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Interpretation of low-energy electron-CO2 scattering
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Recentab initio calculations of low-energy electron-CO2 scattering@Rescignoet al., Phys. Rev. A65,
032716~2002!# are interpreted using an analytically solvable model. The model, which treats two partial-wave
Hamiltonians with differentl values coupled by a long-range (d/r 2) interaction, is a generalization of similar
single-channel models that have previously been used to interpret the low-energy behavior of electron scatter-
ing by polar diatomic molecules. The present model is used to track the pole trajectories of both resonances and
virtual states, both of which figure prominently in low-energy electron-CO2 scattering, in the plane of complex
momentum. The connection between resonant and virtual states is found to display a different topology in the
case of a polyatomic molecule than it does in diatomic molecules. In a polyatomic molecule, these states may
have a conical intersection and consequently acquire a Berry phase along closed paths in two-dimensional
vibrational motion. The analytic behavior of theS matrix is further modified by the presence of a geometry-
dependent dipole moment.
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I. INTRODUCTION

There has been considerable activity over the past
years, both theoretical and experimental, on the subjec
low-energy electron-CO2 collisions. The principal features o
the low-energy cross sections, namely the dramatic ris
the total cross section below 2 eV and the resonance fea
near 3.8 eV, have been known for many years and have b
the subject of many theoretical investigations. However,
ability of first-principles theory to quantitatively reproduc
and explain features of the observed cross sections at
energy is a relatively recent development. For example
was not until 1998 that anab initio study was performed
which was able to conclusively show that the low-energy r
in the elastic cross was the result of a virtual state@1#, al-
though this fact had been suggested by earlier model stu
@2#. Only recently hasab initio theory correctly accounted
for both the low-energy behavior and the resonance p
@3,4# or been able to achieve quantitatively correct differe
tial cross sections below 6 eV@3#.

There have also been advances on the experimental f
Low-energy electron beams produced by atomic photoi
ization have been used to perform scattering experim
down to 10 meV, giving clear experimental evidence for t
CO2

2 virtual state@5#. The unprecedented energy resoluti
~7 meV! recently achieved by Allan@6# with electron spec-
trometers allowed him to resolve electron energy-loss pe
for nearly degenerate vibrational levels in CO2 and to make
separate measurements of the excitation cross section
each member of the lowest Fermi dyad with high accura
The essential features of these resonant vibrational excita
cross sections were accurately reproduced in the most re
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work of Rescignoet al. @7#, who extended their earlier fixed
nuclei calculations@3# to include the effects of both symme
ric stretch and bending and carried out a multidimensio
treatment of the nuclear dynamics on a complex local re
nance surface constructed from the fixed-nuclei results. N
ertheless, there are features of the measured cross sec
such as subtle interference structures in the resonant c
sections and the strikingly different behavior of the exci
tion functions for the individual Fermi levels on the lo
energy side of the resonance region, that raise additio
questions and leave ample room for future theoretical wo
There are also interesting questions that arise from an ex
nation of theab initio results which would be difficult to
address with large-scale first-principles calculations. For
reason, we present calculations here on several model p
lems whose analytic structure can be examined in detail
which are expected to reflect key aspects of the true phys
problem. The purpose of this exercise is to gain a dee
insight into the nuclear dynamics of electron-CO2 scattering
which will hopefully suggest possible directions for furth
ab initio work.

It is well known that the CO2 molecule, in its equilibrium
geometry,cannotbind an additional electron to form a stab
negative ion. We find instead a virtual state of2Sg

1 symme-
try and a 2Pu resonance state. It is also well known@8,9#
that CO2

2 becomes electronically bound, in2A1 symmetry, if
the molecule is either stretched or bent sufficiently. An e
amination of the fixed-nuclei resonance parameters for
2Pu negative ion state shows that as the molecule
stretched, in linear geometry, the resonance width decre
monotonically as its energy, relative to neutral CO2, ap-
proaches zero, i.e., the resonance evolves smoothly to
come a bound state. Once bound, we can further track the
energy, defined now as the lowest eigenvalue of the fix
nuclei Hamiltonian for the anion, to its minumum by ben
ing the molecule. So we would say that the2A1 anion cor-
relates with the2Pu shape resonance.
©2002 The American Physical Society20-1
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But what if we start by bending the molecule first? T
fixed-nuclei calculations show that the resonance rap
broadens as the molecule is bent; the practical consequ
of this behavior is that the resonance gets washed out and
no visible effect on the fixed-nuclei cross section for ang
greater than about 15°. However, for sufficiently lar
angles~greater than 30°) the fixed-nuclei Hamiltonion aga
shows a stable negative ion. Does the ion again con
smoothly to the resonance or is it perhaps the2Sg

1 virtual
state that correlates with the bound negative ion? And h
can the correlation diagram depend on the path one ta
from the initial linear geometry to the final geometry th
characterizes the bound negative ion? Our earlierab initio
study @7# could not address this question. The dynamics
those calculations are completely insensitive to the topol
of the resonance surface where the width is large, since
wave packet rapidly decays in such regions.

For this reason, we investigate here a model problem
which the interaction between a resonance and a virtual s
can be examined in detail. We will see that the nature of
coupling that produces an interaction between the two st
has a profound effect on the pole trajectories. We contras
behavior one finds when the coupling is of short-range w
the case of long-range dipole coupling that more accura
reflects the situation that pertains to bent CO2

2 . We empha-
size that it is not our intention here to present a model w
parameters that are tuned to reproduce either our earlieab
initio @3,7# or measured cross sections. Indeed, the beha
of the electron-CO2 cross sections below 1 eV collision en
ergy has been quantitatively reproduced in earlier mo
studies@10–12#. Our purpose here is to focus on the topo
ogy of the electronic surfaces that produce the essential
tures in the observed cross sections, to point out the sig
cant modifications~and to clarify some confusing points i
the literature! caused by a geometry-dependent electr
dipole interaction, and to suggest a connection between
virtual state and the resonance state that has not previo
been proposed. These considerations may be relevan
other collision systems and thus have implications that
beyond the issue of electron collisions with CO2.

The outline of this paper is as follows. We begin in Sec
with some remarks about a previously studied model
square well plus a cutoff dipole potential—that has oft
been used to explain the physics of electron scattering
polar molecules@13–15#. We review some important differ
ences between the analytic structure of that problem and
case of a short-range potential. In Sec. III we introduce
analytically solvable two-channel generalization of t
model, motivated by a consideration of a single-center
pansion of the physical wave function. In Secs. IV and
respectively, we examine the behavior of the poles of thS
matrix that is seen with either short-ranged or dipole c
pling between the channels. In Sec. VI we discuss the cas
a degeneracy in the virtual state and resonance traject
which can produce a Berry phase in the resonance w
function. We conclude with a brief discussion. We empl
atomic units throughout the paper.
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II. POTENTIAL SCATTERING

Our objective is to study how the resonance states o
molecule with more than one nuclear degree of freedom
come bound as the nuclear geometry is varied. Before ta
ling that problem, we first consider the simpler question
tracking the movement of a resonance state, defined here
pole of theS matrix, in a single-channel radial scatterin
problem when some potential parameter is varied. The w
function is a solution of the Schro¨dinger equation@H(r )
2k2/2#c(k,r )50 with the Hamiltonian defined as

H52
1

2
d2/dr21V~r !, ~1!

V~r !5H lV0~r !, r ,r 0

l ~ l 11!

2r 2
, r>r 0 , l integer,

~2!

whereV0(r ) is an attractive short-ranged potential. Note th
the centrifugal term in Eq.~2! has been truncated atr 0 to
avoid an unphysical singularity atr 50 in the case of nonin-
teger l values which we allow later in this discussion. Th
truncation of the centrifugal potential in the interior of th
interaction does not affect the qualitative behavior of t
poles of theS matrix, which are solely determined by th
asymptotic behavior of the effective potential. With the
definitions,S(k) is defined by the asymptotic behavior of th
scattering wave function with respect tos-wave Ricatti-
Hankel functions:

c~k,r ! ;
r→`

e2 ikr2S~k!eikr . ~3!

The behavior of the poles ofS(k) for such a problem is well
known and is illustrated in Fig. 1. Suppose that the init
value ofl is chosen so that there is a resonance, defined
pole of S(k) in the lower halfk plane. The symmetry re
quirement

S~2k* !5S~k!* ~4!

implies that, for Re(k).0, the poles must occur in pairs
symmetrically placed with respect to the imaginaryk axis. If
the potential well is deepened by increasingl, the poles
move toward the negative imaginaryk axis and eventually
collide, forming a double pole. The point of intersection
determined by the value ofl. For l 50, the poles collide on
the negative imaginary axis; asl is further increased, one
pole moves up the axis, where it is known as a virtual sta
and eventually becomes a bound state when it passes thr
the origin into the upper halfk plane. The other pole move
down the axis on a trajectory whose ultimate fate depends
the detailed properties of the short-ranged potential. Fol
.0, a virtual state is never formed, as the resonance p
collides with its image pole atk50 and then moves on to
become a bound state.
0-2
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The situation just described is significantly altered ifl is
allowed to take on noninteger values. Specifically, we c
sider the case where

V~r !5H 2V0~r !, r ,r 0

2
d

r 2
, r>r 0 ,d.0.

~5!

This potential has been investigated previously as a mo
for low-energy electron scattering by polar molecules@13–
15#, since it is related to the radial scattering problem as
ciated with the nodeless angular mode that emerges fro

FIG. 1. The trajectories of the polesS(k), as a function of
increasing well depth, for the single-channel potential model d
cussed in text. Upper panel:l 50; lower panel:l 51.
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consideration of electron scattering by a fixed point-dip
potential @16#. If the short-range potential in Eq.~5! is a
square well,V0(r )52V0, the solution can be written in
closed form.~The conclusions we will draw here are n
limited by our choice of a square-well for the short-ran
potential. We have considered other choices forV0(r ), such
as an exponential or a Gaussian well, which require a pu
numerical treatment, and the behavior ofS(k) we found was
qualitatively unchanged.!

Since the wave function must be regular atr 50, c(k,r )
must be proportional to sin(Kr) for r ,r 0, where K
5Ak212V0. The object we seek is theSmatrix, so we write
c(k,r ), for r>r 0, as a linear combination of incoming an
outgoing Ricatti-Hankel functions:

cL~k,r !5A1~k!hL
2~kr !2A2~k!hL

1~kr ! ~6!

with the effective angular momentum,L, defined by

L~L11!/2[d. ~7!

For our purposes here, it will suffice to restrict our attenti
to values ofd less than1

8 , the so-called critical value@17#;
for 0,d, 1

8 , L is real. We follow Taylor@18# in defining the
Ricatti-Hankel functions as

hL
1,2~z![6 iApz

2
Hn

1,2~z! ~8!

with

n5L11/25~ 1
4 22d!1/2 ~9!

so that they have the asymptotic normalization

hL
1,2~z!;e6 i (z2Lp/2). ~10!

With these definitions, we see, by comparing Eq.~6! with
Eqs.~3! and ~10!, that S(k) is given bye2 iLpA2(k)/A1(k).
By requiring continuity of the logarithmic derivative of th
wave function atr 5r 0, we arrive at an expression forS(k):

-

S~k!5e2 iLp
khL

2~kr0!82K cot~Kr 0!hL
2~kr0!

khL
1~kr0!82K cot~Kr 0!hL

1~kr0!
5e2 iLp

@~L11!2Kr 0 cot~Kr 0!#hL
2~kr0!2kr0hL11

2 ~kr0!

@~L11!2Kr 0 cot~Kr 0!#hL
1~kr0!2kr0hL11

1 ~kr0!
. ~11!
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For nonintegerL, the Hankel functionshL
1,2(z) are mul-

tivalued functions and have a branch point atz50. If L is
irrational, then there will be an infinite number of Riema
sheets. The placement of the branch cut is critical to
discussion of the poles of theS matrix. If we wish to estab-
lish symmetry relations forS(k) analogous to Eq.~4!, then
the branch cut must be placed along the negativeimaginary
axis @19#. In previous work@14,20#, this was done by using
power series expansions of the Bessel functions about
origin.
y

he

Unfortunately, the standard definition for Bessel functio
with nonintegerL @21# places the branch cut along the neg
tive real axis, and this is the convention followed in most
the commonly used computer library routines for comput
Bessel functions. If one uses routines that follow this st
dard convention, then one must use analytic continuation
redefine the Hankel functions in the third quadrant so t
they are continuous across the negative real axis@measuring
positive arg(z) counterclockwise from the positive realz
axis#. With this convention, thephysical sheetis defined by
0-3
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2 1
2 p,arg(z), 3

2 p, with the branch along the negativ
imaginary axis. TheS matrix will have different values on
each Riemann sheet; whenL is an integer, the discontinuitie
across the branch cut vanish andS(k) is single-valued.

To establish symmetry relationships betweenS(k) in the
third and fourth quadrants of the physical sheet, we sh
explicitly how to move the branch cut to the negative ima
nary axis. To do this, we start withz in the fourth quadrant
and use a variant of the Schwartz reflection principle@21# to
obtain:

Hn
1~z!5Hn

2~z* !* , ~12!

which relates the Hankel functions in the fourth quadran
those in the first quadrant. To complete the exercise, we n
to further rotatez by p to move it into the third quadrant
This can be done by using the so-called circuit relations
the Hankel functions@21,22#:

sin~np!Hn
1~zeimp!52sin@~m21!np#Hn

1~z!

2einpsin~mnp!Hn
2~z!, ~13!

sin~np!Hn
2~zeimp!5sin@~m11!np#Hn

2~z!

1einpsin~mnp!Hn
1~z!. ~14!

Combining Eqs.~12! and ~13! with m51, and using the
definition in Eq.~8!, we can easily derive the relation:

hL
1~eipz* !5e2 iLphL

1~z!* , ~15!

which properly defineshL
1 in the third ~or second! quadrant

of the physical sheet in terms ofhL
1(z) in the fourth~or first!

quadrant. Equation~15!, along with Eq.~11!, are sufficient to
establish that the poles ofS(k), on the physical sheet, ar
located symmetrically with respect to the imaginaryk axis.

The symmetry relation forhL
2(kr) analagous to Eq.~15!

is a bit more involved. By using Eq.~14!, again with m
51, and Eq.~12!, we can derive, after some algebra, t
relation

hL
2~eipz* !5eiLphL

2~z!* 22i sin~Lp!hL
1~z!* . ~16!

Equations~15! and ~16! can be used to derive the followin
remarkable symmetry relation forS(k) on the physical sheet

S~k!1eiLp5S~2k* !* 1e2 iLp ~17!

which reduces to the more familiar Eq.~4! when L is an
integer.

We can also derive symmetry relations forS(k) on other
Riemann sheets. These are reached from the physical s
following the labeling conventions of Herzenberg@14#, by
rotating z through the branch cut in either a clockwis
@arg(z),2p/2# or counterclockwise@arg(z).3p/2# direc-
tion. By using the circuit relations with even values ofm, it
is possible to show that Eqs.~15! and~16! establish a genera
relationship between the Hankel functions evaluated in
right-half planes of theclockwiseRiemann sheets and th
left-half planes of the correspondingcounterclockwiseRie-
03272
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mann sheets. Thus, the symmetry relation forS(k) expressed
in Eq. ~17! is similarly mirrored between the higher clock
wise and counterclockwise Riemann sheets.

We are now in a position to discuss the trajectories of
poles ofS(k) for this model problem. In particular, we wan
to see how the presence of a weakr 22 potential tail causes
the pole trajectories to change from the behavior typica
expected with short-ranged potentials. This line of analy
has been given previously@14,15,19#, but it is important to
review it here before going on to a multichannel generali
tion of this model. We start with the radial square well wi
a range,r 0, of 1 Bohr and a depth,V0, of 9.0 Hartree and an
infinitesimally small~but finite! dipole tail, i.e.,L'0. With
this choice, there are a pair of complex poles ne
k5612 i1.75 on all Riemann sheets. If the well depth
increased to 11.4 Hartree andL is decreased to20.12, the
potential will support a single, weakly bound state. Now co
sider two different paths for reaching the final state, wh
are depicted in Fig. 2. First, we increase the potential w
from 9.0 to 11.4 Hartree withL'0 and then decreaseL to
20.12. We designate this as path A. Alternatively, we c
first decreaseL from 0 to its final value and then deepen th
potential well. We designate this as path B.

Figure 3 shows the pole trajectories, for paths A and B,
both the physical sheet and the first Riemann sheet. For
of visualization, we only plot the trajectories on the right ha
of the physical sheet and the left half of the first clockwi
sheet in Fig. 3; the mirror image trajectories on the left h
of the physical sheet and the right half of the first count
clockwise sheet are not shown. Along the first portion of p
A, the poles move from their initial positions toward th
negative imaginary axis on trajectories that are virtua
identical on both sheets. However, sinceL is infinitesimal but
finite, the trajectories do not quite hit the axis. Moreover,
can see clearly that it is the trajectories on the second s
that move up along the negative imaginary axis toward
origin, while those on the physical sheet travel downwa
When L is then decreased, the poles on the physical sh
move further away from the negative imaginary axis wh
those on the unphysical sheets follow quasi-parabolic pa

FIG. 2. The parameters of the one-channel model discusse
text, namely the depth of the square well,V0, and the effectiveL
value, are changed along two different paths. Both paths starti
and end atf. On path A, the depth of the square well is first i
creased and thenL is decreased. On path B, the order is revers
All quantities are in atomic units.
0-4
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into the origin to form the bound state. If we now track t
resonances on path B, the poles reach the same final
tions on paths that do not parallel the imaginary axis. Fr
these plots, it is clear that it is not the poles on the phys
sheet that become bound states as the potential is streng
but rather those arriving at the origin from the unphysi
sheets.

It is only the poles that lie in the fourth quadrant of th
physical sheet that can have any visible effect on the c
sections and hence the poles on unphysical sheets can
no observable features until they emerge as bound states
a property of potentials with an attractiver 22 tail that reso-
nance poles do not ‘‘connect’’ to bound states. It should a
be mentioned that for potentials with arepulsive r22 tail,
bound states do not necessarily disappear through the c
the potential is weakened and can stay on the physical s
as they move into the lower-halfk plane.

III. A SOLVABLE TWO-CHANNEL MODEL

Low-energy electron-CO2 scattering is characterized b
two prominent features: a virtual state enhancement of
cross section at very low energies and a shape resonance
4 eV. Ab initio studies carried out in linear geometry ha
confirmed that these features are associated with the2Sg

1

and 2Pu components of the wave function, respectively.
linear geometry, these features are not coupled and ca
studied independently. When the target molecule is bent,
virtual and resonance states are affected by additional
tures associated with the symmetry breaking. In particu
bending induces a dipole moment in the target. To stu
these effects, we employ a simple two-channel extensio
the previous model. We look at a two-channel potential sc
tering problem with degenerate energy thresholds that
cludes onlys andp waves, which are the leading terms in
single-center expansion of the2Sg

1 and 2Pu components of
the scattering wave function; the two channels are coup

FIG. 3. Trajectories of theS-matrix poles in the complex mo
mentum plane for the potential scattering problem discussed in
The depth of the square-well and the strength of ther 22 tail are
varied according to the paths designated in Fig. 2. Note that
curve on the right is on the physical sheet, while that on the le
on the first clockwise~unphysical! sheet. The mirror trajectories o
the physical and first counterclockwise sheets are not shown
ease of visualization. The inset shows the behavior near the o
in finer detail. All quantities are in atomic units.
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by a dipole interaction. The coupled-channel Schro¨dinger
equation we consider is

S 2
1

2

d2

dr2
1V0~r !2k2/2 C~r !

C~r ! 2
1

2

d2

dr2
1V1~r !2k2/2

D
3S c0~r !

c1~r !
D 50, ~18!

where

C~r ! ;
r→`

d/r 2 ~19!

and

V1~r ! ;
r→`

1/r 2. ~20!

For a particular choice of potentials, we can again get
analytic solution. To this end, we define:

V0~r !5H 2V0 , r ,r 0

0, r>r 0 ,
~21!

V1~r !5H 2V1 , r ,r 0

1

r 2
, r>r 0 ,

~22!

C~r !5H 0, r ,r 0

d

r 2
, r>r 0 .

~23!

For r ,r 0, we have two uncoupled square wells, so the t
linearly independent solution vectors are

C}S sin~K0r ! 0

0 sin~K1r !
D[C0 , r ,r 0 ~24!

with K (0,1)5Ak212V(0,1). For r>r 0, the potential matrix is

V5~1/r 2!S 0 d

d 1D[~1/r 2!D, r>r 0 . ~25!

Let U be the unitary matrix that diagonalizesD:

U21DU5S l0 0

0 l1
D . ~26!

The eigenvalues are given by

xt.

e
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l05
12~114d2!1/2

2
[L0~L011!/2,

l15
11~114d2!1/2

2
[L1~L111!/2. ~27!

We can therefore express the wave function beyondr 0 as

C}UF S hL0

2 ~kr ! 0

0 hL1

2 ~kr !D
2S hL0

1 ~kr ! 0

0 hL1

1 ~kr !D SLG
[U@hL

2~r !2hL
1~r !SL#, r>r 0 , ~28!

whereSL is theS matrix in the ‘‘dipole’’ basis. By requiring
continuity of the logarithmic derivative ofC at r 0, we get an
expression forSL:

SL5F d

dr
hL

1~r 0!2U21S d

dr
C0DC0

21UhL
1~r 0!G21

3F d

dr
hL

2~r 0!2U21S d

dr
C0DC0

21UhL
2~r 0!G . ~29!

Finally, to obtain the physicalS matrix, S0, in terms ofSL,
we compute

S05eilp/2UeiL p/2SLeiL p/2U21eilp/2, ~30!

where, in an obvious notation,eiL p/2 andeilp/2 are diagonal
matrices with eigenvalues (eiL 0p/2,eiL 1p/2) and (1,i ), respec-
tively. We see from Eq.~29! that the poles of theSmatrix are
given by the condition:

detF d

dr
hL

1~r 0!2U21S d

dr
C0DC0

21UhL
1~r 0!G50. ~31!

The model can obviously be extended to include any num
of channels and is the generalization of the one-chan
model considered in the previous section. The key elem
which makes for an analytically solvable model is the tru
cation of both the diagonal centrifugal terms and the c
pling terms in the interior region.

With this two-channel model, we can study a problem t
mimics the essential features found in the case of CO2: we
choose the potential parameters so that, in the absence o
channel-coupling, the potentialV0 will support a virtual state
andV1 will show a resonance. These features can be tu
independently by varying the two well depths. Since bend
coupless andp waves and produces an electron-dipole int
action, it can be modeled by varying the strength of the o
diagonal coupling. Stretching, on the other hand, could
modeled by changing the two well depths. In principle,
have three parameters that can be independently varie
our previousab initio calculations@7# we found a strong
dependence of the shape resonance on symmetric stretch
tion and less so in the case of the virtual state. We w
therefore limit ourselves to an independent investigation
only two parameters, the well depthV1 in the p-wave chan-
nel and the channel couplingd.
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IV. TWO-CHANNEL MODEL WITH SHORT-RANGE
COUPLING

It is instructive to first look at a case where there is on
short-range coupling to get a basic picture of what can h
pen and then see how that picture is modified in the prese
of dipole coupling. If we replace the coupling term in E
~23! with

C~r !5H d, r ,r 0

0, r>r 0
~32!

we can again solve the problem analytically along the lin
outlined in the previous section.

A moment’s reflection makes it clear what to expect.
the well depthV1 is increased, in the presence of a ve
weak coupling, then the resonance will move toward the o
gin on its path to becoming a bound state. However, beca
of the finite coupling to thes-wave channel, the resonanc
can always escape through thes-wave channel even at th
point at which it is about to become a bound state. Thus
point at which the resonance collides with its image from
lower left quadrant to form a double pole will lie on th
negative imaginaryk axis, just below the origin, i.e., the
resonance approaches the origin as a virtual state. The w
coupling will also have an effect on the virtual state in t
s-wave channel. It moves a bit closer to the origin, reflect
the fact that it can detour, because of the coupling, to
p-wave channel before leaking to thes-wave continuum. As
the well depthV1 is further increased, the initial resonanc
goes on to become a bound state while its image mo
down the imaginary axis, eventually colliding with the qua
stationary initial virtual state. The latter two then split an
move away from the axis in the lower half plane. This case
depicted in the top panel of Fig. 4.

If the coupling is increased, then the effects describ
above become more pronounced: the point at which the r
nance collides with its image moves further down the ima
nary axis and the virtual state moves further up. For so
critical value of the initial coupling, the point at which th
resonance collides with its image as the well is deepened
be made to coincide with the point at which they both tou
the trajectory of the initial virtual state: i.e., a triple pole ca
be formed. Because of the symmetry that must exist betw
the left- and right-half planes, the triple pole must, of nec
sity, lie on the imaginary axis. This case is depicted in
center panel of Fig. 4.

Finally, for coupling strengths greater than this critic
value, it is the initial virtual state that moves up the origin
become bound, while the resonance and its image pole
turned away before they reach the imaginary axis and m
off into the lower half of the complexk plane. That case is
depicted in the bottom panel of Fig. 4.

But there is now seemingly a paradox. For the case
picted in Fig. 4~bottom!, it is the virtual state that becomes
bound state. It will remain bound if, from the final state, w
then reduce the coupling to the value used in Fig. 4~top!.
Conversely, for the case depicted in Fig. 4~top!, it is the
resonance state that becomes bound; it will remain boun
0-6
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from the final state, the coupling is then increased to
value used in the bottom panel. It appears that the final s
somehow depends on the path used to reach it, i.e., it is
uniquely determined by the potential parameters.

To make this picture clearer, we can, as we did in the
channel case, plot the trajectories of the initial resonance
virtual states along a closed path. The trajectories are plo
in Fig. 5. Along the first segment of the path~from i to a),
the virtual state moves slightly up the imaginary axis, wh
the resonance and its image pole begin to approach
other in the lower halfk plane. Froma to b, where the well
depth is increased, the virtual state moves up the imagin
axis to become bound, while the resonance and its image
first attracted and then turned away from each other in

FIG. 4. S-matrix pole trajectories in the complex momentu
plane for a two-channel square well with short-range coupling.
well depth V0 is fixed at 0.75 bohr and the well depth,V1, is
increased from an initial value~i! of 1.8 bohr, in which there is no
bound state, to a final value~f! of 2.4 bohr, which produces a boun
state. The three panels correspond, from top to bottom, to incre
coupling between the channels. The center panel shows the tr
tory for a value of coupling parameter that produces an exact
geneneracy of the resonance and virtual states. All quantities a
atomic units.
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lower half plane. As the coupling strength is reduced fromb
to c, the bound state moves slightly closer to the orig
while the resonance and its image pole again move tow
each other. Finally, fromc to i, where the well depth is re
duced to its initial value, the bound state further desce
while the resonance and its image collide on the nega
imaginary axis; one pole then moves down to the posit
originally occupied by the virtual state, while the oth
moves up the axis. It collides with the decending pole j
below the origin and the two poles move away from t
imaginary axis to the positions originally occupied by t
resonance poles. Thus after one loop around the closed
the resonance and virtual states have exchanged places

The associated wave functions must therefore differ o
by a phase factor from those of the corresponding ini
states. It takes two complete loops around the closed p
before both poles return to their initial positions. We al
note that the particular values of well depth and coupl
which produce the triple degeneracy discussed above m
lie inside the closed loop we have constructed that produ
the trajectories shown in Fig. 5. The implication, of course
that the point of triple degeneracy, shown in Fig. 4~center!,
corresponds to a conical intersection on the resonance
face and that there is a Berry phase associated with
closed path that encircles this point. This will be further d
cussed below.

e

ed
ec-
e-
in

FIG. 5. Two-channel square well with short-range coupling. T
jectories of theS-matrix poles in the complexk plane when the well
depth,V1, and coupling strength,d, are varied around the close
loop shown in the top panel.V1 is varied between 1.8 and 2.4 an
d is varied between 0.0 and 0.295. The well depthV0 is fixed at
0.75. All quantities are in atomic units.
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V. TWO-CHANNEL MODEL WITH DIPOLE COUPLING

With long-range dipole coupling between the channe
the S matrix is again a multivalued function in the plane
complex momentum. Equation~31! shows that, just as in the
single-channel case, the poles of theSmatrix, because of the
properties ofhL

1(z), will be found in symmetric pairs on
different Riemann sheets. It is significant that the effect
angular momenta,L0 andL1, determined from the eigenva
ues given by Eq.~27!, are independent of the sign of th
coupling strengthd. In particular,L0 will decreasefrom zero
as the dipole coupling is first turned on. This, in turn, dicta
that a bound state will move off the physical sheet as the w
depth is decreased in the presence of a finite dipole coup
With the insight gained from looking at the effects of a p
tential with an attractiver 22 tail in the single-channel case
as well as the two-channel case with short-range coup
just considered, we can finally approach the dipole-coup
two-channel problem.

Once again, we study a case where, in the absence o
coupling, the initial potential well depths are chosen to p
duce a resonance and a virtual state. We then choose a
small, but finite, value for the initial coupling so that we c
unambiguously track the identity of the poles on the vario
Riemann sheets. Figure 6 shows the pole trajectories tha
produced as the potential parametersV1 and d are varied
around a closed loop of the kind used to produce Fig. 5 in
case of short-range coupling. On the physical sheet, the r
nance pole and its image~not shown! trace closed paths in
the lower-half k plane after a single loop in the two
parameter (V1 ,d) space. Bound states are never formed.
the unphysical sheets, we get a different picture. The tra
tory in the third quadrant of the first clockwise sheet~and its
image in the right counterclockwise sheet! shows the same
kind of behavior we saw in the two-channel, short-range

FIG. 6. Two-channel square well with dipole coupling. Traje
tories of theS-matrix poles in the complexk plane when the well
depth,V1, and the coupling strength,d, are varied around a close
loop of the type shown in Fig. 5. The well depthV0 is fixed at 0.75
and V1 is varied between 1.8 and 2.4. The coupling paramete
varied between 0.05 and 0.195. The curve on the right is on
physical sheet, while that on the left is on the first clockwise~un-
physical! sheet. There are mirror trajectories in the lower left phy
cal and lower right first counterclockwise sheets, respectiv
which are not shown for ease of visualization. The inset shows
behavior near the origin in finer detail. All quantities are in atom
units.
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ample: in one complete cycle, the resonance, after evolv
to become a bound state along part of its trajectory, goes
to exchange places with the initial virtual state which l
originally not on the negative imaginary axis, but just off
It takes another full cycle to get both poles back to th
original positions. This implies that there is again a coni
intersection that the trajectories have encircled, but with
pole channel-coupling, the conical intersection is now
double pole of theS matrix on the unphysical Rieman
sheets and corresponds to a degeneracy of the virtual
and the resonance.

VI. BERRY PHASE

Since the appearance of Berry’s@23# much celebrated ar
ticle, there have been many papers dealing with the geom
ric phases accumulated by the wave functions for syste
that are adiabatically transported about a closed circui
some physical parameter space. Much of this literature
focused on phenomena connected with accidentally dege
ate eigenvalues in systems described by Hermitian Ham
nians, but more recently, several authors have shown
degeneracies are possible in the case of resonance state
have complex energies. Pontet al. @24#, for example, have
studied geometric phases in multiphoton ionization, illustr
ing how the autoionizing states of an atom in a bichroma
field circumnavigate a degeneracy when physical parame
of the laser field are varied. Kylstra and Joachain@25# have
published a related study of the double poles of theSmatrix
that can occur in laser-assisted electron-atom collisions w
Vanroose@26# has investigated inducing degeneracy betwe
two resonant states in a double well structure.

In the present case, we are considering a Hamiltonian
depends on two real parameters,n and l, which are being
varied. We assume that for a particular choice (n0 ,l0), there
are two resonant scattering states,ca andcb with complex
energiesEa andEb that satisfy

@H~n0 ,l0!2Ea#ca50,

@H~n0 ,l0!2Eb#cb50. ~33!

The resonance states are assumed to be normalized by a
able analytic continuation procedure, such as regulariza
or contour integration@27# and the orthogonality relation be
tween the two states is defined without complex conjugati

E cacb50. ~34!

For small changes in the parameters aboutn0 andl0, we can
write the Hamiltonian as

H~n,l!5H~n0 ,l0!1
]H

]n U
n0

dn1
]H

]l U
l0

dl[H01H8.

~35!

If we further assume that the resonance states are clos
being degenerate, then in the vicinity of the degenerac
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e

-
y,
e
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solution c(n,l) corresponding to the altered Hamiltonia
can be written as a linear combination ofca andcb ,

c~n,l!5A~n,l!ca1B~n,l!cb , ~36!

and the equation forc(n,l) now becomes a 232 complex
symmetric matrix equation that determines the coefficientA
andB:

S Ea2E1^cauH8uca& ^cauH8ucb&

^cauH8ucb& Eb2E1^cbuH8ucb&
D

3S A

BD 50. ~37!

If we shift the energy scale to measureE from the centroid of
the diagonal terms,

E→E2
Ea1^cauH8uca&1Eb1^cbuH8uca&1Eb

2
,

~38!

then the 232 matrix in Eq.~37! can be rewritten as

Z~n,l!sz1X~n,l!sx2EI , ~39!

with

sx5S 0 1

1 0D and sz5S 21 0

0 1D , ~40!

and the eigenvalues are therefore given by

E656AZ21X2. ~41!

The eigenvalues are degenerate when either

Z~n,l!1 iX~n,l!50 ~42!

or

Z~n,l!2 iX~n,l!50. ~43!

SinceZ andX are complex numbers, the real and imagina
parts of Eqs.~42! or ~43! must both be satisfied, whic
means bothn andl must be varied to produce a degenera
In contrast, for bound states described by a Hermitian Ham
tonian, it is generally necessary to vary three parameter
make a degeneracy occur accidentally.

SupposeH(n,l) has a degeneracy for the parametersnd
andld and we varyn andl in a loop around these value
such that

Z2~n,l!1X2~n,l!5r2, ~44!

wherer is a constant complex number. We can then expr
Z andX in terms of a real angleu as

Z~n,l!5r cosu, ~45!

X~n,l!5r sinu. ~46!
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From Eq.~41!, the two eigenvalues are nowE656r and
the coefficientsA6 andB6 that satisfy Eq.~37! fit the equa-
tion

S r cosu2~1 !r r sinu

r sinu 2r sinu2~1 !r
D S A6~u!

B6~u!
D 50.

~47!

The normalized solutions of Eq.~47! are

S A1~u!

B1~u!
D 5S cos~u/2!

sin~u/2!
D ,

S A1~u!

B1~u!
D 5S 2sin~u/2!

cos~u/2!
D . ~48!

Thus, after one complete loop in parameter spaceu
P@0,2p#, the eigenstates undergo a change in sign. Ano
loop,uP@2p,4p#, is necessary to arrive back in the origin
position. This is precisely the behavior followed by the v
tual and resonance state trajectories discussed in the pre
section.

VII. DISCUSSION

We have attempted here to gain further insight in
electron-CO2 collision dynamics with simple models that in
corporate key aspects of the physical problem. A tw
channel model withs- andp-wave square wells enables us
study how virtual states and shape resonances interact u
the influence of a long-ranger 22 interaction that mimics the
effects of bending in the physical system. The picture t
emerges is that a bound state, which evolves smoothly
become a resonance in the linearly constrained system,
haves in a qualitatively different fashion when the target
bent. The dipole field changes the analytic structure of thS
matrix, making it a multivalued function. Bound-states, ho
ever, do not simply vanish in the presence of a dipolar fi
as the binding potentials are weakened, as was suggest
the early work of Domcke and Cederbaum@28#. They are
instead forced onto an unphysical Riemann sheet. This
ture is entirely consistent with the behavior of the virtu
state observed by Morgan~see Fig. 2 of Ref.@1#! and also
explains the resonance behavior observed by Rescignoet al.
@7#. Our model also shows that ‘‘resonance’’ and ‘‘virtua
states can undergo an accidental degeneracy and form a
cal intersection. For short-range coupling, this degener
would occur on the negative imaginaryk axis, but with di-
pole coupling, it occurs on higher Riemann sheets. We
lieve that our model provides an explanation of how t
resonance and virtual states in the electron-CO2 system may
be connected.

Resonances are ubiquitous in low-energy electron co
sions with polyatomic molecules and can provide efficie
pathways for channeling electronic energy into nuclear
grees of freedom. It is therefore important to understand h
the topology of molecular negative ion resonance surfa
can impact processes such as resonant vibrational excita
or dissociative electron attachment. We hope that this st
will lead to further work in this area.
0-9



.S
ia
iv

3-
as

ce,

W. VANROOSE, C. W. MCCURDY, AND T. N. RESCIGNO PHYSICAL REVIEW A66, 032720 ~2002!
ACKNOWLEDGMENTS

This work was performed under the auspices of the U
Department of Energy by the University of Californ
Lawrence Berkeley National Laboratory and Lawrence L
y,

v.

W

y

t,

03272
.

-

ermore National Laboratory under Contract Nos. DE-AC0
76F00098 and W-7405-Eng-48, respectively. The work w
supported by the U.S. DOE Office of Basic Energy Scien
Division of Chemical Sciences.
n-

,

. A
@1# L.A. Morgan, Phys. Rev. Lett.80, 1873~1998!.
@2# M.A. Morrison, Phys. Rev. A25, 1445~1982!.
@3# T.N. Rescigno, D.A. Byrum, W.A. Isaacs, and C.W. McCurd

Phys. Rev. A60, 2186~1999!.
@4# C.-H. Lee, C. Winstead, and V. McKoy, J. Chem. Phys.111,

5056 ~1999!.
@5# D. Field, N.C. Jones, S.L. Lunt, and J.-P. Ziesel, Phys. Re

64, 022708~2001!.
@6# M. Allan, Phys. Rev. Lett.87, 033201~2001!.
@7# T.N. Rescigno, W.A. Isaacs, A.E. Orel, H.-D. Meyer, and C.

McCurdy, Phys. Rev. A65, 032716~2002!.
@8# D.G. Hopper, Chem. Phys.53, 85 ~1980!.
@9# G.L. Gutsev, R.J. Bartlett, and R.N. Compton, J. Chem. Ph

108, 6756~1998!.
@10# B.L. Whitten and N.F. Lane, Phys. Rev. A26, 3170~1982!.
@11# H. Estrada and W. Domcke, J. Phys. B18, 4469~1985!.
@12# S. Mazevet, M.A. Morrison, L.A. Morgan, and R.K. Nesbe

Phys. Rev. A64, 040701~R! ~2001!.
@13# A. Herzenberg and B.C. Saha, J. Phys. B16, 591 ~1983!.
@14# A. Herzenberg, J. Phys. B17, 4213~1984!.
@15# H. Estrada and W. Domcke, J. Phys. B17, 279 ~1984!.
A

.

s.

@16# M.H. Mittleman and R.E. von Holdt, Phys. Rev.140, A726
~1965!.

@17# O.H. Crawford, Proc. Phys. Soc. London91, 279 ~1967!.
@18# J.R. Taylor,Scattering Theory: The Quantum Theory on No

relativistic Collisions~Wiley, New York, 1972!.
@19# R.G. Newton,Scattering Theory of Particles and Waves, 2nd

ed. ~Springer-Verlag, New York, 1982!.
@20# R. Fandreyer and P.G. Burke, J. Phys. B29, 339 ~1996!.
@21# Handbook of Mathematical Functions, edited by M.

Abramowitz and I.A. Stegun~National Bureau of Standards
Washington, D.C., 1964!.

@22# Higher Transcendental Functions, edited by A. Erdelyi
~McGraw-Hill, New York, 1953!.

@23# M.V. Berry, Proc. R. Soc. London, Ser. A392, 45 ~1984!.
@24# R.S.M. Pont, P.M. Potvliege, and P.H.G. Smith, Phys. Rev

46, 555 ~1992!.
@25# N.J. Kylstra and C.J. Joachain, Phys. Rev. A57, 412 ~1998!.
@26# W. Vanroose, Phys. Rev. A64, 062708~2001!.
@27# T.N. Rescigno and C.W. McCurdy, Phys. Rev. A34, 1882

~1986!.
@28# W. Domcke and L.S. Cederbaum, J. Phys. B14, 149 ~1980!.
0-10


