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Modeling Bose-Einstein condensed gases at finite temperatures withN-body simulations

B. Jackson and E. Zaremba
Department of Physics, Queen’s University, Kingston, Ontario, Canada K7L 3N6

~Received 20 May 2002; published 17 September 2002!

We consider a model of a dilute Bose-Einstein condensed gas at finite temperatures, where the condensate
coexists in a trap with a cloud of thermal excitations. Within the Zaremba, Nikuni, and Griffin formalism, the
dynamics of the condensate is described by a generalized Gross-Pitaevskii equation, while the thermal cloud is
represented by a semiclassical kinetic equation. Our numerical approach simulates the kinetic equation using a
cloud of representative test particles, while collisions are treated by means of a Monte Carlo sampling tech-
nique. A full three-dimensional split-operator fast Fourier transform method is used to evolve the condensate
wave function. We give details regarding the numerical methods used and discuss simulations carried out to
test the accuracy of the numerics. We use this scheme to simulate the monopole mode in a spherical trap. The
dynamical coupling between the condensate and thermal cloud is responsible for frequency shifts and damping
of the condensate collective mode. We compare our results to previous theoretical approaches, not only to
confirm the reliability of our numerical scheme, but also to check the validity of approximations which have
been used in the past.
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I. INTRODUCTION

Bose-Einstein condensation~BEC!, whereby bosons form
a condensate by macroscopically occupying the lowest
ergy state of the system, is a striking and important con
quence of quantum statistics at low temperatures. The re
ant long-range order manifests itself in phenomena suc
macroscopic coherence and superfluidity. In general, the
densate is depleted by correlation effects and through t
mal population of excited states at finite temperatures.
former, termedquantum depletion, is particularly important
for dense fluids such as liquid4He, where only around 10%
of the atoms are condensed in the low temperature limit
contrast, the quantum depletion in trapped, dilute gase
BECs @1–3# is typically less than 1%@4,5#. The noncon-
densed fraction is thus mainly composed of thermal exc
tions, and almost pure condensates can be prepared
evaporative cooling to very low temperatures. Atomic vap
therefore allow unique opportunities to study the proper
of Bose condensates under a wide range of conditions, f
the pure condensate phase to the noncondensed the
cloud above the BEC transition.

The condensate in a dilute Bose gas is well described
means of a macroscopic wavefunction, which in the limit
low temperatures evolves according to the Gross-Pitaev
~GP! equation. Well-known techniques allow both numeric
and analytical solutions of this equation, and comparis
with experiment at low temperatures show excellent agr
ment for both static and dynamical properties@4#. However,
generalizations of the theory to finite temperatures, wh
thermal excitations coexist with the condensate, have pro
far more difficult. To accurately describe the dynamical b
havior in this situation requires a theory that treats both co
ponents in a fully consistent manner. Such theories have
cently been formulated, but the challenge of obtain
explicit solutions has remained. What has been lacking
particular is a computationally feasible method for treat
the dynamics of the thermal cloud. It is these computatio
1050-2947/2002/66~3!/033606~18!/$20.00 66 0336
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aspects that concern us most in this paper.
The earliest studies of dynamics at finite temperatu

were based on the Hartree-Fock-Bogoliubov~HFB! approxi-
mation @5,6#. Within this theory, excitations of the conden
sate are obtained by solving the HFB equations which
derived by linearizing the GP equation about the equilibriu
solution, or equivalently, from the grand canonical Ham
tonian of the system@7#. The frequencies of the excitation
are identified with the collective modes of the condensa
This theory, however, is incomplete. Although the excitatio
are thermally populated, the condensate in fact oscillate
the presence of astatic thermal cloud. This ignores the dy
namical response of the thermal cloud to condensate fluc
tions, which is responsible for Landau damping and ass
ated frequency shifts. By the same token, the theory can
be used to account for the response of the system to exte
perturbations as typically used in experiments to excite
trapped gas@8–11#. This problem becomes critical at hig
temperatures, where collective motion of the thermal clo
can exert a major influence on the condensate evolution
reflected in experimental results for the mode frequency
damping rate.

Recent important work by Morganet al. @12,13# and
Giorgini @14,15# has extended the HFB theory to includ
collisionless noncondensate dynamics within second-o
perturbation schemes, and derived expressions for dam
rates and frequency shifts of low-energy modes. A varian
these approaches is the dielectric response formulation
Reidl et al. @16#. One limitation of these theories is the a
sence of collisions which require a kinetic theory for the
description. Quantum kinetic equations for BECs have b
developed by Gardiner and collaborators@17#, Stoof @18#,
and Walseret al. @19#. However, calculations based on the
theories are very difficult to carry out and as a result th
have not yet been used to study collective excitations
somewhat simpler scheme is the one developed by Zarem
Nikuni, and Griffin ~ZNG! @20,21#, which treats the excita-
tions semiclassically within the Hartree-Fock~HF! and
©2002 The American Physical Society06-1
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Popov approximations. One can then identify the excitati
with a thermal cloud of particles, with dynamics governed
a Boltzmann equation for the phase-space density. In ana
with its classical counterpart, binary collisions between p
ticles are described by means of a collision integral; ho
ever, an additional collision integral arises to account
collisions with the condensate. The latter leads to an imp
tant modification of the GP equation which must now inclu
a non-Hermitian source term to account for the transfer
atoms into and out of the condensate. This process, ta
together with mean-field coupling between the two com
nents, leads to damping and frequency shifts of the cond
sate collective modes at finite temperature.

The coupled GP and Boltzmann equations are far fr
trivial to solve, and several approximations have been
voked in the literature in order to explore their propertie
When the characteristic collisional time scale,t, satisfies
v0t!1, where v0 is the trap frequency, then collision
dominate and the system is said to be in the hydrodynam
regime. One can then take moments of the kinetic equa
to derive a set of coupled hydrodynamic equations for
noncondensate which, together with the usual quantum
drodynamic equations for the condensate, can be solved
der certain conditions@21,22#. In the opposite collisionless
regime,v0t@1, Stoof and co-workers@23,24# have used a
joint variational and moment scheme to model the cond
sate and noncondensate, respectively, while Nikuni@25# re-
cently applied a moment method to study the scissors m
@26,27,10#. Although these moment methods provide so
insight into the coupled dynamics of the two componen
they constitute a truncated description which precludes c
pling to internal degrees of freedom of the gas. Thus, t
neglect Landau damping which is the primary mechan
for damping and frequency shifts of collective modes in t
regime. In order to avoid this limitation, and to facilita
direct comparisons with experiment, one must resort to
full kinetic theory. It is therefore desirable to directly sim
late the ZNG equations without making approximations
yond those used to derive the equations themselves. In
paper, we describe a technique to calculate the dynamic
the thermal cloud usingN-body simulations. Within this ap
proach, a swarm of test particles is used to represent
evolution of the semiclassical phase-space density, while
lisions are handled using a Monte Carlo sampling techniq
The dynamics of the condensate, however, is determine
numerically propagating the GP equation using a sp
operator fast Fourier transform~FFT! method. Application of
the method to the quadrupole@28# and scissors@29,30#
modes has been discussed elsewhere, and in both cases
agreement with experiment@8,10# was found. Although an
outline of the numerical methods used was given in this e
lier work, we give much more detail in the present paper

This paper is organized as follows. In Sec. II we brie
review the ZNG formalism, before discussing our numeri
methods in Sec. III. In Sec. IV the Monte Carlo sampling
tested by comparison of equilibrium collision rates agai
semianalytic calculations. Landau and collisional damp
rates for the monopole modes in spherical traps are also c
pared to previous theoretical treatments. We sum up and
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II. THE ZNG FORMALISM

We begin by reviewing the ZNG formalism, which wa
derived and discussed in detail in Ref.@21#. For a Bose-
Einstein condensed gas one can decompose the sec
quantized field operatorĉ(r ,t) in the following manner

ĉ~r ,t !5F~r ,t !1c̃~r ,t !, ~1!

where the ensemble averageF(r ,t)5^ĉ(r ,t)& takes on a
nonzero value due to Bose broken symmetry, and is ide
fied with the condensate wave function. The remaining fi
operatorc̃(r ,t) has a zero expectation value and correspo
to the noncondensed component of the cloud. The seco
quantized Hamiltonian for the system is given by

Ĥ5E dr ĉ†~r !F2
\2¹2

2m
1Uext~r !G ĉ~r !

1
1

2E drdr 8ĉ†~r !ĉ†~r 8!U int~r ,r 8!ĉ~r 8!ĉ~r !, ~2!

where in most cases the trap is well approximated by a h
monic potentialUext(r )5m(vx

2x21vy
2y21vz

2z2)/2. We also
assume a contact interaction,U int(r ,r 8)5gd(r2r 8), with
g54p\2a/m, wherea is thes-wave scattering length andm
is the atomic mass. Usingi\] tĉ5@ĉ,Ĥ# with Eqs. ~1! and
~2!, one can derive coupled equations of motion for the c
densate and thermal cloud. In particular, the condensate
der parameter evolves according to a generalized form of
GP equation

i\
]

]t
F~r ,t !5S 2

\2¹2

2m
1Uext~r !1g@nc~r ,t !12ñ~r ,t !#

2 iR~r ,t ! DF~r ,t !, ~3!

where nc(r ,t)5uF(r ,t)u2 and ñ(r ,t)5^c̃†(r ,t)c̃(r ,t)& are
the condensate and noncondensate densities, respective
arriving at this equation we make the Popov approximat
whereby the so-called ‘‘anomalous’’ density,m̃(r ,t)
5^c̃(r ,t)c̃(r ,t)&, is neglected. This sidesteps problems
sociated with including this term, such as ultraviolet dive
gences and an unphysical gap in the energy spectrum at
momenta@7#. To go beyond this approximation in a consi
tent manner requires a careful treatment of interparticle c
lisions @12#, and is beyond the scope of the present wo
The source termR(r ,t) is an important modification of the
usual GP equation as it allows the normalization of the wa
function F to change with time. Physically this is due t
collisions between condensate and noncondensate at
which have the effect of transferring atoms into or out of t
condensate. The source term will be defined in terms o
collision integral later.
6-2
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It is convenient to describe the dynamics of the nonc
densate in terms of the Wigner operator@21,31#, which leads
to the definition of a phase-space distribution,f (p,r ,t), for
the thermal excitations. The equation of motion for the no
condensate can then be written as a kinetic equation

]

]t
f ~p,r ,t !1

p

m
•“ f ~p,r ,t !2“U~r ,t !•“pf ~p,r ,t !5C12@ f #

1C22@ f #. ~4!

In deriving this equation a number of approximations ha
been made, some of which have already been mentio
Importantly, the excitations are assumed to be semiclass
within the HF approximation; an excitation with momentu
p possesses an energye5p2/2m1U(r ,t), where the effec-
tive potentialU(r ,t)5Uext(r )12g@nc(r ,t)1ñ(r ,t)# is com-
posed of the trap potential as well as mean fields from
condensate and the thermal cloud. The noncondensate
sity appearing in this expression is given in terms of
distribution by

ñ~r ,t !5E dp

~2p\!3
f ~p,r ,t !. ~5!

The terms on the right-hand side of Eq.~4! are collision
integrals that represent binary collisions between atoms.
C22 term is familiar from the kinetic theory of a normal Bos
gas, and corresponds to the scattering of two atoms f
initial to final thermal states. It is given by

C22@ f #5
s

ph3m2E dp2dp3dp4d~p1p22p32p4!

3d~e1e22e32e4!@~11 f !~11 f 2! f 3f 4

2 f f 2~11 f 3!~11 f 4!#, ~6!

wheref [ f (p,r ,t) and f i[ f (pi ,r ,t). The total bosonic cross
section is given bys58pa2. The delta functions enforce
momentum and energy conservation in the collision, wh
the factors (11 f i) account for Bose enhancement of t
scattering. The analogousC12 collision integral correspond
to collisions that involve a condensate atom in either
initial or final states. It is given by

C12@ f #5
snc

pm2E dp2dp3dp4d~mvc1p22p32p4!

3d~ec1e22e32e4!

3@d~p2p2!2d~p2p3!2d~p2p4!#

3@~11 f 2! f 3f 42 f 2~11 f 3!~11 f 4!#, ~7!

where the local condensate velocity and energy are res
tively given by

vc~r ,t !5
\

2imuFu2
@F*“F2F“F* #,
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Here,mc is the condensate chemical potential defined as

mc52
\2

2m

“

2Anc

Anc

1Uext1gnc12gñ.

If the condensed and noncondensed components are in
equilibrium, theC12 integral vanishes. Conversely, when th
system is perturbed from equilibrium theC12 term acts to
transfer atoms between the condensate and thermal cl
These collisions then define the source term in Eq.~3! ac-
cording to

R~r ,t !5
\

2nc
E dp

~2p\!3
C12@ f #. ~8!

The relative numbers of condensate and thermal parti
will then adjust as a function of time until local equilibrium
is reestablished.

The ZNG formalism summarized here is valid from th
mean-field-dominated regime, where collisions play a s
ondary role, through to the collision-dominated regime
which hydrodynamic behavior is observed. In the latter lim
the ZNG equations have been used to derive the two-fl
hydrodynamic equations of Landau@21# as well as the dissi-
pative Landau-Khalatnikov equations@22# that include the
effect of transport coefficients. In the present paper, howe
we focus on the opposite, near-collisionless regime whic
most relevant for current experiments.

III. NUMERICAL METHODS

In this section we describe the numerical methods use
solve the ZNG equations~3!–~8! in the context of a dynami-
cal simulation. First we discuss the numerical solution of
GP and collisionless Boltzmann equations. Although th
are based on well-established techniques~see, e.g., Refs
@32,33#! we feel that our partly pedagogical discussion w
be useful for those trying to reproduce our simulations, wh
highlighting the correspondence between the quantum
classical dynamics of the system. We then move on to
cuss treatment of theC22 and C12 collision integrals by
Monte Carlo sampling. Finally, an overview of the simul
tions is provided, including a discussion of how one calc
lates the equilibrium initial state of the system, as well
estimating the phase-space density in real time for use
evaluating the collision integrals~6! and ~7!.

A. The Gross-Pitaevskii equation

For the benefit of the following discussion we rewrite t
GP equation~3! in the form

i\
]

]t
F~ t !5H~ t !F~ t !. ~9!
6-3
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The time dependence of the Hamiltonian,H(t)5T1V(t),
arises from the potentialV(t) which also includes the non
Hermitian source termR(r ,t). In most of our simulations the
time dependence is dominated by the nonlinear conden
potential and it is this term which is the main source
numerical instabilities when the number of condensate at
is large. It is therefore important to develop a numerical
gorithm which is accurate even in this limit, and at the sa
time, numerically efficient.

A formal solution of the above equation is given by

F~ t1Dt !5U~ t1Dt,t !F~ t !, ~10!

where the evolution operatorU has the expansion

U~ t1Dt,t !511
1

i\Et

t1Dt

dt8H~ t8!

1
1

~ i\!2E
t

t1DtE
t

t8
dt8dt9H~ t8!H~ t9!1•••.

~11!

Expanding the Hamiltonian as a Taylor series,

H~ t8!5H~ t !1
dH

dt
~ t82t !1

1

2

d2H

dt2
~ t82t !21•••

[a1b~ t82t !1
1

2
g~ t82t !2

•••, ~12!

we obtain

U~ t1Dt,t !511
a

i\
Dt1

b

2i\
~Dt !22

a2

2\2 ~Dt !21O~Dt3!.

~13!

The lowest-order exponential approximant to this expans
is

U~ t1Dt,t !.e2 iH (t)Dt/\2
i

2\

dH

dt
~Dt !21O~Dt3!.

~14!

The error of second order is shown explicitly. The first te
on the right-hand side is of course exact for a time indep
dent Hamiltonian but significant errors arise when t
Hamiltonian is time dependent. These errors can be m
mized by reducing the time stepDt, but at the expense o
increasing the computation time required to complete
simulation. Since this imposes practical limits on the phy
cal problems that can be addressed, a more accurate ap
imant is desirable.

A higher-order exponential approximant is provided by

U~ t1Dt,t !.e2 i „a1(1/2)bDt…Dt/\. ~15!

A comparison with Eq.~13! indeed confirms that the error i
O(Dt3). To this order of accuracy, we can make use of E
~12! to estimateb by reverse differencing,
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H~ t !2H~ t2Dt !

Dt
, ~16!

and thus obtain

U~ t1Dt,t !.e2 iH̃ (t)Dt/\1O~Dt3!, ~17!

where

H̃~ t !5T1Ṽ~ t ! ~18!

with

Ṽ~ t ![
3V~ t !2V~ t2Dt !

2
. ~19!

This is recognized as an approximation to the potentia
time t1Dt/2, the midpoint of the current time step, as o
tained by a linear extrapolation from the potential at tim
t2Dt and t.

The implementation of Eqs.~17!–~19! is very simple and
costs only a small additional amount of memory to store
potential from the previous time step. The actual numeri
representation of the evolution operator can be achieved
various methods. One popular approach is the Cra
Nicholson method@34#, where finite-differencing Cayley’s
form for the operator leads to a set of linear equations for
wave function at discrete grid points inr . The problem then
reduces to decomposition of a tridiagonal matrix at each t
step and along each spatial dimension. In contrast, we fa
a split-operator method, where a factorization of the ex
nential is effected by means of the Baker-Campbe
Hausdorff~BCH! formula. One finds that

e2 iH̃Dt/\5e2 iṼDt/2\e2 iTDt/\e2 iṼDt/2\1
1

12S Dt

i\ D 3

3F @T,Ṽ#,S T1
Ṽ

2
D G1O~Dt4!. ~20!

The error generated by this approximation is of the sa
order as found in Eq.~17!. Applying the first term on the
right-hand side then evolves the wave function to seco
order accuracy inDt. In principle, higher-order schemes ca
be constructed by splitting into more elaborate combinati
of the Ṽ and T operators. However, to justify the effort, a
improved approximation forH̃(t) is required. We have found
that second-order accuracy is sufficient for most appli
tions, although difficulties do arise if the time scale of t
simulations is exceedingly long.

The split-operator scheme~20! is straightforward to
implement with a discrete grid in position space. The tw
potential steps are applied by multiplying the wave functi
at each grid point bye2 iṼDt/2\, while the kinetic term
e2 iTDt/\ is conveniently treated in momentum space. T
limiting step in the calculation is therefore the application
forward and inverse FFTs at each time step, but efficient F
routines for arbitrary numbers of dimensions are read
available@35#. The dynamical evolution of the wave functio
6-4
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can thus be followed over a series of time steps. Alter
tively, stationary solutions of the time independent GP eq
tion can be easily found by evolving the time-depend
equation in imaginary timet→2 i t .

A typical application provides some indication of the re
tive merits of the higher-order approximant in Eq.~17! as
opposed to the lower-order scheme in Eq.~14!. With the
latter, one finds a monotonic increase in the energy expe
tion value with time. In simulations of a collective mode th
effect would be apparent as a slow increase in the m
amplitude, which is clearly undesirable when quantifyi
damping at finite temperatures. More importantly, since
rate of increase scales with the mode energy, higher
quency excitations tend to build in amplitude more rapid
These excitations are initially generated at a low level by
numerics; however, over sufficiently long simulation tim
they eventually lead to instabilities in the wave functio
These problems are essentially eliminated with the high
order scheme. The stability of the simulations is dramatica
improved and the energy tends to oscillate with small am
tude about a constant value, rather than increasing mono
cally. The improved stability allows much larger time ste
to be taken without compromising accuracy, leading to
considerable saving in computational effort.

B. Collisionless particle evolution

In this section we discuss solution of the collisionle
Boltzmann equation (C125C2250) using N-body simula-
tions. The effect of collisions is dealt with later. Collisionle
Boltzmann~or Vlasov! equations which include mean-fiel
interactions arise in many disparate fields, such as pla
physics, condensed-matter physics, and astrophysics. S
the equation involves phase-space variables in six dim
sions, it is generally very difficult to solve using standa
methods for treating partial differential equations. An alt
native approach used extensively in the literature is to re
sent the phase space densityf (p,r ,t) by a cloud of discrete
test particles@36#. The momentum and position of each pa
ticle in an external potentialU(r ,t) is then evolved accord
ing to Newton’s equations. The phase-space distribution
this situation is given by

f ~p,r ,t !.
Ñh3

ÑT
(
i 51

ÑT

d„r2r i~ t !…d„p2pi~ t !…, ~21!

where the weighting factor is fixed by the requirement t
the phase-space distribution is normalized to the numbe
physical atoms,Ñ, with Ñh35*drdpf . By using a suffi-
ciently large number of test particles,ÑT , a reasonable ap
proximation to the continuous phase space distribution is
tained. Note that the number of test and physical particle
not necessarily equal. In fact, for a relatively small numb
of physical atoms (Ñ;104) it is essential to simulate mor
test particles (ÑT.105) in order to minimize the effects of a
discrete particle description. Conversely, for large samp
one can simulate fewer ‘‘superparticles’’ so that the calcu
tions are not too intensive.
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The phase-space variables are updated by advancing
position and momentum of each particle at discrete ti
stepsDt. This is not as trivial as one might naively expec
Conventional integration schemes for ordinary different
equations, such as classical Runge-Kutta methods, can
to nonconservation of energy over long-time simulatio
when applied to Hamiltonian systems. This results in spu
ous damping or excitation of the system. In contrast, sy
plectic integrators@33,37# are used extensively in molecula
dynamics~MD! simulations since they possess several de
able properties, such as conservation of phase-space vo
and of energy over a long period~as is required in autono
mous Hamiltonian systems!. We use a second-order sym
plectic integrator in our calculations, which is the classic
analog of the split-operator method discussed earlier.
show this, it is convenient to work within the Lie formalism
@33#. Consider the classical Hamiltonian for a single partic
Hi5pi

2/2m1V(r i). The evolution of its phase-space coord
nateszi5(pi ,r i) is then determined by the equation

dzi

dt
5$zi ,Hi%[2 iLzi , ~22!

where $F,G%5( j] r j
F]pj

G2]pj
F] r j

G is the Poisson

bracket andL is the Liouville operator@38#. One can then
write

z~ t1Dt !5e2 iLDtz~ t !. ~23!

Splitting the Hamiltonian into potential and kinetic term
Hi5T(pi)1V(r i), the BCH formula can be used again
show that@37#

e2 iLDt5e2 iLTDt/2e2 iL VDte2 iLTDt/22
~Dt !3

12

3H $T,V%,S V1
T

2D J 1O~Dt4!. ~24!

One now sees the analogy with the quantum operator~20!,
where both conserve energy to order (Dt)2. The effect of the
classical operator~24! in the simulations is to update th
particle positions and velocities in three steps

r̃ i5r i~ t !1 1
2 Dtvi~ t !,

vi~ t1Dt !5vi~ t !2m21Dt“V~ r̃ i !,

r i~ t1Dt !5 r̃ i1
1
2 Dtvi~ t1Dt !. ~25!

By analogy with Eq.~19!, V should be the midpoint value o
the potential,Ṽ(t), when it is time dependent. In our simu
lations, V is the effective potential U(r ,t)5Uext(r )
12gn(r ,t) felt by the thermal atoms, wheren5nc1ñ is the
total density.
6-5
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C. Thermal cloud potential

The effective potentialU is determined self-consistentl
as the system evolves in time, and includes the conden
mean field 2gnc(r ,t) and the mean field generated by t
thermal cloud 2gñ(r ,t). The latter is in general much
weaker than the condensate mean field due to the larger
tial extent~and therefore lower density! of the thermal cloud.
Nevertheless, it is important to include this term in order
ensure the conservation of the total energy of the system
addition, from the perspective of the condensate, the non
densate mean field is necessary in order to account for
temperature-dependent damping and frequency shifts of
densate collective modes.

Although the calculation of the condensate mean field
straightforward, the use of discrete particles with a cont
interatomic potential creates a problem in determining
noncondensate mean field. Taken literally, the mean fi
consists of a series of delta peaks

ŨT~r ,t !52g
Ñ

NT
(

i

ÑT

d~r2r i ![2gñT~r ,t !. ~26!

This expression clearly cannot be used as it is to generate
forces acting on the test particles that are required in the
simulation. Rather, the densityñT(r ,t) must be replaced by a
smooth and differentiable thermal cloud density and so
smoothening operation is therefore needed. A possible
step might be to divide space into cells and to determine
mean density within each cell by binning the test partic
appropriately. However, this binning procedure genera
spatial discontinuities on the scale of the three-dimensio
~3D! grid being used that would still have to be smoothed
in some way. In addition, temporal discontinuities arise
particles migrate from one cell to another. These tempo
fluctuations are of course spurious since they depend on
number of test particles and decrease in relative amplitud
this number is increased. It is apparent that the binned d
sity has some undesirable properties associated with the
tistical fluctuations in the number and positions of partic
in each cell.

As an alternative to this binning procedure, we genera
smooth thermal cloud density by performing a convoluti
with a sampling~or smoothening! function S(r ) which is
normalized to unity. In particular, we define

ŨS~r ,t ![E dr 8S~r2r 8!ŨT~r 8,t !52g
Ñ

ÑT
(

i

ÑT

S~r2r i !,

where we chooseS(r );e2r 2/h2
, i.e., an isotropic Gaussia

sampling function of widthh. Since“Sur5050, no force is
exerted by a particle on itself and the sum can extend ove
particles in the ensemble. Ideally, the width ofS(r ) should
be small compared to the curvature of the nonconden
density. If, at the same time, the number of particles cont
uting to the sum at a given positionr is large, it is clear that
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the sampled potential will be relatively smooth. Note that t
smoothening operation is equivalent to assuming a fin
ranged interatomic potential.

The sampled potential~or its gradient! is needed at the
position of each test particle and at the mesh points on wh
the condensate wave function is defined. However, a di
summation for all points would be prohibitive. We therefo
proceed by making use of a FFT. First, each particle in
ensemble is assigned to points on the 3D Cartesian grid
ing a cloud-in-cell method@36#. This is most readily ex-
plained in one dimension: consider a particle at positionx,
between two grid points atxk and xk11. The particle is as-
signed to both points with weightings (12a) anda, respec-
tively, wherea5(x2xk)/(xk112xk). This can be viewed as
a more sophisticated binning procedure in that it takes i
account the actual positions of particles within the cells. T
generalization to three dimensions is straightforward, wh
in this case the particle is assigned to the eight points wh
define the unit cell containing the particle. We then convo
the cloud-in-cell density with the sampling function by Fo
rier transforming it and then multiplying it by the analytic F
of the sampling function. An inverse FFT then generates
sampled potential on the 3D grid. This potential is used
rectly in the GP evolution, while the forces on the test p
ticles are obtained by taking a numerical derivative and
terpolating to the positions of the particles.

This overall scheme is illustrated in Fig. 1. The solid lin
shows the equilibrium thermal cloud density along a li
through the center of an isotropic trap with trapping fr
quencyv052p3187 Hz, a system we study in more deta

FIG. 1. Equilibrium noncondensate density against positi
along a line through the center of an isotropic trap with frequen
v052p3187 Hz. The system consists of a total ofNtot

553104 87Rb atoms at a temperature ofT5250 nK. The critical
temperature for an equivalent ideal gas would beTc

05310.6 nK.

ÑT54.03105 test particles are sampled according to the act
equilibrium density~solid line!. The fluctuating dashed line is
result of binning particles using a cloud-in-cell method, while t
smooth dashed line shows the effect of convolving the cloud-in-
density with a Gaussian.
6-6
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later. The trap contains a total ofNtot553104 87Rb atoms,
and at a temperature ofT5250 nK there areÑ.4.03104

thermal atoms. The rapidly fluctuating dashed line is the d
sity along this line produced by the cloud-in-cell meth
using a thermal distribution ofÑT.4.03105 test particles,
that is, ten times the actual number of thermal atoms.
effect of statistical fluctuations is clearly evident. Finally, t
smooth dashed line is the result of the convolution usin
width parameter ofh.0.76aho , whereaho.7.931027 m is
the harmonic oscillator length for the trap being consider
~For comparison, the mesh size isDx.0.27aho .) It should
be noted that the dramatic smoothening of the den
achieved is partly a consequence of performing a full
convolution; a 1D convolution of the cloud-in-cell densi
with the same width parameter would not reduce the am
tude of the spatial fluctuations to the same degree. Fin
we compare the convolved density to the actual equilibri
density. Apart from differences due to the statistical sampl
of test particles, one can see that the peaks in the the
cloud density at the edges of the condensate are slig
broader in the convolved density, as would be expec
However, the differences are minor and do not affect
dynamics of the system significantly. We have also chec
that small variations ofh about the value chosen to do th
simulations have little effect on our final results. For cons
tency, thenc term appearing inU(r ,t) is also convolved.

D. Collisions

The methods outlined so far allow one to follow the co
densate wave function and trajectories of the atoms sub
to a time-dependent potential, so long as the system is in
collisionless regime. However, in general the collision
terms in the Boltzmann equation will be nonzeroC22
Þ0, C12Þ0. In other words, during each time step there
a certain probability that a given test particle will collid
with another thermal atom or with the condensate. If
typical collision time scalet is such thatt@Dt, one can
treat the free particle evolution and collisions separat
Each particle’s trajectory is first followed using the metho
discussed in the preceding section, and the possibility of
lisions occurring is then considered at the end of the ti
step. Probabilities for eitherC22 or C12 collisions are calcu-
lated in a way which is consistent with a Monte Carlo sa
pling of the collision integrals, as discussed below.

1. C22 collisions

We first give details for theC22 integral~6!, which physi-
cally corresponds to scattering of two thermal particles i
two final thermal states. Hence the process conserves
number of thermal atoms,*dp/(2p\)3C2250. We are inter-
ested in the mean collision rate at a pointr ~as defined in
Appendix A!, which is given by

G22
out5

s

ph6m2E dp1f 1E dp2f 2E dp3E dp4

3d~p11p22p32p4!d~e11e22e32e4!

3~11 f 3!~11 f 4!. ~27!
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For our purposes it is convenient to express the integra
terms of new momentum variables (p0 ,p08) and
(p8,p9): p1,25(p06p8)/A2 andp3,45(p086p9)/A2. p0 and
p8 are proportional to the center-of-mass and relative m
menta, respectively, of the incoming 1 and 2 particles.
implicity assuming energy and momentum conservationp0

5p08 , p85p9) one can rewrite Eq.~27! in the simplified
form

G22
out5E dp1

~2p\!3
f 1E dp2

~2p\!3
f 2E dV

4p
suv12v2u~11 f 3!

3~11 f 4!, ~28!

wherep3,45@p06p8û(V)#/A2, with û(V) a unit vector in a
direction specified by the solid angleV. Calculation of the
rate therefore involves integrals over all possible initial sta
and all scattering anglesV. In the equilibrium situation, this
rate defines a local mean collision timet22

0 according to

G22
0 [

ñ0

t22
0

, ~29!

where ñ0(r ) is the equilibrium thermal cloud density. A
shown in Ref.@30#, 1/t22

0 below Tc is a strong function of
position for a trapped Bose gas and is peaked at the edg
the condensate. In the classical~i.e., Maxwell-Boltzmann!
limit, 1/t22

0 reduces toA2sv thñ0, with v th5(8kT/pm)1/2.
To relate this to collision probabilities for individual a

oms in our simulations requires sampling of the integral
ing a rejection method as discussed in detail in the Appen
@34,39#. At each time step atoms are first binned into cells
volume D3r according to their position. The atoms withi
each cell are then paired at random, and a probability fo
pair (i j ) to collide in the time stepDt is assigned according
to

Pi j
225ñsuvi2vj u E dV

4p
~11 f 3!~11 f 4!Dt. ~30!

The integral overV can be evaluated by averaging over
sample of randomly selected final states which are obtai
by choosing uniformly distributed random values for t
scattering variables cosu andf. However, in simulating the
collision process, the velocities of the incoming particl
must actually change to a specific, but random, pair of fi
velocities. These velocities lie on a sphere centered atv1
1v2)/2 with a radiusuv12v2u/2 and can be chosen by ran
domly selecting the scattering angleVR . The appropriate
collision probability for this event is then

Pi j
225ñsuvi2vj u~11 f 3

VR!~11 f 4
VR!Dt. ~31!

This probability depends upon the phase-space densitie
the final states,f 3

VR, f 4
VR, reflecting Bose statistics. If this

single scattering probability is averaged over a random
tribution of scattering anglesVR we recover the averag
probability defined in Eq.~30!.
6-7
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The simulation ofC22 collisions thus proceeds as follow
A pair of test particles (i j ) in a given cell is chosen at ran
dom. Whether a collision of this pair occurs is then tested
comparingPi j

22 to a random numberX22 uniformly distrib-
uted between 0 and 1. IfX22,Pi j

22 the collision is accepted
and the velocities of the test particles are updated acc
ingly. If X22.Pi j

22, no collision occurs and the velocities o
the colliding pair are unchanged. In either case, another
is randomly selected and the procedure is repeated fo
pairs in each cell of the sample.

2. C12 collisions

TheC12 collisions are treated in a manner similar toC22.
The key difference here is that one of the collision partner
a condensate atom in a definite state, and it is necessa
distinguish the collisional processes which either transfer
atom into or out of the condensate. For example, the ‘‘o
collision rate as defined in Eq.~A11! is given by

G12
out5

snc

pm2h3E dp2dp3dp4d~pc1p22p32p4!

3d~ec1e22e32e4! f 2~11 f 3!~11 f 4!. ~32!

This represents scattering of a thermal atom from the c
densate to produce two thermal atoms. The reverse pro
gives the ‘‘in’’ collision rate defined in Eq.~A15!,

G12
in 5

snc

pm2h3E dp2dp3dp4d~pc1p32p22p4!

3d~ec1e32e22e4! f 2~11 f 3! f 4 . ~33!

In obtaining Eq.~33! we have interchanged the 2 and 3 l
bels in order to define an integral having the samef 2 weight-
ing factor as in Eq.~32!. These two integrals give the tru
‘‘in’’ and ‘‘out’’ collision rates. However, in the simulations it
is useful to drop the cubic termsf 2f 3f 4 which formally can-
cel exactly between the ‘‘in’’ and ‘‘out’’ rates. Since thes
two rates are evaluated differently as explained below,
cancellation will not be numerically precise, and it is the
fore preferable to eliminate the cubic terms from the cal
lation of collision probabilities. In the following, we denot

the rates with the cubic terms removed byḠ12
in(out) . Dropping

these terms of course does not change thenet rate of transfer
from the condensate to the thermal cloud that actually ta
place.

The ‘‘out’’ term can be reduced by transforming the m
mentum variables as before, with the result

Ḡ12
out5E dp2

~2p\!3
f 2ncsv r

outE dV

4p
~11 f 31 f 4!, ~34!

wherev r
out5Auvc2v2u224gnc /m is the relative velocity of

the initial states, corrected to account for energy conse
tion ~locally, the mean-field energy of a thermal atom
higher than that of a condensate atom by an amountgnc).
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Now, if we consider each atom in the distributionf 2 in turn,
the probability for collision with the condensate is given b

Pi
out5ncsv r

out~11 f 3
VR1 f 4

VR!Dt. ~35!

In this case, the final thermal atom velocitiesv3 ,v4 lie on a
sphere of radiusv r

out/2 centered on (vc1v2)/2, with a ran-
dom scattering angleVR .

‘‘In’’ collisions involve scattering of two thermal atoms to
produce a condensate and a thermal atom. In the conte
Eq. ~33!, the incoming atoms are labeled 2 and 4, and
outgoing thermal atom is labeled 3. Energy-momentum c
servation in Eq.~33! dictates the condition (pc2p2)•(pc
2p4)5mgnc . Thus, unlike the case ofC22 collisions, one
cannot arbitrarily select a pair of 2 and 4 atoms from t
sample since this condition will in general be violated a
the collision cannot occur. To proceed, we perform the in
grations involving the delta functions in Eq.~33! to obtain

Ḡ12
in 5E dp2

~2p\!3
f 2

ncs

pv r
inE dṽf 4 , ~36!

wherevr
in[v22vc is the velocity of thermal atom 2 relativ

to the local condensate velocity. The second integral i
two-dimensional integral over a velocity vectorṽ which is in
a plane normal tovr

in . The velocity of the other incoming
thermal atom, particle 4, is given by

v45vc1 ṽ1
gnc

mv r
in
v̂r

in ,

while the velocity of the outgoing thermal atom is

v35v21 ṽ1
gnc

mv r
in
v̂r

in .

In the simulation one considers each thermal atom in
distribution f 2 in turn, then randomly selects two numbe
that define the vectorṽ5 ṽR within a plane of areaAv . The
collision probability is then given by

Pi
in5

ncsAv

pv r
in

f 4
ṽRDt. ~37!

Note that the areaAv appears in this expression, which
first sight is disconcerting since it is an arbitrary numb
entering as a simulation parameter. However, we find that
total rate is largely independent of this area so long as
plane completely samples the occupied regions of ph
space. We show results confirming this statement in the
lowing section.

This analysis yields probabilities for a particular atom
undergo ‘‘out’’ or ‘‘in’’ collisions. To decide whether either
event takes place, another random number 0,X12,1 is cho-
sen. If X12,Pi

out then an ‘‘out’’ collision is accepted; the
incoming thermal atom is removed from the ensemble of
particles and two new thermal atoms are created. Howeve
6-8
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Pi
out,X12,Pi

out1Pi
in , then an ‘‘in’’ collision takes place and

atom 2 is removed from the thermal sample. In addition
second test particle, atom 4, is removed and a new the
atom, atom 3, is created. In practice, it is exceedingly
likely that a test particle will exist that will precisely matc
the required phase-space coordinates of particle 4. We th
fore search for a test particle in neighboring phase-sp
cells and remove this particle if one is found. This can
justified by remembering that we are only interested in
scribing the evolution in phase space in a statistical way
is misleading to think of a direct correspondence between
test particles and physical atoms. If no test particle exist
the vicinity of v4, the local phase-space densityf 4, and
hencePi

in , will be zero and the ‘‘in’’ collision is precluded
from occurring in any case.

The above procedure leads to a change in the numbe
atoms in the thermal cloud. In order to conserve the to
particle number the GP equation~3! is propagated with theR
term which changes the normalization of the wave funct
and hence the condensate number. This quantity can
evaluated from the Monte Carlo process decribed above
summing probabilities for particles around each grid po
r jkl using Eq.~8!, i.e.,

R~r jkl ,t !5
\

2ncDt (
i

~Pi
out2Pi

in!. ~38!

In practice, this assignment to grid points is performed w
a cloud-in-cell approach similar to the one described ear
Of course, the normalization of the condensate wave fu
tion varies continuously as opposed to the variation of
thermal atom number which changes by discrete jumps. N
ertheless, one can show that the subsequent change i
condensate normalization is consistent with the addition
removal of atoms from the thermal cloud, so that the to
particle number,Ntot , is conserved within statistical fluctua
tions (;ANtot).

E. Overview

So far we have described various aspects of the nume
scheme. The aim of this subsection is to tie these dispa
elements together with an overview of the simulation pro
dure as a whole. One of the main applications of our
proach is to the study of small amplitude collective oscil
tions around the equilibrium state. The first requirement
such a calculation is therefore the self-consistent determ
tion of the equilibrium thermal cloud distribution and co
densate wave function. Since the thermal excitations
treated semiclassically, the thermal cloud is described by
equilibrium Bose distribution

f 0~p,r !5
1

z21ebp2/2m21
, ~39!

where z(r )5exp$b@mc2U(r )#% is the local fugacity andb
[1/kBT. It is straightforward to show that both theC12 and
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C22 collision integrals vanish in this case. The nonconde
sate density profile can be evaluated from Eqs.~5! and ~39!
to yield

ñ0~r !5
1

L3
g3/2~z!, ~40!

whereL5(2p\2/mkBT)1/2 is the thermal de Broglie wave
length. The equilibrium condensate wave function is o
tained as the stationary solution of Eq.~3!, with R50, and
the corresponding eigenvalue defines the equilibrium che
cal potentialmc . Since the condensate and thermal cloud
coupled by mean fields, the two components have to be
termined self-consistently using an iterative procedure. D
tails of this have been given by several authors~see, e.g.,
Ref. @21# or Ref. @40#! and will not be repeated here.

To represent the thermal cloud in the simulations, an
semble of test particles must be defined. In the case o
equilibrium situation, this ensemble should have a pha
space distribution which is consistent with the Bose equi
rium distribution in Eq.~39!. This can be achieved using th
following rejection algorithm@34#. First, we distribute par-
ticles in position space according to the densityñ(r ). To do
this, we select three random numbers uniformly distribu
between2r max andr max, defining Cartesian coordinates,r i ,
of a particle in the occupied region of position space. A f
ther uniform deviate is then chosen fromRi

1P@0,ñmax#,

whereñmax>max$ñ(r )%, and compared to the density at th
point ñ(r i). If Ri

1.ñ(r i), the particle is discarded and an
other set of position coordinates selected. Otherwise, ifRi

1

,ñ(r i), the particle is accepted and one proceeds to spe
its momentum by choosing another random numberpi

P@0,pmax#. A random numberRi
2P@0,f max# „where f max

>z(r i)/@12z(r i)#, with z(r i) the local fugacity… is com-
pared to f (pi ,r i) to decide whether the momentum is a
cepted or rejected. In the case of rejection anotherpi is cho-
sen, while if accepted two random angles are selectedf
P@0,2p#, cosuP@21,1#, which in turn define the momen
tum vectorpi . This procedure is repeated untilÑT test par-
ticles in the ensemble are accumulated. Note that we h
exploited the spherical symmetry of the equilibrium distrib
tion in momentum space. In principle, a similar method c
be applied to position space if the trap is spherically or
lindrically symmetric.

A dynamical simulation can be initiated in one of tw
ways. Either an appropriate nonequilibrium initial state
specified, or the system is dynamically excited with the a
plication of an external perturbation. The latter parallels
procedure used experimentally to study small amplitude c
lective excitations, and usually amounts to some parame
manipulation of the trapping potential. Although this mig
be the preferred approach, it is not always the most app
priate, especially when the excitation phase requires a
hibitively long simulation time. It is then more convenient
impose the perturbation on the initial state itself. Here we
guided by the nature and symmetry of the collective mo
being studied, as well as information gleaned from ear
6-9
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B. JACKSON AND E. ZAREMBA PHYSICAL REVIEW A66, 033606 ~2002!
calculations such as those based on the Thomas-Fermi~TF!
approximation. For example, the nature of the density fl
tuation or velocity field associated with the mode might
known and it is then advantageous to use this information
defining the initial state. A good example of this is th
breathing, or monopole, mode in an isotropic trap. In t
case the TF mode has a velocity fieldv5ar . To impose this
velocity on the condensate one can simply multiply t
ground-state wave function by a phase factor exp(imar2/2\).
In the case of the thermal cloud, the same velocity field
be imposed by addingar i to the velocity of thei th particle in
the equilibrium ensemble. This procedure will predominan
excite the lowest monopole oscillation. Although higher
ing modes might also be mixed in to some extent, they h
different frequencies and can usually be separated from
dominant mode when analyzing the dynamics.

Returning to the simulation procedure itself, the cond
sate wave function and thermal atom phase-space co
nates are updated in each time stepDt according to the pre-
scription detailed in Sec. III B. Then, before treatin
collisions the thermal atoms are assigned to cells in posi
space. These are used for selecting pairs forC22 collisions, as
well as being further subdivided into momentum space e
ments in order to estimate the phase space densityf (p,r ) for
calculating collision probabilities. Since collisions are trea
one cell at a time, the phase-space density only needs t
calculated and stored for one particular cell. TheC12 andC22
collisions are then treated using the Monte Carlo sche
described earlier and the momenta and number of ther
atoms~test particles! are updated. Repeating for all of th
cells yields the quantityR from Eq.~38! which, when used in
the GP propagation~Sec. III A!, continuously evolves the
number of atoms in the condensate. For numerical accu
the positional cells should enclose regions of almost cons
thermal density and fugacity, and are most convenien
treated using a spatial grid which reflects the~elliptical! ge-
ometry of the cloud. The momentum elements in contras
on a Cartesian grid, where a cloud-in-cell method allows o
to minimize statistical fluctuations while retaining a fine gr
for precision.

IV. RESULTS

A. Equilibrium collision rates

Our first calculations are not simulations as such, but
instead checks of the Monte Carlo sampling technique
use to evaluate theC12 andC22 collision rates in real time.
The physical situation we consider corresponds to the
discussed at the end of Sec. III C, namely, 53104 87Rb atoms
at 250 nK in an isotropic trap. The equilibriumC22 collision
rateG22

0 can be evaluated numerically directly from the e
pression in Eq.~28! using the equilibrium distribution func
tion ~39!. The result as a function of the radial coordinater is
shown as the solid line in Fig. 2. The equilibriumC12 colli-
sion rates can also be calculated using the equilibrium di
bution ~39! and equilibrium condensate densitync(r ) in Eqs.
~32! or ~33!. The ‘‘in’’ and ‘‘out’’ rates are in fact equal to

each other in equilibrium and will be denotedḠ12
0 ~recall that
03360
-

in

s

n

y

e
he

-
di-

n

-

d
be

e
al

cy
nt
ly

ie
e

re
e

e

i-

these rates are calculated ignoring the cubic terms in the
expression!. The result of the calculation as a function ofr is
shown as the solid line in Fig. 3. One sees that both theC12
andC22 collision rates exhibit a maximum near to the co
densate surface, where the fugacityz approaches unity and
the equilibrium Bose distribution is strongly peaked atp
50. However, in the case ofC22 collisions, the tail of the
distribution decays more slowly since the thermal cloud d
sity extends out to larger radii than the condensate.

FIG. 2. TheG22
0 collision rate as a function of position, for a

equilibrium distribution and the same parameters as Fig. 1.
solid line shows the result of a direct evaluation of Eq.~29!, while
the points plot the results of a Monte Carlo evaluation~30!.

FIG. 3. The same parameters as in Fig. 1, forḠ12
0 collisions

between the condensate and thermal cloud in equilibrium. The s
line plots a direct evaluation of Eq.~34!, while the circles shows a
Monte Carlo calculation for the ‘‘out’’ rate~solid! and ‘‘in’’ rate
~open!.
6-10
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The Monte Carlo calculation of these rates involves a
namical simulation of a sample of test particles moving
the equilibrium effective potential. The collisionless evol
tion of the particles in time provides an ergodic sampling
phase space. At each time stepDt in the evolution, the col-
lision probabilities in Eqs.~31!, ~35!, and~37! are calculated
and summed to obtain a realization of the collision rates
particular instant of timetn . For example, forC22 collisions
we have

G22
0 ~ tn!.2(

( i j )

Pi j
22~ tn!

D3rDt
,

where the sum extends over all pairs of test particles in
cell of volume D3r . By repeating this calculation overM
time steps and performing the average

^G22
0 &5

1

M (
n51

M

G22
0 ~ tn!,

we obtain the Monte Carlo estimate of the collision rate. T
same procedure is used for theC12 ‘‘in’’ and ‘‘out’’ rates. To
obtain histograms of the collision rate as a function of
radial positionr, we bin the individual collision probabilities
according to the positions of the colliding pair. The Mon
Carlo results presented in Figs. 2 and 3 were obtained w
only M5200 time steps of sizev0Dt50.002, which was
already sufficient to give good statistics. A comparison w
the direct numerical calculations shows very good agr
ment, the main error arising from estimatingf (p,r ,t) in real
time by binning particles into phase-space cells. This w
confirmed by repeating the simulation but calculating
collision probabilities using the actual equilibrium Bose d
tribution ~39! rather than the binned approximation to it. O
can try to improve the binned distribution but there is a tra
off between using smaller phase-space cells which wo
provide a more accurate representation of the distribut
and larger cells which contain more particles and thus
prove statistics. Our choice of cell size tries to optimize th
opposing requirements.

The main observation to be made about Fig. 3 is that
‘‘in’’ and ‘‘out’’ C12 rates are very similar, despite the ve
different appearance of the probabilities in Eqs.~35! and
~37!. Note in particular that these results confirm that t
‘‘in’’ rate is independent of the arbitrary areaAv in Eq. ~37!.
It is of course important to minimize the difference betwe
these two rates since any imbalance implies a net transfe
atoms between the condensate and thermal cloud w
should not occur in equilibrium. However, a calculated i
balance partly reflects the fact that the equilibrium state
start with is not the ‘‘numerical’’ equilibirium state that i
consistent with the various numerical approximations be
made. In fact, we find that when a full simulation is carri
out, the system relaxes to a new, slightly different equil
rium. In other words, the system automatically adjusts
compensate for the numerical approximations. Neverthel
it is desirable to avoid an imbalance to whatever extent p
sible. Taking the collision rate histograms in Fig. 3 and in
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grating overr, we find a discrepancy between the total ‘‘in
and ‘‘out’’ rates of about 1%. This imbalance can be min
mized by judicious choice of the shape of the phase-sp
elements~see Sec. III E! and simulation of a larger sample o
test particles, but a residual imbalance is unavoidable. S
the quantities we are interested in, such as frequencies
damping rates, are weak functions of the number of cond
sate atoms, a small residual drift in the condensate num
will not affect our results significantly.

B. Monopole modes

This section presents the main results of the paper, wh
we simulate the monopole ‘‘breathing’’ mode in an isotrop
trap. These calculations are not motivated by experime
which are yet to be performed in this geometry. Rather,
are mainly interested in comparing our results to previo
theoretical approaches forC12 and Landau damping which
have relied on spherical symmetry. It should be emphasi
that our calculations do not face this restriction, though
simple geometry does allow us to more readily observe
quantify effects ensuing fromC22 andC12 collisions between
atoms. In fact, as reported elsewhere@28–30#, our methods
have already been applied successfully to other experim
in anisotropic traps, most notably to the study of sciss
modes in which a full 3D simulation is necessary.

1. Static thermal cloud approximation

As an important test of our treatment ofC12 collisions, we
evaluate the damping of the monopole condensate m
within the so-called static thermal cloud approximation d
cussed by Williams and Griffin~WG! @40#. In this approxi-
mation, one considers the dynamics of the condensate in
presence of a static equilibrium distribution of thermal
oms. Due to the condensate oscillation, the condensate i
longer in local equilibrium with the noncondensate and a
result,C12 collisions play a role in damping the mode. Th
effect enters through theR term in the generalized GP equa
tion ~3!. It should be emphasized thatR is provided by the
theory and the relaxation it gives rise to is not introduced
a phenomenological way as is sometimes done@41,42#. Lin-
earization of the GP equation leads to generalized Bogo
bov equations which can be solved to determine collec
mode frequencies and damping rates. The latter are of
ticular interest since they are directly related to the trans
of atoms between the condensate and thermal cloud
result ofC12 collisions. The results obtained@40# are in fact
close to those found in the TF approximation which gives
damping rate@43#

g j5
\

2

E drdnj
2~r !/t8~r !

E drdnj
2~r !

,

wherednj (r ) is the density fluctuation associated with th
mode j and 1/t85gG12

0 /kBT. One sees that the damping
the TF approximation is given by a weighted average of
equilibrium C12 collision rate.
6-11



on
tio
te
s
a

he
y

m

h

-

in

ls
an
m

e

an
of

d

id.
to

tain
h
t

te at
lt.
the
here
n

lly
ffi-
ur-

this

or
sity.
ing
re-

be
ds.
or

ud
ant
ue
mal
the
t,’’

to
ifi-
red
we
e
be

n-

in-
s.
only
s
i-
-
e
on-

oxi-
te is
the
s-

en

l t
he

d
s

si
a
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Our simulation of the static thermal cloud approximati
involves the propagation of the condensate wave func
according to Eq.~3! but with a stationary noncondensa
mean field, 2gñ0(r ). At the same time, the thermal atom
evolve in an effective potential defined by the condens
and noncondensate equilibrium densities. Although the t
mal atoms are not allowed to undergo collisions, their d
namical evolution allows one to perform a Monte Carlo sa
pling of phase space in order to generate theC12 collision
probabilities at each time step. These probabilites are t
used to calculate the imaginary term,R(r ,t), in the GP equa-
tion according to Eq.~38!. These simulations can be com
pared directly with the calculations by WG@40# and there-
fore provide a direct test of our simulation methods,
particular, the calculation ofC12 collision probabilities. It is
important to quantify the errors that arise since they will a
enter into our full simulations in which the effects of me
fields and collisions on the thermal cloud are included co
pletely.

The monopole mode is excited by initially scaling th
equilibrium condensate wave function, F(r ,0)
5a23/2F0(r /a), where the scale parametera is 0.95. This
dilation of the wave function is an alternative to imposing
initial velocity field as discussed in Sec. III E. The widths
the condensate wavefunction in thex, y, andz directions are
defined by mean-squared deviations, e.g.,sx

FIG. 4. Temperature dependent~a! frequency shifts and~b!
damping rates of the condensate monopole mode in a spherica
(v052p310 Hz!, in the presence of a static thermal cloud. T
total number of atoms isNtot523106. The critical temperature for
the corresponding ideal gas isT0

c556.8 nK. Our results are plotte
as solid circles, while the solid line is the prediction of William
and Griffin @40#. The open circle atT550 nK is the result of a
calculation using the analytical form for the phase-space den
~39!. The squares plot results of simulations including therm
cloud dynamics, withC22 collisions only~open! and bothC22 and
C12 collisions ~closed!.
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[A^x2&2^x&2, where the moments are given bŷx&
5(1/Nc)*drxnc(r ). Plots of these widths show a dampe
oscillation, and to quantify the frequencyv and damping
rateG, we fit the data to an exponentially decaying sinuso
Since each direction gives slightly different values due
statistical fluctuations, we average over the three to ob
values forv and G. Our numerical results are plotted wit
those of Ref.@40# in Fig. 4. We find excellent agreemen
between the two approaches, except for the damping ra
T550 nK which is somewhat lower than the WG resu
This discrepancy arises through errors in estimating
phase-space density in the condensate surface region w
the fugacity approaches unity and the distribution functiof
is sharply peaked in momentum space aroundp50. TheC12

collision rate in this region is similarly enhanced, especia
at higher temperatures. Our binning procedure is of insu
cient accuracy to fully capture this peak, and since the s
face region is the major contributor to theC12 damping, this
then leads to an underestimate of the rate. We illustrate
point in Fig. 4 by plotting the result~open circle! of a simu-
lation atT550 nK which uses the analytical expression f
f 0 in Eq. ~39!, as opposed to the binned phase-space den
We now find much better agreement with the WG damp
result. The generally good agreement with WG for the f
quency and damping rate confirms that collision rates can
reliably calculated using our Monte Carlo sampling metho

Although the binning procedure introduces some min
errors into our simulations within the static thermal clo
approximation, we expect them to be even less import
when the full dynamics of the thermal cloud is included. D
to mean-field interactions with the condensate, the ther
cloud will be strongly perturbed in the surface region and
distribution in phase space will tend to be ‘‘smeared ou
making the binning procedure more reliable.C22 collisions
compete against this effect by rethermalizing the particles
a Bose distribution; however, this can only make a sign
cant difference if the collisional time scale is short compa
to that of the oscillation. For the present calculations,
havev0t̄22@1 and the gas is in the collisionless regime. W
would therefore expect the thermal cloud dynamics to
very important in determining the damping due toC12 colli-
sions.

To illustrate this we have performed full simulations i
cluding mean-field interactions and collisions atT520 nK
and 30 nK. The results obtained with onlyC22 collisions
included are shown by open squares, while the results
cludingC12 collisions as well are shown by the full square
One sees that the overall damping rate increases by
5–10 % whenC12 collisions are added in. In fact, collision
of either kind contribute little to the damping which is dom
nated by Landau damping~as discussed in the following sub
section!. Furthermore, we find a small downward shift in th
frequency compared to the zero-temperature value, in c
trast to the significant increase seen within the static appr
mation. This increase is due to the fact that the condensa
oscillating in the presence of the static mean field of
equilibrium thermal cloud which effectively enhances the o
cillator frequency of the trap. This effect is eliminated wh

rap

ty
l
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MODELING BOSE-EINSTEIN CONDENSED GASES AT . . . PHYSICAL REVIEW A 66, 033606 ~2002!
the thermal cloud is allowed to respond to the dynamic m
field of the condensate. As we shall further demonstrate
the following subsection, dynamic mean-field effects ty
cally dominate the finite-temperature behavior, with co
sions playing a secondary but important supporting role
equilibrating the system.

As regards the use of the static thermal cloud approxim
tion @40,43#, it has the advantage of providing a simple w
of estimating the effects ofC12 collisions on collective
modes without the need for a detailed solution of the kine
equation. As such, it has been employed in several pa
@44–46#. However, our detailed calculations in this secti
clearly show that the dynamics of the thermal cloud int
duces additional effects that are crucial in making reliab
quantitative predictions for mode frequencies and damp
rates.

2. Landau damping

As our final example, we have performed simulations
the system studied by Guilleumas and Pitaevskii@47#,
namely, 87Rb atoms confined in an isotropic trap of fr
quencyv052p3187 Hz. To begin, we consider a total o
N553104 atoms and excite the monopole mode by an i
tial scaling of the condensate radius by a factor ofa50.9,
with the thermal cloud initially in its equilibrium state. Th
condensate width oscillations are then followed over a ti
scale ofv0t530. Figure 5 shows damping rates and fr
quencies as a function of temperature found by fitting
exponentially decaying sinusoid to the time-depend
width. At each temperature three simulations are perform
The first involves free propagation of thermal test partic

FIG. 5. ~a! Frequency and~b! damping rate of a monopole mod
(v052p3187 Hz,Ntot553104), including thermal cloud dynam
ics. Results are shown for simulations with no collisions,C22

5C1250 ~closed circles!, C22 collisions only ~open circles!, and
both C12 andC22 collisions ~inverted triangles!.
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without collisions, corresponding to solving the collisionle
Boltzmann equation. The second includesC22 collisions be-
tween thermal atoms, while the third includes bothC22 and
C12 collisions. At low temperatures, all three simulatio
give similar results, reflecting the fact that the number
thermal atoms is small and collisions play a minor role. W
increasing temperature, the differences between the sim
tions increase. Qualitatively, the behavior is similar to wh
was found previously for the scissors mode@29#; collisions
have the effect of shifting the frequency downward as co
pared to the collisionless result, and significantly enhance
damping rate. The effect ofC22 collisions is particularly
strong at high temperatures, which at first sight may se
surprising sinceC22 collisions do not couple to the conden
sate directly.

FIG. 6. Time-dependent width of the condensate,sx , after ex-
citation of the monopole mode atT5200 nK. The dashed line
shows the collisionless evolution, while the result of a full simu
tion (C12 andC22) is indicated by the solid line.

FIG. 7. Damping rates for the same parameters as in Fig
where fits are taken with a series of windows in the range (v0t
24.5,v0t14.5). We plot data for simulations which include n
collisions ~open circles!, C12 only ~inverted triangles!, C22 only
~solid triangles!, and bothC12 andC22 collisions ~solid circles!.
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To gain more insight into the collisional dependence
the damping, we focus on the time-dependent evolution fo
particular temperature,T5200 nK (T/Tc

050.644, whereTc
0

50.94\v0Ntot
1/3 @4# is the transition temperature of the corr

sponding ideal gas in the thermodynamic limit!. Figure 6
plots sx vs t for the collisionless and full (C121C22) simu-
lations. The initial damping rate in both calculations is se
to be similar; however, at later times the collisionless os
lation departs from a simple exponential decay, and the
cillation amplitude tends to saturate. This behavior is
seen to the same degree when collisions are included
quantify this behavior, we define a local damping rate
fitting a damped sinusoid to the data within a window
width D(v0t)59 centered on the timet. Figure 7 plots this
local damping rate as a function oft. We see large variation
in the damping rate with time, with the largest rate occurr
initially. The deviations from the initial value are largest
the collisionless case, where the damping rate dips near
zero. Similar behavior is observed over the whole range
temperatures, and accounts for the lower damping rates
tained by fitting the entire data set.

To explain this behavior, we note that damping of t
condensate oscillation is associated with the transfer of
ergy from the condensate to the thermal cloud. If this ene
exchange is mediated by mean-field interactions, it is
ferred to as Landau damping. From the point of view of t
thermal cloud, the dynamic condensate mean field 2gnc(r ,t)
acts as an external perturbation which can lead to the e
tation of thermal atoms. Of course, the rate at which th
excitations occur depends on the phase-space distributio
the thermal particles. In our simulations, the thermal cloud
initially in an equilibrium state and the damping rate is o
served to be independent of collisions. This damping is
sentially pure Landau damping and its magnitude is de
mined by the rate at which the oscillating condensate can
work on the equilibrium thermal distribution. In this respe
our initial damping rate is analogous to conventional pert
bation theory estimates~as discussed below!.

As time progresses in our simulations, the thermal clo
begins to deviate from an equilibrium distribution and t
magnitude of Landau damping is correspondingly affect
Evidently, the perturbation of the thermal distribution is su
as to reduce the rate of energy transfer to the thermal ato
whereupon the damping rate decreases with time as se
Fig. 7. The deviation is in fact a nonlinear effect as it w
found to depend on the amplitude of the condensate osc
tion. With decreasing amplitude, the damping rate tends
ward a time-independent value since the thermal cloud
tribution then approaches an equilibrium form. This lim
again corresponds to the linear response perturbative
mate. However, for realistic simulations having afinite oscil-
lation amplitude, it is important to account for the deviati
of the thermal distribution from equilibrium. An analogou
effect appears in the context of plasma oscillations, wh
Landau damping is due to the energy transfer from the
lective plasma wave to single-electron excitations@48,49#.

In the absence of collisions, the distribution of therm
atoms continues to evolve in a complicated way and
effective damping rate exhibits an oscillatory time depe
03360
f
a

n
l-
s-
t
To
y
f

g

to
f
b-

n-
y
-

e

i-
e
of
s
-
s-
r-
o

,
r-

d

.

s,
in

a-
-

s-

ti-

re
l-

l
e
-

dence. However, as soon asC22 collisions are switched on
the damping rate deviates less strongly from its initial val
The effect of these collisions is to drive the thermal clo
towards a state of local equilibrium and the damping r
tends to maintain its original value. The inclusion ofC12
collisions has a similar effect and we find a damping r
which is almost time independent when both collision p
cesses are retained. However,C12 collisions do more than
simply equilibrate the thermal cloud since they also lead
the source termR(r ,t) in the GP equation. As we have a
ready discussed, this term gives rise to its own contribut
to damping which is quite separate from Landau damping
should be emphasized that it is impossible to separate
total damping rate into individual components. Mean-fie
and collisional effects are interrelated, and all must be
cluded to completely account for the actual damping rate

We next turn to a comparison of our results with those
Guilleumas and Pitaevskii@47#. Since we have used quit
different methods to calculate damping rates, it is usefu
first discuss the perturbation theory calculation of Land
damping used by these authors@50#. Within this approach,
Landau damping is associated with the decay of a mode
oscillation~with energy\vosc) as a result of the excitation o
a thermal quasiparticle from an initial state of energyEi to a
final state of energyEk . The damping rate is then given b
Fermi’s golden rule@47,50,14,15#

G5
p

\ (
ik

uAiku2@ f ~Ei !2 f ~Ek!#d~Ek2Ei2\vosc!,

~41!

where the sum is over all excitations that satisfy energy c
servation, while the matrix elementAik depends upon the

FIG. 8. Initial damping rate calculated over the first time inte
val of sizeD(v0t)59 ~points! compared to the results of Guilleu
mas and Pitaevskii@47# ~lines!. Results are plotted forNc

553104 ~solid points and line! and Nc51.53105 ~open points,
dashed line! condensate atoms. Following Ref.@47# quantities are
plotted in terms of dimensionless units, with the ratioG/vM ~damp-
ing rate over mode frequency! plotted againstkBT/m. ForG/vM we
calculate the mean over the three directions, while the stand
deviation yields a rough estimate of the error.
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MODELING BOSE-EINSTEIN CONDENSED GASES AT . . . PHYSICAL REVIEW A 66, 033606 ~2002!
form of the excitations. The thermal states are occupied
cording to the equilibrium Bose distributionf (E). This
damping rate is therefore analogous to theinitial damping
rate we obtain in simulations which start with an equilibriu
thermal distribution.

Guilleumas and Pitaevskii@47# evaluate Eq.~41! as a
function of temperature using Bogoliubov excitations of t
condensate as the thermal quasiparticles. These are d
mined from the Bogoliubov equations for a fixed number
condensate atoms,Nc ; the corresponding number of therm
atoms is then a function of temperature and is given by s
ming over the thermal occupationf (Ei) of the quasiparticle
states. To actually evaluate the Landau damping rate a
frequency of the monopole mode of interest, the delta fu
tions in Eq. ~41! are replaced by Lorentzians of widthD.
They show that the results obtained are essentially inde
dent of this parameter.

To compare with these results we performed collisionl
simulations and extracted the initial damping rate as d
cussed earlier. The comparison is made in Fig. 8 where
sults are presented as a function of temperature forNc
553104 and 1.53105. Given the completely differen
methods of calculation, the agreement is remarkable.
agreement persists even down to low temperatures where
might expect differences to appear as a result of our us
semiclassical HF excitations as opposed to the Bogoliu
excitation spectrum. The fact that the agreement is as g
as it is is perhaps understandable in view of the observa
in Refs. @51,52# that the density of states in the HF an
Bogoliubov approximations are very similar. Although th
semiclassical HF approximation was not discussed,
would of course expect it to be close to the quantal HF res
Since the density of thermal excitations is an important
gredient in the calculation of Landau damping, we can be
to see why our semiclassical calculations give very sim
results.

V. CONCLUSIONS

In this paper we have provided a detailed description
the numerical scheme we have used to simulate trap
Bose-Einstein condensed gases at finite temperatures, b
on the ZNG formalism which treats the thermal excitatio
semiclassically within a Hartree-Fock-Popov approximati
The procedure involves solving simultaneously a generali
Gross-Pitaevskii equation for the condensate and a Bo
mann kinetic equation for the thermal cloud. The two eq
tions are coupled by mean fields and collisions, both
which influence the dynamics of the two components in s
nificant ways. Our scheme has been carefully tested to en
that it provides an accurate description of the system dyn
ics. In particular, we have shown thatN-body simulations,
together with the Monte Carlo sampling of collisions, is
effective and reliable method for determining the therm
cloud dynamics.

Our scheme can be used to model the dynamics of the
over a wide range of temperatures and physical conditio
As an example, we have studied the monopole ‘‘breathin
mode in a spherical trap. Two sets of calculations were p
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formed. The first provided a check of the treatment of co
sions within the static thermal cloud approximation of Wi
iams and Griffin @40#. Results within this approximation
were reproduced, but full dynamical simulations indicat
that the approximation is primarily useful as a qualitati
indicator of the effect ofC12 collisions. Unfortunately, its
quantitative predictions for mode frequencies and damp
rates cannot be trusted. Our second set of simulations
cussed on Landau damping. This is typically the domin
damping process for condensate modes at finite temp
tures. However, the damping observed in a simulation,
by extension in real experimental situations, is determined
a delicate interplay of the mean-field excitation of the th
mal cloud and collisions. The thermalizing effect of the lat
strongly influences the rate at which mean-field excitatio
take place.

We also compared our results for Landau damping
those of Guilleumas and Pitaevskii@47#, and very good
agreement was found. This confirms that the semiclass
HF description of the thermal cloud reproduces the Land
damping as calculated using Bogoliubov excitations. This
not too surprising since the density of excitations in the t
approximations is very similar. However, as we have alrea
explained, the Landau damping as determined by assum
the thermal cloud to be in an equilibrium state is not nec
sarily the damping that will be observed in an experiment
consistent treatment of the dynamics of the condensateand
thermal cloud is needed in order to make detailed comp
sons with experiment.

Applications of our technique to other collective mod
have also been made and are discussed elsewhere@28,29#.
Our results for the temperature-dependent damping and
quency shifts are in good agreement with experiment
both quadrupole@28# and scissors@29# modes. This in itself
confirms the accuracy of our theoretical formulation of t
system dynamics and the numerical methods used. I
hoped, however, that the present paper provides more ins
into the content of the theory and the reasons for its succ
Interesting future systems for study could include topologi
defects~e.g., vortices and skyrmions!, optical lattices@53#,
and dynamical instabilities of surface modes in the prese
of a rotating thermal cloud@44#.

We conclude with a few comments about where we m
go next. Our simulations so far have been in the ne
collisionless regime which is relevant to most current expe
ments. However, it would also be of interest to extend o
calculations to the collision-dominated regime. Although o
present simulations are probably not feasible in the extre
hydrodynamic limit where Landau two-fluid equations app
@21,22#, they could be used to investigate the crossover
tween the collisionless and hydrodynamic regimes.
complement the simulation method presented here, it wo
be useful to develop more advanced analytical method
gain further physical insight into finite-temperature dyna
ics. In particular, generalization of moment methods@23–25#
to include Landau damping may be a promising alternati

Going beyond ZNG, it would be useful to incorpora
Bogoliubov excitations in the kinetic theory in place of H
excitations@54#. Although this does not seem to be importa
6-15
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B. JACKSON AND E. ZAREMBA PHYSICAL REVIEW A66, 033606 ~2002!
for Landau damping, the HF approximation may not be go
for certain situations where the thermal occupation of
lowest modes are significant~e.g., for large atom numbers o
at low temperatures!. Another possibility is to implement a
hybrid scheme, where highly-occupied, low-lying modes
treated using classical field methods@55,56#, while the rest
are treated semiclassically using the present technique
nally, it would be of interest to investigate the importance
including the anomalous average,m̃, neglected in the Popov
approximation. In doing so one must be careful to ensure
the new model is gapless@7#. This may involve renormaliza
tion of the coupling constantg @57# or replacing the contac
potential by a generalized pseudopotential@58#.
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APPENDIX: MONTE CARLO CALCULATION
OF COLLISION RATES

Our purpose here is to show how a Monte Carlo eval
tion of the collision rate in Eq.~28! leads to a definition of
collision probabilities to be used in the simulations. We fi
note that d3rd3p/h3C22

out represents the number of atom
leaving the phase-space volume elementd3rd3p/h3 per unit
time as a result of collisions. Integrating this over mome
gives the number of atoms ind3r suffering a collision per
unit time. Thus the mean collision rate per atom and per u
volume is

G22
out5E d3p

h3 C22
out, ~A1!

which is the quantity displayed in Eq.~27!. We now write the
required local collision rate as

G22
out5E d3p1

h3 E d3p2

h3 f ~p1! f ~p2!g~p1 ,p2!

[E d6pw~p!g~p!, ~A2!

wherep is a point in six-dimensional momentum space a
the factorw(p)[ f (p1) f (p2)/h6 is considered as a weigh
function. We denote the maximum value ofw(p) by wmax
and define the domain on which the integrand is nonzero
@2pmax/2,pmax/2# for each momentum component. Choosi
a point pi at random in the hypervolume (pmax)

6, and a
random numberRi uniformly distributed on@0,wmax#, the
point pi is accepted ifRi,w(pi) and the quantityg(pi) is
accumulated. The value of the integral is then given appro
mately as

G22
out.~pmax!

6wmax

1

N ( 8
i

g~pi !, ~A3!
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whereN is the number of randompi points chosen and the
prime on the summation includes only those points for wh
Ri,w(pi) . For g[1, the integral is simplyñ(r )2. Thus,

ñ~r !25~pmax!
6wmax

Ns

N
, ~A4!

whereNs is the total number of points accepted, and

G22
out.ñ2

1

Ns
( 8

i
g~pi !. ~A5!

The sample ofNs points accepted consists ofNs p1 values
andNs p2 values, each of which is distributed according
f (p). This set of 2Ns p values can be identified withNcell
test particles in a cell of volumeD3r . If this set is to be
representative of the local density, we must have

ñ~r !5
Ncell

D3r
5

2Ns

D3r
. ~A6!

With this identification,

D3rG22
out52ñ(

i 51

Ns

g~p1
i ,p2

i !. ~A7!

In other words, the collision rate can be estimated by sa
pling the test particles in the cellD3r in pairs. Inserting the
explicit form of g for the 22 collision rate in Eq.~28!, we
have

D3rG22
out52(

( i j )
ñ~r !suvi2vj u E dV

4p
~11 f 3!~11 f 4!,

~A8!

where the sum is now taken over pairs of test particles. T
expression allows us to define the probabilityPi j

22 that a pair
of atoms (i j ) in the cell suffers a collision in a time interva
Dt,

Pi j
225ñ~r !suvi2vj u E dV

4p
~11 f 3!~11 f 4!Dt. ~A9!

Selecting atoms in pairs from each cell and assigning the
collision probabilityPi j

22 allows us to simulate the effect o
collisions in a way which is consistent with the Boltzman
collision integral. Note that the factor of 2 in Eq.~A8! ac-
counts for the fact that 2 atoms are affected for each p
collision. This factor is therefore not included in the defin
tion of the pair collision probability.

We treat C12 collisions somewhat differently. First, w
note that the total rate of change of the number of therm
atoms per unit volume due to these collisions is
6-16
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E d3p

h3 C125
snc

pm2h3E dp2dp3dp4d~mvc1p22p32p4!

3d~ec1e22e32e4!

3@ f 2~11 f 3!~11 f 4!2~11 f 2! f 3f 4#

[G12
out2G12

in . ~A10!

According to this definition,

G12
out5

snc

pm2h3E dp2dp3dp4d~mvc1p22p32p4!

3d~ec1e22e32e4! f 2~11 f 3!~11 f 4!

5E d3p2

h3 f 2ncsv r
outE dV

4p
~11 f 3!~11 f 4!, ~A11!

is the rate of decrease of the number ofcondensateatoms per
unit volume as a result of a collision with a thermal ato
~hence the designation ‘‘out’’!. This rate can be estimated b
writing

G12
out5E d3p2w~p!g~p!, ~A12!

wherew(p)5 f (p)/h3 andg(p) is the remaining part of the
integrand. A Monte Carlo sampling of the integral leads
the estimate

D3rG12
out.(

i 51

Ns

g~pi !, ~A13!

whereNs represents the number of atoms in the cell of v
ume D3r . The probability of an atom in the cell sufferin
this kind of collision in the time intervalDt is therefore
an

et

n,
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v.

s

E

n-

ot,
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Pi
out5g~pi !Dt5ncsAuvc2v2

i u224gnc /m

3E dV

4p
~11 f 3!~11 f 4!Dt, ~A14!

which is the origin of the expression given in Eq.~35!.
The ‘‘in’’ collision rate is given by

G12
in 5

snc

pm2h3E dp2dp3dp4d~mvc1p22p32p4!

3d~ec1e22e32e4!~11 f 2! f 3f 4

5E d3p2

h3 f 2E d3p4

h3 f 4

ncsh3

pm

3d@~pc2p4!•~pc2p2!2mgnc#~11 f 3!, ~A15!

where we have interchanged the particle labels 2 and 3
obtain the second line in this equation. This rate correspo
to two thermal atoms scattering into a condensate atom
an outgoing thermal atom, and is thus the rate that ato
feed into the condensate as a result of collisions. Althou
the collision of atoms 2 and 4 can be treated by the meth
used to analyze theC22 collision rate, it is preferable to de
fine a single atom collision rate by writing this integral in th
form of Eq. ~A12! and performing a Monte Carlo samplin
with respect to thep2 variable. This procedure leads to th
collision probabilityper atom

Pi
in5DtE d3p4

h3 ~11 f 3! f 4

ncsh3

pm

3d„~pc2p4!•~pc2p2
i !2mgnc…, ~A16!

which is simplified and discussed further in the body of t
paper.
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