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We consider a model of a dilute Bose-Einstein condensed gas at finite temperatures, where the condensate
coexists in a trap with a cloud of thermal excitations. Within the Zaremba, Nikuni, and Griffin formalism, the
dynamics of the condensate is described by a generalized Gross-Pitaevskii equation, while the thermal cloud is
represented by a semiclassical kinetic equation. Our numerical approach simulates the kinetic equation using a
cloud of representative test particles, while collisions are treated by means of a Monte Carlo sampling tech-
nique. A full three-dimensional split-operator fast Fourier transform method is used to evolve the condensate
wave function. We give details regarding the numerical methods used and discuss simulations carried out to
test the accuracy of the numerics. We use this scheme to simulate the monopole mode in a spherical trap. The
dynamical coupling between the condensate and thermal cloud is responsible for frequency shifts and damping
of the condensate collective mode. We compare our results to previous theoretical approaches, not only to
confirm the reliability of our numerical scheme, but also to check the validity of approximations which have
been used in the past.
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[. INTRODUCTION aspects that concern us most in this paper.
The earliest studies of dynamics at finite temperatures

Bose-Einstein condensatidéBEC), whereby bosons form were based on the Hartree-Fock-Bogoliulip\B) approxi-

a condensate by macroscopically occupying the lowest ermation [5,6]. Within this theory, excitations of the conden-
ergy state of the system, is a striking and important consesate are obtained by solving the HFB equations which are
quence of quantum statistics at low temperatures. The resultierived by linearizing the GP equation about the equilibrium
ant long-range order manifests itself in phenomena such aslution, or equivalently, from the grand canonical Hamil-
macroscopic coherence and superfluidity. In general, the conenian of the systeni7]. The frequencies of the excitations
densate is depleted by correlation effects and through theere identified with the collective modes of the condensate.
mal population of excited states at finite temperatures. Th&his theory, however, is incomplete. Although the excitations
former, termedquantum depletionis particularly important are thermally populated, the condensate in fact oscillates in
for dense fluids such as liquitHe, where only around 10% the presence of atatic thermal cloud. This ignores the dy-

of the atoms are condensed in the low temperature limit. Imamical response of the thermal cloud to condensate fluctua-
contrast, the quantum depletion in trapped, dilute gaseousons, which is responsible for Landau damping and associ-
BECs[1-3] is typically less than 1944,5]. The noncon- ated frequency shifts. By the same token, the theory cannot
densed fraction is thus mainly composed of thermal excitabe used to account for the response of the system to external
tions, and almost pure condensates can be prepared Ipgrturbations as typically used in experiments to excite the
evaporative cooling to very low temperatures. Atomic vaporsrapped gag8—11]. This problem becomes critical at high
therefore allow unique opportunities to study the propertiesemperatures, where collective motion of the thermal cloud
of Bose condensates under a wide range of conditions, froroan exert a major influence on the condensate evolution, as
the pure condensate phase to the noncondensed thermaflected in experimental results for the mode frequency and
cloud above the BEC transition. damping rate.

The condensate in a dilute Bose gas is well described by Recent important work by Morgaet al. [12,13 and
means of a macroscopic wavefunction, which in the limit ofGiorgini [14,15 has extended the HFB theory to include
low temperatures evolves according to the Gross-Pitaevskdollisionless noncondensate dynamics within second-order
(GP) equation. Well-known techniques allow both numerical perturbation schemes, and derived expressions for damping
and analytical solutions of this equation, and comparisonsates and frequency shifts of low-energy modes. A variant of
with experiment at low temperatures show excellent agreethese approaches is the dielectric response formulation of
ment for both static and dynamical propertid$. However, Reidl et al. [16]. One limitation of these theories is the ab-
generalizations of the theory to finite temperatures, wheraence of collisions which require a kinetic theory for their
thermal excitations coexist with the condensate, have provedescription. Quantum kinetic equations for BECs have been
far more difficult. To accurately describe the dynamical be-developed by Gardiner and collaborat¢fs’], Stoof [18],
havior in this situation requires a theory that treats both comand Walselet al.[19]. However, calculations based on these
ponents in a fully consistent manner. Such theories have reheories are very difficult to carry out and as a result they
cently been formulated, but the challenge of obtaininghave not yet been used to study collective excitations. A
explicit solutions has remained. What has been lacking irsomewhat simpler scheme is the one developed by Zaremba,
particular is a computationally feasible method for treatingNikuni, and Griffin (ZNG) [20,21], which treats the excita-
the dynamics of the thermal cloud. It is these computationations semiclassically within the Hartree-FodkF) and
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Popov approximations. One can then identify the excitationdine possible future research directions in the Conclusion.
with a thermal cloud of particles, with dynamics governed by

a Boltzmann equation for the phase-space density. In analogy Il. THE ZNG FORMALISM

with its classical counterpart, binary collisions between par-

ticles are described by means of a collision integral; how- We begin by reviewing the ZNG formalism, which was
ever, an additional collision integral arises to account forderived and discussed in detail in R¢21]. For a Bose-
collisions with the condensate. The latter leads to an imporEinstein condensed gas one can decompose the second-
tant modification of the GP equation which must now includequantized field operatay(r,t) in the following manner

a non-Hermitian source term to account for the transfer of

atoms into and out of the condensate. This process, taken P(r,t)y=d(r,t)+(r,t), 1
together with mean-field coupling between the two compo-

nents, leads to damping and frequency shifts of the condeRynere the ensemble average(r,t)=<fp(r,t)) takes on a

sate collective modes at finite temperature. nonzero value due to Bose broken symmetry, and is identi-

~The coupled GP and Boltzmann equations are far froMyeq with the condensate wave function. The remaining field
trivial to solve, and several approximations have been |n—O erator?b(r t) has a zero expectation value and corresponds
voked in the literature in order to explore their properties P ’ P P

When the characteristic collisional time scale, satisfies 1o the noncondensed component of the cloud. The second-
. ' - quantized Hamiltonian for the system is given by
woT<1, where wq is the trap frequency, then collisions

dominate and the system is said to be in the hydrodynamical
regime. One can then take moments of the kinetic equation ﬂ:f drgf(r)
to derive a set of coupled hydrodynamic equations for the

noncondensate which, together with the usual quantum hy- 1
drodynarmc equa_lt]ons for the condensate,. can bg ;olved un- + EJ’ drdr’z,b*(r)tﬂ(r’)Uim(r,r’)zp(r’)l//(r), )

der certain condition$21,22. In the opposite collisionless

regime, w71, Stoof and co-workerg23,24] have used a ) . )

joint variational and moment scheme to model the conden'/Nere in most cases the trap is well approximated by a har-
sate and noncondensate, respectively, while Nik@s] re-  monic potential) o,(r) =m(wx?+ wyy?+ w;2%)/2. We also
cently applied a moment method to study the scissors mod@ssume a contact interactiob(r,r')=go(r—r’), with
[26,27,1Q. Although these moment methods provide somed=4m#%a/m, wherea is thes-wave scattering length and
insight into the coupled dynamics of the two componentsijs the atomic mass. Usindia,=[ ,H] with Eqgs. (1) and
they constitute a truncated description which precludes cou?), one can derive coupled equations of motion for the con-
pling to internal degrees of freedom of the gas. Thus, theylensate and thermal cloud. In particular, the condensate or-
neglect Landau damping which is the primary mechanisnder parameter evolves according to a generalized form of the
for damping and frequency shifts of collective modes in thisGP equation

regime. In order to avoid this limitation, and to facilitate

direct comparisons with experiment, one must resort to the #2v2 -
full kinetic theory. It is therefore desirable to directly simu- 'ﬁgq’(r,t)=( ~5m TYedn)+aln(r,)+2n(r,0)]
late the ZNG equations without making approximations be-

yond those used to derive the equations themselves. In this )

paper, we describe a technique to calculate the dynamics of —|R(r,t))CI>(r,t), ©)
the thermal cloud usin§l-body simulations. Within this ap-
proach, a swarm of test particles is used to represent the

evolution of the semiclassical phase-space density, while Coﬁe condensate and noncondensate densities, respectively. In
lisions are handled using a Monte Carlo sampling technique,  fesp y.

The dynamics of the condensate, however, is determined b@rriving at this equation we make the Popov appioximation
numerically propagating the GP equation using a splitWhereby the so-called “anomalous” densitym(r,t)
operator fast Fourier transfor(fFT) method. Application of = (¢(r,t)(r,t)), is neglected. This sidesteps problems as-
the method to the quadrupol@8] and scissord29,30  sociated with including this term, such as ultraviolet diver-
modes has been discussed elsewhere, and in both cases, ggetces and an unphysical gap in the energy spectrum at low
agreement with experimeii8,10] was found. Although an momenta[7]. To go beyond this approximation in a consis-
outline of the numerical methods used was given in this eartent manner requires a careful treatment of interparticle col-
lier work, we give much more detail in the present paper. lisions[12], and is beyond the scope of the present work.

This paper is organized as follows. In Sec. Il we briefly The source ternR(r,t) is an important modification of the
review the ZNG formalism, before discussing our numericalusual GP equation as it allows the normalization of the wave
methods in Sec. Ill. In Sec. IV the Monte Carlo sampling isfunction ® to change with time. Physically this is due to
tested by comparison of equilibrium collision rates againstollisions between condensate and noncondensate atoms,
semianalytic calculations. Landau and collisional dampingvhich have the effect of transferring atoms into or out of the
rates for the monopole modes in spherical traps are also concondensate. The source term will be defined in terms of a
pared to previous theoretical treatments. We sum up and outollision integral later.

ﬁ22

2m

+uext<r)}izf<r>

here ny(r,t)=|®(r,t)|2 and n(r,t) = (%' (r,t)4(r,t)) are
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It is convenient to describe the dynamics of the nonconand
densate in terms of the Wigner operaftai,31], which leads
to the definition of a phase-space distributidégp,r,t), for 1,
the thermal excitations. The equation of motion for the non- GC_Emvc+'““C'
condensate can then be written as a kinetic equation
Here, . is the condensate chemical potential defined as

d p
Ef(p,r,t)+E.Vf(p,r,t)—VU(r,t).fo(p,r,t)—Cdf] 52 VZ\/n—C ~
po=— 5= FUext gnc+2gn.
+Cof f]. 4) .

In deriving this equation a number of approximations havelf the condensed and noncondensed components are in local
been made, some of which have already been mentione@guilibrium, theC,, integral vanishes. Conversely, when the
Importantly, the excitations are assumed to be semiclassicaystem is perturbed from equilibrium ti@,, term acts to
within the HF approximation; an excitation with momentum transfer atoms between the condensate and thermal cloud.
p possesses an energy: p?/2m+U(r,t), where the effec- These collisions then define the source term in €.ac-
tive potentialU (r,t) = U o,(r) + 29[ n.(r,t) +n(r,t)] is com- cording to
posed of the trap potential as well as mean fields from the
condensate and the thermal cloud. The noncondensate den- R(r,t) = i dp Jf] ®)
sity appearing in this expression is given in terms of the ’ 2n.J (2ah) 1
distribution by
The relative numbers of condensate and thermal particles
~ dp will then adjust as a function of time until local equilibrium
”(r't):f (Zwﬁ)sf(p,r,t). () s reestablished.
The ZNG formalism summarized here is valid from the
The terms on the right-hand side of Eg) are collision ~Mean-field-dominated regime, where collisions play a sec-
integrals that represent binary collisions between atoms. Th@ndary role, through to the collision-dominated regime in
C,, term is familiar from the kinetic theory of a normal Bose Which hydrodyn'amlc behavior is observed. In the latter Ilmlt_,
gas, and corresponds to the scattering of two atoms frof’® ZNG equations have been used to derive the two-fluid

initial to final thermal states. It is given by hydrodynamic equations of Land@®1] as well as the dissi-
pative Landau-Khalatnikov equatioi@2] that include the

o effect of transport coefficients. In the present paper, however,
Cof]= TJ’ dp,dpsdpsd(p+p2—pP3—Ps) we focus on the opposite, near-collisionless regime which is
mh°m most relevant for current experiments.

X 5(€+ 62_63_64)[(1+f)(1+f2)f3f4
— o (1+13)(1+1y ], (6)

IIl. NUMERICAL METHODS

In this section we describe the numerical methods used to
wheref=f(p,r,t) andf;=f(p;,r,t). The total bosonic cross solve the ZNG equation8)—(8) in the context of a dynami-
section is given byr=8ma’. The delta functions enforce cal simulation. First we discuss the numerical solution of the
momentum and energy conservation in the collision, whileGP and collisionless Boltzmann equations. Although these
the factors (#f;) account for Bose enhancement of theare based on well-established techniqusse, e.g., Refs.
scattering. The analogou®;, collision integral corresponds [32,33) we feel that our partly pedagogical discussion will
to collisions that involve a condensate atom in either theébe useful for those trying to reproduce our simulations, while
initial or final states. It is given by highlighting the correspondence between the quantum and

classical dynamics of the system. We then move on to dis-

ong cuss treatment of th&€,, and C,, collision integrals by
Clfl= _zf dpodp3dpsS(MVe+p2—P3—Pa) Monte Carlo sampling. Finally, an overview of the simula-
™m tions is provided, including a discussion of how one calcu-
X 8( €.+ €,— €3— €4) lates the equilibrium initial state of the system, as well as
estimating the phase-space density in real time for use in
X[8(p—=p2) = (p—pP3) = (P—pP4)] evaluating the collision integral$) and (7).

X[(L+f)fafs=fo(1+f3)(1+1,)], (7 _ . _
A. The Gross-Pitaevskii equation
where the local condensate velocity and energy are respec-

. . For the benefit of the following discussion we rewrite the
tively given by

GP equation(3) in the form

Ve(r,t)= [P*VDP—-DVD*], ih%d)(t):H(t)d)(t). 9

2im|®|?
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The time dependence of the Hamiltonidm(t) =T+ V(t), H(t)—H(t—At)

arises from the potential(t) which also includes the non- B=—""72r (16)
Hermitian source terrR(r,t). In most of our simulations the

time dependence is dominated by the nonlinear condensatgd thus obtain

potential and it is this term which is the main source of ~

numerical instabilities when the number of condensate atoms U(t+At,t)=e HOALL O(ALS), (17
is large. It is therefore important to develop a numerical al-

gorithm which is accurate even in this limit, and at the samevhere

time, numerically efficient.

A formal solution of the above equation is given by H=T+V() (18)
O (t+At)=U(t+At,1)dD(t), (100  with
where the evolution operatdt has the expansion V()= 3V(t)_\2/(t_At) _ (19)
1 (t+At
U(t+At)=1+ Eﬁ dt’H(t") This is recognized as an approximation to the potential at

time t+ At/2, the midpoint of the current time step, as ob-
1 (t+At (o tained by a linear extrapolation from the potential at times
+(|ﬁ_)2f j dt/dt"H(t")H(t")+- - -. t—At andt.
! ' The implementation of Eq$17)—(19) is very simple and
(11 costs only a small additional amount of memory to store the
potential from the previous time step. The actual numerical

Expanding the Hamiltonian as a Taylor series, representation of the evolution operator can be achieved by
) various methods. One popular approach is the Crank-

H(t)=H(t)+ d—H(t’—t)+ l d_H(t,_t)z+ o Nicholson method34], where finite-differencing Cayley’s
dt 2 dt? form for the operator leads to a set of linear equations for the

1 wave function at discrete grid points in The problem then
—a+ Bt —t)+ = y(t' —t)2- - ., (12)  reduces to decomposition of a tridiagonal matrix at each time
2 step and along each spatial dimension. In contrast, we favor
a split-operator method, where a factorization of the expo-

we obtain nential is effected by means of the Baker-Campbell-
8 ) Hausdorff(BCH) formula. One finds that
o o
U(t+At ) =1+ —At+ =—(At)?— —5(At)?+ O(At3). 1 /At)3
if 2if 2h o iAAUA _ o= iVAUZEg—iTAURg=1VAURE | — | 20
(13 12\i#
The lowest-order exponential approximant to this expansion ~ v
is X[ [TVL| T+ +O(AtY). (20)
. i dH ; i
U(t+At )= HOMA T (A1)21 O(AL3). The error generated by this approximation is of the same
( )=e 2h dt (A1) (A order as found in Eq(17). Applying the first term on the

(14 right-hand side then evolves the wave function to second-
order accuracy in\t. In principle, higher-order schemes can

The error of second order is shown explicitly. The first termpe constructed by splitting into more elaborate combinations

on the ”gh.t'haf‘d side is 9f course exact for a time mdepen(—)f the V and T operators. However, to justify the effort, an
dent Hamiltonian but significant errors arise when the

Hamiltonian is time dependent. These errors can be miniiMProved approximation fd;'(t_) is required. We have found
mized by reducing the time stebt, but at the expense of that second-order accuracy is sufficient for most applica-

increasing the computation time required to complete dions, although difficulties do arise if the time scale of the

simulation. Since this imposes practical limits on the physi-Simulations is exceedingly long. ,
The split-operator schemé20) is straightforward to

cal problems that can be addressed, a more accurate approx- ) X o -
imant is desirable. implement with a discrete grid in position space. The two

A higher-order exponential approximant is provided by potential steps are applie(_j~ by multiplying the wave function
at each grid point bye "VAY2%: while the kinetic term
U(t+At,t)=e (et (12BADAUA (15 e 'TAY% is conveniently treated in momentum space. The
limiting step in the calculation is therefore the application of
A comparison with Eq(13) indeed confirms that the error is forward and inverse FFTs at each time step, but efficient FFT
O(At3). To this order of accuracy, we can make use of Eqroutines for arbitrary numbers of dimensions are readily
(12) to estimateB by reverse differencing, available[35]. The dynamical evolution of the wave function
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can thus be followed over a series of time steps. Alterna- The phase-space variables are updated by advancing the
tively, stationary solutions of the time independent GP equaposition and momentum of each particle at discrete time
tion can be easily found by evolving the time-dependentstepsAt. This is not as trivial as one might naively expect.
equation in imaginary timé— —it. Conventional integration schemes for ordinary differential
A typical application provides some indication of the rela- equations, such as classical Runge-Kutta methods, can lead
tive merits of the higher-order approximant in E4.7) as to nonconservation of energy over long-time simulations
opposed to the lower-order scheme in Ef4). With the  when applied to Hamiltonian systems. This results in spuri-
latter, one finds a monotonic increase in the energy expectaus damping or excitation of the system. In contrast, sym-
tion value with time. In simulations of a collective mode this plectic integrator$33,37 are used extensively in molecular
effect would be apparent as a slow increase in the moddynamics(MD) simulations since they possess several desir-
amplitude, which is clearly undesirable when quantifyingable properties, such as conservation of phase-space volume
damping at finite temperatures. More importantly, since theand of energy over a long perigds is required in autono-
rate of increase scales with the mode energy, higher fremous Hamiltonian systemsWe use a second-order sym-
guency excitations tend to build in amplitude more rapidly.plectic integrator in our calculations, which is the classical
These excitations are initially generated at a low level by theanalog of the split-operator method discussed earlier. To
numerics; however, over sufficiently long simulation timesshow this, it is convenient to work within the Lie formalism
they eventually lead to instabilities in the wave function.[33]. Consider the classical Hamiltonian for a single particle,
These problems are essentially eliminated with the higherH;=p?/2m+ V(r;). The evolution of its phase-space coordi-
order scheme. The stability of the simulations is dramaticallyhatesz, = (p; ,r;) is then determined by the equation
improved and the energy tends to oscillate with small ampli-
tude about a constant value, rather than increasing monotoni- dz
cally. The improved stability allows much larger time steps a={zi Hil=—iLz, (22
to be taken without compromising accuracy, leading to a
considerable saving in computational effort.
where {F,G}:Ejaerﬁij—aijarJG is the Poisson
bracket andC is the Liouville operatof38]. One can then

write
In this section we discuss solution of the collisionless

Boltzmann equation ¢;,=C,,=0) using N-body simula- _ A—iLAt

tions. The effect of collisions is dealt with later. Collisionless Atray=e 2. @3
Boltzmann(or Vlasoy equations which include mean-field . S . L
interactions arise in many disparate fields, such as pLasm%pllttmg the Hamiltonian into potential and kinetic te_rms,
physics, condensed-matter physics, and astrophysics. SinEk=T(Pi)+V(ri), the BCH formula can be used again to
the equation involves phase-space variables in six dimershoW thatf37]

sions, it is generally very difficult to solve using standard

B. Collisionless particle evolution

methods for treating partial differential equations. An alter- LAt i Lr AU £ At o LA (At)®

native approach used extensively in the literature is to repre- € -€ € € 12

sent the phase space dendifp,r,t) by a cloud of discrete T

test particle§36]. The momentum and position of each par- ! 4

ticle in an external potentidl(r,t) is then evolved accord- XUTVH{VH 2 +O(A. (24

ing to Newton’s equations. The phase-space distribution for

this situation is given by One now sees the analogy with the quantum oper@or,
where both conserve energy to ordart)?. The effect of the
classical operatof24) in the simulations is to update the

f(p.r.t)= N_T ;1 Sr—ri(0)sp—pi(V), (2D particle positions and velocities in three steps

Njp3 Nr

where the weighting factor is fixed by the requirement that ri=ri(t)+3Atv(t),

the phase-space distribution is normalized to the number of

physical atomsN, with Nh?’:fdrdpj. By using a suffi- Vi(t+ At =vi(t) - mIALtVV(T),
ciently large number of test particleN;, a reasonable ap-
proximation to the continuous phase space distribution is ob-
tained. Note that the number of test and physical particles is
not necessarily equal. In fact, for a relatively small number
of physical atoms {l~ 10 it is essential to simulate more BY analogy with Eq(19), V should be the midpoint value of
test particles {l+>10%) in order to minimize the effects of a the potentialV(t), when it is time dependent. In our simu-
discrete particle description. Conversely, for large sampleftions, V is the effective potential U(r,t)=Uex(r)
one can simulate fewer “superparticles” so that the calcula-t+2gn(r,t) felt by the thermal atoms, where=n.+n is the
tions are not too intensive. total density.

F(t+At) =T, + LAty (t+At). (25)
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C. Thermal cloud potential

The effective potentiall is determined self-consistently >
as the system evolves in time, and includes the condensate o
mean field Zn.(r,t) and the mean field generated by the g
thermal cloud #n(r,t). The latter is in general much S
weaker than the condensate mean field due to the larger spa- S
tial extent(and therefore lower densjtpf the thermal cloud. <
Nevertheless, it is important to include this term in order to 3
ensure the conservation of the total energy of the system. In
addition, from the perspective of the condensate, the noncon- /Q
densate mean field is necessary in order to account for the ~~*
temperature-dependent damping and frequency shifts of con-2 S
densate collective modes. | | |

Although the calculation of the condensate mean field is
straightforward, the use of discrete particles with a contact
interatomic potential creates a problem in determining the
noncondensate mean field. Taken literally, the mean field
consists of a series of delta peaks

-5 0 5 10

z (units of ay,)

FIG. 1. Equilibrium noncondensate density against position,
along a line through the center of an isotropic trap with frequency
wo=27X187 Hz. The system consists of a total &y
=5x10*8Rb atoms at a temperature Bf=250 nK. The critical
temperature for an equivalent ideal gas wouIdTE@ec 310.6 nK.
This expression clearly cannot be used as it is to generate tiNy=4.0x 10° test particles are sampled according to the actual
forces acting on the test particles that are required in the M2quilibrium density(solid line). The fluctuating dashed line is a
simulation. Rather, the densffyf(r,t) must be replaced by a result of binning_particles using a cIoud-in—ceII.method, whilg the
smooth and differentiable thermal cloud density and somémoqth dr_:lshed line s_hows the effect of convolving the cloud-in-cell
smoothening operation is therefore needed. A possible fird€nsity with a Gaussian.
step might pe to'dl'\nde space into cglls' and to determlng thﬂwe sampled potential will be relatively smooth. Note that the
mean density within each cell by binning the test particle

) N Ssmoothening operation is equivalent to assuming a finite-
appropriately. However, this binning procedure generate;anged interatomic potential

spatial discontinuities on the scale of the three-dimensional The sam : . A
: ) . pled potentidlor its gradient is needed at the
(3D) grid being used that would still have to be smoothed ou osition of each test particle and at the mesh points on which

Ny

> 8(r—r)=2gn(r,t).

- N
UT(r,t)=2gN—T (26)

in some way. In addition, temporal discontinuities arise a
particles migrate from one cell to another. These tempor
fluctuations are of course spurious since they depend on t
number of test particles and decrease in relative amplitude

this number is increased. It is apparent that the binned der?l—1
sity has some undesirable properties associated with the st

tistical fluctuations in the number and positions of particle
in each cell.

As an alternative to this binning procedure, we generate
smooth thermal cloud density by performing a convolution
with a sampling(or smoothening function S(r) which is
normalized to unity. In particular, we define

Ny

- N
dr’'S(r—r")U(r',t)=2g=— 2 S(r—ry),

OS(M)EJ Ny 7

where we choosS(r)~e*’2”72, i.e., an isotropic Gaussian
sampling function of widthy. SinceVS|,_,=0, no force is

he condensate wave function is defined. However, a direct
ummation for all points would be prohibitive. We therefore

Ig:oceed by making use of a FFT. First, each particle in the

semble is assigned to points on the 3D Cartesian grid us-
g a cloud-in-cell method36]. This is most readily ex-
Bfained in one dimension: consider a particle at positipn

Sbetween two grid points at, andx,, ;. The particle is as-

signed to both points with weightings {1«) and«, respec-
?Ively, wherea= (X—X,)/(X+ 1= Xx) - This can be viewed as

a more sophisticated binning procedure in that it takes into
account the actual positions of particles within the cells. The
generalization to three dimensions is straightforward, where
in this case the particle is assigned to the eight points which
define the unit cell containing the particle. We then convolve
the cloud-in-cell density with the sampling function by Fou-
rier transforming it and then multiplying it by the analytic FT
of the sampling function. An inverse FFT then generates the
sampled potential on the 3D grid. This potential is used di-
rectly in the GP evolution, while the forces on the test par-
ticles are obtained by taking a numerical derivative and in-

exerted by a particle on itself and the sum can extend over aterpolating to the positions of the particles.

particles in the ensemble. Ideally, the width $(fr) should

This overall scheme is illustrated in Fig. 1. The solid line

be small compared to the curvature of the noncondensathows the equilibrium thermal cloud density along a line

density. If, at the same time, the number of particles contrib
uting to the sum at a given positionis large, it is clear that

through the center of an isotropic trap with trapping fre-
guencywo=2m X187 Hz, a system we study in more detail
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later. The trap contains a total df,,;=5%10*8Rb atoms, For our purposes it is convenient to express the integral in

and at a temperature df=250 nK there areN=4.0x1¢* terms of new momentum variables pop;) and
thermal atoms. The rapidly fluctuating dashed line is the denp’,p"): P1.2=(Po=p’)/+/2 andps .= (po=p")/\2. po and

sity along this line produced by the cloud-in-cell methodp’ are proportional to the center-of-mass and relative mo-
using a thermal distribution dfl;=4.0x 10° test particles, Mmenta, respectively, of the incoming 1 and 2 particles. By
that is, ten times the actual number of thermal atoms. Thémplicity assuming energy and momentum conservatia (
effect of statistical fluctuations is clearly evident. Finally, the =p;, p’=p”) one can rewrite Eq(27) in the simplified
smooth dashed line is the result of the convolution using dorm

width parameter of)=0.76a;,,, wherea,,=7.9X10 ' mis

the harmonic oscillator length for the trap being considered. dp,; dp, Q

(For comparison, the mesh sizeAx=0.27a;,.) It should Fzzzf 3f1f szf EG|V1—V2|(1+f3)

be noted that the dramatic smoothening of the density (27h) (27h)

achieved is partly a consequence of performing a full 3D X(1+1,), (28)
convolution; a 1D convolution of the cloud-in-cell density

with the same width parameter would not reduce the ampliyherep, ,=[po= p’U(Q)]/\2, with G(Q) a unit vector in a
tude of the spatial fluctuations to the same degree._I_:in_allyﬁirection' specified by the solid angfe. Calculation of the
we compare the convolved density to the actual equilibriuntate therefore involves integrals over all possible initial states
density. Apart from differences due to the statistical samplingynq a|| scattering angle®. In the equilibrium situation, this

of test particles, one can see that the peaks in the thermalie gefines a local mean collision timg, according to
cloud density at the edges of the condensate are slightly

broader in the convolved density, as would be expected.
However, the differences are minor and do not affect the ngz—o, (29
dynamics of the system significantly. We have also checked T22

that small variations ofy about the value chosen to do the - ) o )
simulations have little effect on our final results. For consis-Where no(r) is the equilibrium thermal cloud density. As

tency, then, term appearing iftJ(r,t) is also convolved. shown in Ref.[30], 1/75, below T is a strong function of
position for a trapped Bose gas and is peaked at the edge of
D. Collisions the condensate. In the classidak., Maxwell-Boltzmanin

. o 0 ~ _ /
The methods outlined so far allow one to follow the con-limit, 1/79, reduces toJ2av N, With vy,= (8KT/7m)*2

densate wave function and trajectories of the atoms Subject To relate this to collision probabilities for individual at-
to a time-dependent potential, so long as the system is in th@ms in our simulations requires sampling of the integral us-
collisionless regime. However, in general the collisionaling a rejection method as discussed in detail in the Appendix
terms in the Boltzmann equation will be nonze,, [34,39. At each time step atoms are first binned into cells of
#0, Clzgéo_ In other words, during each time Step there isVOIUme A3r according to their pOSition. The atoms within
a certain probability that a given test particle will collide €ach cell are then paired at random, and a probability for a
with another thermal atom or with the condensate. If thePair (ij) to collide in the time stept is assigned according
typical collision time scaler is such thatr>At, one can 0

treat the free particle evolution and collisions separately. 40

Each particle’s trajectory is first followed using the methods Pizjz:ﬁa'|vi_vj|f —(14f3)(1+f,)AL. (30)
discussed in the preceding section, and the possibility of col- 4

lisions occurring is then considered at the end of the tim
step. Probabilities for eitheC,, or C4, collisions are calcu-
lated in a way which is consistent with a Monte Carlo sam-
pling of the collision integrals, as discussed below.

el'he integral ove) can be evaluated by averaging over a
sample of randomly selected final states which are obtained
by choosing uniformly distributed random values for the
scattering variables casand ¢. However, in simulating the
collision process, the velocities of the incoming particles
] ) ) ) ) ) must actually change to a specific, but random, pair of final
We first give details for th€,, integral(6), which physi- \e|ocities. These velocities lie on a sphere centeredvat (
cally corresponds to scattering of two thermal particles into . v,)/2 with a radius|v; —v,|/2 and can be chosen by ran-
two final thermal states. Hence the process conserves t%mly selecting the scattering angfez. The appropriate
number of thermal atomgdp/(277)°C2,=0. We are inter-  ¢qjision probability for this event is then
ested in the mean collision rate at a pointas defined in

1. Cy, collisions

Appendix A), which is given by Pﬁ2=ﬁalvi—vj|(l+f§R)(l+ffR)At. (31)
Fggtzﬁf dplflj dpzfzf dpgf dp. This _probab|llty %epegds upon _the phase-spgc_e densm_es of
mh°m the final statesf,®,f, R, reflecting Bose statistics. If this

L - single scattering probability is averaged over a random dis-
X 8(P1tP2—P3—Pa) S €1+ €2~ €3~ €4) tribution of scattering angle§lr we recover the average
X(1+f3)(1+1,). (27)  probability defined in Eq(30).
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The simulation ofC,, collisions thus proceeds as follows. Now, if we consider each atom in the distributibsin turn,
A pair of test particlesi() in a given cell is chosen at ran- the probability for collision with the condensate is given by
dom. Whether a collision of this pair occurs is then tested by ' o o
comparingP?’ to a random numbeX?? uniformly distrib- P'=ngov M (1+f, R+, R)AL. (35
uted between 0 and 1. K< P7? the collision is accepted, _ _ - _
and the velocities of the test particles are updated accord? this case, the final thermal atom velocitiesv, lie on a

out,

ingly. If X??> Pizjz, no collision occurs and the velocities of SPhere of radiug,™/2 centered on\(+Vv5)/2, with a ran-
the colliding pair are unchanged. In either case, another pafom scattering angleg.

is randomly selected and the procedure is repeated for all " collisions involve scattering of two thermal atoms to

pairs in each cell of the sample. produce a condensate and a thermal atom. In the context of
Eqg. (33), the incoming atoms are labeled 2 and 4, and the
2. Cy, collisions outgoing thermal atom is labeled 3. Energy-momentum con-
o ) o servation in Eq.(33) dictates the conditionp.—p,)- (pe
The Cy; collisions are treated in a manner similarGg,. —ps)=mgn.. Thus, unlike the case d&,, collisions, one

The key difference here is that one of the collision partners ig.gnnot arbitrarily select a pair of 2 and 4 atoms from the

a condensate atom in a definite state, and it is necessary {mpje since this condition will in general be violated and
distinguish the collisional processes which either transfer age collision cannot occur. To proceed, we perform the inte-

atom into or out of the condensate. For example, the “out’yrations involving the delta functions in E(B3) to obtain
collision rate as defined in E§A1l) is given by

— dp, no [ ~
ong FI:II:]ZZ J' —3f2 inj de4, (36)
fdpzdpadp46(pc+pz—ps—p4) (2mh)® “mv,

out__
I‘12 -

mm?h3
wherev;'=v,—V, is the velocity of thermal atom 2 relative
to the local condensate velocity. The second integral is a

This represents scattering of a thermal atom from the coriWo-dimensional integral over a velocity vectowhich s in
densate to produce two thermal atoms. The reverse procedsPlane normal to/;". The velocity of the other incoming

X O(e.+ey—e3—€4)fo(1+13)(1+1,). (32

gives the “in” collision rate defined in EqA15), thermal atom, particle 4, is given by
N -,

in__9Nc o V=Vt vt o,
Flz_mf dp2dpsdps S(Pc+ Ps— P2~ Pa) AT T

X O(€.t e3—€3—€4)fo(1+1f3)f,. (33)  while the velocity of the outgoing thermal atom is
In obtaining Eq.(33) we have interchanged the 2 and 3 la- ~  ONc
bels in order to define an integral having the sdmeeight- V3=Vat v+ mvinvf '
r

ing factor as in Eq(32). These two integrals give the true
“in” and “out” collision rates. However, in the simulations it In the simulation one considers each thermal atom in the
is useful to drop the cubic ternfsfsf, which formally can-  gistribution f, in turn, then randomly selects two numbers

cel exactly between the “in” and “out” rates. Since these
two rates are evaluated differently as explained below, thi
cancellation will not be numerically precise, and it is there-
fore preferable to eliminate the cubic terms from the calcu- _

lation of collision probabilities. In the following, we denote pin_nCLAUfZRAt_ (37)

the rates with the cubic terms removed B

I
these terms of course does not changentteate of transfer . . . .
%lote that the aread, appears in this expression, which at

that define the vector=Vvg within a plane of area, . The
collision probability is then given by

. Dropping Uy
from the condensate to the thermal cloud that actually take X S . ) o .
irst sight is disconcerting since it is an arbitrary number

pla_lc_:ﬁ.e “out” term can be reduced by transforming the mo- entering asa simulaf[ion parameter. quever, we find that the
mentum variables as before, with the result total rate is largely independent of th|§ area so long as the
plane completely samples the occupied regions of phase
o dp 40 space. We _show results confirming this statement in the fol-
= f 5 fancov f 2, (L+fatfy), (34  lowing section. - " .
(27h) ™ This analysis yields probabilities for a particular atom to
undergo “out” or “in” collisions. To decide whether either
wherev = \[v.—v,[?—4gn./m is the relative velocity of event takes place, another random numbeX3?<1 is cho-
the initial states, corrected to account for energy conservasen. If X1?< PiOUt then an “out” collision is accepted; the
tion (locally, the mean-field energy of a thermal atom isincoming thermal atom is removed from the ensemble of test
higher than that of a condensate atom by an amaungj. particles and two new thermal atoms are created. However, if
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PoUt X 12< pOUty p:“, then an “in” collision takes place and C2. collision integrals vanish in this case. The nonconden-

atom 2 is removed from the thermal sample. In addition, &ate density profile can be evaluated from Egs.and (39)
second test particle, atom 4, is removed and a new therm&p Yield

atom, atom 3, is created. In practice, it is exceedingly un-

likely that a test particle will exist that will precisely match ~ 1

the required phase-space coordinates of particle 4. We there- No(r)= ng/z(z)y (40)
fore search for a test particle in neighboring phase-space

cells and remove this particle if one is found. This can bewhereAz(ZTth/kaT)l’z is the thermal de Broglie wave-

justified by remembering that we are only interested in de—en th. The equilibrium condensate wave function is ob-

scribing the evolution in phase space in a statistical way—i ainged.as the gtationar solution of E8), with R=0, and

is misleading to think of a direct correspondence between th . ary . ' N .
e corresponding eigenvalue defines the equilibrium chemi-

test particles and physical atoms. If no test particle exists ical otential Since the condensate and thermal cloud are

the vicinity of v,, the local phase-space density, and P K- ST

henceP!", will be zero and the “in” collision is precluded coup_led by mean f.|elds, the two components have to be de-
I termined self-consistently using an iterative procedure. De-

from occurring in any case. : ; .
. tails of this have been given by several auth(se, e.g.,
The above procedure leads to a change in the number T?ef' [21] or Ref.[40]) and will not be repeated here.

atoms in the thermal cloud. In order to conserve the total "1 represent the thermal cloud in the simulations, an en-

particle number the GP equatig8) is propagated with thi semble of test particles must be defined. In the case of an

term which changes the normalization of the wave funCt'onequilibrium situation, this ensemble should have a phase-

andl h(tangef the ﬂ?onlaentsatg nlumber. Th'j’ qgt?néltybcan l:l))sepace distribution which is consistent with the Bose equilib-
evaluated Trom the Monte L.arlo process decribed above by, qistribution in Eq.(39). This can be achieved using the

summi_ng probabilities for particles around each grid pOir‘tfollowing rejection algorithm[34]. First, we distribute par-
fiw using Eq.(8), i.e., ticles in position space according to the densify). To do
this, we select three random numbers uniformly distributed
R(r g )= h E (PoUL_ pin). (38) between_—rmfixandrmax, d_efining_Cartesian_ poordinater$,
2n At 5 ! : of a particle in the occupied region of position space. A fur-
ther uniform deviate is then chosen froR e [0Nmayd,
In practice, this assignment to grid points is performed withwheren,.,=maxn(r)}, and compared to the density at that
a cloud-in-cell approach similar to the one described earliefpoint n(r;). If Ri1>ﬁ(ri)v the particle is discarded and an-
Of course, the normalization of the condensate wave funCpther set of position coordinates selected. Otherwis&}if

tion varies continuously as opposed to the variation of the<ﬁ(r-) the particle is accepted and one proceeds to specify
thermal atom number which changes by discrete jumps. Nev: 1 P b P P

ertheless, one can show that the subsequent change in IH%[Omomentxm bé’ choosmg ggmhgrf randorrrl] nurfnber
condensate normalization is consistent with the addition ori 'pr;‘axl]' ran or_nh num eL i IE[ ,I ”]QaX] (\.N gre max
removal of atoms from the thermal cloud, so that the total/z(ri) [1—2(ri)], with z(r;) the local fugacity is com-

particle numberN,;, is conserved within statistical fluctua- Pared tf(p;.r;) to decide whether the momentum is ac-
tions (~ yNg) cepted or rejected. In the case of rejection anofhes cho-
o) -

sen, while if accepted two random angles are selegted
e[0,27], cosfe[—1,1], which in turn define the momen-

E. Overview tum vectorp; . This procedure is repeated uniill test par-

So far we have described various aspects of the numericécles in the ensemble are accumulated. Note that we have
scheme. The aim of this subsection is to tie these disparagxploited the spherical symmetry of the equilibrium distribu-
elements together with an overview of the simulation procetion in momentum space. In principle, a similar method can
dure as a whole. One of the main applications of our apbe applied to position space if the trap is spherically or cy-
proach is to the study of small amplitude collective oscilla-lindrically symmetric.
tions around the equilibrium state. The first requirement of A dynamical simulation can be initiated in one of two
such a calculation is therefore the self-consistent determinavays. Either an appropriate nonequilibrium initial state is
tion of the equilibrium thermal cloud distribution and con- specified, or the system is dynamically excited with the ap-
densate wave function. Since the thermal excitations arglication of an external perturbation. The latter parallels the
treated semiclassically, the thermal cloud is described by therocedure used experimentally to study small amplitude col-
equilibrium Bose distribution lective excitations, and usually amounts to some parametric

manipulation of the trapping potential. Although this might
be the preferred approach, it is not always the most appro-
fo(p.r)= S 1ghplam_ 7 (39 priate, especially when the excitation phase requires a pro-
z ¢ hibitively long simulation time. It is then more convenient to
impose the perturbation on the initial state itself. Here we are
where z(r) =exp{Blu.—U(r)]} is the local fugacity ang8  guided by the nature and symmetry of the collective mode
=1/kgT. It is straightforward to show that both tl®, and  being studied, as well as information gleaned from earlier
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calculations such as those based on the Thomas-R&iEhi
approximation. For example, the nature of the density fluc-
tuation or velocity field associated with the mode might be
known and it is then advantageous to use this information in
defining the initial state. A good example of this is the
breathing, or monopole, mode in an isotropic trap. In this
case the TF mode has a velocity fielerar. To impose this
velocity on the condensate one can simply multiply the
ground-state wave function by a phase factor emp/2%).
In the case of the thermal cloud, the same velocity field can
be imposed by addingr; to the velocity of theth particle in
the equilibrium ensemble. This procedure will predominantly
excite the lowest monopole oscillation. Although higher ly-
ing modes might also be mixed in to some extent, they have
different frequencies and can usually be separated from the
dominant mode when analyzing the dynamics.

Returning to the simulation procedure itself, the conden- 0 2 4 6 8 10 12
sate wave function and thermal atom phase-space coordi-
nates are updated in each time stepaccording to the pre- r (units of a,)
scription detailed in Sec. IlIB. Then, before treating
collisions the thermal atoms are assigned to cells in position FIG. 2. Thel'3, collision rate as a function of position, for an
space. These are used for selecting pair€igreollisions, as equilibrium distribution and the same parameters as Fig. 1. The
well as being further subdivided into momentum space e|eSO|id line shows the result of a direct evaluation of Eag), while
ments in order to estimate the phase space dehigity) for the points plot the results of a Monte Carlo evaluati86).

calculating collision probabilities. Since collisions are treatetae rates are calculated ignoring the cubic terms in the full

one cell at a time, the phase-space density only needs to hgression The result of the calculation as a functionrds
calculated and stored for one particular cell. Theg andC,, shown as the solid line in Fig. 3. One sees that boththe

collisions are then treated using the Monte Carlo schemenyc.  coliision rates exhibit a maximum near to the con-
described earlier and the momenta and number of thermay, cate surface. where the fugacitapproaches unity and
atoms_(test particle} are updated. Repe_atlng for all of _the the equilibrium Bose distribution is strongly peaked mat
cells yields the quantitir from Eq.(38) which, when used in —0. However, in the case &, collisions, the tail of the

the GP propaganprﬁSec. IA), continuously evplves the distribution decays more slowly since the thermal cloud den-
number of atoms in the condensate. For numerical accuracg,lIty extends out to larger radii than the condensate
{ )

the positional cells should enclose regions of almost constan
thermal density and fugacity, and are most conveniently T~ 3000
treated using a spatial grid which reflects flediptical) ge- !
ometry of the cloud. The momentum elements in contrast lie 1
on a Cartesian grid, where a cloud-in-cell method allows one p

to minimize statistical fluctuations while retaining a fine grid

—1
o

6000 -

4000 —

2000 -

47Ty, /w, (units of a

279

o

for precision. 43 2000 —
3
IV. RESULTS ~ l
=
A. Equilibri llisi t |
quiiprium collision rates Q 1000 -
Our first calculations are not simulations as such, but are 5

instead checks of the Monte Carlo sampling technique we ?_T‘
use to evaluate th€,, and C,, collision rates in real time.

The physical situation we consider corresponds to the one
discussed at the end of Sec. Il C, namely, 50* 8'Rb atoms < 0 - . I . , .
at 250 nK in an isotropic trap. The equilibriu@y, collision
rateI', can be evaluated numerically directly from the ex-
pression in Eq(28) using the equilibrium distribution func- .

tion (39). The result as a function of the radial coordinate T ('wm,ts Of a’"’)
ShOWI’] as the solid line in Fig. 2. Th_e eqqubﬂLI_ﬁ_]_z .COHI' . .. FIG. 3. The same parameters as in Fig. 1, ﬂg collisions
sion rates can also be calculated using the equilibrium distri:

. S - . between the condensate and thermal cloud in equilibrium. The solid
bution (39) and equilibrium condensate density(r) in Egs. line plots a direct evaluation of Eq34), while the circles shows a

(32) or (33). The “in” and “out” rates are iﬂfact equal to Monte Carlo calculation for the “out” ratdsolid) and “in” rate
each other in equilibrium and will be denotE@2 (recall that  (open.
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The Monte Carlo calculation of these rates involves a dy-grating overr, we find a discrepancy between the total “in”
namical simulation of a sample of test particles moving inand “out” rates of about 1%. This imbalance can be mini-
the equilibrium effective potential. The collisionless evolu- mized by judicious choice of the shape of the phase-space
tion of the particles in time provides an ergodic sampling ofelementgsee Sec. Ill Eand simulation of a larger sample of
phase space. At each time st&p in the evolution, the col- test particles, but a residual imbalance is unavoidable. Since
lision probabilities in Egs(31), (35), and(37) are calculated the quantities we are interested in, such as frequencies and
and summed to obtain a realization of the collision rates at damping rates, are weak functions of the number of conden-
particular instant of time;,,. For example, folC,, collisions  sate atoms, a small residual drift in the condensate number
we have will not affect our results significantly.

22
Pij(tn) B. Monopole modes

IOty =2

M A%rAt This section presents the main results of the paper, where
we simulate the monopole “breathing” mode in an isotropic

where the sum extends over all pairs of test particles in thérap. These calculations are not motivated by experiments,
cell of volume A% . By repeating this calculation ovevl which are yet to be performed in this geometry. Rather, we
time steps and performing the average are mainly interested in comparing our results to previous

theoretical approaches f@;, and Landau damping which

1 M have relied on spherical symmetry. It should be emphasized

(I')= Vi > IOty that our calculations do not face this restriction, though the

n=t simple geometry does allow us to more readily observe and

. . - guantify effects ensuing froi@,, andC;, collisions between
we obtain the Monte Carlo estlm?_teuof the“ coI,I'|S|on rate. Thegioms ' In fact, as reported elsewh@28—30, our methods
same procedure is used for tBg, “in” and “out” rates. To

btain hi £ 1h lisi ; i f th have already been applied successfully to other experiments
0 c:alln Istograms %_t ﬁ co d'.S'Pd” r?te I?S' a uncglogl_q the, anisotropic traps, most notably to the study of scissors
radial positionr, we bin the individual collision probabilities 4o in which a full 3D simulation is necessary.

according to the positions of the colliding pair. The Monte
Carlo results presented in Figs. 2 and 3 were obtained with 1. Static thermal cloud approximation
only M=200 time steps of sizasyAt=0.002, which was

already sufficient to give good statistics. A comparison with AS &n important test of our treatment®f; collisions, we
the direct numerical calculations shows very good agree€valuate the damping of the monopole condensate mode

ment, the main error arising from estimatifgp,r,t) in real within the so-_c_alled static the_rmal cloud apprqximation_dis-
time by binning particles into phase-space cells. This wa§ussed by Williams and Griffi@WG) [40]. In this approxi-
confirmed by repeating the simulation but calculating theMation, one considers the dynamics of the condensate in the
collision probabilities using the actual equilibrium Bose dis-Presence of a static equilibrium distribution of thermal at-
tribution (39) rather than the binned approximation to it. One ©MS- Due to the condensate oscillation, the condensate is no
can try to improve the binned distribution but there is a tradd®nger in local equilibrium with the noncondensate and as a
off between using smaller phase-space cells which would€Sult: C1. collisions play a role in damping the mode. This
provide a more accurate representation of the distribution€ffect enters through th term in the generalized GP equa-
and larger cells which contain more particles and thus im£on (3). It should be emphasized thRtis provided by the -
prove statistics. Our choice of cell size tries to optimize thesdn€0ry and the relaxation it gives rise to is not introduced in
opposing requirements. a phenomenological way as is sometimes datig42. Lin-

The main observation to be made about Fig. 3 is that th&&rization of the GP equation leads to generalized Bogoliu-
“in” and “out” C,, rates are very similar, despite the very bov equations which can be solved to determine collective

different appearance of the probabilities in E¢35) and mode frequenci(_as and damping rates. The latter are of par-
(37). Note in particular that these results confirm that thelicular interest since they are directly related to the transfer
“in” rate is independent of the arbitrary are4, in Eq. (37). of atoms betwefe.n the condensate an_d thermal _cloud as a
It is of course important to minimize the difference between'®Sult ofCy, collisions. The results obtaingd0] are in fact
these two rates since any imbalance implies a net transfer §{0S€ to those found in the TF approximation which gives the
atoms between the condensate and thermal cloud whichaMPIng rate43]

should not occur in equilibrium. However, a calculated im-

balance partly reflects the fact that the equilibrium state we f dron?(r)/ 7' (r)
H H “ H ”n HH H" H ﬁ ]

start with is not the “numerical” equilibirium state that is yi==

consistent with the various numerical approximations being 2 dr on? '

made. In fact, we find that when a full simulation is carried ronj(r)

out, the system relaxes to a new, slightly different equilib-

rium. In other words, the system automatically adjusts tovhere oni(r) is the density fluctuation associated with the
compensate for the numerical approximations. Neverthelessjodej and 1b-’=gF‘1’2/kBT. One sees that the damping in
it is desirable to avoid an imbalance to whatever extent posthe TF approximation is given by a weighted average of the
sible. Taking the collision rate histograms in Fig. 3 and inte-equilibrium C;, collision rate.
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<.40 =J(x?)—(x)?, where the moments are given bfy)
=(1/N.) fdrxn¢(r). Plots of these widths show a damped
o <35 oG . .
3 oscillation, _and to quantify the freql_Jenczy and_dam_plng _
~. 2.30 ratel”, we fit the data to an exponentially decaying sinusoid.
§ Since each direction gives slightly different values due to
2.26 statistical fluctuations, we average over the three to obtain
values forw andI’. Our numerical results are plotted with
2.20 those of Ref[40] in Fig. 4. We find excellent agreement
0.06 between the two approaches, except for the damping rate at
T=50 nK which is somewhat lower than the WG result.
0.04 This discrepancy arises through errors in estimating the
3° : phase-space density in the condensate surface region where
™~ the fugacity approaches unity and the distribution funcfion
=~ 0.02 is sharply peaked in momentum space aropird. TheC,,
collision rate in this region is similarly enhanced, especially
0.00 ——r 11— at higher temperatures. Our binning procedure is of insuffi-

cient accuracy to fully capture this peak, and since the sur-
0 10 20 30 40 50 60 face region is the major contributor to tky, damping, this
then leads to an underestimate of the rate. We illustrate this
T (TLK) point in Fig. 4 by plotting the resuliopen circlg of a simu-
lation at T=50 nK which uses the analytical expression for
fo in EQ. (39), as opposed to the binned phase-space density.
e now find much better agreement with the WG damping
result. The generally good agreement with WG for the fre-
quency and damping rate confirms that collision rates can be
reliably calculated using our Monte Carlo sampling methods.
and Griffin [40]. The open circle alf =50 nK is the result of a AIthQUQh the b'nnmg procgdyre |ntrodgces some minor
calculation using the analytical form for the phase-space densit)?rrors into our simulations within the static thermal cloud

(39). The squares plot results of simulations including thermal@PProximation, we expect them to be even less important
cloud dynamics, withC,, collisions only(open and bothC,, and ~ When the full dynamics of the thermal cloud is included. Due

C, collisions (closed. to mean-field interactions with the condensate, the thermal
cloud will be strongly perturbed in the surface region and the
Our simulation of the static thermal cloud approximationdistribution in phase space will tend to be “smeared out,”
involves the propagation of the condensate wave functiomaking the binning procedure more reliab®,, collisions
according to Eq.(3) but with a stationary noncondensate compete against this effect by rethermalizing the particles to

mean field, 2ny(r). At the same time, the thermal atoms @ Bose distribution; however, this can only make a signifi-
evolve in an effective potential defined by the condensatéant difference if the collisional time scale is short compared
and noncondensate equilibrium densities. Although the theft© that of the oscillation. For the present calculations, we
mal atoms are not allowed to undergo collisions, their dy-havewy7,,>1 and the gas is in the collisionless regime. We
namical evolution allows one to perform a Monte Carlo sam-would therefore expect the thermal cloud dynamics to be
pling of phase space in order to generate €hg collision  very important in determining the damping dueGg, colli-
probabilities at each time step. These probabilites are thesions.
used to calculate the imaginary terR(r,t), in the GP equa- To illustrate this we have performed full simulations in-
tion according to Eq(38). These simulations can be com- cluding mean-field interactions and collisions Tat 20 nK
pared directly with the calculations by W[30] and there- and 30 nK. The results obtained with on@y,, collisions
fore provide a direct test of our simulation methods, inincluded are shown by open squares, while the results in-
particular, the calculation o€, collision probabilities. It is  cluding C,, collisions as well are shown by the full squares.
important to quantify the errors that arise since they will alsoOne sees that the overall damping rate increases by only
enter into our full simulations in which the effects of mean5-10 % wherC,, collisions are added in. In fact, collisions
fields and collisions on the thermal cloud are included com-of either kind contribute little to the damping which is domi-
pletely. nated by Landau dampir(@s discussed in the following sub-
The monopole mode is excited by initially scaling the section. Furthermore, we find a small downward shift in the
equilibrium  condensate  wave  function, ®(r,0) frequency compared to the zero-temperature value, in con-
=a %D y(r/a), where the scale parameteris 0.95. This  trast to the significant increase seen within the static approxi-
dilation of the wave function is an alternative to imposing anmation. This increase is due to the fact that the condensate is
initial velocity field as discussed in Sec. Il E. The widths of oscillating in the presence of the static mean field of the
the condensate wavefunction in tkey, andz directions are  equilibrium thermal cloud which effectively enhances the os-
defined by mean-squared deviations, e.g.g, cillator frequency of the trap. This effect is eliminated when

FIG. 4. Temperature dependefd) frequency shifts andb)
damping rates of the condensate monopole mode in a spherical tr
(wg=2mXx10 H2), in the presence of a static thermal cloud. The
total number of atoms ibl,,=2Xx 10°. The critical temperature for
the corresponding ideal gasT§=56.8 nK. Our results are plotted
as solid circles, while the solid line is the prediction of Williams
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0.0 0.2 04 06 08 1.0 FIG. 6. Time-dependent width of the condensatg, after ex-
) ) ' ) ’ ' citation of the monopole mode & =200 nK. The dashed line
T/Tc° shows the collisionless evolution, while the result of a full simula-

tion (C4, andC,,) is indicated by the solid line.
FIG. 5. (a) Frequency an¢b) damping rate of a monopole mode
(wo=2mX 187 Hz,N,o;=5x 104, including thermal cloud dynam-
ics. Results are shown for simulations with no collisiofg,,
=C4,=0 (closed circles C,, collisions only (open circleg and
both C,, and C,, collisions (inverted triangles

without collisions, corresponding to solving the collisionless
Boltzmann equation. The second includes, collisions be-
tween thermal atoms, while the third includes b&th, and
C,, collisions. At low temperatures, all three simulations
give similar results, reflecting the fact that the number of

) ) thermal atoms is small and collisions play a minor role. With
the thermal cloud is allowed to respond to the dynamic meaghcreasing temperature, the differences between the simula-

field of the condensate. As we shall further demonstrate ifions increase. Qualitatively, the behavior is similar to what
the following subsection, dynamic mean-field effects typi-was found previously for the scissors mdd@s]; collisions
cally dominate the finite-temperature behavior, with colli- have the effect of shifting the frequency downward as com-
sions playing a secondary but important supporting role ipared to the collisionless result, and significantly enhance the
equilibrating the system. damping rate. The effect of,, collisions is particularly

As regards the use of the static thermal cloud approximastrong at high temperatures, which at first sight may seem

tion [40,43, it has the advantage of providing a simple way surprising sinceC,, collisions do not couple to the conden-
of estimating the effects ofCy, collisions on collective sate directly.

modes without the need for a detailed solution of the kinetic

equation. As such, it has been employed in several papers 0.08
[44—-44. However, our detailed calculations in this section J o
clearly show that the dynamics of the thermal cloud intro- 820 %° .
duces additional effects that are crucial in making reliable, 0.06 - t I *% L ee, 0%
guantitative predictions for mode frequencies and damping ] v s

rates.
0.04 - o

2. Landau damping . © v Vo

I‘/C"o

As our final example, we have performed simulations for 0.02 -
the system studied by Guilleumas and Pitaevgkiv],
namely, 8Rb atoms confined in an isotropic trap of fre-
guencywy=2mx187 Hz. To begin, we consider a total of 0.00 I I
N=5x10* atoms and excite the monopole mode by an ini-
tial scaling of the condensate radius by a factoraaf0.9, 0 10 20 30
with the thermal cloud initially in its equilibrium state. The wnl
condensate width oscillations are then followed over a time 0

scale ofwot=30. Figure 5 shows damping rates and fre- [, 7. Damping rates for the same parameters as in Fig. 6,
quencies as a function of temperature found by fitting anyhere fits are taken with a series of windows in the ranggt (
exponentially decaying sinusoid to the time-dependent-4.54,t+4.5). We plot data for simulations which include no
width. At each temperature three simulations are performedollisions (open circley C;, only (inverted triangles C,, only
The first involves free propagation of thermal test particlegsolid triangle$, and bothC,, and C,, collisions (solid circles.
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To gain more insight into the collisional dependence of
the damping, we focus on the time-dependent evolution for a 0.06 =
particular temperaturél =200 nK (T/T%=0.644, whereT?
=0.941 woNY2[4] is the transition temperature of the corre-
sponding ideal gas in the thermodynamic limiEigure 6 X 004 +
plots oy vst for the collisionless and full@,,+ C,,) Simu- 3 ’
lations. The initial damping rate in both calculations is seen E .
to be similar; however, at later times the collisionless oscil-
lation departs from a simple exponential decay, and the os- 0.02
cillation amplitude tends to saturate. This behavior is not
seen to the same degree when collisions are included. To

quantify this behavior, we define a local damping rate by 0.00

fitting a damped sinusoid to the data within a window of

width A(wgt) =9 centered on the time Figure 7 plots this 0.0 0.5 1.0 1.5 20 25
local damping rate as a function bf\We see large variations

in the damping rate with time, with the largest rate occurring kT/lu

initially._The deviations from the initial yalue are_largest in FIG. 8. Initial damping rate calculated over the first time inter-
the COII!SlaneSS cage, V.Vhere the damping rate dips nearly toaI of sizeA(wot) =9 (pointg compared to the results of Guilleu-
zero. Similar behavior is observed over the thle range oﬁnas and Pitacvski[47] (ines. Results are plotied fo,
temperatures, and accounts for the lower damping rates ob-g, | (solid points and ling and N,=1.5x 10° (open points,
tained by f't_tmg t_he entlre_ data set. . dashed ling condensate atoms. Following R¢#7] quantities are
To explain th_'s behgwor, Wef note t_hat damping of theplotted in terms of dimensionless units, with the rdtiav,, (damp-
condensate oscillation is associated with the transfer of enpg rate over mode frequencplotted againsksT/ . Forl'/wy, we

ergy from the condensate to the thermal cloud. If this energyajculate the mean over the three directions, while the standard
exchange is mediated by mean-field interactions, it is regeviation yields a rough estimate of the error.
ferred to as Landau damping. From the point of view of the
thermal cloud, the dynamic condensate mean figldgr,t)  dence. However, as soon s, collisions are switched on,
acts as an external perturbation which can lead to the excthe damping rate deviates less strongly from its initial value.
tation of thermal atoms. Of course, the rate at which thes@he effect of these collisions is to drive the thermal cloud
excitations occur depends on the phase-space distribution @wards a state of local equilibrium and the damping rate
the thermal particles. In our simulations, the thermal cloud isends to maintain its original value. The inclusion ©f,
initially in an equilibrium state and the damping rate is ob-collisions has a similar effect and we find a damping rate
served to be independent of collisions. This damping is eswhich is almost time independent when both collision pro-
sentially pure Landau damping and its magnitude is detercesses are retained. Howevey,, collisions do more than
mined by the rate at which the oscillating condensate can dgimply equilibrate the thermal cloud since they also lead to
work on the equilibrium thermal distribution. In this respect, the source ternR(r,t) in the GP equation. As we have al-
our initial damping rate is analogous to conventional perturready discussed, this term gives rise to its own contribution
bation theory estimate@s discussed belgw to damping which is quite separate from Landau damping. It
As time progresses in our simulations, the thermal cloudshould be emphasized that it is impossible to separate the
begins to deviate from an equilibrium distribution and thetotal damping rate into individual components. Mean-field
magnitude of Landau damping is correspondingly affectedand collisional effects are interrelated, and all must be in-
Evidently, the perturbation of the thermal distribution is suchcjuded to completely account for the actual damping rates.
as to reduce the rate of energy transfer to the thermal atoms, we next turn to a comparison of our results with those of
whereupon the damping rate decreases with time as seen @Guilleumas and Pitaevskfi47]. Since we have used quite
Fig. 7. The deviation is in fact a nonlinear effect as it wasdifferent methods to calculate damping rates, it is useful to
found to depend on the amplitude of the condensate oscillgirst discuss the perturbation theory calculation of Landau
tion. With decreasing amplitude, the damping rate tends todamping used by these authd&0]. Within this approach,
ward a time-independent value since the thermal cloud distandau damping is associated with the decay of a mode of
tribution then approaches an equilibrium form. This limit oscillation(with energyf w,s) as a result of the excitation of
again corresponds to the linear response perturbative est-thermal quasiparticle from an initial state of eneEgyto a

mate. However, for realistic simulations havindjrdte oscil-  final state of energf, . The damping rate is then given by
lation amplitude, it is important to account for the deviation ermi's golden ruld47,50,14,1%

of the thermal distribution from equilibrium. An analogous
effect appears in the context of plasma oscillations, where T 5
Landau damping is due to the energy transfer from the col- I= N % | Ail “TF(Ei) — f(E) 18(Ex— Ei ~ s,
lective plasma wave to single-electron excitati¢48,49. (41)
In the absence of collisions, the distribution of thermal
atoms continues to evolve in a complicated way and thevhere the sum is over all excitations that satisfy energy con-
effective damping rate exhibits an oscillatory time depen-servation, while the matrix elemew;, depends upon the
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form of the excitations. The thermal states are occupied adormed. The first provided a check of the treatment of colli-
cording to the equilibrium Bose distributioh(E). This  sions within the static thermal cloud approximation of Will-
damping rate is therefore analogous to thitial damping iams and Griffin[40]. Results within this approximation
rate we obtain in simulations which start with an equilibriumwere reproduced, but full dynamical simulations indicated
thermal distribution. that the approximation is primarily useful as a qualitative
Guilleumas and Pitaevskii47] evaluate Eq.(41) as @ ndicator of the effect ofCy, collisions. Unfortunately, its
function of temperature using Bogoliubov excitations of thequantitative predictions for mode frequencies and damping
condensate as the thermal quasiparticles. These are det@fies cannot be trusted. Our second set of simulations fo-
mined from the Bogoliubov equations for a fixed number of . ,csed on Landau damping. This is typically the dominant
condensate atombl, ; the corresponding number of thermal damping process for condensate modes at finite tempera-
atoms is then a function of temperature and is given by suMgres. However, the damping observed in a simulation, and
ming over the thermal occupatidi{E;) of the quasiparticle  py extension in real experimental situations, is determined by
states. To actually evaluate the Landau damping rate at the gelicate interplay of the mean-field excitation of the ther-
frequency of the monopole mode of interest, the delta funceg) cloud and collisions. The thermalizing effect of the latter
tions in Eq.(41) are replaced by Lorentzians of width.  strongly influences the rate at which mean-field excitations
They show that the results obtained are essentially indepegyke place.
dent of this parameter. o We also compared our results for Landau damping to
To compare with these results we performed collisionlesshose of Guilleumas and PitaevsKi7], and very good
simulations and extracted the initial damping rate as disygreement was found. This confirms that the semiclassical
cussed earlier. The comparison is made in Fig. 8 where g4 gescription of the thermal cloud reproduces the Landau
sults are presented as a function of temperatureNor  gamping as calculated using Bogoliubov excitations. This is
=5x10" and 1.5¢1C°. Given the completely different not too surprising since the density of excitations in the two
methods of calculation, the agreement is remarkable. Thgpproximations is very similar. However, as we have already
agreement pergists even down to low temperatures where ORRplained, the Landau damping as determined by assuming
might expect differences to appear as a result of our use ghe thermal cloud to be in an equilibrium state is not neces-
semiclassical HF excitations as opposed to the Bogoliubo¥gyily the damping that will be observed in an experiment. A
as it is is perhaps understandable in view of the observatiofhermal cloud is needed in order to make detailed compari-
in Refs.[51,52 that the density of states in the HF and gons with experiment.
Bogoliubov approximations are very similar. Although the  applications of our technique to other collective modes
semiclassical HF approximation was not discussed, Wave also been made and are discussed elseVjRerad.
would of course expect it to be close to the quantal HF resultoyy results for the temperature-dependent damping and fre-
Since the density of thermal excitations is an important i”'quency shifts are in good agreement with experiment for
gredient in the calculation of Landau damping, we can begithoth quadrupol¢28] and scissor§29] modes. This in itself
to see why our semiclassical calculations give very similaizonfirms the accuracy of our theoretical formulation of the
results. system dynamics and the numerical methods used. It is
hoped, however, that the present paper provides more insight
into the content of the theory and the reasons for its success.
Interesting future systems for study could include topological
In this paper we have provided a detailed description ofdefects(e.g., vortices and skyrmiopsoptical lattices[53],
the numerical scheme we have used to simulate trappeahd dynamical instabilities of surface modes in the presence
Bose-Einstein condensed gases at finite temperatures, bagafda rotating thermal clouf44].
on the ZNG formalism which treats the thermal excitations We conclude with a few comments about where we may
semiclassically within a Hartree-Fock-Popov approximationgo next. Our simulations so far have been in the near-
The procedure involves solving simultaneously a generalizedollisionless regime which is relevant to most current experi-
Gross-Pitaevskii equation for the condensate and a Boltznents. However, it would also be of interest to extend our
mann kinetic equation for the thermal cloud. The two equa<alculations to the collision-dominated regime. Although our
tions are coupled by mean fields and collisions, both ofpresent simulations are probably not feasible in the extreme
which influence the dynamics of the two components in sighydrodynamic limit where Landau two-fluid equations apply
nificant ways. Our scheme has been carefully tested to ensuf21,22), they could be used to investigate the crossover be-
that it provides an accurate description of the system dynantween the collisionless and hydrodynamic regimes. To
ics. In particular, we have shown thhtbody simulations, complement the simulation method presented here, it would
together with the Monte Carlo sampling of collisions, is anbe useful to develop more advanced analytical methods to
effective and reliable method for determining the thermalgain further physical insight into finite-temperature dynam-
cloud dynamics. ics. In particular, generalization of moment methf2i3—25
Our scheme can be used to model the dynamics of the gds include Landau damping may be a promising alternative.
over a wide range of temperatures and physical conditions. Going beyond ZNG, it would be useful to incorporate
As an example, we have studied the monopole “breathingBogoliubov excitations in the kinetic theory in place of HF
mode in a spherical trap. Two sets of calculations were perexcitationg 54]. Although this does not seem to be important

V. CONCLUSIONS
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for Landau damping, the HF approximation may not be goodvhereN is the number of random; points chosen and the
for certain situations where the thermal occupation of theprime on the summation includes only those points for which
lowest modes are significate.g., for large atom numbers or R <w(p,) . Forg=1, the integral is simply(r)2. Thus,

at low temperaturgs Another possibility is to implement a

hybrid scheme, where highly-occupied, low-lying modes are N

treated using classical field metholdsb,56], while the rest N()2= (Prnad Winax— » (A4)

are treated semiclassically using the present technique. Fi- N

nally, it would be of interest to investigate the importance of

including the anomalous average, neglected in the Popov WhereNy is the total number of points accepted, and
approximation. In doing so one must be careful to ensure that

the new model is gaple$g]. This may involve renormaliza- 1 ,

tion of the coupling constarg [57] or replacing the contact o= HZN— Z g(pi)- (AS)
potential by a generalized pseudopotent&s]. s

The sample oNg points accepted consists Nf p, values
andNg p, values, each of which is distributed according to
We thank J. Williams for providing the data in Fig. 4. We f(p). This set of Ng p values can be identified witN
would also like to acknowledge useful discussions with A.test particles in a cell of voluma?r. If this set is to be

Griffin, T. Nikuni, and J. Williams. Financial support was representative of the local density, we must have
provided by NSERC of Canada.
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APPENDIX: MONTE CARLO CALCULATION n(r)= 3 A% (A6)
OF COLLISION RATES r
Our purpose here is to show how a Monte Carlo evaluayyith this identification,
tion of the collision rate in Eq(28) leads to a definition of
collision probabilities to be used in the simulations. We first Nq
note thatd®rd3p/h3C%' represents the number of atoms 3, prout_ o i
A rT'55=2n P3)- A7
leaving the phase-space volume elenaird 3p/h® per unit 22 igl 9(P1.P2) A1

time as a result of collisions. Integrating this over momenta

gives the number of atoms id’r suffering a collision per | other words, the collision rate can be estimated by sam-
unit time. Thus the mean collision rate per atom and per unlb”ng the test particles in the celi®r in pairs. Inserting the

volume is explicit form of g for the 22 collision rate in Eq(28), we
3 have
out d p out
3= F?sz ' (A1)
; ~ dQ
AST=2> () alvi—v| | 7= (1+f5)(1+T,),
which is the quantity displayed in E(R7). We now write the (i) A
required local collision rate as (A8)
[out_ d°p, dgpzf ¢ where the sum is now taken over pairs of test particles. This
2] nd h3 f(P1)T(P2)9(p,p2) expression allows us to define the probabiftf that a pair
of atoms (j) in the cell suffers a collision in a time interval
= [ apwpa(r). (n2) AL
wherep is a point in six-dimensional momentum space and 22_7 o
b P ! - Pi=n(r)alvi—v;| 4—(1+f3)(1+f4)At. (A9)
the factorw(p)=f(p;)f(p,)/h® is considered as a weight ™

function. We denote the maximum value wi{p) by Wy
and define the domain on which the integrand is nonzero bgelecting atoms in pairs from each cell and assigning them a
[~ Pmad2,Pma{2] for each momentum component. Choosingcollision probability P7* allows us to simulate the effect of
a point p; at random in the hypervolumep.)®, and a collisions in a way which is consistent with the Boltzmann
random numberR; uniformly distributed on[Owmad, the  collision integral. Note that the factor of 2 in E¢A8) ac-
point p; is accepted ifR;<w(p;) and the quantityg(p;) is  counts for the fact that 2 atoms are affected for each pair
accumulated. The value of the integral is then given approxXicollision. This factor is therefore not included in the defini-
mately as tion of the pair collision probability.
1 We treatC,, collisions somewhat differently. First, we
out__ 6 ’ note that the total rate of change of the number of thermal
122 (Pma) Wmaxy Z 9(pi), A3 atoms per unit volume due to tr?ese collisions is
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dp P=g(p)At=nco/|v.—V5|>—4gn./m

on
FCH:KZCMJ’ dp,dpsdpsS(mve+po—pP3—Pa)

dQ
X | —(1+f3)(1+f,) AL, Al4)
e | frartoasty (
X[f(1+1f3)(1+f,)—(1+f,)f5f,] which is the origin of the expression given in E85).
_ The “in” collision rate is given by
=TT, (A10)
. . _— . n
According to this definition, Tf%f dp,dpsdp4S(MVe+ po—Ps—Pa)
a
n
Iroy'= 02;3f dp,dpsdpsS(mve+p,—pPs—Pa) X o€t €3~ €37 €4)(1+ ) f5f,
m
dp, d®p,  n.oh®
X5(EC+62_63_64)f2(l+f3)(1+f4) :J h3 fZJ h3 4 m
3
d’p, X OL(Pe—Pa) - (Pe—Pz) ~mgn](1+f3), (AL5)

—hyfzncavfmf 3—2(1+f3)(1+f4), (A11)
where we have interchanged the particle labels 2 and 3 to
is the rate of decrease of the numbecohdensatatoms per  obtain the second line in this equation. This rate corresponds
unit volume as a result of a collision with a thermal atomto two thermal atoms scattering into a condensate atom and
(hence the designation “out’ This rate can be estimated by an outgoing thermal atom, and is thus the rate that atoms
writing feed into the condensate as a result of collisions. Although
the collision of atoms 2 and 4 can be treated by the methods
used to analyze th€,, collision rate, it is preferable to de-
fine a single atom collision rate by writing this integral in the
form of Eq. (A12) and performing a Monte Carlo sampling

wherew(p) = f(p)/h® andg(p) is the remaining part of the . . ;
. , . with respect to thg, variable. This procedure leads to the
integrand. A Monte Carlo sampling of the integral leads toCollision probabilityper atom

the estimate

r{g= f d*pow(p)g(p), (A12)

3

Ng O'h

Asrrggtzi; alpi),

AL pin— Atf —3—(1+f3)f4

_ X 8((Pe=Pa)- (pc—p‘2>—mgm>, (A16)
whereNg represents the number of atoms in the cell of vol-

ume A3r. The probability of an atom in the cell suffering which is simplified and discussed further in the body of the

this kind of collision in the time intervaAt is therefore

paper.
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