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Multiphoton resonant excitation of atoms in strong laser fields and implementation
of coherent superposition states

H. K. Avetissian* and G. F. Mkrtchian
Department of Quantum Electronics, Plasma Physics Laboratory, Yerevan State University, 1 A. Manukian, 375049 Yerevan, A

~Received 29 March 2002; published 23 September 2002!

The multiphoton resonant excitation of three-level atoms in a strong laser field is investigated. The creation
of various superposition states is shown. For implementation of these effects either the mean dipole moment in
the excited states of an atom or, in three-level systems, a transition dipole moment between excited states~with
energies close enough to each other! must be nonzero. The time evolution of the system is found using a
nonperturbative resonant approach. Our calculations for the hydrogen atom suggest that by the appropriate
optical pulses with moderate strong intensities one can achieve various superposition states by multiphoton
resonant excitation.
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I. INTRODUCTION

Current laser technology enables production of elec
magnetic~e.m.! fields comparable with and larger than inte
nal atomic fields. Under these conditions the bound-bo
and bound-free transitions in atomic systems have multip
ton character. The increasing interest in the processes o
tense laser and atom interaction is due in large part to
problem of high harmonic generation and short wave coh
ent radiation implementation via multiphoton bound-fr
transitions through free continuum spectra. During the
two decades numerous investigations have been carried
to study laser-atom interactions both theoretically and
perimentally and many monographs~see, e.g.,@1–4#! are
devoted to this problem.

On the other hand in strong laser fields one can exp
multiphoton resonant excitation of atoms@5–8#. It is well
known that when the laser frequency is close to the
quency associated with the level difference of a two-le
atom then by the appropriate laser pulses one can ob
various coherent superposition states@9#, which can lead to
cooperative processes such as superradiation, free-indu
decay, photon echo, etc. However, the obtaining of such
perposition states is problematic if the energy gap betw
the states is large compared with the optical transitions
this case multiphoton excitation can be realized, which w
allow one to observe cooperative effects in the high f
quency domain and especially the implementation of h
order harmonic generation@10#.

In @8# a nonperturbative analysis of the multiphoton ex
tation of a two-level atom has been done. However, beca
of the strong dependence of the resonance on the inte
and because of their narrowness, the atom is excited
during a small interval of the laser pulse. As a result the r
of the concurrent process of multiphoton ionization exce
the excitation rate by several orders of magnitude, mak
impossible the efficient excitation of an atom in this case

Regarding three-level systems, most theoretical studie
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laser-assisted resonant transitions have been done in not
strong fields~see, e.g.,@11,12#!. In @6,7# there is a theoretica
treatment of multiphoton two-mode processes in a thr
level atom based on an exactly solvable Jaynes-Cumm
type model with a model of the second quantized Ham
tonian. For the efficient multiphoton excitation of atoms, t
laser field should be strong enough to induce multipho
transitions. On the other hand in this case nonresonant le
may play a role. In@13,14# the dynamics and radiation o
highly charged hydrogenlike ions in intense high frequen
laser pulses have been investigated numerically. As
shown in the near-resonant multiphoton regime only a f
resonant levels are involved in the dynamics of the wa
packet. Hence, when the ionization process is not domin
one can reduce the dynamics to a few levels rather t
considering the whole wave packet as usual in the str
field regime.

In the present work the multiphoton resonant excitation
three-level atoms subjected to a strong laser field is stud
We consider a three-level atom when the latter has a m
dipole moment in the excited states. Otherwise, the ener
of the excited states of a three-level atom should be cl
enough to each other~the frequency associated with the lev
difference should be small compared with the Rabi f
quency! and the transition dipole moment between the
states must be nonzero. The time evolution of such syst
is found using a nonperturbative resonant approach.
analysis shows that quasienergy levels close to the gro
state arise. As a result the problem is reduced to the u
Rabi problem with a generalized ‘‘Rabi frequency,’’ whic
has a nonlinear dependence on the amplitude of the
field. A hydrogenlike atomic system may serve as a go
candidate for the considered model, where due to rand
degeneration upon an orbital moment the atom has a m
dipole moment in excited stationary states. Our calculati
for the hydrogen atom suggest that by using appropriate
tical pulses with moderately strong intensities one c
achieve various superposition states by multiphoton reso
excitation.

The organization of the paper is as follows. In Sec. II w
present our model and solution of the set of equations in
resonant approximation. In Sec. III we apply the results
©2002 The American Physical Society03-1
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tained for the hydrogen atom and present some nume
calculations. Finally, conclusions are given in Sec. IV.

II. BASIC MODEL AND RESONANT SOLUTION

Let us consider a three-level atom in an e.m. wave fie
The latter will be treated semiclassically and in the dip
approximation. We assume the e.m. wave is linearly po
ized and characterized by a slowly varying amplitudeE0(t)
and carrier frequencyv. The pulse duration timet is as-
sumed to be smaller than any relaxation time in our mo
system. Therefore we will use the Schro¨dinger equation in-
stead of the density matrix treatment. We denote the ato
states byuh&, whereh50,1,2 indicates the set of quantu
numbers that characterizes the state. The Schro¨dinger equa-
tion in the energetic representation, that is, the set of eq
tions for the probability amplitudesah(t), is the following
~throughout this paper we use atomic units:e5m5\51,
c5137):

i
dah

dt
5«hah1 (

n51

3

Vhnay, ~2.1!

where«h is the energy of the state and

Vhn52Lhncosvt ~2.2!

is the interaction Hamiltonian. Here

Lhn5^hur•êun&E0~ t ! ~2.3!

are the transition amplitudes,ê is the unit polarization vector
and r is the radius vector. For concreteness we assume
V12,V2150 andV11,V22Þ0, which means that dipole tran
sitions between the excited stationary states of an atom
forbidden but the atom has a mean dipole moment in th
states. To simplify the set of equations and to have the ph
cally more appropriate form for multiphoton resonant tran
tions we apply the following unitarian transformation:

ah~ t !5bh~ t !expS 2 i«ht2 i E
0

t

VhhdtD , ~2.4!

providing the same initial conditions for the new amplitud
bh(t) at t50. From Eq.~2.1! and Eq.~2.4! for bh(t) we
obtain the following set of equations:

i
db0

dt
5F~ t !b11G~ t !b2 , ~2.5a!

i
db1

dt
5F†~ t !b0 , ~2.5b!

i
db2

dt
5G†~ t !b0 , ~2.5c!

where
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F~ t !5V01~ t !expS i ~«02«1!t2 i E
0

t

V11~ t !dtD , ~2.6!

G~ t !5V02~ t !expS i ~«02«2!t2 i E
0

t

V22~ t !dtD , ~2.7!

andF† denotes the complex conjugation ofF. In this repre-
sentation the quasienergy levels«1,26sv (s51,2, . . . )close
to the ground state arise. The probabilities of multiphot
transitions between these quasienergy levels will have m
mal values for the resonant transitions

«02«11nv.0, ~2.8!

«02«21nv.0 ~n51,2, . . .!. ~2.9!

In this case the functionsF(t),G(t) can be represented in th
following form:

F~ t !5Fn1 f ~ t !, ~2.10!

G~ t !5Gn1g~ t !, ~2.11!

where

Fn52v
L01

L11
nJnS L11

v Dexp~ id1nt !, ~2.12!

Gn52v
L02

L22
nJnS L22

v Dexp~ id2nt ! ~2.13!

are slowly varying functions on the scale of the e.m. wa
period ~at the exact resonance constants! and

f ~ t !52v
L01

L11
exp~ id1nt !

3 (
NÞn,N52`

`

NJNS L11

v Dexp@ i ~N2n!vt#,

~2.14!

g~ t !52v
L02

L22
exp~ id2nt !

3 (
NÞn,N52`

`

NJNS L22

v Dexp@ i ~N2n!vt#

~2.15!

are rapidly oscillating functions. To derive Eqs.~2.14!,
~2.15!, ~2.12!, and~2.13! we have applied the following ex
pansion by Bessel functions:

exp~ ia sinvt !5 (
N52`

`

JN~a!exp~ iNvt !, ~2.16!

and introduced the resonance detunings

d1n5«02«11nv, d2n5«02«21nv. ~2.17!
3-2
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In consequence of this separation the probability amplitu
can be represented in the form

b
h
~ t !5b̄

h
~ t !1bh~ t ! ~h50,1,2!, ~2.18!

where b̄
h
(t) are the time averages ofb

h
(t) and bh(t) are

rapidly oscillating functions. Substituting Eqs.~2.18! into
Eqs. ~2.5! and separating slow and rapid oscillations taki
into account Eqs.~2.10! and ~2.11!, we obtain the following
set of equations for the time average amplitudesb

h
(t):

i
db̄0

dt
5Fnb̄11Gnb̄21 f ~ t !b1~ t !1g~ t !b2~ t !,

~2.19a!

i
db̄1

dt
5Fn

†b̄01 f †~ t !b0~ t !, ~2.19b!

i
db̄2

dt
5Gn

†b̄01g†~ t !b0~ t !, ~2.19c!

and consequently

i
db0

dt
5 f ~ t !b̄1~ t !1g~ t !b̄2~ t !, ~2.20a!

i
db1

dt
5 f †~ t !b̄0 , ~2.20b!

i
db2

dt
5g†~ t !b̄0 . ~2.20c!

In Eqs.~2.19! the overbar denotes averaging over a tim
much larger than the e.m. wave period. In the set~2.20! we
have neglected the terms; f (t)bh(t) as due to rapid oscil-
lations

u f ~ t !bh~ t !u!Udb1

dt U. ~2.21!

Solving the set of equations~2.20!, taking into account tha
b̄

h
(t) are slowly varying functions, we obtain

b052 i S b̄1~ t !E
0

t

f ~ t !dt1b̄2~ t !E
0

t

g~ t !dtD , ~2.22!

b152 i b̄0~ t !E
0

t

f †~ t !dt, ~2.23!

b252 i b̄0~ t !E
0

t

g†~ t !dt, ~2.24!
03340
sand substitutingbh(t) into Eqs.~2.19!, we obtain

i
db̄0

dt
5Fnb̄11Gnb̄21~D f1Dg!b̄0 , ~2.25a!

i
db̄1

dt
5Fn

†b̄02D f
†b̄11D̃b̄2 , ~2.25b!

i
db̄2

dt
5Gn

†b̄02Dg
†b̄21D̃†b̄1 , ~2.25c!

where

D f52 i f ~ t !E
0

t

f †~ t !dt

5vS L01

L11
D 2

(
NÞn,N52`

`
N2

N2n
JN

2 S L11

v D , ~2.26!

Dg52 i g~ t !E
0

t

g†~ t !dt

5vS L02

L22
D 2

(
NÞn,N52`

`
N2

N2n
JN

2 S L22

v D , ~2.27!

D̃52 i f ~ t !E
0

t

g†~ t !dt

52v
L01L02

L11L22
exp@ i ~d1n2d2n!t#

3 (
NÞn,N52`

`
N2

N2n
JNS L22

v D JNS L11

v D . ~2.28!

The physical meaning of these quantities is the dyna
Stark shift. The set of Eqs.~2.25! can be solved in the gen
eral case of arbitrary envelopeE0(t) only numerically. But it
admits an exact solution for a monochromatic wave:E0(t)
[E0 describing Rabi oscillations in the three-level atom
system. In this case the set~2.25! for the phase transforme
amplitudesb̄hexp(idhnt) is a set of linear ordinary differentia
equations with fixed coefficients, so its general solution
given by a superposition of three linearly independent so
tions

bh5 (
n50

2

CyMhyexp@ i ~ly2dhn!t#, ~2.29!

where theCy are constants and defined by the initial con
tions. The factorsly are the solutions of the cubic equatio

det~Amy!50, ~2.30!

where
3-3
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Amy5S D f1Dg1l Fnexp~2 id1nt ! Gnexp~2 id2nt !

Fn
†exp~ id1nt ! 2D f

†2d1n1l D̃exp@ i ~d2n2d1n!t#

Gn
†exp~ id21nt ! D̃†exp@2 i ~d2n2d1n!t# 2Dg

†2d2n1l
D ~2.31!
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is the time independent characteristic matrix andMhy are its
minors.

At the end of this section it is relevant to comment on t
region of applicability of the theory presented in this pap
The set of equations~2.25! has been derived using the a
sumption that the amplitudesb̄h are slowly varying functions
on the scale of the e.m. wave period, i.e.,

Udbh~ t !

dt U!ubh~ t !uv, h50,1,2. ~2.32!

The latter conditions with Eq.~2.21! put the restrictions

~ uFnu,uGnu,uD f u,uDgu,uD̃u,ud1,2nu!!v ~2.33!

on the characteristic parameters of the system considere
Although the main attention has been devoted to the c

when the dipole transitions between the excited station
states of an atom are forbidden but the atom has a m
dipole moment, the current treatment includes a larger c
of systems, whenV11,V2250 andV12,V21Þ0. If the ener-
gies of the excited states are close enough to each other~the
frequency associated with the level difference should
small compared with the Rabi frequency! then by the unitar-
ian transformation

a085a0 , a185
a12a2

A2
, a285

a11a2

A2
, ~2.34!

the problem can be reduced to the one considered. Th
obvious for the hydrogen atom in parabolic@15# and the
usual spherical coordinates. In the first case the atom h
mean dipole moment in the excited states, while in the s
ond case the mean dipole moment is zero for a station
state but due to the random degeneracy of the orbital
ments there is a transition dipole moment between dege
ate states. After the transformation~2.34! we will have the
same formulas where the quantities 221/2(V012V02),
221/2(V011V02), 2V12, V12 stand forV01, V02, V11, V22
respectively~it is assumed thatV125V21).

III. APPLICATION FOR HYDROGEN ATOM

In this section we apply the results obtained for the h
drogen atom and present some numerical simulations.
the hydrogen atom all transitions starting from the grou
state fall in the vacuum ultraviolet~VUV ! range (10.2 eV for
the 1S-2P transition!. This is a spectral domain where co
herent radiation is difficult to generate and two- or high
photon resonant excitation is of great interest. Taking i
account the problem symmetry it is more appropriate to c
03340
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sider the hydrogen atom in parabolic coordinates. In th
coordinates the atomic states are characterized by the s
quantum numbersh5$n,m,n1% where n is the principal
quantum number,m is the magnetic quantum number, an
for n1 we have the following relationship:

n5n11n21umu11. ~3.1!

In this casen1 andn2 commute for radial and orbital quan
tum numbers in the usual representation~we will not con-
sider the fine and hyperfine structure of the levels!. Without
loss of generality, we can take the polarization vectoê
aligned with theZ axis of the parabolic coordinates. Then
long as for dipole transitions there is a selection rule by
magnetic quantum numberm5m8, then from the ground
state$1,0,0% (h50) transitions to the$2,0,0% (h51) and
$2,0,1% (h52) states are possible. For the transition amp
tudes Eq.~2.3! we have

L2252L1153E0 , ~3.2!

L0152L025
27

35
E0 , ~3.3!

and for the main characteristic parameters we have

d1n5d2n[d, ~3.4!

Fn5~21!nGn5~21!n
24

35
Jn~8nE0!exp~ idt !, ~3.5!

D f5Dg[D

5
1

n S 2

3D 11

(
NÞn,N52`

`
N2

N2n
JN

2 ~8nE0!, ~3.6!

D̃52
1

n S 2

3D 11

(
NÞn,N52`

`
~21!NN2

N2n
JN

2 ~8nE0!. ~3.7!

The roots of Eq.~2.30! are

l15D1~21!nD̃1d, ~3.8!

l2,352
D1~21!nD̃2d

2
6Vn , ~3.9!

where

Vn5S ~3D1~21!n11D̃1d!2

12UGnU2D 1/2

. ~3.10!

4
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We will set the following initial conditions:

b0u t5051, b1u t5050, b2u t5050, ~3.11!

assuming that the atom initially is in the ground state.
The average probabilities calculated via the initial con

tions Eq.~3.11! and Eq.~2.29! are

ub̄0u25122
uGnu2

Vn
2

sin2~Vnt !, ~3.12!

ub̄1u25ub̄2u25
uGnu2

Vn
2

sin2~Vnt !. ~3.13!

The latter express the Rabi oscillations, but the amplitu
are diminished due to the dynamic Stark shift. When

uGnu@max$uDu,uD̃u,udu% ~3.14!

we obtain Rabi oscillations with frequency

FIG. 1. Two-photon resonance (n52). The electric field
strength isE050.03 a.u.; the detuning is taken to bed50. ~a!
Temporal evolution of the ground state population for a continu
wave. The dotted curve corresponds to numerical calculations
solid curve corresponds to our approximate solution.~b! Temporal
evolution of the state populations for a Gaussian envelope w
vt/2p527.
03340
-

s

Vn.21/2uGnu, ~3.15!

which has a nonlinear dependence on the amplitude of
electromagnetic field. It is easy to see that for one-pho
resonance in the case of a two-level atomic system the la
is reduced to the known Rabi frequency@9#. For one- or
two-photon resonances the influence of the dynamic S
shift is not essential, but it becomes significant for large p
ton numbers, and one can choose an appropriate detunin
compensate the dynamic Stark shift.

We have also performed numerical simulations solv
Eq. ~2.1! numerically. Figure 1~a! displays the temporal evo
lution of the ground state population for two-photon res
nance, whenE050.03 a.u., which corresponds to laser inte
sity I .331013 W/cm2; the detuning has been chosen to
d50. The dotted curve corresponds to numerical calcu
tions, while the solid curve corresponds to our approxim
solution Eq.~3.12! describing the mean value of the pro
ability. The calculations have also been made for the fin
wave pulse describing the envelope by the Gaussian func

E0~ t !5E0expS 2
~ t2A2t!2

2t2 D . ~3.16!

s
he

th

FIG. 2. Same as Fig. 1, but for three-photon resonancen
53). The electric field strength isE050.04 a.u.; to compensate th
Stark shift the detuning is taken to bed/v.0.02. The pulse dura-
tion in ~b! is vt/2p515.
3-5
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The state populations are shown in Fig. 1~b! for vt/2p
527. The final state is a superposition of three states. Fig
2 displays three-photon resonance. In this caseE050.04 a.u.
(I .5.531013 W/cm2) and vt/2p515. For the three-
photon resonance the Stark shift is essential and for com
sation we have put

d523D2D̃,

which givesd/v.0.02. The rapid oscillations in Fig. 2~a! in
our approximate solutions are described by thebh functions

FIG. 3. Temporal evolution of the state populations for fiv
photon resonance (n55). The electric field strength isE050.05
a.u.; the pulse duration isvt/2p520. To compensate the Star
shift the detuning is taken to bed/v.0.045. For visual conve-
nience we have not plotted theu2& state population, which coincide
with u1&. The inset displays the temporal evolution for the sa
parameters butd50.
r

ys

ys

03340
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which are not included in the figures. In the final state
have;100% overpopulation. As we see, the numerical
sults coincide to high accuracy with our approximate so
tion. Finally, in Fig. 3 the state populations are plotted f
five-photon resonance whenE050.05 a.u. (I .8.7
31013 W/cm2) andvt/2p520. The detuning in this case i
d/v.0.045. As we see the final state is a superposition
three states with the same weights~the curve foru2& coin-
cides withu1&). The inset displays the cased50. As we see
in this case the excitation is very small, which is in acc
dance with Eq.~3.12! (2uGnu2/V2.0.13).

IV. CONCLUSION

We have presented a theoretical treatment of the mu
photon resonant excitation of atoms in a strong laser field
nonperturbative resonant approach was developed and
time evolution of the three-level system was found. The c
ation of various superposition states was shown. Partic
attention was paid to the hydrogen atom. Numerical simu
tions are in agreement with the theoretical results. Our c
culations for the hydrogen atom suggest that, by using
appropriate optical pulses with moderately strong intensi
;531013 W/cm2, when the rate of the concurrent proce
of multiphoton ionization is small, one can achieve vario
superposition states by multiphoton resonant excitation.
though the main attention has been devoted to the hydro
atom the current treatment includes a larger class of syste
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