014 University of Helsinki, Finland. order to assess the limits of validity of approximations to the
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exact equations of motion. Finally, in Sec. VII, we summa-the generating functional in order to obtain equations involv-

rize and conclude. ing the two-point Green'’s function in a two-particle irreduc-
ible fashion.
Il. EFFECTIVE ACTION FORMALISM FOR BOSONS The generator of the connected Green’s functions is
We consider a system of spinless bosons described by the W[ »,K]=—iInZ[ ,K], (3
action
and the derivative
ST [ drdty (0010 Ho(r) + e, 0 W
1 57]i(r,t):¢i(r’t) (4)
——f drdr’dty"(r,) ¢t (r' HU(r—r") _
2 gives the average fielgp with respect to the actio ¢]
T T
Xy(r' ) y(r,1), 1) tnotdKe2,
where ¢ is the scalar field describing the bosons. Here, a1 = O(r,t)
denotes the chemical potentiblg=p%/2m+ V(r) is the one- pr)= d*(r,t)

particle Hamiltonian consisting of the kinetic term and an
external potential, andJ(r) is the potential describing the
interaction between the bosons. We have chosen units so that
=1, but will restores in final results. It will prove conve-
nient to introduce a matrix notation whereby the field and its =(o(r.1)). ®)
complex conjugate are combined into a two-component fiel
¢=(‘//1¢T)=(¢’11¢2)'

The correlation functions of the Bose field are obtaine
from the generating functional

=fD¢¢(r,t)exp(i$[¢]+in*¢+'§¢TK¢

dI'he average fiele is seen to specify the condensate density
dand is referred to as the condensate wave function.

The derivative of W with respect to the two-particle
source is

i
Z[n,K]=fD¢exp(i8[¢]+in*¢+§¢*r<¢, 2 SW N DR
| N | 5Ky (rotr 1) 5PN DG (r, 1)+ 5 G (rtrt),
by differentiating with respect to the soureg = (7, 7*) (6)
=(71,72). In EqQ.(2), matrix notation is implied in order to
suppress the integrations over space and time variables. whereG is the full connected two-point matrix Green’s func-
two-particle source ternK has been added to the action in tion describing the bosons not in the condensate,

W
Smi(r,t)dny(r',t')
_ [ (8 DauT ) (Su(r syl b))
Sy (r,t)sy™(r' ) (Syl(r,t)su(r' )]’

Gij(r,t,r’,t/):—

(@)

where 5y/(r.t) is the deviation of the field from its mean The effective action satisfies the equatiofE/S¢=— 7
value, 5= y¢— . Likewise, we shall writep=p+ ¢ for  —K ¢ and 6T/6G=—iK/2. In a physical state where the
the two-component field. We note that in the path-integrakxternal sources vanisly=0=K, the variations of the ef-
representation, averages over fields, such as in(Bqgare fective action with respect to the field averaggsand G

automatically time ordered. . N, : :
. . . vanish, yielding the equations of motion
We introduce the effective-action, the generator of the y g g

two-particle irreducible vertex functions, through the Leg-

endre transform of the generator of connected Green's- or
functions,W
o¢
_ — 1 i ol
[[¢.Gl=W[7.K]=7'¢—5¢'Kp—TrGK.  (8) 55 =0 (9b)
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According to Cornwalkt al.[16], the effective action can
be written on the form

_ o i
I[$,G]=S ¢]+5Trin GOG‘1+§Tr(Gal—2(1))G
—IETr1+F2[$,G], (10)

whereG, is the noninteracting matrix Green’s function

G*l s |(91_H0+ILL O

o (NLI)="14 —id—Ho+

X&(r—r")o(t—t"), (11
and the matrix
5°S
SO(rtr t)y=— - —

341,054t |, 5

+Go Hr ' t), (12

will turn out to be the self energy to one-loop ordisee Eq.
(21)]. Using the action describing the bosons Ef), we
obtain  for the  components 3{M(rtrt")=a(t
—t)2M(r,r'), where

sErry=68(r'—r) fdr”U(r—r” |D(r" 1)
+U(r—r")®d*(r',t)d(r,t),
SO ) =Ur—rHo(r,H)d(r' 1),

SO r)=U(r—r)®*(r,tH)®d*(r' 1),

SO ry=s(r' —r)J dr'u(r—r")|d(r",t)|?

+Ur—r")d*(r,t)d(r’,t). (13

The delta function in the time coordinates reflects the fact

that the interaction is instantaneous. Finally, the quardtity
in Eqg. (10) is

I[$,Gl=—i |n<ei8im[$ﬁ¢]>épu, (14
where S, [ ¢,54] denotes the part of the acti®i ¢+ 5¢]

which is higher than second order & in an expansion
around the average field. The quantify is conveniently

PHYSICAL REVIEW®&6, 033607 (2002
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FIG. 1. Two-loop (upper row and three-loop(lower row)
vacuum diagrams contributing to the effective action.

=
I

(eiSnl.08]) — (detiG) 12 f D(66)

 @il206'G ™15 giSil 6,541 (15)

The diagrammatic expansion &f, corresponding to the
action for the bosons Eql) is illustrated in Fig. 1 where the
two- and three-loop vacuum diagrams are shown. Since ma-
trix indices are suppressed, the diagrams are to be understood
as follows. Full lines represent the Green’s functions and in
the cases where we display the different components explic-
itly, G414 will carry one arro G,, can, according to Ed7),
be expressed in terms &f;; and thus needs no special sym-
bol], G4, has two arrows pointing inward, ar@,, carries
two arrows pointing outward. Dashed lines represent the
condensate wave function and can also be decorated with
arrows, directed out from the vertex to represéntor di-
rected towards the vertex representit§. The dots where
four lines meet are interaction vertices, i.e., they represent
the interaction potentidl (which in other contexts will be
represented by a wiggly lineWhen all possibilities for the
indices are exhausted, subject to the condition that each ver-
tex has two ingoing and two outgoing particle lines, we have
represented all the terms bf, to a given loop order. Finally,
the expression corresponding to each vacuum diagram
should be multiplied by the factéf~ 2, wheres is the num-
ber of loops the diagram contains. In the effective-action
approach, the appearance of the condensate wave function in
the diagrams is automatic, and the approach is thus well
suited to describe broken-symmetry states.

It is well known that the expansion of the effective action
in loop orders is an expansion in Planck’s constaritl6].

The first termS ¢] on the right-hand side of Eq10) is
referred to as the zero-loop term and the terms where the
trace is written explicitly as one-loop terms, and they are
proportional to#° and #1, respectively. We note that the
presented effective-action approach is capable of describing
arbitrary states, including nonequilibrium situations where
the external potential depends on time. Although we in the

described in terms of the diagrams generated by the actiopresent paper shall limit ourselves to study a Bose gas at zero
Sim[¢ 8¢], and consists of all the two-particle irreducible temperature, the theory is straightforwardly generalized to
vacuum diagrams as indicated by the superscript “2P1,” andinite temperatures. For example, in the Schwinger-Keldysh
the diagrams will therefore contain two or more loops. Thetechnique for treating general nonequilibrium states, the field
subscript indicates that propagator lines represent the fulk just attributed an additional index. For an account of treat-

Green’s-functiorG, i.e., the brackets with subscri@tdenote
the average

ing arbitrary states, we refer to R¢fL7]; see also Ref.18]
for an application of the Schwinger-Keldysh technique to the
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dilute Bose gas. The equations of moti®a)—(9b) together T,
with the expression for the effective action Edj0) form the 3= 255 (20
basis for our subsequent calculations. I

Introducing the notation for the matrix self-energy=3,(*)
Il. HOMOGENEOUS BOSE GAS +3', Eqg.(19) is seen to be the Dyson equation

We shall now consider the case of a homogeneous Bose G’lngl—E. (21)
gas in equilibrium. The equilibrium theory of a dilute Bose
gas is well known, but the effective action formalism will |n the context of the dilute Bose gas, this equation is referred
prove to be a simple and efficient tool which permits one toto as the Dyson-Beliaev equation.
derive the equations of motion with particular ease, and to The Green’s function in momentum space is obtained by

establish the limits of validity for the approximate descrip- simply inverting the 2 matrix Gy Y(p)—2(p) resulting
tions often used. For the case of a homogeneous Bose gasijiithe following components:
equilibrium, the general theory presented in the previous sec-

tion simplifies considerably. The single-particle Hamiltonian w+ep—ut5p)
H, is then simply equal to the kinetic terrilq(p) = p?/2m Gu(p)= D :
=egp, and the condensate wave-functidr(r,t) is a time P
and coordinate-independent constant whose value is denoted ~3.4p)
by \n,, so thatn, denotes the condensate density. The first Gip)=—p
term in the effective-action Eq10) is then P
—221(p)
1 _ T
S[(I)]=(,un0— Euong) f dratd, (16) GalP)=—p
= i i —wt+e,— putZ(p)
whereUy= fdrU(r) is the zero-momentum component of Gyylp) = p 22)

the interaction potential. For a constant value of the conden- D, ’

sate wave functio®(r,t)=n,, Eq.(13) yields _ _
all having the common denominator

No(Up+U,) noUp
noU, No(Up+U,)

S W(p)= . 17 Dp=[w+ep—u+25p)[w—eptu—211(p)]

o _ , _ +21AP) 2 2(P). (23
Varying, in accordance with E¢9a), the effective-action Eq.
(10) with respect ton, yields the equation for the chemical From the expression for the matrix Green’s-function &,

potential it follows that in the homogeneous case its components obey
the relationshipss,5(p) = G11(—p) and G(—p) =G12(p)
i d*p =G,y(p). The corresponding relations hold for the self-
m=noUo+ EJ W{(Uﬁ Up)[G1a(p) +G2oAp)] energy components. We note that the results foung.fand

G to zero- and one-loop order coincide with those found in
oT, Ref.[4] to zeroth and first order in the diluteness parameter

+Up[Grap) + Gan(P) I~ 51— (18 \/nya®. For example, according to E€L7) we obtain for the
0 components of the matrix Green’s function to one-loop order

where the notation for the four-momentup (p,w) has

been introduced. The first term on the right-hand side is the GW(p)= w+eptnolUy

zero-loop result, which depends only on the condensate frac- 1P w?—e2-2nyU e,

tion of the bosons. The second term on the right-hand side is P e

the one-loop term which takes the noncondensate fraction of

the bosons into account. The term involving the anomalous GP(p)= ,

Green’s functionsG;, and G,,; will shortly be absorbed by wz—sﬁ—ZnoUpsp

the renormalization of the interaction potentis¢e Sec. V.

From the last term originate the higher-order loop termgwhich are the same expressions as the ones in[Refs we

which will be dealt with at the end of the section. shortly demonstrate, the loop expansion for the case of a
The equation determining the Green’s function is obtainediomogeneous Bose gas is in fact equivalent to an expansion

by varying the effective action with respect to the matrix in the diluteness parameter. From E24) we obtain for the

Green's-functiorG(p) in accordance with Eq9b), yielding ~ single-particle excitation energies to one-loop ordgy

:\/82p+ 2noUpe,, which are the well-known Bogoliubov

—NnoU,

(29)

or i energieq 1].
= — = —( — -1 -1 (l) 4 . . . . .
0 oG 2( G +Gy +XHLE), (19 Differentiating with respect ta, the terms inl", corre-
sponding to the two-loop vacuum diagrams gives the two-
where loop contribution to the chemical potential. Functionally dif-
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ferentiating the same terms with respect@g gives the '

two-loop contributions to the self-energiés;. The dia-

grams we thus obtain for the chemical potenjialand the M + m + g te=| T | = >C<
self-energy are topologically identical to those found by

Beliaev [5]; however, the interpretation differs in that the

propagator in the vacuum diagrams of Fig. 1 is the exact

propagator, whereas in Rdb], the propagator to one-loop ) ] )

order appears. FIG. 2_. Summmg all diagrams _of the “_Iadder"-type results in
In order to establish that the loop expansion for a homo-thet matrix, which to lowest order in the diluteness parameter is a

geneous Bose gas is an expansion in the diluteness parame%c}mentum-independent constagt diagrammatically represented

: ._by a circle.
Jnoa®, we examine the general structure of the vacuum dia- y

grf?ms ;:omprisecij'bijz. Any ?ri]agram Og.a gilven Ioodp orgier spatial ranggof the potential, as first noted by Beliag¥].
Iers from any diagram In the preceding loop order by anrpg quantitykomU is not necessarily small for the atomic

extra four—mon:(enrt]um mtegrguon, the f::undenﬁate den?iny gases under consideration here. Hence, all vacuum diagrams
to some powek, the interaction potentiall to the powe which differ only in the number of ladder rungs that they

+1, andk+2 addltlr?nal Gf?g”’.s furf1ct|onsh|n the Integran:‘j'lcontain are of the same order in the diluteness parameter, and
?Ne canhesumate’ tfe contribution from these dtet:mshas Oive have to perform a summation over this infinite class of
ows. The Green's functions are approximated by the oNn€giaqrams. The ladder resummation results in an effective po-
loop result Eq.(24). The additional frequency integration

) X ) tential T(p,p’,q), which is called thé matrix and is a func-
over a product ok+2 Green’s functions yields+ 2 factors tion of the two ingoing momenta and the four-momentum

of noU (whereU denotes the typical magnitude of the Fou- yansfer. Due to the instantaneous nature of the interactions,
rier transform of the interaction potentialdivided by X {het matrix does not depend on the frequency components of
+3 factors of the Bogoliubov enerdy. The range of the  q ngoing four-momenta, but for notational convenience,
momentum integration provided by the Green’s functions is,q display the dependence Bp,p’,q). To lowest order in

112 ini i i o
(mnoU)™= The remaining three-momentum integration yne gijuteness parameter, thenatrix is independent of four-
therefore gives a factor of order, ™" “"m>*U » and  moementa and proportional to the constant scattering ampli-
provided the Green’s functions make the integral convergey,deT(0,0,0)=47#%a/m=g, wherea is thes-wave scatter-
the contribution from an additional loop is of the order ing length[19,20. This is illustrated in Fig. 2, where we
(nom®U3)*2 This is the case except for the so-called laddethaye chosen an open circle to represgriterating the equa-

diagrams, in which case the convergence needs to be prgon for the ladder diagrams we obtain the well-known
vided by the momentum dependence of the potential. Thematrix equation

ladder diagrams will be dealt with separately in the next

section where we show that they, through a renormalization ) ) i ) .,

of the interaction potential, lead to the appearance oftthe  T(P:P ,q)=Uq+|f d"q'Uq Gua(p+9')Guu(p'—Qq')

matrix which in the dilute limit is proportional to thewave

scattering lengtta and inversely proportional to the boson XT(p+q',p'—q",9-0q"). (25
mass. The renormalization of the interaction potential will o ) )

therefore not change the estimates performed above, but onfif finite temperatures, the matrix takes into account the
change the expansion parameter. Anticipating this change weffécts of thermal population of the excited states.

conclude that the expansion parameter governing the loop We shall now show how the ladder resummation alters the

expansion is for a homogeneous Bose gas indeed identical fiagrammatic representation of the chemical potential and
Bogoliubov's diluteness parametef_gn a3, the self energy. In Fig. 3, displayed are some of the terms up
0 to two-loop order contributing to the chemical potential

IV. RENORMALIZATION OF THE INTERACTION

» 4
Instead of having the interaction potential appear explic- 4=~~~ + Q + W@
b c

itly in diagrams, one should work in the skeleton diagram- a
matic representation where diagrams are summed so that th

four-point vertex appears instead of the interaction potential,
thus accounting for the repeated scattering of the bosons. It
the dilute limit, where the interparticle distance is large com- * + + * o
pared to thes-wave scattering length, the so-called ladder J .
[

diagrams give the largest contribution to the four-point ver-

tex function[19]. The ladder diggre}ms aré d?PiCted in Fig. 2. FIG. 3. Diagrams up to two-loop order contributing to the
On computing the corresponding integrals, it is found that anyemical potential. Only the two-loop diagrams relevant to the re-
extra “rung” in a ladder contributes with a factor propor- symmation of the ladder diagrams are displayed. The two-loop dia-
tional not to\/nom®U* as was the case for the type of extra grams not displayed are topologically identical to those shown, but
loops considered at the end of the previous section, but tgiffer in the direction of arrows or the presence of anomalous in-
komU, wherekg is the upper cutoff momenturfor inverse  stead of normal propagators.
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-1

LN A
| ey
\ /
FIG. 4. Diagrammatic representation of the last two rewritings in (6) which lead to the conclusion that the diagréanof Fig. 3
implicitly contains the ladder contribution to diagramThe anomalous self-energdy,, is represented by an oval with two ingoing lin&s,

is represented by an oval with two outgoing lines, and the sum of the second- and higher-order contriblitigiis tepresented by an oval
with the label “2.”

The first two terms in Eq.18) is represented by diagraras-  In Fig. 4, the last two rewritings are depicted diagrammati-
d, and the two-loop diagrams—f originate fromI',. The cally. We see immediately that the first term on the right-
diagrams denoted andf are formally one loop order higher hand side corresponds to the first ladder contribution to dia-
thanc andd, but they differ only by containing one addi- gram a, and since to one-loop ordé¥;,(p)=neU,, the
tional ladder rung. Hence, the diagramg, e, andf, and all  other terms in Eq(26) are of two- and higher-loop order.
the diagrams that can be constructed from these by addinghe self energy in the second term on the right-hand side can
ladder rungs, are of the same order in the diluteness pararbe expanded to second-loop order, and by iteration this
eter ynpa® as just shown above. They are therefore re-yields all the ladder terms, and the remainder can be kept
summed, and as discussed, this leads to the replacementtefick of analogously to the way in which it is done in Eq.
the interaction potentidl by thet matrix. (26). The resulting ladder resummed diagrammatic expres-
We note that no ladder counterparts to the diagrarasd  sion for the chemical potential, displayed in Fig. 5, is seen to
b in Fig. 3 appear explicitly in the expansion of the chemicalbe equal to that found in Reff19].
potential, since such diagrams are two-particle reducible and In the same manner, the self energies are resummed. For
are by construction excluded from the two-particle irreduc-2;, a straightforward ladder resummation of all terms is
ible effective actionl’,. However, diagranb contains im-  possible, while foX ,, the same procedure as the one used
plicitly the ladder contribution to diagram In order to es- for diagrams a and b in Fig. 3 for the chemical potential has
tablish this we first simplify the notation by denoting by, ~ to be performed. In Fig. 6, we show the resulting ladder

the numerator of the exact normal Green’s funct@n(p), resummed diagrams for the self-energigs ands ;, to two-
which according to Eq(22) is Np=w+s,— u+215(—p). loop order in the dilute limit wher& (p,p’,q)~g.
We then haveD ;=N N_,—31(p)2,(p)=D_,, and the In Ref.[7], a diagrammatic expansion in the potential was

contribution from diagram b can be rewritten on the forms performed, which yields to first order the diagr@ﬁzla) in
Fig. 6, but not the other two-loop diagrams. This theory,
where the normal self-energy is taken to Bg,=3{}?
+3(23  the anomalous self energy ,,=3{? , and the
diagrams displayed in Fig. 5 are kept in the expansion of the
S 14(P) chemical potential, is referred to as the Popov approxima-
=f d*puU 1P tion. Although we showed at the end of Sec. Il that all the
PNpN_p—214(p)221(p) two-loop diagrams of Fig. 6 are of the same order of magni-

tude in the diluteness parametgnya® at zero temperature,

f d’p UpG1ap)

_ f d4pup(212<p>NpNp_zlz(p>221<p>212<p)

2 2
Dp DD “\ /4
AY /
:f d4pUp[212(p)Gll(p)Gll(—p)—221(p)G12(p)2] U= é + 2 + ...
= f d*p Up{nOU pG11(P)G1(—p)+ [Z12(p)—NoU pJ FIG. 5. The chemical potential to one-loop order after the ladder
summation has been performed and the resuttimgtrix has been
X G11(P)G1i(—P) —221(p)Grap)?}. (26)  replaced by its expression in the dilute limit, the consgnt
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4
/

211 = 2 ER + 2 + 2 +4 +4 +4 +...
\\

la 2a }
2b 2c 2d 2e
N\ /) N A N A
3 / \ 7 N ’
2b 2¢ 2d

NS N K
AY 7 \ 1/,
we e K
la 2a

FIG. 6. NormalZ, ;; and anomalouss, ;, self-energies to two-loop order after the ladder summation has been performed and the resulting
t matrix been replaced by its expression in the dilute limit, the constant

the Popov approximation applied at finite temperatures igo zero-loop order, where only the first term on the right-
justified, when the temperature is high enougfi>gn,. hand side appears, the equation is the time-dependent Gross-
Below, we shall investigate the limits of validity at zero tem- Pitaevskii equation2,3]. We have already, as elaborated in
perature of the Popov approximation in the trapped case. the previous section, performed the ladder summation by
In this and the preceding section, we have shown how th&hich the potential is renormalized and thmatrix appears
known expressions for the self energies and chemical poterand have substituted for it the lowest-order approximation in
tial for a homogeneous dilute Bose gas are conveniently olthe diluteness parameter, the constarince the matrix in
tained using the effective action formalism, where they simthe momentum variables is a constant in the dilute limit, it
ply correspond to working to a particular order in the loopbecomes in configuration space a product of three delta func-
expansion of the effective action. We have established that ations, T(rq,r,,rz,r4) =96(r1—rs)8(ro—r4) 8(rz—ry). The

expans?on in the dilute_ness p_arameter is equivalent to Afuantity I, is defined as the effective action obtained from
expansion of the effective action in the number of Ioops.lﬂ2 by summing the ladder terms wherebyis replaced by

Furthermore, the method provided a way of performing &net matrix, and its diagrammatic expansion is topologically
systematic expansion, and the results are easily generalizeg two-loop and higher order.

to finite temperatures. We now turn to show that the effective e Dyson-Beliaev equation, E¢1), and the equation
action approach provides a way of performing a systematigjgtermining the condensate wave function, &), form a
expansion even in the case of an inhomogeneous Bose gage; of coupled integrodifferential self-consistency equations
for the condensate wave function and the Green’s function,
with the self energy specified in terms of the Green’s func-
tion through Eq.(20). The Green’s function can be conve-
We now consider the experimentally relevant case of aniently expanded in the amplitudes of the elementary excita-
Bose gas trapped in an external static potential, thereby seions. We write the Dyson-Beliaev equation, Eg1), on the
ting the stage for the numerical calculations in Sec. VI. Inform
this case, the Bose gas will be spatially inhomogeneous. The
effective action formalism is equally capable of dealing with
the inhomogeneous gas, in which case all quantities are con-
veniently expressed in configuration space as presented in
Sec. Il. We show in this section that the Bogoliubov and
Gross-Pitaevskii theory corresponds to the one-loop approxi- . . L
mation to the effective action. The one-loop equations wiIIWhere we ha\’/e mtroo}uced the ma,tn),( operdnﬁr,t,r 't ).
be exploited further in the numerical calculations in Sec. V1.~ “3Hod(r=r’)a(t—t )+ osk(rtr',t') andog is a Pauli

Varying, in accordance with E¢9a), the effective action matrix. Upto one-loop_ order, the matk is diagonal in the
T, Eq.(10), with respect tab* (r,t), we obtain the equation time and space coordinates and we factor out the delta func-

of motion for the condensate wave function tions and writel.(r,t,r",t') = 5(t—t") 6(r —r")L(r), where

V. INHOMOGENEOUS BOSE GAS

fdr”dt”[iﬁato35(r—r”)5(t—t”)+a3L(r,t,r”,t”)]

XG(r" t" r" t")=h16(r—r")s(t—1"), (28

[Ho—p+2g|®(n)]* gd(r)®
(ifd—Ho+ w)@(r,t)=g|®(r,t)[?d(r,t) L= —gd*(r)2 —Ho+u—2g|®(r)[?)
+2igGqq(r,t,r,t)d(r,t)

ST The eigenvalue equation farare the Bogoliubov equations
2 [1]. The Bogoliubov operatot. is not Hermitian, but the
- (27) ; . ,
SO*(r,t) operatorosL is, which renders the eigenvectors lbfthe

033607-7



EMIL LUNDH AND JORGEN RAMMER PHYSICAL REVIEW A66, 033607 (2002

following properties[22—-24. For each eigenvectop;(r) (dw ,

= (uj(r),v;(r)) of L with eigenvalueE;, there exists an ei- Nnd(F) =i f ﬂGll(”""):Z (N2 (34
genvector?oj(r)=(vj*(r),u*(r)) with eigenvalue—E;. As-

suming the Bose gas is in its ground state, the normalizatiohe results obtained in this section form the basis for the

of the positive-eigenvalue eigenvectors can be chosen to heumerical calculations presented in the next section.
(¢j o) = 6jx where we have introduced the inner product

VI. LOOP EXPANSION FOR A TRAPPED BOSE GAS

- 1
(¢ "Pk>_j dre;(reseqr) We now turn to determine the validity criteria for the
equations obtained to various orders in the loop expansion
:j dr[uj*(r)uk(r)—v]*(r)vk(r)]. (30) for the ground s_tate of a1 Boszezgas trapped in an isotropic
harmonic potentiaM(r)=smw;r“. To this end, we shall
numerically compute the self-energy diagrams to different

It follows that the inner product of the negative-eigenvalue, qers in the loop expansion.

eigenvectorsp is Working consistently to one-loop order, we need only em-
ploy Eq. (27) to zero-loop order, providing the condensate
5 o= | dret ~ wave _functlon which upon insertion into E9) yleIQS the
(o0 f rei(Noser) Bogoliubov operatoi. to one-loop order, from which the

Green’s function to one-loop order is obtained from E3).
:f drv;(Nvg (N —u;(Nug(r)]=— 5 Thg resulting Green’s function is_ then used to calculate the
various self-energy terms numerically. In order to do so, we
(31) make the equations dimensionless with the transformations

. ~ r=and, ®=yNo/al®, uj=a,2%;, Ej=hoE,, andg
and ~the eigenvectorp and ¢ are mutually orthogonal, =(hwta§sJNo)6, where a = A/mae, is the oscillator
(¢j, @) =0. By virtue of the Gross-Pitaevskii equation, the |ength of the harmonic trap, arid, is the number of bosons
vector ¢o(r)=(®(r),—d*(r)) is an eigenvector of the Bo- iy the condensate.
goliubov operatot. with zero eigenvalue and zero norm. In To zero-loop order, the time-independent Gross-Pitaevskii
order to obtain a completeness relation, we must also introequation on dimensionless form reads
duce the vectorp,(r) = (P,(r),— % (r)) satisfying the re-
lation Lo,= a ¢y, Wherea is a constant determined by nor- 1 o Lo o
malization,{¢q,¢,)=1 [23]. The resolution of the identity aEA 2D +g|P[PP = pud. (35
then becomes

We solve Eq.(35 numerically with the steepest-descent

2 TeiNel () =%i(Nel(r)]os method, which has proven to be sufficient for solving the
: present equatiof25]. The result thus obtained fab is in-
+[<pa(r)<p$(r’)+goo(r)<p;(r’)]03=15(r—r’), serted into the one-loop expression for the Bogoliubov op-

eratorL, Eqg. (29), in order to calculate the Bogoliubov am-
plitudes u; and v; and the eigenenergieg;. Since the
where the prime on the summation sign indicates that theondensate wave function for the ground-statés real and

zero-eigenvalue mode, is excluded from the sum. Using rotationally symmetric, the amplitudes ,v; in the Bogoliu-
the resolution of the identity, E432), allows us to invert Eq.  pov equations can be labeled by the two angular momentum
(28) to obtain the Bogoliubov spectral representation of tthuantum numbersandm, and a radial guantum numbey

(32

Green's function and we Writelyin(T,0,4) =Un(")Yin(6:8), Dnin(T0,9)
1 =v(r)Ym(0,4). The resulting Bogoliubov equations are
G(r,r’,w)th' (mcpj(r)go;'(r’) linear and one dimensional
1~ 11 0. 110+ 1., - -
_T_Ej@j(r)%(r )). (33 (—E?ﬁr+§?—2+§r —pu+2g9P (r))
It follows from the spectral representation of the Green’s XU (1) + g2 0 (T) =Byt (7),

function, that the eigenvaluds; are the elementary excita-
tion energies of the condensed dhsre, constructed explic-
itly to one-loop order. Using Eq.(33), we can at zero tem-
perature express the noncondensate density or the depletion
of the condensate),.=n—n,, in terms of the Bogoliubov L o
amplitudes X0 (N +9DP2(r)un(r)=—Envn(r). (36)

11 %2 11(1+1) 1.
27 2 72 2

+oT 2—p+2§&>2(?)>
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Note that the only parameter in the problem is the dimen- 1

sionless coupling parameté:r=4rrN0a/aOSC. Solving the
Bogoliubov equations reduces to diagonalizing the band di-
agonal M X 2M matrix L, whereM is the size of the nu- 10" ¢
merical grid. The value o in our computations was varied
between 180 and 360, higher values for stronger coupling,s
and the grid constant has been chosen to & Q%iving a
maximum system size of &3,.. We have useWATLAB to
perform the diagonalization.

In the following, we shall estimate the orders of magni-
tude and the parameter dependence of the different two- anc
three-loop self-energy diagrams, and to this end we shall use 10™%

the one-loop results for the amplitudes v, and the ?

eigenenergiesE obtained numerically. When working to 107
two- and three-loop order, one must also consider the corre- 10 B
sponding corrections to the approximdtenatrix g. These 9
cpntrlputlons have been stutﬁed in REfl], and their inclu- FIG. 7. Fractional depletion of the condensbign,./ny at the
sion will not lead to any qualitative changes of our results. In

fact, even at finite temperature, the dependence of tha- trap center as a fungtlon of the dlmen5|onless_coupllng streglgth
=4m7Npalays.. Asterisks represent our numerical results, circles

trix on the coupling parametey is weak as long as the (gpresent the local-density approximation with the numerically

temperature is not close to the critical temperature for Bosezomputed condensate density inserted, and the line is the local-

Einstein condensatiof19,21]. density approximation using the Thomas-Fermi approximation for
Let us first compare the one-loop and two-loop contribu-the condensate density.

tions to the normal self energy. The only one-loop term is

-2 |

Nt (O)ng(C

=
o

L
() 1 2

Nn0 ~
S w)=2g|d(r)[28(r —r")=2gny(r) 8(r—r"). E“C( ):0.001931-2. (40)

(37) No(0)

We first compare (2 with the two-loop term which is pro- When we reintroduce dimensions, the power-law relation-
portional to a delta function, i.e., the diagrara th Fig. 6.  Ship EQ.(40) is multiplied tf){ the reciprocal of the number of
We shall shortly compare this diagram to the other two-loop?0sons in the condensalg ~ because the actual and dimen-

diagrams. For diagrama2 we have sionless self energies are related according to
(2a)/, 1 - [ de’ , (s) hwtagsc~(s)
3370 w)=2igds(r—r") EG(I’,T,&) ) h) :FE , (42
0
=2gn,{r)s(r—r’). (38

where s denotes the loop order in question. The ratio be-
tween different loop orders of the self energy is thus not

The ratio of the two-loop to one-loop self-energy contribu- . ined solely by the dimensionless coupling parameter
tions at the point is thus equal to the fractional depletion of < y by ping p

the condensate at that point. In Fig. 7, shown is the numerid=47No2/acsc, but by Ny and a/a,s. separately. We thus
cally computed dimensionless fractional depletion at the orioPtain for the fractional depletion in the strong-coupling
gin, 1,{(0)/Ny(0), where we have introduced the dimension- limit, g=100
less notation _

Nhd0) _ i Nhd0) ic) 1'2. 42)
a‘OS

Ro(N) =N, no(0) ~ No ny(0)

~0.04INS2

- -~ Do~ It is of interest to compare our numerical results with
nnc(r):Z lvj(n)]2. (39  approximate analytical results such as those obtained using
the local-density approximatio(LDA). The LDA amounts

to substituting a coordinate-dependent condensate density in
the expressions valid for the homogeneous gas. The
homogeneous-gas result for the fractional depletidrijs

We have chosen to evaluate the densities at the origin,
=0, in order to avoid a prohibitively large summation over
thel#0 eigenvectors. As apparent from Fig. 7, the log-log
curve has a slight bend at weak coupling, but becomes al-

most straight for coupling strengtiysz 100. A logarithmic fit Mnc 8

— 3
J . . ] = npa”. (43
to the straight portion of the curve gives the relation No 3w
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In the strong coupling limit we can use the Thomas-Fermi - ‘ )
approximation for the condensate density
215 er 1
| 107°F
aOS

(44)

1 2/5

8ra’.a

15Nga

aOSC

15Nga

No(r)= a
0SC

RO

which is obtained by neglecting the kinetic term in the
Gross-Pitaevskii equatiof6]. For the fractional depletion
at the origin there results in the local-density approximation

a |65
—c) , (45)

aOS

Na(0)  (15N)Y
No(0)  372y2

10° 10° 10* 10°

as first obtained in Ref27]. The LDA is a valid approxima- ’

tion when the gas locally resembles that of a homogeneous FIG. 8. Ratio between different two-loop self-energy terms as
system, i.e., when the condensate wave function changegnctions of the dimensionless coupling strength 4wNya/a,sc.

little on the scale of the coherence lengthwhich according  Asterisks denote the ratiR® as defined in Eq(46) and circles

to the Gross-Pitaevskii equation §s=[87ny(0)a] Y2 For  denote the ratiR?®). The termsR? andR2® are equal and turn

a trapped cloud of bosons in the ground state, its raBius out to be equal in magnitude ®?, and are not displayed.
determines the rate of change of the density profile. Sihce

is a factorg?® larger thang [26], we expect the agreement densates, this condition is fulfilled, except in the instances
between the LDA and the exact results to be best in th&vhere Feshbach resonances are used to enhance the scatter-
strong-coupling regime. The fractional depletion of the con-Ng length[14,15.

densate at the trap center as a function of the dimensionless In Sec. lll, we showed that for a homogeneous gas all
coupling strengtfy=4mNga/a..is shown in Fig. 7. In Fig. two-loop diagrams are equally important in the sense that

7 displayed are both the local-density result E4@), with they are all of the same order in the diluteness parameter

the numerically computed condensate density inserted, an foa”. The situation In a trapped system is not so clear,
the Thomas-Fermi approximatiof45), showing that the since the density is not constant. We shall therefore compare

LDA indeed is valid when the coupling is strong. Further- the five normal two-loop self-energy diagra®g?® ) in
more, inspection of Eq45) reveals that the LDA coefficient Fig- 6, to see whether they display the same parameter de-
and exponent agree with the numerically found result of EqpenQences and whether any _Of th_e terms can be neglecteq_ In
(42), which is valid for strong coupling. However, whg particular, the Popov approximation corresponds to keeping
i o 9 PIng. L WY the diagram= {3 but neglects all other two-loop diagrams
=10, the LDA prediction for the depletion deviates signifi- 11 '

cantly from the numerically computed depletion. Using theand we wil now dgtermine its Iim.its of validity at Z€r10 tem-
numerically obtained condensate density in the LDA, instea@©rature. Since diagrama2contains a delta function, we

of the Thomas-Fermi approximation, does not substantiall?haII Integrate ovderkone Orf] the ﬁpatlal a;gun;entshof thg _self-
improve the result, as seen in Fig. 7. energy terms and keep the other one fixed at the origin,

The relation for the fractional depletion E@2) is in =0. We denote bR the ratio between the integrated self-

agreement with the results of RéL2], where the leading- €N€rgy termg and 2,

order corrections to the Gross-Pitaevskii equation were con-

sidered in the one-particle irreducible effective-action for- fdrE(ljl)(O,r.w=0)

malism, employing physical assumptions about the relevant RO = (46)

length scales in the problem. These leading-order corrections (2a) o

were found to have the same power-law dependenclpn f dr2i7”(0r,0=0)

anda/a,s.. A direct comparison of the prefactors cannot be

made, because the objective of Réf2] was to estimate the In Fig. 8, we display the ratioR() for the different inte-

higher-loop correction terms to the Gross-Pitaevskii equatiogyrated self-energy contributions corresponding to the dia-

and not to the self energy. grams wher¢ represents B and Z. The contributions from
The two-loop term®{3? can, at zero temperature accord- diagrams 2 and % are equal and within our numerical pre-

ing to Eq.(40) be ignored as long a?%c<ﬁo, which is true  cision turn out to be equal to the contribution from diagram

in a wide, experimentally relevant parameter regime. The&C. Furthermore, inspection of the diagrams in Fig. 6 reveals

one-loop result for the fractional depletion H42) depends that when the condensate wave function is real, the anoma-

very weakly onN,, so as long adl, does not exceed 20  lous contributiors. (2% is equal to2 3%, the diagram& {3

which is usually fulfilled in experiments, we can restate theand={3” are equal t& 3%, and3 {5 is equal toX 2" . In

criterion for the validity of Eq.(42) into the conditiona  the parameter regime displayed in Fig. 8, the contribution

<8, IN experiments on atomic rubidium and sodium con-from diagram 2a is larger than the others by approximately a
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FIG. 9. Self-energy diagrams to three-loop order which are 5
evaluated numerically.

@
W
o
Z

factor of ten, and displays only a weak dependence on the 10° 0

~

coupling strength. In the weak-coupling lingts 1, it is seen g

that the terms corresponding to diagrants-2e can be ne- _ _ _

glected as in the Popov approximation, with an error in the FIG. 10. Ratio of dimensionless three-loop to two-loop self-
self energy of a few percent. When the coupling gets stron€nergy ijlagrams as a function of the dimensionless coupling
ger, this correction becomes more important. A power-law fistrengthg=4mNoa/a,.. Asterisks denote the ratio of the normal

to the ratioR®®) in the regime where the log-log curve is Self-energy termio3 {1/ evaluated at the point (@sc,«

straight yields the dependence =0), open circles denote the same ratio evaluated at
(0,0.58,¢.,@=0), and diamonds denote the same ratio evaluated at
~ (0,1.58,¢,w=0). Crosses denote the ratio of anomalous self-

R(?9~0.065% (47)  energy termNy>33/322) at (0ase, 0=0).

which is equal to 0.5 wheg~1Cf; for g greater than this The ratio between three- and_two-loop self-energy terms in
value, the Popov approximation is seen not to be valid. If thdh€ homogeneous case was in Sec. Il found to be propor-
ratio between the oscillator length and the scattering length ional to ynoa”. A straightforward application of the LDA,
equal to one hundred,.=100a, the Popov approximation substituting the central density,(0) for no, yields the de-
deviates markedly from the two-loop result wHegexceeds Ppendence, (375« NgAa/a,s) ™2 This is not in accor-
107, which is often the case experimentally. dance with the numerical result E8) although the self

In order to investigate the importance of higher-orderenergies were evaluated at spatial points close to the trap
terms in the loop expansion, we proceed to study the threecenter. The discrepancy between the LDA and the numerical
loop self-energy diagrams. We have found the number othree-loop result is attributed to the fact that we fixed the
summations over Bogoliubov levels to be prohibitively largespatial points in units of. While varying the coupling,
for most three-loop terms; however, wave been able to  although the physical situation at the pointags. (andr
compute the two diagran®{}” and={3¥, displayed in Fig. —1a_ _ andr=2a,,, respectivelyvaries wherg is varied.
9, for the case where one of the spatial arguments is placed gt s possible that the agreement with the LDA had been
the origin thereby avoiding the summation o¥eé0 com-  petter if the length scales had been fixed in units of the actual
ponents. We compare the diagral§® and3{3 to the  cloud radius(as given by the Thomas-Fermi approximation
two-loop diagrams. As we have seen, diagraiffs’, 339,  rather than the oscillator length. However, the present calcu-
and3 (29 in Fig. 6 are of the same order of magnitude andlation agrees fairly well with the LDA as long as the number
have similar dependence oy, and equivalently for the of_ atoms in the condensate lies within reasonable bounds.
anomalous two-loop diagran®{%* 29 ; we have therefore S|(r31;:)e Nogb)l in the condensed state, E@8) yields that
chosen to evaluate only diagrari§?® and (2% . The re- 2117 <257” whenever theswave scattering length is much

- 2 (3a) R (2b) _ smaller than the trap length. We conclude that only when this
sults for the ratios2}3(0r,0=0)/215”(0r,0=0), and  ondition is not fulfilled is it necessary to study diagrams of

33905, 0=0)/2%(0r,0=0), evaluated for different three-loop order and beyond.
choices ofr, are shown in Fig. 10. A linear fit to the log-log

plot gives for the normal terms the coefficient 0.016 and the

exponent 0.76 whem=0.5a,.. and the coefficient 0.0029 VIl. CONCLUSION

and the exponent 0.78 wher- aosc, and for the anomalous e have applied the two-particle irreducible effective-

terms with the choice =a,the coefficient is 0.0015 and action approach to a condensed Bose gas, and shown that it
the exponent 0.82. Restoring dimensions according to Etyjiows for an efficient and systematic derivation of the equa-

(41) we obtain tions of motion both in the homogeneous and trapped case.
The presented results are obtained for zero temperature, but

Egia)(O,aosc,w=0) o 2 0.8 the formalism _is with equal ease capable of dealing_ with

20) ~0.15\, (_;) . (48)  systems at finite temperatures and ggnergl noneqwhbnum
2177(0,80sc, @ =0) 8os states. Beliaev’s diagrammatic expansion in the diluteness
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parameter and thematrix equations are expediently arrived between the oscillator length and trewave scattering

at with the aid of the effective-action formalism. We havelength. The physical consequences of the self-energy correc-
shown that the parameter characterizing the loop expansiaions considered in this paper are indeed possible to study
for a homogeneous Bose gas is equal to the diluteness paxperimentally by using Feshbach resonances to vary the
rameter, the ratio of thewave scattering length to the inter- scattering length. Furthermore, we have found that all the

particle spacing. For a Bose gas contained in an isotropiGelf-energy terms of two-loop order are not equally large for

three-dimensional harmonic-oscillator trap at zero temperaghe case of a trapped system: in the limit when the number of
ture, the small parameter governing the loop expansion hgsarticles in the condensate is not large compared to the ratio
been found to be almost proportional to the ratio between thgetween the oscillator length and ttewave scattering

s-wave scattering length and the oscillator length of the traptength, the Popov approximation has been shown to be a
ping potential, and to have a weak dependence on the nunyz|id approximation.

ber of particles in the condensate. The expansion to one-loop

order, and hence the Bogoliubov equation, is found to pro-

vide a valid description for the trappeq gas when the oscil- ACKNOWLEDGMENTS
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