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Efficient solution of three-body quantum collision problems: Application to the Temkin-Poet model
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We have developed aariable-spacindinite-difference algorithm that rapidly propagates the general solu-
tion of Schralinger’s equation to large distancéshereupon it can be matched to asymptotic solutions,
including the ionization channel, to extract the desired scattering quantifiee present algorithm, when
compared to Poet’s correspondifiged-spacingalgorithm[R. Poet, J. Phys. B3, 2995(1980; S. Jones and
A. T. Stelbovics, Phys. Rev. Le®4, 1878(2000], reduces storage by 98% and computation time by 99.98%.
The method is applied to the Temkin-Poet electron-hydrogen model collision problem. Complete(edssHts
tic, inelastic, and ionizationare obtained for low17.6 eV}, intermediatg27.2, 40.8, and 54.4 gyand high
(150 eV) impact energies.
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[. INTRODUCTION the Numerov formula, to discretize the differential equation
(Table ). When applied in two directions to solve our two-

In 1980, Poef1] introduced a general method for solving dimensional partial-differential equations on a grid with
the problem of electrons scattering from atoms or ions. Irfixed spacing, the Numerov scheme reduces storage by 97%
Poet's method, Schdinger's equation, cast as a set of and computation time by 99.994]. In this paper we intro-
coupled two-dimensional partial-differential equations in theduce variable-spacingNumerov  finite-difference propaga-
radial variables of the two electrons, is integrated outwardion. Using a variable step size in both directions further
from the atomic centefon a grid with fixed spacingyield- ~ decreases storage by 98% and computation time by 99.98%.
ing general, propagating solutions that can be matched to
asymptotic solutions to extract the scattering amplitudes. To
develop and test his ideas, P&t considered &-2s excita- II. THEORY

tion for model electron-hydrogen collisions that neglect an- e start by writing the Schbnger equation for the full
gular momentum[2,3] (now known as the Temkin-Poet electron-hydrogen scattering probléatomic units, with en-

mode). ergies in rydbergs, are used in the remainder of this work
In a recent pape[r4], we brought Poet’'s method to com- except where stated otherwjse

pleteness for this model problem. Here we generalize Poet’s

propagation algorithm1,4] to variable step size, which

greatly increases the speed of the algorithm while signifi- V2472 E+ 2 2 fElvxy -0, @
cantly reducing storage requiremen@®ur numerical grid is XY x oy x|

similar to the one used by Botero and ShertZgrin their

finite-element analysis of electron-hydrogen scatteyiAd. . .

though the propagation algorithm, which is independent ofExpanding¥ as a complete set of functions xnandy,
asymptotic boundary conditions, can be readily extended to

the full electron-hydrogen problem, here we consider the TABLE I. Three-point formulas for discretizing the ordinary
Temkin-Poet model since benchmark calculations for thisecond-order differential equatioff (x) + ¢(x)=0, x=0, given
model problem are needed over a wider range of energieg0)=0, and using a step siz For Coulomb problemss(0) is
than presented in our previous pagél. Results are ob- indeterminate; therefore the usual Numerov formula cannot be used
tained for low(17.6 eV}, intermediate(27.2, 40.8, and 54.4 for x=a. In this case, the Coulomb singularity should be exhibited
eV), and high(150 e\) impact energies. These are energiesexplicitly, — "(x) +2f(x)/x+6(x)=0,  where  6(x)= $(x)
where absolute measurements for electron-hydrogen ioniza=2f(x)/x is regular, and the usual Numerov formule>a) is

tion are available and/or strong theoretical interest exists’éPlaced by the modified onexta) obtained by constructing a
(We note that Wang and Callaw$§] extended Poet’s fixed- power series f0|f(>_<).near the orl_glr[l_]. (Basic scheme shown for
spacing algorithm to the full electron-hydrogen scatteringt®mparison only; it is not used in this woyk.
problem; even with this relatively slow fixed-spacing algo-

rithm they were able to obtain very accurate results for the Scheme Formula
full problem for impact energies below the ionization thresh-gasijc f(x—a)—2f(x)+ f(x+a) +a?p(x)=0
old.) Numerov &> a) f(x—a) —2f(x) + f(x+a) + a2 ¢(x—a)

It is worthwhile here to point out the advantages of the +10¢(X) + ¢(x+a)]/12=0
present method as compared to the basic finite-differencRumerov k=a) (—36+54a—16a2)f(a)+ (18— 9a—a?)f(2a)
method that is presented in most texts on numerical methods. +a?[(15—8a)#(a)+(1.5-a)#(2a)]=0

The basic scheme uses a low-order formula, as opposed te
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1 o~
PO =5 2 V(Y)Y AX,Y), (2)

Schralinger’s equatior(1) takes the form

? 5
priiey: YY)+ 2 T (xY)W i(x,y) =0,
/!

X

©) y

whereT contains all the nonderivative terms and the index
/=0,1,2... denotes a set of quantum numbers; in particu-
lar, /=0 corresponds to zero angular momentum for both
electrons.

Since ¥ (x,y) must remain finite everywhere, boundary
conditions alongk=0 andy=0 can immediately be written

down for the¥ ,, = ===

Y (x,0=%,0,y)=0. (4) FIG. 1. Schematic diagram of a relatively coarse grid cut off at

10 a.u. in each direction. Here the initial step size1/10 a.u. is
doubled, at intervals of 10 steps, three times in each direction. For
two-electron problems, the computational effort can be reduced by
W(y,x)=(—1)S¥(x,y), 5 applying a boundary condition imposed by symmetry along the line
(x)=(= D" (%) © x=y (shown and solving the problem in the lower triangular re-
depending on whether the two electrons form a singtgal 90N X=Yy.
spin S=0) or triplet (S=1) spin state. Because the wave

The Pauli exclusion principle demands thatalso obey the
symmetry condition

function is symmetric or antisymmetric under electron ex- 2/n®, —1/In*=€<0,
change, we can solve Scldinger’s equation(3) in just the Ne= /—”(_2/(1—e*2” ) k2= e=0. ©)

regionx=y; the symmetry conditioif5) then plays the role

of a spin-dependent boundary condition alorigy. Finally,  Fjnally, for a given value o, the moment, in Eq. (7) are

the asymptotic forms of th# (x,y) for x=y are needed to  fixed by energy conservation according to
complete the specification of boundary conditions.

In the Temkin-Poet model, the infinite set of coupled emtk? =€ +k? =e,+k? =E. (10)
equations(3) is reduced to a single equation m " b

92 2 2 2 2 . NUMERICAL METHOD

st ot E | Wy(X,y) =0, (6) e o
axe  gyc X Y maxx,y) To convert the partial-differential equatid6) into differ-

ence equations, we impose a grid with variable spagfig
by keeping only the first term in the expansi@®). For this 1) and approximate derivatives by finite differences. TRus
model problem, the asymptotic boundary condition is easilyx (i=0,1,...) andy—y; (j=0,1,...), where Xo=Y,
written down and is given in terms of unknow&matrix  =0. Since our grid lines are symmetric xrandy, we need
elements by only discuss the properties of the grid in a single direction,
" say x. We define an initial step sizle, and consider subse-
uent doublings oh. Numerous test calculations revealed
Yolxy) ~ y)¢k Z‘ anfm‘/’fn(y)¢ksn(x) ?hat(i) the firstgdoubling should be at one atomic ufiit) the

Xﬂx number of steps before each doubling should be the same,
E and (i) the optimal number of doublings is 3. Thus,
- dEbSebem‘rljeb(y)¢kEb(X)v (7)
0 h, 0=x<1,
wheregy(x) = (1/vk)exp(kx) and they, are bound and con- ) 2h, 1=x<83,
tinuum states of the hydrogen atom with zero angular mo- (stepsize=3 , 2, 7 1y
mentum, ’ ’
8h, 7=x<ow,
p(y)=NJlye P1F1(1-1/q, 2; 2qy)]. (8)

Although the final step size ist results obtained using this
Here e= —q? is the energy of the electron andF; is the  method were just as accurate as those using a grid of fixed
confluent hypergeometric function. The fachdy normalizes  spacingh—the three doublings did not introduce a detect-
bound states to unity and continuum states tbfanction in  able error. Thus, in the limit of large propagation distances,
energy, the present algorithm is 4096 {8 times faster and uses

032717-2



EFFICIENT SOLUTION OF THREE-BODY QUANTUM. .. PHYSICAL REVIEW A 66, 032717 (2002

TABLE II. The nonzero matrix elements @, BY, andC® at grid point (, j), j=2,3,...], before
applying the boundary condition along=y. The local spacing in the direction isa and that in they
direction isb. The nonderivative part of the Hamiltonian Té')=2/min(xi,yj)+E. Matrix elements at a
junction (a grid linei where the spacing doubles in tiedirectior) are obtained by replacinTg'J('fl) with
TU72) Matrix elements at & junction (a grid linej where the spacing doubles in tlyedirection are
obtained by replacing’=j—1 with j'=j—2. To apply the boundary condition along=y, any matrix
element in this table corresponding to a grid point lying above thedimg must be multiplied by € 1)S and
added to the matrix element corresponding to the grid point obtained upon reflection of the out-of-bounds
point throughx=y. At a junction, an additional complication arises jori—2 andj=i—1 in that a point
lying above the linex=y reflects to a point on grid line—1 (recall that, at a junction, our formulas can
involve only the equally spaced grid lines 2, i, andi +1). In this case, Eq13) can be used to express the
wave function at this point as a linear combination of the wave function at all points on the junhetich

30,80 (1)) DD (' 12....1).

i’ AD g® c®
InE INE DK
1 1 1_4 10 2 10, 1 1 1_4
i — 4= 4 —Fl-1 O e = O] i s = (5o
j+1 a2+b2+12Tj, b2 a2 120 a2+b2+12Tj,
1 1 100 @)
J 10_3 1—OT(i71) 20 —2+? +§Tj’ l_()_£+£) (i+1)
2 p2 12V a2 p2 1271
1 1 1_4 10 2 10_, 1 1 1_4
_ — 4 =4 —gl-1 i e = O] s = (kD)
ji—1 az+ b2+12Tj, b2 a2+12 I az+ b2+12Tj,

64 (8°) times less storage to achieve the same accuracy as they direction, followed by the usual Numerov formula in

Poet’s fixed-spacing algorithifii,4]. the x direction to obtain the results in Table Ill. Finally, for
i=]j=1, the potential becomes singular in both directions, so
A. Difference equations we apply the modified Numerov scherfiable | in both the

x andy directions to obtain the matrix elements B and
Cc® given in Table IV[because of the boundary condition
alongx=0, theA® term vanishes in Eq12)].

Applying the usual Numerov formul@Table ) to the
Schralinger equatior(6) in both thex andy directions, our
difference equations at grid linetake the form

A=D1 g0 cO.p+ D=0, (12 B. Propagating the general solution

By applying symbolic boundary conditions &t x;, we
can solve our equations in terms W) for x<x;. In par-
ticular, we can write

Here we have collected the variouB(", j=1,2,...],
whereW (V=W (x;, y;), into a vector#®). At a junction(a
grid line i where the spacing doublesur difference equa-
tions still have the form(12), except thatw!~?) replaces Pl(i-D=pli-1). ), (13
w(~1 This is because our three-point formi¥able ) can

involve only equally spaced points if we are to retain the full (i-1) ; o .
accuracy of the Numerov scheme. The matrix elements O\fvhereD IS a known(as yet u.nspecme)dmatrlx. Now
A, BO andc® for j>1 are given in Table Il. Foj YS9 Eq.(13) in Eq. (12), we obtain

=1, buti #1, the potential becomes singular in thelirec- _ o _ _ _
tion only, so we use the modified Numerov scheffable [BO+AD. DD i) = —cO).gl+1) (14)

TABLE lIl. The nonzero matrix elements &, B/, andC for j=1 (i #1) before applying the boundary condition aloxrgy. The
local spacing in the direction isa and that in they direction ish (t=h/a). Hereﬁf‘):Z/min(xi , Y))+E—2/y;. At a junction, replac@}ifl)
with 5?,72). Fori=2, the grid point corresponding to the matrix elemm@ lies above the linx=y. This point reflects to the point
corresponding t®{% . Thus,B{?)—B{)+(—1)SA%.

i'=1 j'=2

AY, — 36+ 54h— 162+ (180- 96h)t2+ (15— 8h)h*g{ ~ V) 18— 9h—h?+ (18— 12h)t2+(1.5—h)h*gli~V
BY), — 360+ 54Ch— 160h2+ (— 360+ 192h)t2+ (150— 80h) h*6}" 180— 90h— 10h2+ (— 36+ 24n)t2+ (15— 10h)h*g%)
c®, — 36+ 54h— 16n2+ (180— 96h)t2+ (15— 8h)ha} 1) 18— 9h—h2+ (18— 12h)t2+ (15— h)h%gy * 1)
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TABLE IV. The matrix elements oB® and C™) (the case TABLE V. Singlet e”+H(1s)—e™ +H(ns) cross sections
=j=1) before applying the boundary condition aloxgy. The (wa(z,) for the Temkin-Poet model. Superscripts indicate powers of
local spacing in both directions & The grid point corresponding 10.
to the matrix elemenB{}) lies above the linex=y. This point

reflects to the point corresponding ©f]. Thus, C{)—C{} Impact energyeV)
+(—1)%8%Y. n 17.6 27.2 40.8 54.4 150
B 4(216- 1620 — 21h2 + 24h®) + 2 (45— 54h + 16h?)h? 1 22451 1.313' 86487 64727 20117
X (E—1/h) 2 32552 1.682% 8.022°% 4609° 6.290°
B(Y —16(270- 54%h+ 336n?— 64n%) + 4(225- 24(h 3 7914° 4500° 2128° 1201° 1543°
' +64h?%)h?(E—2/h) 4 3.022% 1830° 8665* 4.864* 6.135°
c 4(54—63n+150%+2h%) + (9— 12h+ 4h?)h*(E— 1/h) 5 14643 9205* 4365* 2446* 3.057°
ct) 4(216-162h—21h?+24h%) + 2 (45— 54h+ 16h?) h? 6 8200% 5276% 2505 1402°% 1744°
X (E—1/h)

the matrix equation13) far outnumber the Ng+N;) un-
Comparing Eq.(14) with Eqg. (13), we see that the nexd known scattering coefficients. Following Pdé&i, we use all

matrix, DV, is given by of these equations and solve this overdetermined se Iy
minimizing the sum of the squares of the residydte dif-
DO = —[BO+AD.pli-1]~1.c), (15) ferences between the left- and right-hand sides of (E§)

after matching

Thus eactD(" is generated from the previous one. The first
D matrix is given byD®=—[BM]~1.c®), _ IV. RESULTS
Equation(15) can also be used at a junctionDf ~%) is

replaced withD(~2). DU~ D since. using Eq(13), Convergence is obtained when the numerical results are

no longer sensitive to variations i) the initial step size,
) ) , ) , ) (ii) the matching radiusy,, (iii) the number of expansion
w(=2)=p(=2). g(-D=p(=2.p0=D.wO. (16)  functionsN, for the continuum(iv) the number of discrete
channelsNy, and(v) the number of energy points,, in the

C. Matching to asymptotic solutions (Gauss-Legendjejuadraturdé18) over the two-electron con-
Upon repeated applicgtion of Eql5), we _eventL_JaIIy TABLE VI. Singlet e +H(ls)—e +e +H* SDCS
reach the asymptotic region. In the asymptotic region, EQq;a2/Rry) for the Temkin-Poet model. Superscripts indicate powers
(7) applies and therefore of 10.
i) ~ |O_RM.g (17) Impact energyeV)
i—o €, /E 17.6 27.2 40.8 54.4 150
Here the matrixl=R®* contains incident waves while 0.000  8142° 5574 2656° 1481> 1.819°
R contains reflected waves, 0.025  7.9402 54602 25642 13992 14103
0.050  7.735% 53462 24802 13282 1.138°
0.075  7.5242 52312 24022 12642 9485*
e (Y)) b (Xi), n<N
fnt T e dr 0.100 7.308%2 51142 23292 12062 8.111°*

S (18 0125 7.0862 49952 22582 11542 7.078°

JO depente,(¥i) b, (Xi), N>Ng, 0150 6.8587 48752 21912 11062 6.278°

0.175  6.623%2 4.7522 21252 1.0622 5.646*

wherep=n—Ny—1. Note that the infinite summation over 0.200  6.381°> 4.625° 20627 1.02I'° 5136
discrete channels is truncated to some finite intéggand ~ 0.225  6.132° 4.495% 1.999% 9.832°% 4.719*
the quadrature over the two-electron continuum is performe@.250  5.8742 4.361% 1.9382 94753 4.375*
prior to matching by first writing thé&, . - as a power series 0.275 5.6072 42232 18772 9137°% 4.087*

in e, 0.300 53322 40802 1.817% 88123 3.843°
0.325 50462 3.9302 17562 84993 3.635%
Ng—1 0.350  4.748% 37727 1.693% 8.191° 3.455"

(199 0375  4434% 3602° 1629° 7.866° 3.297°
0.400  4.103> 3.421? 15622 7579° 3.160°

) , ) , ] 0.425  3.7592 3.231°2 14922 7.270° 3.040%4
The matching procedure, insertion of Efj7) into both sides g 450 34262 30412 14202 6.9633% 2.940°%

cientssyy, rather thanS_ . directly, which eliminates il 509 31352 27942 13112 64733 28224

conditioning[1]. In practice, the —1 equations contained in

~ p
Sebem"-' pZO Spmfb .
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TABLE VII. Singlete™ +H(1s)—e +e~ +H™ total ionization TABLE IX. Triplet e +H(1s)—e +e +H" SDCS
cross sectionsﬁag) for the Temkin-Poet model. Superscripts indi- (wa(z,/Ry) for the Temkin-Poet model. Superscripts indicate powers
cate powers of 10. of 10.

Impact energyeV) Impact energyeV)
17.6 27.2 40.8 54.4 150 e /E 17.6 27.2 40.8 54.4 150
8.4183 2.140°2 1.946°2 1.472°2 2.926°3 0.000 9.358% 7.0973% 9.455°% 8576°% 27373

0.025  8.107* 6.173® 8.064°% 7.121% 1.8453
0.050 6.975% 5.338° 6.853°% 5909° 1.290°3
tinuum (by taking Ng=xy /ay, whereag=1 a.u., we ob- 0.075 59534 45843% 57973 48943 9297%
tained four-figure accuracy—using ten times as many points.100  5.035% 3.908% 4.877° 4.041° 6.847*
did not change our final results to four significant digits;0.125 4.216% 330323 4.076°% 3.323% 51194
therefore we consider this particular parameter no fuyther g.150 3.491% 2.7643 3.380°% 27173 3864°%

For impact energies of 54.4 eV or less, the error in they 175 28534 22873 27763 22053 209314
cross sections due to grid spacing alone is 0.1% or less fgf o900 22974 18683 22553 17733 22264
h=1/20 a.u.(except for elastic scattering, which required ag o5 18184 15023 18073 1409° 1.686%
finer grid and therefore a separate calculation at each energy,s 1.409% 1.186°% 14243 11033 12704
to obtain this same high precisionTo estimate our total 575 1,065 91584 1.100°% 8473% 94675

gncertgt_lnty, Wg trgusft_ a{so takeblntO]:BICfC)tunt the fllnltednjat;:hh(—).soo 78195 68834 82864 6360°% 69355
ing radius and the finite number of states employed in %325 55325 50004 6.044% 4631° 4.960°5

matching procedure. For discrete transitions, errors from lac 350 37385 34764 42284 32394 34275

of convergence ixy, N;, and N4 are small relative to -

0.1%. Tth, for dis’\éretectransitio(rjls, our total error is still%3"> 2'377: 2'27951 2'79¢2 2'1432 2.241 :
only 0.1%. Turning to ionization, the total error for the singly 0.400 1'3876 1.371 5 1,59&5 1'3065 1,35g6
differential cross sectiofSDCS is also 0.1%, except fos, 0.425 7'0356 7'18g5 9'0365 6'955_5 7'3076
nearE/2, where the SDCS is much more sensitivesfpand 0.450 2'6677 2'88‘r6 3'733:3 2.861 . 3'1857
N, than the other observables. As a result, our uncertainty 2475 3'9340 5'4260 7.871 o 5'8500 8'60‘r0
1% in the SDCS fore,~E/2 (0.45< ¢, /E<0.55). (For an  0-500 ~ 0.000° 0.000°° 0.000° 0.000  0.000

impact energy of 150 eV, we needed a smaller initial step
size,h=1/40 a.u., to reduce the error to 0.1%; on the other

: . ; oupling (CCQ) results over a wide range of energies but
hand, a considerably shorter matching rad_|us could be psedﬁiﬁering slightly from the energies reported here. Comparing
We have performed complete calculations for electron

lidi ith hvd " in the Temkin-Poet model f Sheir data with our Tables V and VIII, their calculated cross
cofiding with hydrogen atoms in the Temkin-r 0et MoCel 10T ¢ g for $—1s, 2s are reliable to 2%. The s-3s

impact energies ranging from 17.6 to 150 eV. Our precise€..

. g inglet cross section of Callaway and Oza is less accurate
Impact energies are 17.6, 27'.212’ 40.817, 54.423, and 150 eiﬁd at 3 Ry, for example, is in error by about 9% whereas the
(our intermediate total energies are exactly 1, 2, and B Ry

Our results, accurate to 0.1%% for e,~E/2), are pre- Bray and Stelbovics 4—3s cross sections are correct to

sented in Tables V—X. where superscripts indicate powers o ithin 3%. It should be emphasized that all the inelastic
) ’ i P PIS1 P -~ cross sections up to and includimg=6 shown in Table V

10. Comparative data for inelastic scattering cross sections " ble VIIl are accurate to 0.1%

have been given by Callaway and O and Bray and L

Stelbovicg 9]. Both these references included inelastic crossrhslzglgts\r/g:épg iDe(\:/SSSDEggg“\:fer; én -Ir-g\?ilgjs\l/l ?(: dolré' d
sections only up to the=3s level. Callaway and Oza re- ' . P y rep

ported limited results and only for singlet scattering. Bray[4] and compared with the exterior complex scalifi>S

and Stelbovics presented a compilation of convergent closmethOd[lo] and the convergent close coupling calculation of
P P 9 Eray [11]. The ECS calculation is generally in good agree-

) ~ ~ _ ment with our method except at extreme asymmetric energy
TABLE VIII. Triplet e +H(1s) e +H(ns) cross sections  gparing where the ECS SDCS overshoots by about 10-20%.
(map) for the Temkin-Poet model. Superscripts indicate powers ofy naw method of amplitude calculation in the ECS method

10. appears to have corrected this discrepancy with our results
Impact energyeV) [12]. The singlet and triplet SDCS's reveal interesting behav-
n 17.6 27.2 40.8 54.4 150 TABLE X. Triplet e +H(1s)—e +e +H" total ionization
1 21120 1.159'0 6.3151 4.039° 1 8.1252 Cross sectionsﬁa(z)) for the Temkin-Poet model. Superscripts indi-
2 40463 5764° 50853 40343 1097  cate powersof 10.
3 34174 9.2334 9884“4 8384* 24754 Impact energyeV)
5 4 4 4 5
4 7.941’5 3.0754 3.5924 3.1324 9.56T5 176 279 408 544 150
5 2.945 1.404 1.715 1517 4.708
6 14085 76265 95555 8510° 2.666° 3.668° 9.826°4 24733 3.103°° 2.012°3
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1 N ) 4 1 N 1 N 0.01 T T T T T T T T
3
] i N — = 17.6eV [ L —=— 17.6eV|]
~~oo =-- 27.2eV || 000s A\ c=es 2726V |4
~ ~e_ ——- 408eV AW ——- 408V | |
g 006 ~a — 544eV |+ = M\, — 544eV
~ Seeae o S~ | 150eV Eooos
g BRI ST g
~ ok -~ - \\ i ~
8 X ‘-~,\ \\:\_ 80,004-
2 b =3 8
e T . ook
————— T ——— :
obireenecc., L . 1 . 1 . 1 . o )
0 0.1 0.2 . 03 04 05 0 0.1 0.2 03 04 05
Energy Fraction (g, /E) Energy Fraction (¢,/E)
~ FIG. 2. Singlet SDCS#ag/Ry) vs energy fractiom /E for the FIG. 3. Triplet SDCS ¢a3/Ry) vs energy fractiors, /E for the
impact energies shown. impact energies shown.

ior as a function of energy which is better demonstrated by

their plots in Figs. 2 and 3, respectively. The singlet SDCS as V. SUMMARY

a function of energy changes its shape in a regular way as the

energy increases. The 17.6 eV SDCS curve exhibits the larg- Benchmark calculations have been provided for the
est SDCS as a function of energy fraction and as we movéemkin-Poet electron-hydrogen model collision problem
through to 150 eV the SDCS curves decrease monotonicallgver a wide range of collision energies. By integrating
with energy. Subtle differences in shapes of the curves fobchralinger’s equation on a grid with variable spacing, we
energy fractions above 0.4 occur. For triplet scattering on increased the speed of Poet's algoritfibd] by 3—4 orders
the other hand, the monotonicity with energy is absent. Th@f magnitude, while reducing storage requirements by nearly
17.6 eV triplet SDCS is the smallest over the range of impactwo orders of magnitude. Now that we have optimized our
energies considered and increases with energy as evidence@de for this simplified model we can proceed to include
by the 27.2 eV and 40.8 eV SDCS plots. By 54.4 eV theangular momentum.

SDCS is consistently smaller and the trend continues to 150

eV. From these results it is clear that the triplet ionization

cross section is suppressed relative to the singlet ionization ACKNOWLEDGMENT

cross section at low energies. It is also apparent that there are

still significant exchange effects at play at the highest energy We gratefully acknowledge the financial support of the
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