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Multiphoton resonant excitation of atoms in strong laser fields and implementation
of coherent superposition states

H. K. Avetissiarf and G. F. Mkrtchian
Department of Quantum Electronics, Plasma Physics Laboratory, Yerevan State University, 1 A. Manukian, 375049 Yerevan, Armenia
(Received 29 March 2002; published 23 September 2002

The multiphoton resonant excitation of three-level atoms in a strong laser field is investigated. The creation
of various superposition states is shown. For implementation of these effects either the mean dipole moment in
the excited states of an atom or, in three-level systems, a transition dipole moment between excitetitstates
energies close enough to each othmust be nonzero. The time evolution of the system is found using a
nonperturbative resonant approach. Our calculations for the hydrogen atom suggest that by the appropriate
optical pulses with moderate strong intensities one can achieve various superposition states by multiphoton
resonant excitation.
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I. INTRODUCTION laser-assisted resonant transitions have been done in not very
strong fields(see, e.g.[11,12). In [6,7] there is a theoretical
Current laser technology enables production of electrotreatment of multiphoton two-mode processes in a three-
magnetic(e.m) fields comparable with and larger than inter- level atom based on an exactly solvable Jaynes-Cumming
nal atomic fields. Under these conditions the bound-boundype model with a model of the second quantized Hamil-
and bound-free transitions in atomic systems have multiphotonian. For the efficient multiphoton excitf':\tion of atoms, the
ton character. The increasing interest in the processes of if@Ser field should be strong enough to induce multiphoton
tense laser and atom interaction is due in large part to thiransitions. On the other hand in this case nonresonant levels
problem of high harmonic generation and short wave coherM@y Play a role. 13,14 the dynamics and radiation of
ent radiation implementation via multiphoton bound-free 9Ny charged hydrogenlike ions in intense high frequency

transitions through free continuum spectra. During the Iasl[aser pulses have been investigated numerically. As was

two decades numerous investigations have been carried Oat{nown in the near-resonant m_“'“ﬁh"éo” regime font:y a few
to study laser-atom interactions both theoretically and ex_resonant levels are mvolyed_ In the dynamics of the wave

: packet. Hence, when the ionization process is not dominant
perimentally and many monograplisee, e.g.[1-4]) are

) one can reduce the dynamics to a few levels rather than
devoted to this problem. _ considering the whole wave packet as usual in the strong
On the other hand in strong laser fields one can expegigq regime.
multiphoton resonant excitation of atorfs-8]. It is well In the present work the multiphoton resonant excitation of
known that when the laser frequency is close to the freynree-level atoms subjected to a strong laser field is studied.
quency associated with the level difference of a two-levelye consider a three-level atom when the latter has a mean
atom then by the appropriate laser pulses one can obtaifipole moment in the excited states. Otherwise, the energies
various coherent superposition staf®$ which can lead to  of the excited states of a three-level atom should be close
cooperative processes such as superradiation, free-inductiemough to each othéthe frequency associated with the level
decay, photon echo, etc. However, the obtaining of such sudifference should be small compared with the Rabi fre-
perposition states is problematic if the energy gap betweequency and the transition dipole moment between these
the states is large compared with the optical transitions. Istates must be nonzero. The time evolution of such systems
this case multiphoton excitation can be realized, which willis found using a nonperturbative resonant approach. The
allow one to observe cooperative effects in the high fre-analysis shows that quasienergy levels close to the ground
quency domain and especially the implementation of higlstate arise. As a result the problem is reduced to the usual
order harmonic generatidd.Q]. Rabi problem with a generalized “Rabi frequency,” which
In [8] a nonperturbative analysis of the multiphoton exci-has a nonlinear dependence on the amplitude of the e.m.
tation of a two-level atom has been done. However, becaudield. A hydrogenlike atomic system may serve as a good
of the strong dependence of the resonance on the intensitandidate for the considered model, where due to random
and because of their narrowness, the atom is excited onlgegeneration upon an orbital moment the atom has a mean
during a small interval of the laser pulse. As a result the ratelipole moment in excited stationary states. Our calculations
of the concurrent process of multiphoton ionization exceedsor the hydrogen atom suggest that by using appropriate op-
the excitation rate by several orders of magnitude, makingical pulses with moderately strong intensities one can
impossible the efficient excitation of an atom in this case. achieve various superposition states by multiphoton resonant
Regarding three-level systems, most theoretical studies @xcitation.
The organization of the paper is as follows. In Sec. Il we
present our model and solution of the set of equations in the
*FAX: (3741 570-597. Electronic address: avetissian@ysu.am resonant approximation. In Sec. Il we apply the results ob-
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tained for the hydrogen atom and present some numerical _ [t
calculations. Finally, conclusions are given in Sec. IV. F(t)=Voyt)exp i(eg—eg)t—i foVn(t)dt , (2.6

II. BASIC MODEL AND RESONANT SOLUTION t
G(t):VOZ(t)eXF{i(SO_SZ)t_if sz(t)dt y (27)
0

Let us consider a three-level atom in an e.m. wave field.
The latter will be treated semiclassically and in the dipole . ) ) )
approximation. We assume the e.m. wave is linearly polarandF' denotes the complex conjugation efIn this repre-
ized and characterized by a slowly varying amplitiggt) ~ Sentation the quasienergy levels,*sw (s=1,2, ... )close
and carrier frequency. The pulse duration time is as- to th_e_ground state arise. The_ probabilities of_multlphoton_
sumed to be smaller than any relaxation time in our modefransitions between these quasienergy levels will have maxi-
system. Therefore we will use the Sctinger equation in- Mal values for the resonant transitions
stead of the density matrix treatment. We denote the atomic et Ne~0 28
states by| ), where»=0,1,2 indicates the set of quantum g0~ &1 NW=0, 28
numbers that characterizes the state. The Sithger equa-
tion in the energetic representation, that is, the set of equa-

tions for the probability amplitudea, (t), is the following | this case the functioris(t),G(t) can be represented in the
(throughout this paper we use atomic uniéssm=#=1,  fg|lowing form:

go—eytNw=0 (n=1,2,...). 2.9

c=137):
F(t)=F,+f(t), (2.10
da, 3
gt = e 2 Vil 21 G(1)=Gytg(h), (219
. where
wheree , is the energy of the state and
A01 All .
V,,=—A,,cosot (2.2 Fn=—wA—11an e exp(i dint), (2.12
is the interaction Hamiltonian. Here Agp Ayy
G,= —w—an(—) exp(i Sont) (2.13
A22 w

A, =(nlr-ev)Eo(t) (2.3
. are slowly varying functions on the scale of the e.m. wave

are the transition amplitudesjs the unit polarization vector, period (at the exact resonance constarsd
andr is the radius vector. For concreteness we assume that
V1,,V,1=0 andV41,V,,# 0, which means that dipole tran-
sitions between the excited stationary states of an atom are
forbidden but the atom has a mean dipole moment in those
states. To simplify the set of equations and to have the physi- 1 )
cally more appropriate form for multiphoton resonant transi- X s NIy| —=|exii(N—n)wt],
tions we apply the following unitarian transformation: ’

A
—Olexp(i S1nt)

f(t)="—
(t) X,

©

(2.19
t
a,(t)=b (t)exp(—is t—if \% dt), (2.4 A .
K 7 K o g(t)y=— wA—Ozepr Sont)
22
providing the same initial conditions for the new amplitudes % A
b,,(t) att=0. From Eq.(2.1) anq Eq.(2.4) for b,(t) we X > NJN(—ZZ)ex;{i(N—n)wt]
obtain the following set of equations: N#n,N=—c ®
2.1
b (2.19
'H:F(t)bﬁG(t)bZ' (2538 4o rapidly oscillating functions. To derive Eqf2.14,
(2.19, (2.12, and(2.13 we have applied the following ex-
db, pansion by Bessel functions:
e FT(t)by, (2.5b B
expliasinot)= >, Jy(a)expiNot), (2.16
“db, N=—ee
i—=G(t)by, (2.50 _ _
dt and introduced the resonance detunings
where 51n:80_81+nw, 52n:80_82+nw. (Zln
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In consequence of this separation the probability amplitude
can be represented in the form

bn(t)zﬁn(t)wn(t) (p=0,1,2), (2.18

whereb (t) are the time averages &f (t) and g,(t) are

rapidly oscnlatlng functions. Substituting Eq&2.18 into
Egs. (2.5 and separating slow and rapid oscillations taking
into account Eqs(2.10 and(2.11), we obtain the following
set of equations for the time average amplitutjg(st):

dbg
Igr = FaP1+ Gaby+ (1) B1(1) +9(1) B2(V),
(2.193
'W: Moo+ (1) Bo(1), (2.19h
dE —
i~ = Gnbo+g" (0 Bo(V), (2.190
and consequently
.dBo — —
=g = T(Oba(H) +a(t)by(1), (2.208
Bl t
TS ——=f1(t)by, (2.20bh
182 +
i =9'(Obo. (2.200
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and substitutings,(t) into Egs.(2.19, we obtain

“db

Id_::F“Hl+GnHZ+(Af+Ag)E), (2.253
P
|W=Fnbo—Afb1+Ab2, (2.250h
'W: 'bo—Alb,+AThy, (2.259

where
.
=—if(t)f fT(t)dt
0
~ AL I . (22
w(All NEmN=— N—n w (2.2
—
=—i9(t)f gf(t)dt
0
Aog 2 * N2 ) A22
_w<A_22) N#n,N=—o N_nJN T ’ (227)
- -
A=—if<t)f gf(t)dt
0
AoiAoy

_wAllAzzqul(‘sln_‘SZn)t]

S N’ Az A

XN#:n,N:*w N_HJN(T JN<7 . (2.28

In Egs.(2.19 the overbar denotes averaging over a time

much larger than the e.m. wave period. In the (820 we
have neglected the termsf(t)3,(t) as due to rapid oscil-
lations

ﬂl

(0B,(0]<| 5 .21

Eolving the set of equation®.20), taking into account that
bn(t) are slowly varying functions, we obtain

_ t _ t
m=—(muﬁ#amﬁmxwfmom) (2.2
0 0
_ t
m=—mawfﬂawn (223

0

— t
&=—mdDL@HML (2.24

The physical meaning of these quantities is the dynamic
Stark shift. The set of Eq$2.25 can be solved in the gen-
eral case of arbitrary envelofig(t) only numerically. But it
admits an exact solution for a monochromatic wakig(t)
=E, describing Rabi oscillations in the three-level atomic
system. In this case the sg&.25 for the phase transformed

amplitudeSH ,EXPJ,0t) is a set of linear ordinary differential
equations with fixed coefficients, so its general solution is
given by a superposition of three linearly independent solu-
tions

2
= ;0 C M, exii(\,— 8,0)t], (2.29

where theC, are constants and defined by the initial condi-
tions. The factors\ , are the solutions of the cubic equation

de(A,,)=0, (2.30

where
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Ap+Ag+\ Fnexp(—idint) Gpexp(—i 6nt)
A,,=| Frexpliont) —Af=din N Rexli(8an— Sin)t] (2.3
Glexpidmt) Rlex—i(dm—oi)t]  —Al— S+

is the time independent characteristic matrix &g, are its  sider the hydrogen atom in parabolic coordinates. In these
minors. coordinates the atomic states are characterized by the set of

At the end of this section it is relevant to comment on thequantum numbersy={n,m,n,} where n is the principal
region of applicability of the theory presented in this paperquantum numbemn is the magnetic quantum number, and
The set of equation§2.25 has been derived using the as- for n; we have the following relationship:

sumption that the amplitudé%i are slowly varying functions

on the scale of the e.m. wave period, i.e., n=ny+ny+|mf+1. 3.1
db, (t) In this casen; andn, commute for radial and orbital quan-
‘# <|bn(t)|w, 7=0,1,2. (2.32 tum numbers in the usual representatigve will not con-
sider the fine and hyperfine structure of the leuelgithout
The latter conditions with E¢(2.21) put the restrictions loss of generality, we can take the polarization veator
aligned with theZ axis of the parabolic coordinates. Then as
(Fal,|Galu | AL A gL AL 8]y <@ (2.33 long as for dipole transitions there is a selection rule by the

magnetic quantum numben=m’, then from the ground
on the characteristic parameters of the system considered.state{1,0,0} (»=0) transitions to thg2,0,0 (»=1) and
Although the main attention has been devoted to the casg,0,1} (»=2) states are possible. For the transition ampli-
when the dipole transitions between the excited stationarjudes Eq(2.3) we have
states of an atom are forbidden but the atom has a mean
dipole moment, the current treatment includes a larger class Az=—A1=3E,, (3.2
of systems, whetV,;,V,,=0 andV,,V,;#0. If the ener-

gies of the excited states are close enough to each (tier 27

frequency associated with the level difference should be A= _AOZ_EEO' 33

small compared with the Rabi frequendien by the unitar-

ian transformation and for the main characteristic parameters we have
a;—ap ’_a1+ ao 51,1:52”55, (34)

—, a,= , (2.39
7R 4

Fo=(—1)"G,=(— 1)”%Jn(8nEo)exr(i ot), (3.5

r_ r_
aO_aO' al_

the problem can be reduced to the one considered. This is
obvious for the hydrogen atom in parabolit5] and the
usual spherical coordinates. In the first case the atom has a Av=A.=A

. . . s f g
mean dipole moment in the excited states, while in the sec-
ond case the mean dipole moment is zero for a stationary 1(2)11 * N2

state but due to the random degeneracy of the orbital mo- ~n

3

. N=nINBnEy), (3.6
ments there is a transition dipole moment between degener- N#nN=—e
ate states. After the transformatié®.34) we will have the 1 @ N2
same formulas where the quantities *#(Vo;—Voy), R=— E(E) (—D'N J2(8nEy). (3.7)
2" Y2V g4+ Vo), —Via, Vi stand forVy,, Voo, Vi1, Vao N{3) Nenm=-= N-— N o
respectively(it is assumed tha¥ ;,=V5,).

The roots of Eq(2.30 are

Ill. APPLICATION FOR HYDROGEN ATOM ~

N=A+(—D"A+5, (3.8
In this section we apply the results obtained for the hy-

drogen atom and present some numerical simulations. For A+(—1)"A-5

the hydrogen atom all transitions starting from the ground Np3=— fiﬂn, (3.9

state fall in the vacuum ultraviolé¥UV ) range (10.2 eV for

the 1S-2P transition. This is a spectral domain where co- \\here

herent radiation is difficult to generate and two- or higher-

photon resonant excitation is of great interest. Taking into (BA+(—1)" 1A+ 6)2

account the problem symmetry it is more appropriate to con- Q.= 7

1/2
2) . (3.10

e
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FIG. 1. Two-photon resonancen€2). The electric field

100

strength isEy=0.03 a.u.; the detuning is taken to 3=0. (a)

Temporal evolution of the ground state population for a continuousStark shift the detuning is taken to #w=0.02. The pulse dura-
wave. The dotted curve corresponds to humerical calculations; thﬁon in (b) is wr/2m=15.

solid curve corresponds to our approximate solutitm.Temporal
evolution of the state populations for a Gaussian envelope with

wTl2m=217.
We will set the following initial conditions:

bo|1:0: 1, bl|t:O:Oa b2|t:O:O7

(3.11

assuming that the atom initially is in the ground state. O-F . . > of
The average probabilities calculated via the initial condi-shift is not essential, but it becomes significant for large pho-

tions Eq.(3.11) and Eq.(2.29 are

- 12 |Gn|2 .
|bo| —1—2—QZ SiP(Qt),
n

|Gal®
2

|by]2=[b,|2=—"-sir(Q,t).

(3.12

(3.13

are diminished due to the dynamic Stark shift. When

|Gnl>max{|A[,[A],] 4]}

we obtain Rabi oscillations with frequency

(3.19
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FIG. 2. Same as Fig. 1, but for three-photon resonante (
=3). The electric field strength E,=0.04 a.u.; to compensate the

0,=2"G,|, (3.15
which has a nonlinear dependence on the amplitude of the
electromagnetic field. It is easy to see that for one-photon
resonance in the case of a two-level atomic system the latter
is reduced to the known Rabi frequenf$]. For one- or
two-photon resonances the influence of the dynamic Stark

ton numbers, and one can choose an appropriate detuning to
compensate the dynamic Stark shift.

We have also performed numerical simulations solving
Eqg. (2.1) numerically. Figure (a) displays the temporal evo-
lution of the ground state population for two-photon reso-
nance, wherk,=0.03 a.u., which corresponds to laser inten-
sity I =3x 10" W/cn?; the detuning has been chosen to be
6=0. The dotted curve corresponds to numerical calcula-
tions, while the solid curve corresponds to our approximate
solution Eq.(3.12 describing the mean value of the prob-
3bi|ity. The calculations have also been made for the finite
wave pulse describing the envelope by the Gaussian function

(t—ﬁr)z)

Eo(t) = EoGX[{ - > > (316)

T
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which are not included in the figures. In the final state we
have ~100% overpopulation. As we see, the numerical re-
sults coincide to high accuracy with our approximate solu-
tion. Finally, in Fig. 3 the state populations are plotted for
five-photon resonance whenEy;=0.05 a.u. [(=8.7

X 10' W/cnm?) andw 7/277=20. The detuning in this case is
8l w=0.045. As we see the final state is a superposition of
three states with the same weiglttse curve for|2) coin-
cides with|1)). The inset displays the cage=0. As we see

in this case the excitation is very small, which is in accor-
dance with Eq(3.12 (2|G,|#Q?=0.13).

0.9
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07 I

0B

Q 10 20 30 40 50 60 70 80 90100

0.5
0.4
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03
0.2

01

3o 40 50 B0
Time inunits ofthe wave period

70 &0 90 100

IV. CONCLUSION
We have presented a theoretical treatment of the multi-
photon resonant excitation of atoms in a strong laser field. A
nonperturbative resonant approach was developed and the
time evolution of the three-level system was found. The cre-
nience we have not plotted th) state population, which coincides ation of various superposition states was shown. Particular

with |1). The inset displays the temporal evolution for the samea}tten“on \.Nas paid to the hydrogen ato”?' Numerical simula-
parameters bus=0 tions are in agreement with the theoretical results. Our cal-

culations for the hydrogen atom suggest that, by using the
The state populations are shown in Figh)lfor w/2m appropri%te optical pulses with moderately strong intensities
=27. The final state is a superposition of three states. FigurévSXl(_)1 W/c?, when the rate of the concurrent process
2 displays three-photon resonance. In this dage 0.04 a.u.  °f multiphoton ionization is small, one can achieve various
(1=5.5x 108 W/cr?) and wr/2m=15. For the three- superposition states by multiphoton resonant excitation. Al-

photon resonance the Stark shift is essential and for compert'nhough the main attention has been devoted to the hydrogen
sation we have put atom the current treatment includes a larger class of systems.

FIG. 3. Temporal evolution of the state populations for five-
photon resonancenE5). The electric field strength iEy=0.05
a.u.; the pulse duration i®7/27=20. To compensate the Stark
shift the detuning is taken to b&/w=0.045. For visual conve-

5=—3A—A,
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