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Effective-action approach to a trapped Bose gas

Emil Lundh* and Jo”rgen Rammer
Department of Theoretical Physics, Umea˚ University, SE-901 87 Umea˚

~Received 28 November 2001; revised manuscript received 22 May 2002; published 17 September 2002!

The effective-action formalism is applied to a gas of bosons. The equations describing the condensate and
the excitations are obtained using the loop expansion for the effective action. For a homogeneous gas, the
expansion in terms of the diluteness parameter is identified in terms of the loop expansion. The loop expansion
and the limits of validity of the well-known Bogoliubov@J. Phys.~Moscow! 11, 23 ~1947!# and Popov,~Zh.
Éksp. Teor. Fiz.47, 1759~1964! @Sov. Phys. JETP20, 1185~1965!#! equations are examined analytically for
a homogeneous dilute Bose gas and numerically for a gas trapped in a harmonic-oscillator potential. The
expansion to one-loop order, and hence the Bogoliubov equation, is shown to be valid for the zero-temperature
trapped gas as long as the characteristic length of the trapping potential exceeds thes-wave scattering length.
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I. INTRODUCTION

The dilute Bose gas has been subject to extensive s
for more than half a century, originally in an attempt to u
derstand liquid He II, but also as an interesting many-bo
system in its own right. In 1947, Bogoliubov showed how
describe Bose-Einstein condensation as a state of bro
symmetry, in which the expectation values of the field ope
tors are nonvanishing due to the single-particle state of l
est energy being macroscopically occupied, i.e., the ann
lation and creation operators for the lowest-energy mode
be treated asc numbers@1#. In modern terminology, the ex
pectation value of the field operator is the order param
and describes the density of the condensed bosons
Bogoliubov’s treatment, the physical quantities were e
panded in the diluteness parameterAn0a3, wheren0 denotes
the density of bosons occupying the lowest single-part
energy state, anda is the s-wave scattering length, an
Bogoliubov’s theory is therefore only valid for homogeneo
dilute Bose gases. The inhomogeneous Bose gas was st
by Gross@2# and Pitaevskii@3#, who independently derived
nonlinear equation determining the condensate density
field-theoretic diagrammatic treatment was applied by B
aev to the zero-temperature homogeneous dilute Bose
showing how to go beyond Bogoliubov’s approximation in
systematic expansion in the diluteness parameterAn0a3

@4,5#; and also showing how repeated scattering leads
renormalization of the interaction between the bosons. T
renormalization was in Beliaev’s treatment a cumberso
issue, where diagrams expressed in terms of the propag
for the noninteracting particles are intermixed with diagra
where the propagator contains the interaction potential.
liaev’s diagrammatic scheme was extended to finite temp
tures by Popov and Faddeev@6#, and was subsequently em
ployed to extend the Bogoliubov theory to fini
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temperatures by incorporating terms containing the excit
state operators to lowest order in the interaction poten
@7,8#.

A surge of interest in the dilute Bose gas due to the
perimental creation of gaseous Bose-Einstein condens
occurred in the mid-1990s@9#. The atomic condensates in th
experiments are confined in external potentials, which po
new theoretical challenges; especially, the Beliaev expan
in the diluteness parameterAn0a3 is untenable when the den
sity is inhomogeneous. The renormalization of the poten
was generalized to a trapped system by Proukakiset al.
@10,11#. Leading-order corrections to the Gross-Pitaevs
equation for a trapped Bose gas were studied by Stenh
@12#. The finite temperature Beliaev-Popov theory was a
plied to a trapped gas by Fedichev and Shlyapnikov@13#.

Recent experiments on trapped Bose gases have
ployed Feshbach resonances to probe the regime of l
scattering length, and hence large values of the diluten
parameter@14,15#. It is therefore of importance to understan
the low-density approximations to the exact equations of m
tion and the corrections thereto. In this paper, we shall e
ploy the two-particle irreducible effective-action approac
and show that it provides an efficient systematic scheme
dealing with both homogeneous Bose gases and trap
Bose gases. We show how the effective-action formalism
be used to derive the equations of motion for the dilute B
gas, and more important, that the loop expansion can be
to determine the limits of validity of approximations to th
exact equations of motion in the trapped case.

The paper is organized as follows. The model and
two-particle irreducible effective-action approach are int
duced in Sec. II. The homogeneous dilute Bose gas is c
sidered in Sec. III, and it is shown that the effective-acti
approach proves efficient for deriving the familiar equatio
of motion. In Sec. IV, we demonstrate how the renormaliz
tion of the interaction potential due to repeated scatterin
conveniently carried out in the effective-action formalism.
Sec. V, the effective-action approach is applied to the trap
Bose gas. The main results of the paper are presented in
VI, where the equations of motion are solved numerically
order to assess the limits of validity of approximations to t
-
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EMIL LUNDH AND JO”RGEN RAMMER PHYSICAL REVIEW A66, 033607 ~2002!
exact equations of motion. Finally, in Sec. VII, we summ
rize and conclude.

II. EFFECTIVE ACTION FORMALISM FOR BOSONS

We consider a system of spinless bosons described by
action

S@c,c†#5E drdtc†~r ,t !@ i ] t2H0~r !1m#c~r ,t !

2
1

2E drdr 8dtc†~r ,t !c†~r 8,t !U~r2r 8!

3c~r 8,t !c~r ,t !, ~1!

wherec is the scalar field describing the bosons. Here,m
denotes the chemical potential,H05p2/2m1V(r ) is the one-
particle Hamiltonian consisting of the kinetic term and
external potential, andU(r ) is the potential describing th
interaction between the bosons. We have chosen units so
\51, but will restore\ in final results. It will prove conve-
nient to introduce a matrix notation whereby the field and
complex conjugate are combined into a two-component fi
f5(c,c†)5(f1 ,f2).

The correlation functions of the Bose field are obtain
from the generating functional

Z@h,K#5E Df expS iS@f#1 ih†f1
i

2
f†Kf D , ~2!

by differentiating with respect to the sourceh†5(h,h* )
5(h1 ,h2). In Eq. ~2!, matrix notation is implied in order to
suppress the integrations over space and time variable
two-particle source termK has been added to the action
n

ra

g
n’
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the generating functional in order to obtain equations invo
ing the two-point Green’s function in a two-particle irredu
ible fashion.

The generator of the connected Green’s functions is

W@h,K#52 i ln Z@h,K#, ~3!

and the derivative

dW

dh i~r ,t !
5f̄ i~r ,t ! ~4!

gives the average fieldf̄ with respect to the actionS@f#
1h†f1f†Kf/2,

f̄~r ,t !5S F~r ,t !

F* ~r ,t ! D
5E Dff~r ,t !expS iS@f#1 ih†f1

i

2
f†Kf D

5^f~r ,t !&. ~5!

The average fieldF is seen to specify the condensate dens
and is referred to as the condensate wave function.

The derivative of W with respect to the two-particle
source is

dW

dKi j ~r ,t;r 8,t8!
5

1

2
f̄ i~r ,t !f̄ j~r 8,t8!1

i

2
Gi j ~r ,t,r 8,t8!,

~6!

whereG is the full connected two-point matrix Green’s fun
tion describing the bosons not in the condensate,
Gi j ~r ,t,r 8,t8!52
d2W

dh i~r ,t !dh j~r 8,t8!

52 i S ^dc~r ,t !dc†~r 8,t8!& ^dc~r ,t !dc~r 8,t8!&

^dc†~r ,t !dc†~r 8,t8!& ^dc†~r ,t !dc~r 8,t8!&
D , ~7!
e

where dc(r ,t) is the deviation of the field from its mea
value,dc5c2F. Likewise, we shall writef5f̄1df for
the two-component field. We note that in the path-integ
representation, averages over fields, such as in Eq.~7!, are
automatically time ordered.

We introduce the effective-actionG, the generator of the
two-particle irreducible vertex functions, through the Le
endre transform of the generator of connected Gree
functions,W

G@f̄,G#5W@h,K#2h†f̄2
1

2
f̄†Kf̄2

i

2
Tr GK. ~8!
l

-
s-

The effective action satisfies the equationsdG/df̄52h
2Kf̄ and dG/dG52 iK /2. In a physical state where th
external sources vanish,h505K, the variations of the ef-
fective action with respect to the field averagesf̄ and G
vanish, yielding the equations of motion

dG

df̄
50, ~9a!

dG

dG
50. ~9b!
7-2
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EFFECTIVE-ACTION APPROACH TO A TRAPPED BOSE GAS PHYSICAL REVIEW A66, 033607 ~2002!
According to Cornwallet al. @16#, the effective action can
be written on the form

G@f̄,G#5S@f̄#1
i

2
Tr ln G0G211

i

2
Tr~G0

212S (1)!G

2
i

2
Tr 11G2@f̄,G#, ~10!

whereG0 is the noninteracting matrix Green’s function

G0
21~r ,t,r 8,t8!52S i ] t2H01m 0

0 2 i ] t2H01m D
3d~r2r 8!d~ t2t8!, ~11!

and the matrix

S (1)~r ,t,r 8,t8!52
d2S

df†~r ,t !df~r 8,t8!
U

f5f̄

1G0
21~r ,t,r 8,t8!, ~12!

will turn out to be the self energy to one-loop order@see Eq.
~21!#. Using the action describing the bosons Eq.~1!, we
obtain for the components S i j

(1)(r ,t,r 8,t8)5d(t
2t8)S i j

(1)(r ,r 8), where

S11
(1)~r ,r 8!5d~r 82r !E dr 9U~r2r 9!uF~r 9,t !u2

1U~r2r 8!F* ~r 8,t !F~r ,t !,

S12
(1)~r ,r 8!5U~r2r 8!F~r ,t !F~r 8,t !,

S21
(1)~r ,r 8!5U~r2r 8!F* ~r ,t !F* ~r 8,t !,

S22
(1)~r ,r 8!5d~r 82r !E dr 9U~r2r 9!uF~r 9,t !u2

1U~r2r 8!F* ~r ,t !F~r 8,t !. ~13!

The delta function in the time coordinates reflects the f
that the interaction is instantaneous. Finally, the quantityG2
in Eq. ~10! is

G2@f̄,G#52 i ln^eiSint[ f̄,df]&G
2PI, ~14!

whereSint@f̄,df# denotes the part of the actionS@f̄1df#
which is higher than second order indf in an expansion
around the average field. The quantityG2 is conveniently
described in terms of the diagrams generated by the ac
Sint@f̄,df#, and consists of all the two-particle irreducib
vacuum diagrams as indicated by the superscript ‘‘2PI,’’ a
the diagrams will therefore contain two or more loops. T
subscript indicates that propagator lines represent the
Green’s-functionG, i.e., the brackets with subscriptG denote
the average
03360
t

on

d
e
ll

^eiSint[ f̄,df]&G5~detiG !21/2E D~df!

3ei /2df†G21dfeiSint[ f̄,df] . ~15!

The diagrammatic expansion ofG2 corresponding to the
action for the bosons Eq.~1! is illustrated in Fig. 1 where the
two- and three-loop vacuum diagrams are shown. Since
trix indices are suppressed, the diagrams are to be unders
as follows. Full lines represent the Green’s functions and
the cases where we display the different components exp
itly, G11 will carry one arrow@G22 can, according to Eq.~7!,
be expressed in terms ofG11 and thus needs no special sym
bol#, G12 has two arrows pointing inward, andG21 carries
two arrows pointing outward. Dashed lines represent
condensate wave function and can also be decorated
arrows, directed out from the vertex to representF, or di-
rected towards the vertex representingF* . The dots where
four lines meet are interaction vertices, i.e., they repres
the interaction potentialU ~which in other contexts will be
represented by a wiggly line!. When all possibilities for the
indices are exhausted, subject to the condition that each
tex has two ingoing and two outgoing particle lines, we ha
represented all the terms ofG2 to a given loop order. Finally,
the expression corresponding to each vacuum diag
should be multiplied by the factori s22, wheres is the num-
ber of loops the diagram contains. In the effective-act
approach, the appearance of the condensate wave functi
the diagrams is automatic, and the approach is thus w
suited to describe broken-symmetry states.

It is well known that the expansion of the effective actio
in loop orders is an expansion in Planck’s constant\ @16#.
The first termS@f̄# on the right-hand side of Eq.~10! is
referred to as the zero-loop term and the terms where
trace is written explicitly as one-loop terms, and they a
proportional to\0 and \1, respectively. We note that th
presented effective-action approach is capable of descri
arbitrary states, including nonequilibrium situations whe
the external potential depends on time. Although we in
present paper shall limit ourselves to study a Bose gas at
temperature, the theory is straightforwardly generalized
finite temperatures. For example, in the Schwinger-Keld
technique for treating general nonequilibrium states, the fi
is just attributed an additional index. For an account of tre
ing arbitrary states, we refer to Ref.@17#; see also Ref.@18#
for an application of the Schwinger-Keldysh technique to

FIG. 1. Two-loop ~upper row! and three-loop~lower row!
vacuum diagrams contributing to the effective action.
7-3
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EMIL LUNDH AND JO”RGEN RAMMER PHYSICAL REVIEW A66, 033607 ~2002!
dilute Bose gas. The equations of motion~9a!–~9b! together
with the expression for the effective action Eq.~10! form the
basis for our subsequent calculations.

III. HOMOGENEOUS BOSE GAS

We shall now consider the case of a homogeneous B
gas in equilibrium. The equilibrium theory of a dilute Bos
gas is well known, but the effective action formalism w
prove to be a simple and efficient tool which permits one
derive the equations of motion with particular ease, and
establish the limits of validity for the approximate descr
tions often used. For the case of a homogeneous Bose g
equilibrium, the general theory presented in the previous s
tion simplifies considerably. The single-particle Hamiltoni
H0 is then simply equal to the kinetic term,H0(p)5p2/2m
[«p , and the condensate wave-functionF(r ,t) is a time
and coordinate-independent constant whose value is den
by An0, so thatn0 denotes the condensate density. The fi
term in the effective-action Eq.~10! is then

S@F#5S mn02
1

2
U0n0

2D E drdt1, ~16!

where U05*drU(r ) is the zero-momentum component
the interaction potential. For a constant value of the cond
sate wave functionF(r ,t)5An0, Eq. ~13! yields

S (1)~p!5S n0~U01Up! n0Up

n0Up n0~U01Up!
D . ~17!

Varying, in accordance with Eq.~9a!, the effective-action Eq
~10! with respect ton0 yields the equation for the chemica
potential

m5n0U01
i

2E d4p

~2p!4
$~U01Up!@G11~p!1G22~p!#

1Up@G12~p!1G21~p!#%2
dG2

dn0
, ~18!

where the notation for the four-momentump5(p,v) has
been introduced. The first term on the right-hand side is
zero-loop result, which depends only on the condensate f
tion of the bosons. The second term on the right-hand sid
the one-loop term which takes the noncondensate fractio
the bosons into account. The term involving the anomal
Green’s functionsG12 and G21 will shortly be absorbed by
the renormalization of the interaction potential~see Sec. IV!.
From the last term originate the higher-order loop ter
which will be dealt with at the end of the section.

The equation determining the Green’s function is obtain
by varying the effective action with respect to the mat
Green’s-functionG(p) in accordance with Eq.~9b!, yielding

05
dG

dG
52

i

2
~2G211G0

211S (1)1S8!, ~19!

where
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S i j8 52i
dG2

dGji
. ~20!

Introducing the notation for the matrix self-energyS5S (1)

1S8, Eq. ~19! is seen to be the Dyson equation

G215G0
212S. ~21!

In the context of the dilute Bose gas, this equation is refer
to as the Dyson-Beliaev equation.

The Green’s function in momentum space is obtained
simply inverting the 232 matrix G0

21(p)2S(p) resulting
in the following components:

G11~p!5
v1«p2m1S22~p!

Dp
,

G12~p!5
2S12~p!

Dp
,

G21~p!5
2S21~p!

Dp
,

G22~p!5
2v1«p2m1S11~p!

Dp
, ~22!

all having the common denominator

Dp5@v1«p2m1S22~p!#@v2«p1m2S11~p!#

1S12~p!S21~p!. ~23!

From the expression for the matrix Green’s-function Eq.~7!,
it follows that in the homogeneous case its components o
the relationshipsG22(p)5G11(2p) and G12(2p)5G12(p)
5G21(p). The corresponding relations hold for the se
energy components. We note that the results found form and
G to zero- and one-loop order coincide with those found
Ref. @4# to zeroth and first order in the diluteness parame
An0a3. For example, according to Eq.~17! we obtain for the
components of the matrix Green’s function to one-loop or

G11
(1)~p!5

v1«p1n0Up

v22«p
222n0Up«p

,

G12
(1)~p!5

2n0Up

v22«p
222n0Up«p

, ~24!

which are the same expressions as the ones in Ref.@4#. As we
shortly demonstrate, the loop expansion for the case o
homogeneous Bose gas is in fact equivalent to an expan
in the diluteness parameter. From Eq.~24! we obtain for the
single-particle excitation energies to one-loop orderEp

5A«p
212n0Up«p, which are the well-known Bogoliubov

energies@1#.
Differentiating with respect ton0 the terms inG2 corre-

sponding to the two-loop vacuum diagrams gives the tw
loop contribution to the chemical potential. Functionally d
7-4
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EFFECTIVE-ACTION APPROACH TO A TRAPPED BOSE GAS PHYSICAL REVIEW A66, 033607 ~2002!
ferentiating the same terms with respect toGji gives the
two-loop contributions to the self-energiesS i j . The dia-
grams we thus obtain for the chemical potentialm and the
self-energyS are topologically identical to those found b
Beliaev @5#; however, the interpretation differs in that th
propagator in the vacuum diagrams of Fig. 1 is the ex
propagator, whereas in Ref.@5#, the propagator to one-loo
order appears.

In order to establish that the loop expansion for a hom
geneous Bose gas is an expansion in the diluteness para
An0a3, we examine the general structure of the vacuum d
grams comprised byG2. Any diagram of a given loop orde
differs from any diagram in the preceding loop order by
extra four-momentum integration, the condensate densityn0
to some powerk, the interaction potentialU to the powerk
11, andk12 additional Green’s functions in the integran
We can estimate the contribution from these terms as
lows. The Green’s functions are approximated by the o
loop result Eq.~24!. The additional frequency integratio
over a product ofk12 Green’s functions yieldsk12 factors
of n0U ~whereU denotes the typical magnitude of the Fo
rier transform of the interaction potential!, divided by 2k
13 factors of the Bogoliubov energyE. The range of the
momentum integration provided by the Green’s functions
(mn0U)1/2. The remaining three-momentum integratio
therefore gives a factor of ordern0

2k11/2m3/2U2k11/2, and
provided the Green’s functions make the integral conve
the contribution from an additional loop is of the ord
(n0m3U3)1/2. This is the case except for the so-called ladd
diagrams, in which case the convergence needs to be
vided by the momentum dependence of the potential.
ladder diagrams will be dealt with separately in the n
section where we show that they, through a renormaliza
of the interaction potential, lead to the appearance of tht
matrix which in the dilute limit is proportional to thes-wave
scattering lengtha and inversely proportional to the boso
mass. The renormalization of the interaction potential w
therefore not change the estimates performed above, but
change the expansion parameter. Anticipating this change
conclude that the expansion parameter governing the
expansion is for a homogeneous Bose gas indeed identic
Bogoliubov’s diluteness parameterAn0a3.

IV. RENORMALIZATION OF THE INTERACTION

Instead of having the interaction potential appear exp
itly in diagrams, one should work in the skeleton diagra
matic representation where diagrams are summed so tha
four-point vertex appears instead of the interaction poten
thus accounting for the repeated scattering of the boson
the dilute limit, where the interparticle distance is large co
pared to thes-wave scattering length, the so-called ladd
diagrams give the largest contribution to the four-point v
tex function@19#. The ladder diagrams are depicted in Fig.
On computing the corresponding integrals, it is found that
extra ‘‘rung’’ in a ladder contributes with a factor propo
tional not toAn0m3U3 as was the case for the type of ext
loops considered at the end of the previous section, bu
k0mU, wherek0 is the upper cutoff momentum~or inverse
03360
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spatial range! of the potential, as first noted by Beliaev@5#.
The quantityk0mU is not necessarily small for the atom
gases under consideration here. Hence, all vacuum diag
which differ only in the number of ladder rungs that the
contain are of the same order in the diluteness parameter
we have to perform a summation over this infinite class
diagrams. The ladder resummation results in an effective
tentialT(p,p8,q), which is called thet matrix and is a func-
tion of the two ingoing momenta and the four-momentu
transfer. Due to the instantaneous nature of the interacti
the t matrix does not depend on the frequency component
the ingoing four-momenta, but for notational convenien
we display the dependence asT(p,p8,q). To lowest order in
the diluteness parameter, thet matrix is independent of four-
momenta and proportional to the constant scattering am
tudeT(0,0,0)54p\2a/m5g, wherea is thes-wave scatter-
ing length @19,20#. This is illustrated in Fig. 2, where we
have chosen an open circle to representg. Iterating the equa-
tion for the ladder diagrams we obtain the well-know
t-matrix equation

T~p,p8,q!5Uq1 i E d4q8Uq8G11~p1q8!G11~p82q8!

3T~p1q8,p82q8,q2q8!. ~25!

At finite temperatures, thet matrix takes into account the
effects of thermal population of the excited states.

We shall now show how the ladder resummation alters
diagrammatic representation of the chemical potential
the self energy. In Fig. 3, displayed are some of the terms
to two-loop order contributing to the chemical potentialm.

FIG. 2. Summing all diagrams of the ‘‘ladder’’-type results
the t matrix, which to lowest order in the diluteness parameter i
momentum-independent constantg, diagrammatically represente
by a circle.

FIG. 3. Diagrams up to two-loop order contributing to th
chemical potential. Only the two-loop diagrams relevant to the
summation of the ladder diagrams are displayed. The two-loop
grams not displayed are topologically identical to those shown,
differ in the direction of arrows or the presence of anomalous
stead of normal propagators.
7-5
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FIG. 4. Diagrammatic representation of the last two rewritings in Eq.~26! which lead to the conclusion that the diagramb of Fig. 3
implicitly contains the ladder contribution to diagrama. The anomalous self-energyS12 is represented by an oval with two ingoing lines,S21

is represented by an oval with two outgoing lines, and the sum of the second- and higher-order contributions toS12 is represented by an ova
with the label ‘‘2.’’
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The first two terms in Eq.~18! is represented by diagramsa–
d, and the two-loop diagramse–f originate fromG2. The
diagrams denotede andf are formally one loop order highe
than c and d, but they differ only by containing one add
tional ladder rung. Hence, the diagramsc, d, e, andf, and all
the diagrams that can be constructed from these by ad
ladder rungs, are of the same order in the diluteness pa
eter An0a3 as just shown above. They are therefore
summed, and as discussed, this leads to the replaceme
the interaction potentialU by the t matrix.

We note that no ladder counterparts to the diagramsa and
b in Fig. 3 appear explicitly in the expansion of the chemic
potential, since such diagrams are two-particle reducible
are by construction excluded from the two-particle irredu
ible effective actionG2. However, diagramb contains im-
plicitly the ladder contribution to diagrama. In order to es-
tablish this we first simplify the notation by denoting byNp
the numerator of the exact normal Green’s functionG11(p),
which according to Eq.~22! is Np5v1«p2m1S11(2p).
We then haveDp5NpN2p2S12(p)S21(p)5D2p , and the
contribution from diagram b can be rewritten on the form

E d4pUpG12~p!

5E d4pUp

S12~p!

NpN2p2S12~p!S21~p!

5E d4pUpS S12~p!NpN2p

Dp
2

2
S12~p!S21~p!S12~p!

Dp
2 D

5E d4pUp@S12~p!G11~p!G11~2p!2S21~p!G12~p!2#

5E d4pUp$n0UpG11~p!G11~2p!1@S12~p!2n0Up#

3G11~p!G11~2p!2S21~p!G12~p!2%. ~26!
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In Fig. 4, the last two rewritings are depicted diagramma
cally. We see immediately that the first term on the rig
hand side corresponds to the first ladder contribution to d
gram a, and since to one-loop order,S12(p)5n0Up , the
other terms in Eq.~26! are of two- and higher-loop order
The self energy in the second term on the right-hand side
be expanded to second-loop order, and by iteration
yields all the ladder terms, and the remainder can be k
track of analogously to the way in which it is done in E
~26!. The resulting ladder resummed diagrammatic expr
sion for the chemical potential, displayed in Fig. 5, is seen
be equal to that found in Ref.@19#.

In the same manner, the self energies are resummed
S11, a straightforward ladder resummation of all terms
possible, while forS12, the same procedure as the one us
for diagrams a and b in Fig. 3 for the chemical potential h
to be performed. In Fig. 6, we show the resulting ladd
resummed diagrams for the self-energiesS11 andS12 to two-
loop order in the dilute limit whereT(p,p8,q)'g.

In Ref. @7#, a diagrammatic expansion in the potential w
performed, which yields to first order the diagramS11

(2a) in
Fig. 6, but not the other two-loop diagrams. This theo
where the normal self-energy is taken to beS115S11

(1a)

1S11
(2a) , the anomalous self energy toS125S12

(1a) , and the
diagrams displayed in Fig. 5 are kept in the expansion of
chemical potential, is referred to as the Popov approxim
tion. Although we showed at the end of Sec. III that all t
two-loop diagrams of Fig. 6 are of the same order of mag
tude in the diluteness parameterAn0a3 at zero temperature

FIG. 5. The chemical potential to one-loop order after the lad
summation has been performed and the resultingt matrix has been
replaced by its expression in the dilute limit, the constantg.
7-6



sulting

EFFECTIVE-ACTION APPROACH TO A TRAPPED BOSE GAS PHYSICAL REVIEW A66, 033607 ~2002!
FIG. 6. NormalS11 and anomalous,S12 self-energies to two-loop order after the ladder summation has been performed and the re
t matrix been replaced by its expression in the dilute limit, the constantg.
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the Popov approximation applied at finite temperatures
justified, when the temperature is high enough,kT@gn0.
Below, we shall investigate the limits of validity at zero tem
perature of the Popov approximation in the trapped case

In this and the preceding section, we have shown how
known expressions for the self energies and chemical po
tial for a homogeneous dilute Bose gas are conveniently
tained using the effective action formalism, where they s
ply correspond to working to a particular order in the lo
expansion of the effective action. We have established tha
expansion in the diluteness parameter is equivalent to
expansion of the effective action in the number of loo
Furthermore, the method provided a way of performing
systematic expansion, and the results are easily genera
to finite temperatures. We now turn to show that the effect
action approach provides a way of performing a system
expansion even in the case of an inhomogeneous Bose

V. INHOMOGENEOUS BOSE GAS

We now consider the experimentally relevant case o
Bose gas trapped in an external static potential, thereby
ting the stage for the numerical calculations in Sec. VI.
this case, the Bose gas will be spatially inhomogeneous.
effective action formalism is equally capable of dealing w
the inhomogeneous gas, in which case all quantities are
veniently expressed in configuration space as presente
Sec. II. We show in this section that the Bogoliubov a
Gross-Pitaevskii theory corresponds to the one-loop appr
mation to the effective action. The one-loop equations w
be exploited further in the numerical calculations in Sec.

Varying, in accordance with Eq.~9a!, the effective action
G, Eq. ~10!, with respect toF* (r ,t), we obtain the equation
of motion for the condensate wave function

~ i\] t2H01m!F~r ,t !5guF~r ,t !u2F~r ,t !

12igG11~r ,t,r ,t !F~r ,t !

2
dḠ2

dF* ~r ,t !
. ~27!
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To zero-loop order, where only the first term on the righ
hand side appears, the equation is the time-dependent G
Pitaevskii equation@2,3#. We have already, as elaborated
the previous section, performed the ladder summation
which the potential is renormalized and thet matrix appears
and have substituted for it the lowest-order approximation
the diluteness parameter, the constantg. Since thet matrix in
the momentum variables is a constant in the dilute limit
becomes in configuration space a product of three delta fu
tions, T(r1 ,r2 ,r3 ,r4)5gd(r12r4)d(r22r4)d(r32r4). The

quantity Ḡ2 is defined as the effective action obtained fro
G2 by summing the ladder terms wherebyU is replaced by
the t matrix, and its diagrammatic expansion is topologica
of two-loop and higher order.

The Dyson-Beliaev equation, Eq.~21!, and the equation
determining the condensate wave function, Eq.~27!, form a
set of coupled integrodifferential self-consistency equatio
for the condensate wave function and the Green’s funct
with the self energy specified in terms of the Green’s fun
tion through Eq.~20!. The Green’s function can be conve
niently expanded in the amplitudes of the elementary exc
tions. We write the Dyson-Beliaev equation, Eq.~21!, on the
form

E dr 9dt9@ i\] ts3d~r2r 9!d~ t2t9!1s3L~r ,t,r 9,t9!#

3G~r 9,t9,r 8,t8!5\1d~r2r 8!d~ t2t8!, ~28!

where we have introduced the matrix operatorL(r ,t,r 8,t8)
5s3H0d(r2r 8)d(t2t8)1s3S(r ,t,r 8,t8) ands3 is a Pauli
matrix. Up to one-loop order, the matrixS is diagonal in the
time and space coordinates and we factor out the delta fu
tions and writeL(r ,t,r 8,t8)5d(t2t8)d(r2r 8)L(r ), where

L~r !5S H02m12guF~r !u2 gF~r !2

2gF* ~r !2 2H01m22guF~r !u2D .

~29!

The eigenvalue equation forL are the Bogoliubov equation
@1#. The Bogoliubov operatorL is not Hermitian, but the
operators3L is, which renders the eigenvectors ofL the
7-7
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EMIL LUNDH AND JO”RGEN RAMMER PHYSICAL REVIEW A66, 033607 ~2002!
following properties@22–24#. For each eigenvectorw j (r )
5„uj (r ),v j (r )… of L with eigenvalueEj , there exists an ei-
genvectorw̃ j (r )5„v j* (r ),uj* (r )… with eigenvalue2Ej . As-
suming the Bose gas is in its ground state, the normaliza
of the positive-eigenvalue eigenvectors can be chosen t
^w j ,wk&5d jk where we have introduced the inner produc

^w j ,wk&5E drw j
†~r !s3wk~r !

5E dr @uj* ~r !uk~r !2v j* ~r !vk~r !#. ~30!

It follows that the inner product of the negative-eigenva
eigenvectorsw̃ is

^w̃ j ,w̃k&5E dr w̃ j
†~r !s3w̃k~r !

5E dr @v j~r !vk* ~r !2uj~r !uk* ~r !#52d jk

~31!

and the eigenvectorsw and w̃ are mutually orthogonal

^w j ,w̃k&50. By virtue of the Gross-Pitaevskii equation, th
vectorw0(r )5„F(r ),2F* (r )… is an eigenvector of the Bo
goliubov operatorL with zero eigenvalue and zero norm.
order to obtain a completeness relation, we must also in
duce the vectorwa(r )5„Fa(r ),2Fa* (r )… satisfying the re-
lation Lwa5aw0, wherea is a constant determined by no
malization,^w0 ,wa&51 @23#. The resolution of the identity
then becomes

(
j

8 @w j~r !w j
†~r 8!2w̃ j~r !w̃ j

†~r 8!#s3

1@wa~r !w0
†~r 8!1w0~r !wa

†~r 8!#s351d~r2r 8!,

~32!

where the prime on the summation sign indicates that
zero-eigenvalue modew0 is excluded from the sum. Usin
the resolution of the identity, Eq.~32!, allows us to invert Eq.
~28! to obtain the Bogoliubov spectral representation of
Green’s function

G~r ,r 8,v!5\( 8
j

S 1

2\v1Ej
w j~r !w j

†~r 8!

2
1

2\v2Ej
w̃ j~r !w̃ j

†~r 8! D . ~33!

It follows from the spectral representation of the Gree
function, that the eigenvaluesEj are the elementary excita
tion energies of the condensed gas~here, constructed explic
itly to one-loop order!. Using Eq.~33!, we can at zero tem
perature express the noncondensate density or the depl
of the condensate,nnc5n2n0, in terms of the Bogoliubov
amplitudes
03360
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nnc~r !5 i E dv

2p
G11~r ,r ,v!5( 8

j
uv j~r !u2. ~34!

The results obtained in this section form the basis for
numerical calculations presented in the next section.

VI. LOOP EXPANSION FOR A TRAPPED BOSE GAS

We now turn to determine the validity criteria for th
equations obtained to various orders in the loop expans
for the ground state of a Bose gas trapped in an isotro
harmonic potentialV(r )5 1

2 mv t
2r 2. To this end, we shall

numerically compute the self-energy diagrams to differ
orders in the loop expansion.

Working consistently to one-loop order, we need only e
ploy Eq. ~27! to zero-loop order, providing the condensa
wave function which upon insertion into Eq.~29! yields the
Bogoliubov operatorL to one-loop order, from which the
Green’s function to one-loop order is obtained from Eq.~33!.
The resulting Green’s function is then used to calculate
various self-energy terms numerically. In order to do so,
make the equations dimensionless with the transformat

r 5aoscr̃ , F5AN0 /aosc
3 F̃, uj5aosc

23/2ũ j , Ej5\v tẼj , andg

5(\v taosc
3 /N0)g̃, where aosc5A\/mv t is the oscillator

length of the harmonic trap, andN0 is the number of bosons
in the condensate.

To zero-loop order, the time-independent Gross-Pitaev
equation on dimensionless form reads

2
1

2
¹ r̃

2
F̃1

1

2
r̃ 2F̃1g̃uF̃u2F̃5m̃F̃. ~35!

We solve Eq.~35! numerically with the steepest-desce
method, which has proven to be sufficient for solving t

present equation@25#. The result thus obtained forF̃ is in-
serted into the one-loop expression for the Bogoliubov
eratorL, Eq. ~29!, in order to calculate the Bogoliubov am
plitudes ũ j and ṽ j and the eigenenergiesẼj . Since the

condensate wave function for the ground-stateF̃ is real and
rotationally symmetric, the amplitudesũ j ,ṽ j in the Bogoliu-
bov equations can be labeled by the two angular momen
quantum numbersl andm, and a radial quantum numbern,
and we writeũnlm( r̃ ,u,f)5ũnl( r̃ )Ylm(u,f), ṽnlm( r̃ ,u,f)
5 ṽnl( r̃ )Ylm(u,f). The resulting Bogoliubov equations ar
linear and one dimensional

S 2
1

2

1

r̃

]2

] r̃ 2
r̃ 1

1

2

l ~ l 11!

r̃ 2
1

1

2
r̃ 22m̃12g̃F̃2~ r̃ !D

3ũnl~ r̃ !1g̃F̃2~ r̃ !ṽnl~ r̃ !5Ẽnlũnl~ r̃ !,

S 2
1

2

1

r̃

]2

] r̃ 2
r̃ 1

1

2

l ~ l 11!

r̃ 2
1

1

2
r̃ 22m̃12g̃F̃2~ r̃ !D

3 ṽnl~ r̃ !1g̃F̃2~ r̃ !ũnl~ r̃ !52Ẽnlṽnl~ r̃ !. ~36!
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EFFECTIVE-ACTION APPROACH TO A TRAPPED BOSE GAS PHYSICAL REVIEW A66, 033607 ~2002!
Note that the only parameter in the problem is the dim
sionless coupling parameterg̃54pN0a/aosc. Solving the
Bogoliubov equations reduces to diagonalizing the band
agonal 2M32M matrix L, whereM is the size of the nu-
merical grid. The value ofM in our computations was varie
between 180 and 360, higher values for stronger coupl
and the grid constant has been chosen to 0.05aosc giving a
maximum system size of 18aosc. We have usedMATLAB to
perform the diagonalization.

In the following, we shall estimate the orders of mag
tude and the parameter dependence of the different two-
three-loop self-energy diagrams, and to this end we shall
the one-loop results for the amplitudesũ, ṽ, and the
eigenenergiesẼ obtained numerically. When working t
two- and three-loop order, one must also consider the co
sponding corrections to the approximatet-matrix g. These
contributions have been studied in Ref.@11#, and their inclu-
sion will not lead to any qualitative changes of our results
fact, even at finite temperature, the dependence of thet ma-
trix on the coupling parameterg̃ is weak as long as the
temperature is not close to the critical temperature for Bo
Einstein condensation@19,21#.

Let us first compare the one-loop and two-loop contrib
tions to the normal self energy. The only one-loop term i

S11
(1a)~r ,r 8,v!52guF~r !u2d~r2r 8!52gn0~r !d~r2r 8!.

~37!

We first compareS11
(1a) with the two-loop term which is pro-

portional to a delta function, i.e., the diagram 2a in Fig. 6.
We shall shortly compare this diagram to the other two-lo
diagrams. For diagram 2a, we have

S11
(2a)~r ,r 8,v!52igd~r2r 8!E dv8

2p
G~r ,r ,v8!

52gnnc~r !d~r2r 8!. ~38!

The ratio of the two-loop to one-loop self-energy contrib
tions at the pointr is thus equal to the fractional depletion
the condensate at that point. In Fig. 7, shown is the num
cally computed dimensionless fractional depletion at the
gin, ñnc(0)/ñ0(0), where we have introduced the dimensio
less notation

ñ0~ r̃ !5uF̃~ r̃ !u2,

ñnc~ r̃ !5( 8
j

uṽ j~ r̃ !u2. ~39!

We have chosen to evaluate the densities at the origir
50, in order to avoid a prohibitively large summation ov
the l 5” 0 eigenvectors. As apparent from Fig. 7, the log-l
curve has a slight bend at weak coupling, but becomes
most straight for coupling strengthsg̃*100. A logarithmic fit
to the straight portion of the curve gives the relation
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ñnc~0!

ñ0~0!
.0.0019g̃1.2. ~40!

When we reintroduce dimensions, the power-law relatio
ship Eq.~40! is multiplied by the reciprocal of the number o
bosons in the condensateN0

21 because the actual and dime
sionless self energies are related according to

S (s)5
\v taosc

3

N0
s21

S̃ (s), ~41!

where s denotes the loop order in question. The ratio b
tween different loop orders of the self energy is thus n
determined solely by the dimensionless coupling param
g̃54pN0a/aosc, but by N0 and a/aosc separately. We thus
obtain for the fractional depletion in the strong-couplin
limit, g̃*100

nnc~0!

n0~0!
5

1

N0

ñnc~0!

ñ0~0!
'0.041N0

0.2S a

aosc
D 1.2

. ~42!

It is of interest to compare our numerical results w
approximate analytical results such as those obtained u
the local-density approximation~LDA !. The LDA amounts
to substituting a coordinate-dependent condensate densi
the expressions valid for the homogeneous gas.
homogeneous-gas result for the fractional depletion is@1#

nnc

n0
5

8

3Ap
An0a3. ~43!

FIG. 7. Fractional depletion of the condensateN0nnc/n0 at the

trap center as a function of the dimensionless coupling strengg̃
54pN0a/aosc. Asterisks represent our numerical results, circ
represent the local-density approximation with the numerica
computed condensate density inserted, and the line is the lo
density approximation using the Thomas-Fermi approximation
the condensate density.
7-9
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EMIL LUNDH AND JO”RGEN RAMMER PHYSICAL REVIEW A66, 033607 ~2002!
In the strong coupling limit we can use the Thomas-Fe
approximation for the condensate density

n0~r !5
1

8paosc
2 a

S 15N0a

aosc
D 2/5F12S aosc

15N0aD 2/5 r 2

aosc
2 G ,

~44!

which is obtained by neglecting the kinetic term in t
Gross-Pitaevskii equation@26#. For the fractional depletion
at the origin there results in the local-density approximat

nnc~0!

n0~0!
5

~15N0!1/5

3p2A2
S a

aosc
D 6/5

, ~45!

as first obtained in Ref.@27#. The LDA is a valid approxima-
tion when the gas locally resembles that of a homogene
system, i.e., when the condensate wave function chan
little on the scale of the coherence lengthj, which according
to the Gross-Pitaevskii equation isj5@8pn0(0)a#21/2. For
a trapped cloud of bosons in the ground state, its radiuR
determines the rate of change of the density profile. SincR

is a factorg̃2/5 larger thanj @26#, we expect the agreemen
between the LDA and the exact results to be best in
strong-coupling regime. The fractional depletion of the co
densate at the trap center as a function of the dimension
coupling strengthg̃54pN0a/aosc is shown in Fig. 7. In Fig.
7 displayed are both the local-density result Eq.~43!, with
the numerically computed condensate density inserted,
the Thomas-Fermi approximation~45!, showing that the
LDA indeed is valid when the coupling is strong. Furthe
more, inspection of Eq.~45! reveals that the LDA coefficien
and exponent agree with the numerically found result of
~42!, which is valid for strong coupling. However, wheng̃
&10, the LDA prediction for the depletion deviates signi
cantly from the numerically computed depletion. Using t
numerically obtained condensate density in the LDA, inste
of the Thomas-Fermi approximation, does not substanti
improve the result, as seen in Fig. 7.

The relation for the fractional depletion Eq.~42! is in
agreement with the results of Ref.@12#, where the leading-
order corrections to the Gross-Pitaevskii equation were c
sidered in the one-particle irreducible effective-action f
malism, employing physical assumptions about the relev
length scales in the problem. These leading-order correct
were found to have the same power-law dependence onN0
anda/aosc. A direct comparison of the prefactors cannot
made, because the objective of Ref.@12# was to estimate the
higher-loop correction terms to the Gross-Pitaevskii equa
and not to the self energy.

The two-loop termS11
(2a) can, at zero temperature accor

ing to Eq.~40! be ignored as long asñnc!ñ0, which is true
in a wide, experimentally relevant parameter regime. T
one-loop result for the fractional depletion Eq.~42! depends
very weakly onN0, so as long asN0 does not exceed 109,
which is usually fulfilled in experiments, we can restate t
criterion for the validity of Eq.~42! into the conditiona
!aosc. In experiments on atomic rubidium and sodium co
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densates, this condition is fulfilled, except in the instan
where Feshbach resonances are used to enhance the s
ing length@14,15#.

In Sec. III, we showed that for a homogeneous gas
two-loop diagrams are equally important in the sense t
they are all of the same order in the diluteness param
An0a3. The situation in a trapped system is not so cle
since the density is not constant. We shall therefore comp
the five normal two-loop self-energy diagramsS11

(2a22e) in
Fig. 6, to see whether they display the same parameter
pendences and whether any of the terms can be neglecte
particular, the Popov approximation corresponds to keep
the diagramS11

(2a) but neglects all other two-loop diagram
and we will now determine its limits of validity at zero tem
perature. Since diagram 2a contains a delta function, we
shall integrate over one of the spatial arguments of the s
energy terms and keep the other one fixed at the originr
50. We denote byR( j ) the ratio between the integrated se
energy termsj and 2a,

R( j )5

E drS11
( j )~0,r ,v50!

E drS11
(2a)~0,r ,v50!

. ~46!

In Fig. 8, we display the ratiosR( j ) for the different inte-
grated self-energy contributions corresponding to the d
grams wherej represents 2b and 2c. The contributions from
diagrams 2d and 2e are equal and within our numerical pre
cision turn out to be equal to the contribution from diagra
2c. Furthermore, inspection of the diagrams in Fig. 6 reve
that when the condensate wave function is real, the ano
lous contributionS12

(2a) is equal toS11
(2d) , the diagramsS12

(2b)

andS12
(2c) are equal toS11

(2c) , andS12
(2d) is equal toS11

(2b) . In
the parameter regime displayed in Fig. 8, the contribut
from diagram 2a is larger than the others by approximate

FIG. 8. Ratio between different two-loop self-energy terms

functions of the dimensionless coupling strengthg̃54pN0a/aosc.
Asterisks denote the ratioR(2b) as defined in Eq.~46! and circles
denote the ratioR(2c). The termsR(2d) andR(2e) are equal and turn
out to be equal in magnitude toR(2b), and are not displayed.
7-10
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EFFECTIVE-ACTION APPROACH TO A TRAPPED BOSE GAS PHYSICAL REVIEW A66, 033607 ~2002!
factor of ten, and displays only a weak dependence on
coupling strength. In the weak-coupling limitg̃&1, it is seen
that the terms corresponding to diagrams 2b–2e can be ne-
glected as in the Popov approximation, with an error in
self energy of a few percent. When the coupling gets str
ger, this correction becomes more important. A power-law
to the ratioR(2c) in the regime where the log-log curve
straight yields the dependence

R(2c)'0.065g̃0.14, ~47!

which is equal to 0.5 wheng̃'106; for g̃ greater than this
value, the Popov approximation is seen not to be valid. If
ratio between the oscillator length and the scattering lengt
equal to one hundred,aosc5100a, the Popov approximation
deviates markedly from the two-loop result whenN0 exceeds
107, which is often the case experimentally.

In order to investigate the importance of higher-ord
terms in the loop expansion, we proceed to study the th
loop self-energy diagrams. We have found the number
summations over Bogoliubov levels to be prohibitively lar
for most three-loop terms; however, wehave been able to
compute the two diagramsS11

(3a) andS12
(3a) , displayed in Fig.

9, for the case where one of the spatial arguments is place
the origin thereby avoiding the summation overl 5” 0 com-
ponents. We compare the diagramsS11

(3a) and S12
(3a) to the

two-loop diagrams. As we have seen, diagramsS11
(2b) , S11

(2c) ,
andS11

(2d) in Fig. 6 are of the same order of magnitude a

have similar dependence ong̃, and equivalently for the
anomalous two-loop diagramsS12

(2a22d) ; we have therefore
chosen to evaluate only diagramsS11

(2b) and S12
(2a) . The re-

sults for the ratiosS̃11
(3a)(0,r ,v50)/S̃11

(2b)(0,r ,v50), and

S̃12
(3a)(0,r ,v50)/S̃12

(2a)(0,r ,v50), evaluated for different
choices ofr, are shown in Fig. 10. A linear fit to the log-lo
plot gives for the normal terms the coefficient 0.016 and
exponent 0.76 whenr 50.5aosc and the coefficient 0.0029
and the exponent 0.78 whenr 5aosc, and for the anomalous
terms with the choicer 5aosc the coefficient is 0.0015 and
the exponent 0.82. Restoring dimensions according to
~41! we obtain

S11
(3a)~0,aosc,v50!

S11
(2b)~0,aosc,v50!

'0.15N0
20.2S a

aosc
D 0.8

. ~48!

FIG. 9. Self-energy diagrams to three-loop order which
evaluated numerically.
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The ratio between three- and two-loop self-energy terms
the homogeneous case was in Sec. III found to be pro
tional to An0a3. A straightforward application of the LDA
substituting the central densityn0(0) for n0, yields the de-
pendenceS11

(3a)/S11
(2b)}N0

0.2(a/aosc)
1.2. This is not in accor-

dance with the numerical result Eq.~48! although the self
energies were evaluated at spatial points close to the
center. The discrepancy between the LDA and the numer
three-loop result is attributed to the fact that we fixed t
spatial points in units ofaosc while varying the couplingg̃,
although the physical situation at the pointr 5aosc ~and r

5 1
2 aosc andr 5 3

2 aosc, respectively! varies wheng̃ is varied.
It is possible that the agreement with the LDA had be
better if the length scales had been fixed in units of the ac
cloud radius~as given by the Thomas-Fermi approximatio!
rather than the oscillator length. However, the present ca
lation agrees fairly well with the LDA as long as the numb
of atoms in the condensate lies within reasonable boun
Since N0.1 in the condensed state, Eq.~48! yields that
S11

(3a)!S11
(2b) whenever thes-wave scattering length is muc

smaller than the trap length. We conclude that only when
condition is not fulfilled is it necessary to study diagrams
three-loop order and beyond.

VII. CONCLUSION

We have applied the two-particle irreducible effectiv
action approach to a condensed Bose gas, and shown th
allows for an efficient and systematic derivation of the eq
tions of motion both in the homogeneous and trapped c
The presented results are obtained for zero temperature
the formalism is with equal ease capable of dealing w
systems at finite temperatures and general nonequilibr
states. Beliaev’s diagrammatic expansion in the diluten

e

FIG. 10. Ratio of dimensionless three-loop to two-loop se
energy diagrams as a function of the dimensionless coup

strengthg̃54pN0a/aosc. Asterisks denote the ratio of the norm
self-energy termsN0S11

(3a)/S11
(2b) evaluated at the point (0,aosc,v

50), open circles denote the same ratio evaluated
(0,0.5aosc,v50), and diamonds denote the same ratio evaluate
(0,1.5aosc,v50). Crosses denote the ratio of anomalous se
energy termsN0S12

(3a)/S12
(2a) at (0,aosc,v50).
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parameter and thet-matrix equations are expediently arrive
at with the aid of the effective-action formalism. We ha
shown that the parameter characterizing the loop expan
for a homogeneous Bose gas is equal to the diluteness
rameter, the ratio of thes-wave scattering length to the inte
particle spacing. For a Bose gas contained in an isotro
three-dimensional harmonic-oscillator trap at zero tempe
ture, the small parameter governing the loop expansion
been found to be almost proportional to the ratio between
s-wave scattering length and the oscillator length of the tr
ping potential, and to have a weak dependence on the n
ber of particles in the condensate. The expansion to one-
order, and hence the Bogoliubov equation, is found to p
vide a valid description for the trapped gas when the os
lator length exceeds thes-wave scattering length. We hav
compared our numerical results with the local-density
proximation, which is found to be valid when the number
particles in the condensate is large compared to the r
s

an

. A

ys

03360
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between the oscillator length and thes-wave scattering
length. The physical consequences of the self-energy cor
tions considered in this paper are indeed possible to st
experimentally by using Feshbach resonances to vary
scattering length. Furthermore, we have found that all
self-energy terms of two-loop order are not equally large
the case of a trapped system: in the limit when the numbe
particles in the condensate is not large compared to the r
between the oscillator length and thes-wave scattering
length, the Popov approximation has been shown to b
valid approximation.
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