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Recentab initio calculations of low-energy electron-GGcattering[Rescignoet al, Phys. Rev. A65,
032716(2002] are interpreted using an analytically solvable model. The model, which treats two partial-wave
Hamiltonians with different values coupled by a long-rangd/¢?) interaction, is a generalization of similar
single-channel models that have previously been used to interpret the low-energy behavior of electron scatter-
ing by polar diatomic molecules. The present model is used to track the pole trajectories of both resonances and
virtual states, both of which figure prominently in low-energy electron,8€attering, in the plane of complex
momentum. The connection between resonant and virtual states is found to display a different topology in the
case of a polyatomic molecule than it does in diatomic molecules. In a polyatomic molecule, these states may
have a conical intersection and consequently acquire a Berry phase along closed paths in two-dimensional
vibrational motion. The analytic behavior of tlgematrix is further modified by the presence of a geometry-
dependent dipole moment.
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[. INTRODUCTION work of Rescigncet al.[7], who extended their earlier fixed-
nuclei calculation$3] to include the effects of both symmet-
There has been considerable activity over the past fewic stretch and bending and carried out a multidimensional
years, both theoretical and experimental, on the subject dfeatment of the nuclear dynamics on a complex local reso-
low-energy electron-C@collisions. The principal features of nance surface constructed from the fixed-nuclei results. Nev-
the low-energy cross sections, namely the dramatic rise iertheless, there are features of the measured cross sections,
the total cross section below 2 eV and the resonance featuseich as subtle interference structures in the resonant cross
near 3.8 eV, have been known for many years and have beeections and the strikingly different behavior of the excita-
the subject of many theoretical investigations. However, theéion functions for the individual Fermi levels on the low
ability of first-principles theory to quantitatively reproduce energy side of the resonance region, that raise additional
and explain features of the observed cross sections at loguestions and leave ample room for future theoretical work.
energy is a relatively recent development. For example, iffhere are also interesting questions that arise from an exami-
was not until 1998 that amb initio study was performed nation of theab initio results which would be difficult to
which was able to conclusively show that the low-energy riseaddress with large-scale first-principles calculations. For this
in the elastic cross was the result of a virtual sfdip al- reason, we present calculations here on several model prob-
though this fact had been suggested by earlier model studiégms whose analytic structure can be examined in detail and
[2]. Only recently hasab initio theory correctly accounted which are expected to reflect key aspects of the true physical
for both the low-energy behavior and the resonance peaRroblem. The purpose of this exercise is to gain a deeper
[3,4] or been able to achieve quantitatively correct differen-insight into the nuclear dynamics of electron-C€attering
tial cross sections below 6 e\3]. which will hopefully suggest possible directions for further
There have also been advances on the experimental frorab initio work.
Low-energy electron beams produced by atomic photoion- It is well known that the C@molecule, in its equilibrium
ization have been used to perform scattering experimentgeometrycannotbind an additional electron to form a stable
down to 10 meV, giving clear experimental evidence for thenegative ion. We find instead a virtual statezdfg symme-
CO, virtual state[5]. The unprecedented energy resolutiontry and a?Il, resonance state. It is also well knoy®,9]
(7 meV) recently achieved by Allafié] with electron spec- that CO, becomes electronically bound, fl\; symmetry, if
trometers allowed him to resolve electron energy-loss peakhe molecule is either stretched or bent sufficiently. An ex-
for nearly degenerate vibrational levels in £8nd to make amination of the fixed-nuclei resonance parameters for the
separate measurements of the excitation cross sections féfl, negative ion state shows that as the molecule is
each member of the lowest Fermi dyad with high accuracystretched, in linear geometry, the resonance width decreases
The essential features of these resonant vibrational excitatiamonotonically as its energy, relative to neutral £QGp-
cross sections were accurately reproduced in the most receptoaches zero, i.e., the resonance evolves smoothly to be-
come a bound state. Once bound, we can further track the ion
energy, defined now as the lowest eigenvalue of the fixed-

*Electronic address: wivanroose@Ibl.gov nuclei Hamiltonian for the anion, to its minumum by bend-
"Electronic address: cwmccurdy@Ibl.gov ing the molecule. So we would say that tha, anion cor-
*Electronic address: tnr@IInl.gov relates with the’II,, shape resonance.
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But what if we start by bending the molecule first? The Il. POTENTIAL SCATTERING
fixed-nuclei calculations show that the resonance rapidly

. ) : Our objective is to study how the resonance states of a
broadens as the molecule is bent; the practical CONSEqUENEEs acule with more than one nuclear degree of freedom be-

of this behavior is that the resonance gets washed out and h@éme bound as the nuclear geometry is varied. Before tack-

no visible effect on the fixed-nuclei cross sect_io_n for anglesﬁng that problem, we first consider the simpler question of

greater than about 15°. However, for sufficiently largeyacking the movement of a resonance state, defined here as a

angles(greater than 30°) the fixed-nuclei Hamiltonion againpole of the S matrix, in a single-channel radial scattering

shows a stable negative ion. Does the ion again connegroblem when some potential parameter is varied. The wave

smoothly to the resonance or is it perhaps ﬂieg virtual  function is a solution of the Schadinger equation H(r)

state that correlates with the bound negative ion? And how k?/2](k,r)=0 with the Hamiltonian defined as

can the correlation diagram depend on the path one takes

from the initial linear geometry to the final geometry that 1

characterizes the bound negative ion? Our eadrinitio H=— Edzldr2+V(r), 2

study[7] could not address this question. The dynamics in

those calculations are completely insensitive to the topology

of the resonance surface where the width is large, since the

wave packet rapidly decays in such regions. V(r)y=4 I(1+1) . (2
For this reason, we investigate here a model problem in or2 r=ro, | integer,

which the interaction between a resonance and a virtual state

can be examined in detail. We will see that the nature of the . . .
: . . whereV(r) is an attractive short-ranged potential. Note that
coupling that produces an interaction between the two statetﬁe centrifugal term in Eq(2) has been truncated a to

has a profound effect on the pole trajectories. We contrast thgvoid an unphysical singularity a&=0 in the case of nonin-

behavior one finds when_the °°“'°'"?9 Is of short-range Witr}egerl values which we allow later in this discussion. The
the case of long-range dipole coupling that more alccurate|¥runcation of the centrifugal potential in the interior of the

reflects the situation that pertains to bent CONe empha- interaction does not affect the qualitative behavior of the
size that it is not our intention here to present a model Wi”boles of theS matrix, which are solely determined by the
parameters that are tuned to reproduce either our eafier asymptotic behavior of the effective potential. With these
initio [3,7] or measured cross sections. Indeed, the behaviafefinitions,S(k) is defined by the asymptotic behavior of the
of the electron-CQ cross sections below 1 eV collision en- scattering wave function with respect ®wave Ricatti-
ergy has been quantitatively reproduced in earlier modeHankel functions:
studies[10—12. Our purpose here is to focus on the topol-
ogy of the electronic surfaces that produce the essential fea- Pk,r) ~ e Kr—g(k)e'k", 3
tures in the observed cross sections, to point out the signifi- r—oo
cant modificationgand to clarify some confusing points in
the literatur¢ caused by a geometry-dependent electronThe behavior of the poles &(k) for such a problem is well
dipole interaction, and to suggest a connection between thenown and is illustrated in Fig. 1. Suppose that the initial
virtual state and the resonance state that has not previoushalue of\ is chosen so that there is a resonance, defined as a
been proposed. These considerations may be relevant pole of S(k) in the lower halfk plane. The symmetry re-
other collision systems and thus have implications that g@uirement
beyond the issue of electron collisions with £O

The outline of this paper is as follows. We begin in Sec. Il S(—k*)=S(k)* 4
with some remarks about a previously studied model—a
square well plus a cutoff dipole potential—that has oftenimplies that, for Rek)>0, the poles must occur in pairs,
been used to explain the physics of electron scattering bgymmetrically placed with respect to the imagin&rgxis. If
polar molecule§13—15. We review some important differ- the potential well is deepened by increasing the poles
ences between the analytic structure of that problem and th@ove toward the negative imaginakyaxis and eventually
case of a short-range potential. In Sec. Il we introduce arcollide, forming a double pole. The point of intersection is
analytically solvable two-channel generalization of thedetermined by the value o¢f For|=0, the poles collide on
model, motivated by a consideration of a single-center exthe negative imaginary axis; as is further increased, one
pansion of the physical wave function. In Secs. IV and V,pole moves up the axis, where it is known as a virtual state,
respectively, we examine the behavior of the poles ofShe and eventually becomes a bound state when it passes through
matrix that is seen with either short-ranged or dipole couthe origin into the upper haK plane. The other pole moves
pling between the channels. In Sec. VI we discuss the case down the axis on a trajectory whose ultimate fate depends on
a degeneracy in the virtual state and resonance trajectoridse detailed properties of the short-ranged potential. IFor
which can produce a Berry phase in the resonance wave 0, a virtual state is never formed, as the resonance pole
function. We conclude with a brief discussion. We employcollides with its image pole @&=0 and then moves on to
atomic units throughout the paper. become a bound state.

)\Vo(r), r<rg
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Im(k) consideration of electron scattering by a fixed point-dipole
potential [16]. If the short-range potential in Ed5) is a
square well,Vy(r)=—V,, the solution can be written in
closed form.(The conclusions we will draw here are not

Re(k) limited by our choice of a square-well for the short-range

A potential. We have considered other choicesMg{r), such

as an exponential or a Gaussian well, which require a purely
P numerical treatment, and the behaviorSfk) we found was
qualitatively unchanged.
Y Since the wave function must be regularat0, (k,r)
must be proportional to sikf¢) for r<ry, where K
Im(k) =K%+ 2V,. The object we seek is ttg@matrix, so we write
* y(k,r), for r=rg, as a linear combination of incoming and

outgoing Ricatti-Hankel functions:

Re(k) g (k1) =Ag(k)h, (kr)—Ay(k)h{ (kr) (6)

/W \ with the effective angular momenturh, defined by

L(L+1)/2=d. (7)

For our purposes here, it will suffice to restrict our attention
to values ofd less than3, the so-called critical valugl7];

for 0<d<3, L is real. We follow Taylof18] in defining the
Ricatti-Hankel functions as

FIG. 1. The trajectories of the polegk), as a function of
increasing well depth, for the single-channel potential model dis- Z
B ) T

h' " (z)==i \/7H,1;2(z)

cussed in text. Upper pandk=0; lower panell=1. )
The situation just described is significantly altered i$ )
allowed to take on noninteger values. Specifically, we conWith
sider the case where
v=L+1/2=(3—2d)? 9
—Vo(r), r<rg
so that they have the asymptotic normalization
vin=y d (5) g ymp
2 ZTed=l hi~(z)~e*i@ L), (10)

This potential has been investigated previously as a modéNith these definitions, we see, by comparing Eg). with
for low-energy electron scattering by polar molecul#8—  Egs.(3) and(10), that S(k) is given bye "="A,(k)/A;(K).
15|, since it is related to the radial scattering problem assoBy requiring continuity of the logarithmic derivative of the
ciated with the nodeless angular mode that emerges from wave function at =r,, we arrive at an expression f&k):

S(k)—e_i'-”kh[(kroy —Kcot(Kro)h (kro) _e_”_w[(lﬂ' 1) —Krgcot(Kro) Jh (kro) —kroh 4 (kro) 11
kh(" (krg)’ =K cot(Kro)h"(kro) [(L+1)—KrgcotKro)lh/ (krg) —kroh", y(krg)
|
For nonintegel, the Hankel function$,”~(z) are mul- Unfortunately, the standard definition for Bessel functions

tivalued functions and have a branch pointzat0. If L is  with nonintegerL [21] places the branch cut along the nega-
irrational, then there will be an infinite number of Riemanntive real axis, and this is the convention followed in most of
sheets. The placement of the branch cut is critical to anghe commonly used computer library routines for computing
discussion of the poles of t@matrix. If we wish to estab- Bessel functions. If one uses routines that follow this stan-
lish symmetry relations fo8(k) analogous to Eq(4), then  dard convention, then one must use analytic continuation to
the branch cut must be placed along the negatiaginary ~ redefine the Hankel functions in the third quadrant so that
axis[19]. In previous work{14,20, this was done by using they are continuous across the negative real [arisasuring
power series expansions of the Bessel functions about thgositive argg) counterclockwise from the positive real
origin. axis]. With this convention, thehysical sheeis defined by
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—im<arg@) <3, with the branch along the negative L

imaginary axis. TheS matrix will have different values on

each Riemann sheet; wheris an integer, the discontinuities

across the branch cut vanish ag(k) is single-valued. _0.12
To establish symmetry relationships betweik) in the f

third and fourth quadrants of the physical sheet, we show A

explicitly how to move the branch cut to the negative imagi- B

nary axis. To do this, we start within the fourth quadrant

and use a variant of the Schwartz reflection princfjalg] to t A

obtain: 00 > 1L4 Yo

Hi(z)=H%(z*)*, (12)

which relates the Hankel functions in the fourth quadrant to  FIG. 2. The parameters of the one-channel model discussed in
those in the first quadrant. To complete the exercise, we ned@t, namely the depth of the square wah, and the effective-
to further rotatez by = to move it into the third quadrant. value, are changed along two different paths. Both paths start at

This can be done by using the so-called circuit relations foRNd end af. On path A, the depth of the square well is first in-
the Hankel function$21,22: creased and theh is decreased. On path B, the order is reversed.

All quantities are in atomic units.
: 1 jmay _ ; 1
sin(vmH, (&™) sin(m=1)ym]H,(2) mann sheets. Thus, the symmetry relationStk) expressed
—e""sinmva)H%(z), (13  in Eq.(17) is similarly mirrored between the higher clock-
wise and counterclockwise Riemann sheets.
sin( vw)Hﬁ(zém”):sir[(m+ 1)v7-r]H,2,(z) We are now in a position to discuss the trajectories of the
, poles ofS(k) for this model problem. In particular, we want
+e""sinmpvm)HY(2). (14 to see how the presence of a weak potential tail causes
o ) i the pole trajectories to change from the behavior typically
Combining Egs.(12) and (13) with m=1, and using the eypected with short-ranged potentials. This line of analysis
definition in Eq.(8), we can easily derive the relation: has been given previous[il4,15,19, but it is important to
T T review it here before going on to a multichannel generaliza-
hi(e"z)=e " "h( (2)*, (15 tion of this model. We start with the radial square well with
a ranger,, of 1 Bohr and a depthV,, of 9.0 Hartree and an
infinitesimally small(but finite) dipole tail, i.e.,L~0. With
this choice, there are a pair of complex poles near
k=+1-i1.75 on all Riemann sheets. If the well depth is
increased to 11.4 Hartree ahdis decreased to-0.12, the
. - otential will support a single, weakly bound state. Now con-
, Thg symme?ry relation foh, (kr) analagous .to E_c{.ls) gider two differgﬁt paths ?or reachilz/g the final state, which
is a bit more involved. By using Eq14), again withm 5.0 genicted in Fig. 2. First, we increase the potential well
=1, and Eq.(12), we can derive, after some algebra, theqm 9.0 to 11.4 Hartree with ~0 and then decreadeto
relation —0.12. We designate this as path A. Alternatively, we can
— Al Tk — Al T (% _ 97 i ok first decreasé from 0 to its final value and then deepen the
h (e72%)=€""h ()" —2i sinLmh (2)*. (16 potential well. We designate this as path B.
Equations(15) and(16) can be used to derive the following = Figure 3 shows the pole trajectories, for paths Aand B, on

remarkable symmeiry relation f&(k) on the physical sheet: both the physical sheet and the first Riemann sheet. For ease
of visualization, we only plot the trajectories on the right half

S(k)+etT=5(—k*)* +e L7 (17 of the physical sheet and the left half of the first clockwise
sheet in Fig. 3; the mirror image trajectories on the left half
which reduces to the more familiar E¢4) whenL is an  of the physical sheet and the right half of the first counter-
integer. clockwise sheet are not shown. Along the first portion of path
We can also derive symmetry relations f8(k) on other A, the poles move from their initial positions toward the
Riemann sheets. These are reached from the physical shepggative imaginary axis on trajectories that are virtually
following the labeling conventions of Herzenbdrtg], by  identical on both sheets. However, sincis infinitesimal but
rotating z through the branch cut in either a clockwise finite, the trajectories do not quite hit the axis. Moreover, we
[arg(z) <— /2] or counterclockwis¢arg(z)>3/2] direc- can see clearly that it is the trajectories on the second sheet
tion. By using the circuit relations with even valuesmfit  that move up along the negative imaginary axis toward the
is possible to show that Eg€l5) and(16) establish a general origin, while those on the physical sheet travel downward.
relationship between the Hankel functions evaluated in th&henL is then decreased, the poles on the physical sheet
right-half planes of theclockwiseRiemann sheets and the move further away from the negative imaginary axis while
left-half planes of the correspondirgpunterclockwiseRie-  those on the unphysical sheets follow quasi-parabolic paths

which properly defines,” in the third (or second quadrant
of the physical sheet in terms bf () in the fourth(or first)
guadrant. Equatiofil5), along with Eq.(11), are sufficient to
establish that the poles &(k), on the physical sheet, are
located symmetrically with respect to the imagin&rgxis.
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Im(k) by a dipole interaction. The coupled-channel Sdimger
1 equation we consider is
f
0.5 1 d2 )
0 ; et T2 g Vel kT2 )
-0.5 B 2
1d
A
-1} 2 i C(r) _EF_'—Vl(r)_kz/z
1.5 4 B
- ; tho(T)
7 x( *=o, (18)

-1.5 -1 -0.5 0 0.5 1 1.5 2 (1)

FIG. 3. Trajectories of th&matrix poles in the complex mo- \yhere
mentum plane for the potential scattering problem discussed in text.
The depth of the square-well and the strength of thé tail are c(r) ~ d/r2 (19)
varied according to the paths designated in Fig. 2. Note that the
curve on the right is on the physical sheet, while that on the left is
on the first clockwisdunphysical sheet. The mirror trajectories on
the physical and first counterclockwise sheets are not shown fo"?lnd
ease of visualization. The inset shows the behavior near the origin
in finer detail. All quantities are in atomic units.

r—oo

Vy(r) ~ 1k2. (20

r—oo

into the origin to form the bound state. If we now track the ] ] ) )
resonances on path B, the poles reach the same final po&ior @ particular choice of potentials, we can again get an
tions on paths that do not parallel the imaginary axis. Fronfinalytic solution. To this end, we define:

these plots, it is clear that it is not the poles on the physical

sheet that become bound states as the potential is strengthed, _ Vo, r<ryg
but rather those arriving at the origin from the unphysical Vo(r)= 0, r=rg, (21)
sheets.

It is only the poles that lie in the fourth quadrant of the
physical sheet that can have any visible effect on the cross
sections and hence the poles on unphysical sheets can have Vy(r)= 1 (22)

=V, r<ryg

no observable features until they emerge as bound states. Itis 5 =To
a property of potentials with an attractive ? tail that reso- '
nance poles do not “connect” to bound states. It should also
be mentioned that for potentials with rapulsive r ? tail, 0, r<rg
bound states do not necessarily disappear through the cut as c(r)={ d 23)
the potential is weakened and can stay on the physical sheet —, I=rg.
as they move into the lower-hdlfplane. r?
IIl. A SOLVABLE TWO-CHANNEL MODEL Forr<rg, we have two uncoupled square wells, so the two

o _ linearly independent solution vectors are
Low-energy electron-CQscattering is characterized by

two prominent features: a virtual state enhancement of the sin(Kor) 0
cross section at very low energies and a shape resonance near v ( ,

4 eV. Ab initio studies carried out in linear geometry have 0 sin(Kyr)
confirmed that these features are associated with?

and ?IT, components of the wave function, respecti\;ge]'l?y. InWith Ko 1y= VK=+2V (o 1). Forr=r, the potential matrix is
linear geometry, these features are not coupled and can be
studied independently. When the target molecule is bent, the
virtual and resonance states are affected by additional fea-
tures associated with the symmetry breaking. In particular,
bending induces a dipole moment in the target. To stud
these effects, we employ a simple two-channel extension o
the previous model. We look at a two-channel potential scat- xe 0
tering problem with degenerate energy thresholds that in- UlDU:( 0 ) (26)
cludes onlys andp waves, which are the leading terms in a 0 N

single-center expansion of th?égr and 2I1, components of

the scattering wave function; the two channels are coupled@he eigenvalues are given by

)E\Ifo, r<rg (29

0 d
V=(1/r2)<d 1)5(1/r2)D, r=r,. (25)

et U be the unitary matrix that diagonaliz&s

032720-5



W. VANROOSE, C. W. MCCURDY, AND T. N. RESCIGNO PHYSICAL REVIEW 86, 032720(2002

1— (1+4d2) 12 IV. TWO-CHANNEL MODEL WITH SHORT-RANGE
0= 5 =Lollet1)/2, COUPLING
12 It is instructive to first look at a case where there is only
_ 1+(1+4d9 =Ly(L+1)/2. 27) short-range coupling to get a basic picture of what can hap-
! 2 net pen and then see how that picture is modified in the presence
We can therefore express the wave function beygnds ?;g'\?ﬂﬁ coupling. If we replace the coupling term in Eg.
h (kr) 0
Yol _ d, r<rg
0 h, (kr) -
B C=10 r=rq (32
hi(kn o
— " s we can again solve the problem analytically along the lines
0 hLl(kr) outlined in the previous section.
—ULhD(N—hf (NS, r=r,, 28) A moment's reflection makes it clear what to expect. If

the well depthV, is increased, in the presence of a very

whereS- is the S matrix in the “dipole” basis. By requiring Weak coupling, then the resonance will move toward the ori-
continuity of the logarithmic derivative oF atr,, we getan gin on its path to becoming a bound state. However, because

expression foiS*: of the finite coupling to theswave channel, the resonance
q d 1 can always escape through teevave channel even at the

|2t -1 —1y at point at which it is about to become a bound state. Thus the

s dr he (ro)—U (drlpo) Wo Uy (rO)} point at which the resonance collides with its image from the

lower left quadrant to form a double pole will lie on the
. (29 negative imaginank axis, justbelow the origin, i.e., the
resonance approaches the origin as a virtual state. The weak
coupling will also have an effect on the virtual state in the
s-wave channel. It moves a bit closer to the origin, reflecting
the fact that it can detour, because of the coupling, to the
=gl 2yl m2g- gt 72y~ g 72, (30)  p-wave channel before leaking to teavave continuum. As
the well depthV; is further increased, the initial resonance
goes on to become a bound state while its image moves
down the imaginary axis, eventually colliding with the quasi-
stationary initial virtual state. The latter two then split and
move away from the axis in the lower half plane. This case is
depicted in the top panel of Fig. 4.
=0. (3D If the coupling is increased, then the effects described

above become more pronounced: the point at which the reso-

The model can obviously be extended to include any numbetiance collides with its image moves further down the imagi-
of channels and is the generalization of the one-channelary axis and the virtual state moves further up. For some
model considered in the previous section. The key elemendritical value of the initial coupling, the point at which the
which makes for an analytically solvable model is the trun-resonance collides with its image as the well is deepened can
cation of both the diagonal centrifugal terms and the couhe made to coincide with the point at which they both touch
pling terms in the interior region. the trajectory of the initial virtual state: i.e., a triple pole can

_With this two-channel model, we can study a Pro?'em thalye formed. Because of the symmetry that must exist between
mimics the essential features found in the case 0b:G@ {14 |eft- and right-half planes, the triple pole must, of neces-

choose the potential parameters so that, in the absence of agyy jie on the imaginary axis. This case is depicted in the
channel-coupling, the potentisly will support a virtual state 8en'ter panel of Fig. 4

andV, will show a resonance. These features can be tune Finally, for coupling strengths greater than this critical

gnoduepﬁg;dgr?gg \?vé\\;zgy;nngdtgfom% (:\éegndgfggtsrbig?; o:)eemlenrg'alue' it is the initial'virtual state that moves up the origin to
action, it can be modeled by varying the strength of the oﬁ_become bound, while the resonance an_d Its image pole are
diagonal coupling. Stretching, on the other hand, could bé“”?ed away before they reach the imaginary axis and move
modeled by changing the two well depths. In principle, weOff mto th_e lower half of the complek plane. That case is
have three parameters that can be independently varied. ffPicted in the bottom panel of Fig. 4.

our previousab initio calculations[7] we found a strong ~_But there is now seemingly a paradox. For the case de-
dependence of the shape resonance on symmetric stretch niticted in Fig. 4bottom, it is the virtual state that becomes a
tion and less so in the case of the virtual state. We willbound state. It will remain bound if, from the final state, we
therefore limit ourselves to an independent investigation othen reduce the coupling to the value used in Figop).

only two parameters, the well depth in the p-wave chan- Conversely, for the case depicted in Figtop), it is the

nel and the channel couplird resonance state that becomes bound; it will remain bound fif,

X

d _ —1 d -1 —
ahL("o)_U a‘l’o W, "Uh (ro)
Finally, to obtain the physicab matrix, S°, in terms ofS',
we compute

where, in an obvious notatioe- ™2 and €' ™2 are diagonal
matrices with eigenvaluegt0™? e'*172) and (1i), respec-
tively. We see from Eq(29) that the poles of th& matrix are
given by the condition:

d d
de{ahf(ro) - U_l( awo) W, tUh (ro)
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Im(k) d
f
0.4
0.2 A 0.295
a b
0 Re(k)
— ————
-0.2} 1 1 A
Y
= 0 .4 Z c
-0.6 il Vanit) 1.8 2.4 "
-0.4 -0.2 0 0.2 0.4 : ‘
Im(k)
f Im(k)
0.4
b
0.2 0.4 ¢
0 Re(k) 0.2
-0.2} i i 0 Re(k)
"0.4 02| T~
-0.6 f i a
-0.4 0.2 0 0.2 0.4 -0.4
b C
-0.6
Im(k) -0.4 -0.2
f
0.4 FIG. 5. Two-channel square well with short-range coupling. Tra-
0.2 jectories of theSmatrix poles in the complek plane when the well
Re(k) depth,V;, and coupling strengthd, are varied around the closed
0 A € loop shown in the top panel/; is varied between 1.8 and 2.4 and
-0.2 z ) d is varied between 0.0 and 0.295. The well depthis fixed at
0.4 0.75. All quantities are in atomic units.
-0.6 f ? f . .
oz 0.3 0 ) 0.2 lower half plane. As the coupling strength is reduced flmm

to ¢, the bound state moves slightly closer to the origin,
FIG. 4. Smatrix pole trajectories in the complex momentum While the resonance and its image pole again move toward
plane for a two-channel square well with short-range coupling. Theeach other. Finally, front to i, where the well depth is re-
well depthV, is fixed at 0.75 bohr and the well deptk, is  duced to its initial value, the bound state further descends
increased from an initial valu@) of 1.8 bohr, in which there is no while the resonance and its image collide on the negative
bound state, to a final valué of 2.4 bohr, which produces a bound imaginary axis; one pole then moves down to the position
state. The three panels correspond, from top to bottom, to increasegtiginally occupied by the virtual state, while the other
coupling between the channels. The center panel shows the trajegyoyes up the axis. It collides with the decending pole just

tory for a value of coupling parameter that produces an exact debelow the origin and the two poles move away from the

geneneracy of the resonance and virtual states. All quantities are in__ . . o . ?
AtomiC Units. Imaginary axis to the positions originally occupied by the

resonance poles. Thus after one loop around the closed path,

from the final state, the coupling is then increased to thdhe resonance and virtual states have exchanged places.
value used in the bottom panel. It appears that the final state The associated wave functions must therefore differ only
somehow depends on the path used to reach it, i.e., it is ndty @ phase factor from those of the corresponding initial
uniquely determined by the potential parameters. states. It takes two complete loops around the closed path

To make this picture clearer, we can, as we did in the ondefore both poles return to their initial positions. We also
channel case, plot the trajectories of the initial resonance anabte that the particular values of well depth and coupling
virtual states along a closed path. The trajectories are plottedthich produce the triple degeneracy discussed above must
in Fig. 5. Along the first segment of the patinom i to a), lie inside the closed loop we have constructed that produces
the virtual state moves slightly up the imaginary axis, whilethe trajectories shown in Fig. 5. The implication, of course, is
the resonance and its image pole begin to approach eadhat the point of triple degeneracy, shown in Figcehtey,
other in the lower halk plane. Froma to b, where the well  corresponds to a conical intersection on the resonance sur-
depth is increased, the virtual state moves up the imaginarface and that there is a Berry phase associated with any
axis to become bound, while the resonance and its image amosed path that encircles this point. This will be further dis-
first attracted and then turned away from each other in theussed below.
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Im(k) ample: in one complete cycle, the resonance, after evolving
to become a bound state along part of its trajectory, goes on

0.4 2 to exchange places with the initial virtual state which lay
72‘ —

originally not on the negative imaginary axis, but just off it.
It takes another full cycle to get both poles back to their
Re(k) original positions. This implies that there is again a conical
intersection that the trajectories have encircled, but with di-
pole channel-coupling, the conical intersection is now a
b double pole of theS matrix on the unphysical Riemann
b ik sheets and corresponds to a degeneracy of the virtual state
-0.4 -0.2 0 0.2 0.4 and the resonance.

1

-0.
-0.

N [ [ ] [=] N
]

-0.

FIG. 6. Two-channel square well with dipole coupling. Trajec-
tories of theS-matrix poles in the complek plane when the well VI. BERRY PHASE
depth,V;, and the coupling strength, are varied around a closed
loop of the type shown in Fig. 5. The well depty is fixed at 0.75
andV, is varied between 1.8 and 2.4. The coupling parameter i

Since the appearance of Berry23] much celebrated ar-
gicle, there have been many papers dealing with the geomet-

varied between 0.05 and 0.195. The curve on the right is on th&!© phases f’:lccurnulated by the wave functions for ;yst_ems
physical sheet, while that on the left is on the first clockwise- that are ad@baUcaIIy transported about a C!osgd circuit in
physica) sheet. There are mirror trajectories in the lower left physi-SOMe physical parameter space. Much of this literature has
cal and lower right first counterclockwise sheets, respectively/ocused on phenomena connected with accidentally degener-
which are not shown for ease of visualization. The inset shows th@te eigenvalues in systems described by Hermitian Hamilto-
behavior near the origin in finer detail. All quantities are in atomic Nians, but more recently, several authors have shown that
units. degeneracies are possible in the case of resonance states that
have complex energies. Poet al. [24], for example, have
studied geometric phases in multiphoton ionization, illustrat-
V. TWO-CHANNEL MODEL WITH DIPOLE COUPLING ing how the autoionizing states of an atom in a bichromatic

With long-range dipole coupling between the channels,ﬂeld circumnavigate a dggeneracy when physical parameters
the S matrix is again a multivalued function in the plane of Of the laser field are varied. Kylstra and Joachi@8] have
complex momentum. EquatiaBl) shows that, just as in the Published a related study of the double poles of$reatrix
single-channel case, the poles of Bmatrix, because of the that can occur in laser-assisted electron-atom collisions while
properties ofh; (), will be found in symmetric pairs on Vanroosg 26] has mv_estlgated inducing degeneracy between
different Riemann sheets. It is significant that the effectiveVO résonant states in a double We." structure.
angular momentd, , andL,, determined from the eigenval- In the present case, we are considering a Ham|Iton|§1n that
ues given by Eq(27), are independent of the sign of the depends on two real parameteps.and)\, Wh'Ch are being

varied. We assume that for a particular choieg,{,), there

coupling strengthd. In particular,L, will decreasdrom zero e t tteri tat d th |
as the dipole coupling is first turned on. This, in turn, dictates?® WO resonant scattering sta @3 and ¢, with complex
gnergiess, andE, that satisfy

that a bound state will move off the physical sheet as the we

depth is decreased in the presence of a finite dipole coupling. [H(vgho)— Eo]tha=0
With the insight gained from looking at the effects of a po- Yo, Mo/ Eal¥a™ Y
tential with an attractive ~2 tail in the single-channel case,

as well as the two-channel case with short-range coupling [H(vo.Xo) = Ep]4h=0.
just considered, we can finally approach the dipole-couple

(33

q’he resonance states are assumed to be normalized by a suit-
two-channel problem. ) . . >
ﬁble analytic continuation procedure, such as regularization

Once again, we study a case where, in the absence of al : . ) .
coupling, the initial potential well depths are chosen to pro—0¥ contour integratioi27] and the orthogonality relation be-

duce a resonance and a virtual state. We then choose a Vet}/g//een the two states is defined without complex conjugation:
small, but finite, value for the initial coupling so that we can

unambiguously track the identity of the poles on the various f athp=0. (34)
Riemann sheets. Figure 6 shows the pole trajectories that are

produced as the potential paramet®fs and d are varied
around a closed loop of the kind used to produce Fig. 5 in th
case of short-range coupling. On the physical sheet, the res
nance pole and its imag@ot shown trace closed paths in JH JH
the lower-half k plane after a single loop in the two- H(v,\)=H(vg,\g) +—| v+ ——| S\=Hy+H".
parameter Y, ,d) space. Bound states are never formed. On v vy I\ Ao

the unphysical sheets, we get a different picture. The trajec- (35

tory in the third quadrant of the first clockwise shéand its

image in the right counterclockwise sheehows the same If we further assume that the resonance states are close to
kind of behavior we saw in the two-channel, short-range exbeing degenerate, then in the vicinity of the degeneracy, a

gor small changes in the parameters abgLand 5, we can
Eg/_rite the Hamiltonian as
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solution (v,\) corresponding to the altered Hamiltonian From Eq.(41), the two eigenvalues are no&~ = +p and

can be written as a linear combination @f and ¢,
(v, N)=A(v,\) o+ B(v,N) iy,

and the equation fog(v,\) now becomes a’:22 complex

(36)

symmetric matrix equation that determines the coefficidnts

andB:
(Ea_E+<¢a|H’|¢a> <¢a|H’|‘//b> )
(alH' | 4p) Ep—E+(p|H'| )
A
X B =0. (37

If we shift the energy scale to measutdérom the centroid of
the diagonal terms,

_ Ea+<¢a|H,|wa>+Eb+<¢b|H,|¢a>+Eb

E—E >

(38)
then the X2 matrix in Eq.(37) can be rewritten as
Z(v,\N) o+ X(v,\)oy—El, (39
with
0 1 -1 0
=1 o and a’z=( 0 1), (40)
and the eigenvalues are therefore given by
E*=+Z2+X2. (41)
The eigenvalues are degenerate when either
Z(v,\)+iX(v,\)=0 (42
or
Z(v,\)—iX(v,\)=0. 43

the coefficientsA* andB~ that satisfy Eq(37) fit the equa-
tion

(pcosa—(+)p psing A+(0))_
psing —psind—(+)p/\B*(6)]
(47)
The normalized solutions of E@47) are
(A*(G))_(co$6/2)>
BT(0)) \sin6r2))
(A+(0))_(—sin(0/2))
BT () | cog6r2) | 48

Thus, after one complete loop in parameter spate
e[0,27], the eigenstates undergo a change in sign. Another
loop, 6 e[ 2,47], is necessary to arrive back in the original
position. This is precisely the behavior followed by the vir-
tual and resonance state trajectories discussed in the previous
section.

VII. DISCUSSION

We have attempted here to gain further insight into
electron-CQ collision dynamics with simple models that in-
corporate key aspects of the physical problem. A two-
channel model witls- andp-wave square wells enables us to
study how virtual states and shape resonances interact under
the influence of a long-range 2 interaction that mimics the
effects of bending in the physical system. The picture that
emerges is that a bound state, which evolves smoothly to
become a resonance in the linearly constrained system, be-
haves in a qualitatively different fashion when the target is
bent. The dipole field changes the analytic structure ofShe
matrix, making it a multivalued function. Bound-states, how-
ever, do not simply vanish in the presence of a dipolar field
as the binding potentials are weakened, as was suggested in
the early work of Domcke and Cederbad8]. They are
instead forced onto an unphysical Riemann sheet. This pic-
ture is entirely consistent with the behavior of the virtual

SinceZ and X are complex numbers, the real and imaginaryState observed by Morgasee Fig. 2 of Ref[1]) and also
parts of Eqgs.(42) or (43 must both be satisfied, which explains the resonance behavior observed by Rescagab
means bothy and\ must be varied to produce a degeneracyl7]: Our model also shows that “resonance” and “virtual

In contrast, for bound states described by a Hermitian Hami

istates can undergo an accidental degeneracy and form a coni-

tonian, it is generally necessary to vary three parameters o intersection. For short-range coupling, this degeneracy

make a degeneracy occur accidentally.
SupposeH (v,\) has a degeneracy for the parameteys

andAy4 and we varyy and\ in a loop around these values

such that

Z%(v,\)+ X3 (v, \)=p?, (44)

would occur on the negative imaginakyaxis, but with di-
pole coupling, it occurs on higher Riemann sheets. We be-
lieve that our model provides an explanation of how the
resonance and virtual states in the electron,&tem may
be connected.

Resonances are ubiquitous in low-energy electron colli-
sions with polyatomic molecules and can provide efficient

wherep is a constant complex number. We can then exprespathways for channeling electronic energy into nuclear de-

Z andX in terms of a real angl® as
Z(v,\)=p cosb, (45

X(v,N)=psiné. (46)

grees of freedom. It is therefore important to understand how
the topology of molecular negative ion resonance surfaces
can impact processes such as resonant vibrational excitation
or dissociative electron attachment. We hope that this study
will lead to further work in this area.
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