
PHYSICAL REVIEW A, 66, 032712 ~2002!
Photodetachment of the PsÀ ion by high-energy photons: Model potential approach
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Photodetachment of the Ps2 (e2e1e2) ion by high-energy photons (\v'mec
2) is considered. Our present

approach is essentially based on the analytical solution of the first-order perturbation equation with the Dirac-
type Hamiltonian. The main goal is to produce the universal formulas for the photodetachment cross sections
which can be used for photons with arbitrarily high energies. Also, we wanted to study the angular distribution
of the emitted photoelectrons and consider correlations between the incident photon and emitted photoelectron.
The obtained formulas for the photodetachment cross sections can also be used to describe relativistic photo-
detachment of arbitrary few-body systems with unit charges. In particular, it can be applied to the H2 ion and
to the muonic molecules.

DOI: 10.1103/PhysRevA.66.032712 PACS number~s!: 32.80.Gc, 36.10.Dr
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I. INTRODUCTION

In our previous study@1# the nonrelativistic photodetach
ment of the Ps2 ion was considered. Presently, our analy
is generalized to the case of high-energy photons (\v
'mec

2) when the emitted photoelectron has to be cons
ered as a relativistic particle with the bispinor wave functio
In fact, this case corresponds to the situation when\v@I ,
wherev is the frequency of the incident photon andI is the
electron affinity of the Ps2 ion (I'0.012 a.u.
50.3266 eV). In general, however, the nonrelativistic co
sideration can also be applied to the cases when\v@I @1#.
So, it is important to note that relativistic approach is rea
needed when the energy of incident photon (\v) is compa-
rable with the rest mass of an electron (mec

2'512 keV). In
other words, if the photon energy is larger than 100–1
keV, then only the relativistic approach can represent q
accurately the photodetachment of the Ps2 ion. Our main
goal in this study is to develop such an approach. In fact,
shown below that the same approach can be used to des
relativistic photodetachment in arbitrary Coulomb thre
body system with unit charges, including the hydrogen ne
tive ion H2. Note that the photodetachment of the Ps2 and
H2 ions by low-energy photons has been considered
@1–3#. Such problems are of great interest in astrophys
@4–7#. For instance, the visible spectrum of our Sun a
other Stars can be understood only by considering the p
todetachment~and photorecombination! of the H2 ion @6#. In
some cases, however, it is important to determine the ph
detachment cross-sections for high-energy photons, e.g.
the annihilationg quanta which propagate into the macr
scopic electron-positron mixtures. This explains our pres
interest to the relativistic photodetachment of the negativ
charged ions.

We begin with a few words about some notation and so
basic approximations. First, in our present study only rela
istic units are used. In these unitsc51,\51, and therefore,
e25a, me5a21, anda05(mee

2)2151. Here and below,c
is the velocity of light,e is the charge of a proton,a0 is the
Bohr radius,me is the electron mass anda is the fine struc-
ture constant. Below, we shall designate the electron mas
1050-2947/2002/66~3!/032712~8!/$20.00 66 0327
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m. In these units, we have\v5v@I , and hence,E2m
5(g21)m5v2I'v@I , whereg is the Lorentzg factor
andE is the kinetic energy of the final~i.e., free! photoelec-
tron. This means that the kinetic energyE of the emitted
photoelectron is significantly larger than the maximal amp
tude of interparticle interactions in the Ps2 ion. Therefore,
the influence of the final two-body~neutral! system Ps on the
emitted photoelectron can be considered as a small pertu
tion. In fact, in our present study all our formulas are r
stricted to the first-order perturbation theory upon the fin
structure constanta.

Note that the approximationv@I is quite common for the
photodetachment of arbitrary atomic and molecular syste
by high-energy photons. However, for the negative ions o
can introduce another general approximation which is ba
on the fact that the binding energies of such systems
small in comparison to the atomic~ionization! energies of
the final~neutral! atoms. This means that the ratiot of bind-
ing energye of such an ion to the ionization energyE of the
remaining~neutral! atom is relatively small. For instance, fo
the Ps2 and H2 ions the parameterst are '0.048 and
'0.055, respectively, i.e., they are significantly smaller th
1. Furthermore, it is easy to find that for an arbitrary negat
atomic ion the parametert is bounded between 0.048 an
0.075. This means that all negative ions are relatively wea
bound structures. In other words, the outer electron can
considered as almost free particle which moves in the filed
some effective~or model! potential V(r ). In fact, such an
effective potential V(r ) is a weak potential with non-
Coulomb asymptotic at large distancesr. In the first approxi-
mation we can assume that this potentialV(r ) is a central
potential V(r ). In actual negative ions, including the Ps2

ion, the spin-spin and spin-orbit components also contrib
but, in general, such contributions are relatively small.

Below, this one-particle approximation is called the wea
field approximation. Note that the weak-field approximati
can be applied to describe photodetachment of arbitr
negatively charged ions, including the Ps2 and H2 ions.
However, in the case of negative ions with large nucle
chargeZ, the probability of photoionizationPi of internal
atomic shells increases rapidly withZ @in general,Pi;Z5
©2002 The American Physical Society12-1
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~see, e.g., Refs.@8,9#!#. In fact, already forZ54 ~i.e., for the
Be2 ion! the considered relativistic photodetachment of
outer electron is negligible in comparison to the photo
tachment of the internal 1s2-electron shell. Presently, how
ever, our main attention will be given to the photodetac
ment of the Ps2 and H2 ions, whereZ51. Note that in each
of these ions withZ51 only the groundS(L50) state is
stable. The photodetachment of these two ions is consid
below by using the weak-field approximation mention
above. This approximation plays a central role in our pres
study, since it is used to develop the model potential
proach. The model potential approach is discussed in d
in Sec. III. The ultrarelativistic and nonrelativistic cases a
considered in Sec. IV. Concluding remarks can be found
the last section.

II. PHOTODETACHMENT CROSS SECTION

Formally, our present problem is to compute the differe
tial photodetachment cross sectionds which is written in the
form ~see, e.g., Ref.@10#!

ds5e2
Eupu
2pv

uMi f u2dV, ~1!

wherep5Ev/c2 is the momentum of the emitted photoele
tron,E andv are the kinetic energy and velocity of the phot
electron, respectively. Presently, we shall assume that
kinetic energyE includes the rest energy of electron, i.e.,E
5gm. Also, in this equationMi f is the corresponding prob
ability amplitude

Mi f 5E E c̄ f~1,2!~ â2•e!exp~ ık•r2!c i~1,2!d3r1d3r2 ,

~2!

whereâ5g0ĝ and g0 and ĝ5(gx ,gy ,gz) are the Diracĝ
matrices. In contrast with our previous study@1# in the last
equation the initialc i(1,2) and finalc f(1,2) electron wave
functions are the doubled bispinor functions. Also, in th
equationk is the momentum of incident photon~or propaga-
tion vector@11#, k25v2) ande is the polarization vector o
the incident photon. Presently, for the incident photons
shall use only the radiation~or Coulomb! gauge, in which
k'e. Moreover, only photons with linear polarization a
considered. This means thate5(ex ,ey ,ez) is a real vector,
i.e., all ei ( i 5x,y,z) are real~in fact, in Coulomb gaugeez
50 always!.

Now, let us discuss the explicit forms of the initial an
final wave functions. Below, we shall assume that for a
considered three-particle system the particles 1 and 2
electrons. The particle 3 is the positrone1 for the Ps2 ion
and proton p1 for the hydrogen H2 ion. The electron wave
function of the final statec f ~below, the final wave function
for short! in the case of Ps2 ion takes the form
03271
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1

2A2
~11k P̂12!

1

AEm
ũ~1!C̃ f~1!@w~2!exp~ ıp•r2!

1dc f~2!#, ~3!

where P̂12 is the electron-electron permutation,k521 in
the case of the Ps2 and H2 ions,w( j ) ~below j 51,2) is the
bispinor amplitude of the photoelectron@w* ( j )g0w( j )
52m# andu( i ) is the bispinor amplitude of the electron
rest @u* ( j )g0u( j )52m#. The explicit forms of these bis
pinors are not important for our present consideration. Al
in this equationC f(1) is the final~bound! two-body system
~Ps ore1e2) anddc f(2) is the small relativistic correction
(;a) to the wave function~i.e., to the plane wave! of the
emitted photoelectron. The bispinor wave functio
ũ(1)C̃ f(1) of the two-body~final! system Ps also include
the first-order relativistic correction~see below!.

The initial wave functionc i is essentially the nonrelativ
istic three-body functionC(1,2) of the Ps2 ion which must
be multiplied by the two bispinor amplitudesu(1) andu(2).
However, it can be shown that such a wave function can
produce the correct expression for the probability amplitu
Mi f . The corrected wave function must include th
first-order correction upona which corresponds to the
Lorenzt boost of the nonrelativistic wave functio
@;(â2•“2)u(2)C i(1,2)#. Finally, the correct initial wave
function c i is written in the form

c i5
1

2A2
~11kĥ12!

1

m
u~1!S 12

ı

2m
~ â2•“2! Du~2!C i~1,2!,

~4!

wherek521 for the Ps2 ion and the functionC i(1,2) is
the three-body bound-state wave function of the Ps2 ion ~or
the H2 ion, respectively!. As mentioned above in the Ps2

and H2 ions only the groundS(L50) states are bound~i.e.,
stable!. Now, the bispinor wave function of the hydrogenlik
systemũ(1)C̃ f(1) from Eq.~3! can be written in analogou
form

ũ~1!C̃ f~1!5S 12
ı

2m
~ â1•“1! Du~1!C f~1!,

whereC f(1) is the exact nonrelativistic wave function of th
hydrogenlike Ps~or e1e2) system.

The formulas presented above are sufficient to prod
the analytical expressions for the Ps2 photodetachment prob
ability amplitude Mi f and cross sectionds. The detailed
analytical computations can be found in our next study@12#.
However, in this study out main attention is given to t
weak-field approximation which is essentially the on
particle approximation. Obviously, in this case the formu
for the bispinor functionsc f andc i presented above have t
be modified. In this case the final wave function is

c f5
1

A2E @w exp~ ıp•r !1dc f #, ~5!

where now only one coordinater is presented. The initia
wave function takes the form
2-2
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c i5
1

A2m
S 12

ı

2m
~ â•“ ! DuC i . ~6!

In this equationw andu are the constant bispinors, whiledc f
is anr -dependent bispinor function. In the last equationC i is
the wave function of the original bound state in the Ps2 ion
determined in the weak-field approximation. These formu
are used in the following section.

III. NEGATIVE IONS IN THE WEAK-FIELD
APPROXIMATION

As mentioned above, in the weak-field approximation
original three- and many-body problems are replaced
some effective one-particle problem. Indeed, in the we
field approximation it is assumed that the electron move
some effective potential fieldV(r ). The corresponding non
relativistic Schro¨dinger equation for the bound-state wa
function C(r ) is

S 1

m
D12e2V~r !22EDC~r !50, ~7!

whereE is the total bound-state energy and the fine struct
a(5e2) is shown explicitly in front of the effective potentia
V(r ). Note that in our present case the total energyE coin-
cides exactly with the corresponding ionization potentiaI.
Our goal below, is to show that the photodetachment cr
section in the case of Eq.~1! can be obtained with the use o
only Fourier transforms of the wave functionC(r ) and po-
tential V(r ). In addition to these functions one also has
know the numerical value of the radiald function @i.e.,
C(r 50)] for the considered system. In other words, if t
two following functions

F~k!5E C~r !exp~2ık•r !d3r and

W~k!5E V~r !exp~2ık•r !d3r , ~8!

and valueC(r 50) are known, then one can easily dete
mine the differential (ds) and total (s) photodetachmen
cross sections. Note that, in the general case, the pote
V(r ) and wave functionC(r ) are not necessarily spherical
symmetric functions.

Now for the probability amplitudeMi f we can write

Mi f 5
1

2AEm
E w̄~ ĝ•e!exp@ ı~k2p!•r #

3F S 12
ı

2m
~ â•“ ! Du•C~r !Gd3r

1
1

2AEm
E dc f~ ĝ•e!u•C~r !exp~ ık•r !d3r

5Mi f ,11Mi f ,2 . ~9!
03271
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The first term in this equation can be written in the form

Mi f ,15
1

2AEm
w̄~ ĝ•e!u•F~p2k!

2
ı

4AEm2
w̄~ ĝ•e!E exp@ ı~k2p!•r #

3~ â•“ !u•C~r !d3r . ~10!

By integrating in this equation the second term by parts, o
can transfer the operator“ to the exponential factor. Finally
the partial probability amplitudeMi f ,1 takes the form

Mi f ,15
1

2AEm
w̄~ ĝ•e!u•F~p2k!1

1

4mAEm
w̄~ ĝ•e!

3@â•~k2p!#u•F~p2k!

5
1

2AEm
w̄F ~ ĝ•e!1

1

2m
~ ĝ•e!g0~ ĝ•~k2p!!G

3u•F~p2k!. ~11!

The second partial amplitudeMi f ,2 is written in the form

Mi f ,25
1

2AEm
E dc f~r !~ ĝ•e!u•C~r !exp~ ık•r !d3r .

~12!

The physical meaning of the bispinor functiondc f(r ) is ob-
vious. Indeed, this is a small perturbation (;a) to the final
plane wave. The nonrelativistic ground-state wave funct
C(r ) of the Ps2 ion corresponds to the spherically symme
ric S(L50) state, i.e., in this caseC(r )5C(r ). Moreover,
this radial function is a monotonic function which is slow
varying ~decaying! with radius r. Therefore, we can expec
that its Taylor series expansion aroundr 50 ~or r50) point

C~r !5C~r 50!1r
dC~r !

dr
1

1

2
r 2

d2C~r !

dr2
1 . . .

5C~0!1 (
n51

ın

n!
r n@pr

nC~r !# ~13!

converge quite rapidly. In this equationpr5(2ı)d/dr. Now,
note that in our present case,C(r ) is the nonrelativistic
atomic wave function, and therefore,^r &'a051 and ^pr&
'a, i.e., ve'ac. In general, the electron and positron m
menta in the Ps2 ion ~as well as the electron momenta in th
H2 ions! are;me2/\, i.e., small (;a) in comparison with
mc. In the limit a→0 only then50 term@i.e.,C(r 50)] in
this series survives. Also, note that higher-order terms fr
Eq. ~13! cannot contribute to the matrix element Eq.~12!
computed in the first order upona, since the bispinor func-
2-3
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tion dc f is already a small value (;a). Finally, the partial
probability amplitudeMi f ,2 in our present approximation
takes the form

Mi f ,25
C~0!

4ApEm
E dc f~r !~ ĝ•e!u exp~ ık•r !d3r , ~14!

whereC(0) is the value of the nonrelativistic radial wav
function at short distancesr'L5aa0, where L is the
Compton radius.

The functiondc f can be found from the following equa
tion @10,13#

~g0E1ıĝ•“2m!dc f~r !5e2~g0w!V~r !exp~ ıp•r !.
~15!

Or, in other words

~D1p2!dc f~r !5e2~g0E1ıĝ•“1m!~g0w!V~r !exp~ ıp•r !.
~16!

Now, multiplying both sides of this equation b
exp(2ık•r ) and integrating overd3r one can reduce the las
equation to the form@13#

~p22k2!df f~k!5e2~g0E2ĝ•k1m!~g0w!W~k2p!,
~17!

where the following notations

df~b!5E dc f~r !exp~2ıb•r !d3r and

W~b!5E V~r !exp~2ıb•r !d3r ~18!

are used. Now, note that the bispinor amplitudew satisfies
the following equation (Eg02gp2m)w50. From here one
finds

~Eg01g•p2m!g0w50, or mg0w5~Eg01g•p!g0w.
~19!

Now, the partial amplitudeMi f ,2 is written in the form

Mi f ,25
e2C~0!

4ApEm

W~kÀp…

~p22k2!
•w̄„2g0E1ĝ•~k2p!…g0~ ĝ•e!u.

~20!

Note that this expression can also be represented in the

Mi f ,25a2w̄~ ĝ•e!u1w̄~ ĝ•c!g0~ ĝ•e!u, ~21!

where the explicit expressions for the scalara2 and vectorc
can easily be found from Eq.~20!,

a25
e2C~0!W~p2k!

2ApEm~p22k2!
, c5

e2C~0!W~p2k!

4mApEm~p22k2!
~p2k!.

~22!
03271
rm

The formula for theMi f ,1 can also be rewritten in analogou
~but slightly different! form

Mi f ,15a1w̄~ ĝ•e!u1w̄~ ĝ•e!g0~ ĝ•b!u, ~23!

where the scalara1 and vectorb can now be determined
from Eq. ~11!. Their values are

a15
F~p2k!

2AEm
, b5

F~p2k!

4mAEm
~p2k!. ~24!

Note thatb5l1(p2k) andc5l2(p2k), where the numeri-
cal factorsl1 andl2 are

l15
F~p2k!

4mAEm
, l25

e2C~0!W~p2k!

4mApEm~p22k2!
. ~25!

Also it follows from these equations thata152ml1 , a2
52ml2, and therefore,a52m(l11l2). Finally, the ex-
pression for theMi f (5Mi f ,11Mi f ,2) amplitude is

Mi f 5w̄Âu5aw̄~ ĝ•e!u1w̄~ ĝ•e!g0~ ĝ•b!u

1w̄~ ĝ•c!g0~ ĝ•e!u, ~26!

where nowa5a11a2 and 434 matrix Â is

Â5a~ ĝ•e!1~ ĝ•e!g0~ ĝ•b!1~ ĝ•c!g0~ ĝ•e!. ~27!

The cross sectionds is written in the form

ds5e2
Eupu
2pv

~w̄Âu!~ ūg0Â1g0w!dV. ~28!

In our present case, this expression must be summed ove
~initial and final! directions of the electron spin. This give
the common factor 4. Then, the answer has to be multip
by 1

2 ~this corresponds to the averaging over the init
direction of the electron spin!. The computation of the
(w̄Âu)(ūg0Â†g0w) matrix element is performed by usin
the formal rules from Ref.@10# ~see also Ref.@13#!. First, the
product of the bispinor amplitude components must
changed in the following wayuiūk→r ik and wiw̄k→r ik8 ,
where

r5
m

2
~g011! and r85

1

2
~g0E2g•p1m!,

wherer andr8 are the density 434 matrices. Now, to de-
termine the matrix element one has to calculate the trac
the following 434 matrix

~w̄Âu!~ ūg0Â†g0w!5
m

4
Sp@~g0E2g•p11!

3Â~g011!Â†g0#, ~29!
2-4
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where the 434 matrix Â is given by Eq.~27! andSp(B̂) is
the trace of the 434 matrixB̂. The computation of this trace
is straightforward and final general expression takes the f

~w̄Âu!~ ūg0Â†g0w!5m~E2m!a21m~E1m!~b2c!2

22map•~b2c!14m~E1m!~b•e!

3~c•e!14ma~b•e!~p•e!, ~30!

where all notations are exactly the same as in Eq.~27!. In
fact, in our present casep25E 22m2 and (p2k)•e5p•e,
sincek'e.

The formula for the photodetachment cross section is n
written in the following form

ds5
e2mE

p
AE1m

E2m
@~E2m!a21~E1m!~b2c!222ap•~b

2c!14~E1m!~b•e!~c•e!14a~b•e!~p•e!#dV, ~31!

or, in other words@sincea52m(l11l2)]

ds5
e2mE

p
AE1m

E2m
@4m2~E2m!~l11l2!21~E1m!~l1

2l2!2~p2k!224m~l1
22l2

2!p•~p2k!14~E
1m!l1l2~p•e!218m~l1

21l1l2!~p•e!2#dV. ~32!

This formula can be rewritten to a slightly different form b
introducing the polar angleu between the directions ofp and
k, i.e., cosu5(p/upu)•(k/v)5p•k/vAv(E1m). The azi-
muthal anglef can be determined from the relationp•e
5upusinu cosf. Moreover, it is straightforward to obtain tha
in our present case the following relations

p22k252m~E2m!, ~p2k!252E~E2m!~12v cosu!,
~33!

p•~p2k!5~E2m!~E1m2Ev cosu!

are obeyed. Here and belowv5uvu is the velocity of the
emitted photoelectron. In fact, in our present casev
5A12m2/E 25A121/g2, whereg is the Lorentzg factor,
i.e., g5E/m.

Finally, one finds for the photodetachment cross secti

ds5
2e2mE

p
AE 22m2@2m2~l11l2!21~E1m!~l1

2l2!2~E2AE 22m2 cosu!22m~l1
22l2

2!~E1m

2AE 22m2 cosu!12~E1m!2l1l2 sin2u cos2f

14m~E1m!~l1
21l1l2!sin2u cos2f#sinududf.

~34!

This form corresponds to thes(E) dependence. By subst
tuting E5v1m one can obtain the explicit formula for th
s(v) function. Another useful formula for the photodetac
03271
m

w

ment cross section can be easily produced from the last e
tion by using the Lorentzg factor.

In all formulas for the photodetachment cross sectio
presented above we assumed that the incident photons h
linear polarizatione. For unpolarized photons all these fo
mulas must be averaged over the directions ofe. For the
systems with central potentialV(r ) in the last expression on
has to replacecos2f by its averaged value12 (2p)5p and
multiply all other terms by 2p. Indeed, according to Eqs
~33! for an arbitrary central potentialV(r ) the constantsl1
and l2 in the last equation can depend only on polar an
cosu. Finally, one finds for the photodetachment cross s
tion in the case of unpolarized photons and for a cen
potentialV(r ),

ds54e2mEAE 22m2@2m2~l11l2!21~E1m!~l12l2!2

3~E2AE 22m2 cosu!22m~l1
22l2

2!~E1m

2AE 22m2 cosu!1~E1m!2l1l2 sin2u12m~E1m!

3~l1
21l1l2!•sin2u#sinudu. ~35!

In this case the differential cross sections depends only
upon the polar angleu. In the general case of noncentr
potential V(r ), the averaging of Eq.~34! over azimuthal
anglef is more complicated.

IV. DISCUSSION

The angular distribution of the emitted photoelectrons a
correlations betweenk andp vectors are of specific interes
in a number of applications. In general, to study the angu
dependence for the photodetachment cross section one h
consider the explicit expressions for the factorsl1 and l2
from the last equation. However, a few important conc
sions can be deduced from the consideration of Eqs.~34! and
~35!. For instance, the main difference between our pres
case and nonrelativistic results from Ref.@1# can be formu-
lated as follows. The right hand sides of Eqs.~34! and ~35!
include the linear and quadratic powers of cosu, while in the
nonrelativistic case@1#, analogous expression contains on
the quadratic powers of cosu @14#. This is mainly related to
the fact that the dipole approximation is very accurate in
nonrelativistic case i.e., all corrections to the dipole appro
mation are relatively small. Note also, that formulas for t
photodetachment cross sections obtained with the use
three-body approach also contain the linear powers of cou.

In the ultrarelativistic case (E@m) Eq. ~34! takes the form

ds5
2e2mE 2

p
@2m2~l11l2!21E 2~l12l2!2~12cosu!

22mE~l1
22l2

2!~12cosu!12E 2l1l2 sin2u cos2f

14mE~l1
21l1l2!sin2u cos2f#sinududf. ~36!

For ultrarelativistic energies (E@m) the distribution of the
emitted photoelectrons is tipped forward and has a sh
maximum at very small polar anglesu5arcsin(m/E)
'(m/E)5(1/g). Foru which are close to the maximal ang
2-5
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umax'm/E all terms in this expression can be written in t
form E 2(m/E)2;m2, i.e., they are finite. However, the facto
sinudu'(1/E 2)dE/E determines the final dependence of t
photodetachment cross sectionss(E) upon the photoelectron
energyE @s(E);E 22;g22# in the ultrarelativistic case.

In the opposite~i.e., nonrelativistic! case, whenv!m
~but v@I ), the photodetachment cross-sectionds can also
be obtained from Eqs.~34! and ~35!. Only in this case one
has to use the substitutionE5m1v, where the incident pho
ton frequencyv is the small parameter. In this case, t
explicit expression for the photodetachment cross sec
ds, Eq. ~34!, takes the form

ds5
8e2m4

p
A2mvl1

2 sin2u cos2fdV

5
a

2p
A2mvF2~p2k!sin2u cos2f sinududf.

~37!

As follows from this formula the nonrelativistic photodetac
ment cross sectionds is invariant underu→p2u transfor-
mation. Moreover, ifF(p2k) is a regular~i.e., analytic!
function of p2k, then such cross sections explicitly depe
on semi-integer powers ofv. Also, the non-relativistic pho-
todetachment cross-section contains only the Fourier tr
form of the bound-state wave function and does not inclu
the Fourier transform of the potentialV(r ). Furthermore, the
factor sin2u cos2f;(e•p)2 represents the well-known
photon-electron momentum correlation for the low-ene
photodetachment of arbitrary two-body systems. In fact,
mentioned properties of the nonrelativistic photodetachm
cross sections are supported by the results of numerous
periments and earlier theoretical studies~see, e.g., Refs
@8,15#, and references therein!.

Let us consider the case of Coulomb potentialV(r )
52Ze2/r . In the considered nonrelativistic case (v!m,
but v@I ) the normalized solution of the appropriate Sch¨-
dinger equation~ground state! takes the form~in relativistic
units!

C~r !5
Z3/2e3m3/2

Ap
exp~2Ze2mr!, ~38!

and therefore,

F~p2k!5
8ApZ5/2e5m5/2

~p2k!4
. ~39!

Now, one easily finds

ds5aA2mv
32Z5e10m5

~p2k!8
sin2u cos2fdV. ~40!

By using Eq.~33! one finds (p2k)4516E 4v4(12v cosu)4

'16m4v4(12v cosu)4. Also, the integration over spherica
angles gives the factor (4p/3). Finally, we have for the tota
photodetachment cross section
03271
n

s-
e

y
ll
nt
x-

s5a~2m!1/2
8pZ5e10m5

3m4v7/2
5a

64pZ5

3m2e4 S e4m

2v D 7/2

5
64pZ5

3
aa0

2S I 0

v D 7/2

, ~41!

whereI 05(e4m/2v) is the ionization potential~in this case!
and a05(me2)21 is the Bohr radius. The last result coin
cides exactly with the known formula for the one electro
multi-charged ions with the nuclear chargeZ ~see, e.g., Ref.
@16#!. In this case, the asymptotic behavior of the cross s
tion ;(I 0 /v)7/2 is correct only ifv!m. For higher energies
of the incident photonv all terms from Eq.~34! are also
contributed.

The second coefficientl2 (l2'al1) in Eqs. ~34!–~36!
contains the factorW(p2k), which is the Fourier transform
of the model interaction potentialV(r ). In general, the
W(p2k) function essentially coincides with the scatterin
amplitude f B(p2k) computed in the Born approximatio
~see, e.g., Ref.@17#!. By using this scattering~Born! ampli-
tudes one can rewrite our formulas for the photodetachm
cross section Eqs.~34! and ~35! in a number of different
forms. In general, this means that, if the nonrelativistic sc
tering amplitudef B(p2k) is known, then the reconstructio
of the relativistic photodetachment cross section simplifi
significantly.

Thus, as follows from Eqs.~34!–~36! the relativistic pho-
todetachment cross section can be reconstructed comple
if the radial d function C(r 50) and Fourier transforms o
the wave functionC(r ) and potentialV(r ) are known. For
some potentialsV(r ) the corresponding Schro¨dinger equa-
tion can be solved analytically, but in actual applications
bound-state wave functionC(r ) is usually approximated nu
merically by using, e.g., the exponential variational expa
sion. Also, note that for the considered negative ions Ps2 and
H2 the model potentialV(r ) must be reconstructed as
short range, non-Coulomb potential. A very good choice
the model potentialV(r ) is the regularized polarization po
tential @18,19# which has the correct asymptotic formVA(r )
at larger and has no singularity atr 50. For the considered
Ps2 and H2 ions the correct asymptotic formVA(r ) is @19#

VA~r !52
A1

2r 4
2S A2

2
13B1D 1

r 6
1OS 1

r 7D , ~42!

whereA1 and A2 are the dipole and quadruple polarizab
ities, respectively, whileB1 is the nonadiabatic term. In gen
eral, the regularized polarization potential can be chosen
few different forms, which include some numerical para
eters. Later, such parameters can be varied to make the
tentialV(r ) more realistic. The realistic potentialsV(r ) must
reproduce quite accurately the bound-state energies for
groundS(L50) states in the Ps2 and H2 ions ~all excited
states in these systems must be unbound!. Moreover, such a
potential must also be able to reproduce all known scatte
data ~phase shifts, or cross sections! for the (e2,Ps) and
(e2,H) scattering. The results of our numerical study w
some model potentials will be published elsewhere.
2-6
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The formulas obtained above can also be used to prod
~evaluate! the photorecombination cross sectionsR , which
is of great interest in astrophysics. By using the principle
detailed balancing~see, e.g., Ref.@13#! one finds the follow-
ing relation between the corresponding cross secti
gipi

2s i→ f5gfpf
2s f→ i . Here ga(a5 i , f ) are the statistica

weights of the incident and final states,pa(a5 i , f ) are the
momenta of the relative motion of the particles, whiles i→ f
ands f→ i are the corresponding cross sections~for the direct
and inverse processes!. In our present case,gi52 for the
photon. Finally, we find for the photorecombination cro
sectionsR(E)

sR~E!5
2v

2m1v
sP~E!5

2\v

2mc21\v
sP~E!, ~43!

where sP(E) is the photodetachment cross section de
mined for the same electron energy@Eqs.~34!–~36!#.

In conclusion, it should be mentioned that the approa
used in our present study is based on a few approximati
First, the model potentialV(r ) is relatively weak, i.e., it is
small in comparison to the rest mass of the electronm. Fur-
thermore, we have made an assumption that the max
electron momentump cannot exceed the valuea(mc) @in
relativistic units a(mc)51]. This means that our presen
approach cannot be applied to describe the photodetach
of internal electron shells in heavy atoms and ions. Anot
restriction of this approach is related with the ignor
electron-electron correlations in the Ps2 and H2 ions. How-
ever, the electron-electron correlations are extremely imp
tant to obtain the correct bound-state spectra in these ion
fact, the boundness of the groundS(L50) states in the Ps2

and H2 ions can easily be shown by using the fully corr
lated trial wave functions written in the relative three-bo
coordinatesr 32, r 31, andr 21 @20#. In contrast with this, the
Hartree-Fock and other similar~i.e., one particle! methods
fail to reproduce the bound states in the Ps2 and H2 ions.

In addition to the electron-electron correlations in t
model potential approach developed above we have
glected all effects arising from the electron-electron perm
tations. In fact, the both Ps2 and H2 ions are the two-
electron systems, i.e., their wave functions must
antisymmetric under the simultaneous interchange of
spatial and spin coordinates of the two electrons. This
sures that the Pauli exclusion principle is satisfied. In fa
the photodetachment of the Ps2 and H2 ions by high-energy
photons can accurately be described only in terms of
three-body approach. The model potential approach de
oped above can be considered as the first approximatio
actual systems, which, however, gives a correct qualita
account of the relativistic photodetachment of the Ps2 and
H2 ions. Likewise, this method has a significant flexibilit
since by varying the nonlinear parameters in the model
tentialV(r ) one can easily improve the final agreement w
the experimental data. In fact, we expect that the maxi
deviation between our present results and results produ
by the three-body approach will not exceed'5 –10 %.
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V. CONCLUSION

Thus, in our present study we have considered the ph
detachment of the positronium negative ion (Ps2) by high-
energy photons\v'mec

2. Our analysis is based essential
on the model potential approximation. Briefly, this mea
that the original three-body, weakly bound system is repla
by a model two-body system with some effective interact
potentialV(r ). Finally, the photodetachment cross section
represented by the two parameter formulas@see Eqs.~34!–
~36!#. For any given values of these two parameters@l1 and
l2 in Eqs. ~34!–~36!# the photodetachment cross section
uniformly determined. In general, thel1 andl2 parameters
are easily determined by using the potential- and bound-s
wave functions of the Schro¨dinger equation. The results o
this study can be applied to describe the relativistic photo
tachment in various systems, including the negative ions
light elements and arbitrary three- and few-body syste
with unit charges.

It is interesting to note a few differences between o
present results Eqs.~34!–~36! and nonrelativistic photode
tachment of the Ps2 ion considered in Ref.@1#. The main
difference can be found for the angular dependence of
relativistic and nonrelativistic photodetachment cross s
tions. The nonrelativistic photodetachment cross section@1#
contains terms that are either constants~uponu), or include
factor;cos2u, where cosu;(k•p). In other words, the non-
relativistic photodetachment cross section is invariant un
theu→p2u transformation. In the relativistic case, the ph
todetachment cross sections for the Ps2 and H2 ions also
include terms which are linear upon cosu. The general de-
pendence of the relativistic photodetachment cross-sec
upon cosu takes a very complicated form, since each of t
two parametersl1 andl2 in Eqs.~34!–~36! is alsou depen-
dent. This means that the relativistic photodetachment cr
section is not invariant under theu→p2u transformation.
In the ultrarelativistic case the distribution of the emitt
photoelectrons is confined to small angles in the forw
direction. The photodetachment cross sectionds falls off in
photoelectron energyE approximately asE 22. However, its
final asymptotic form depends on the considered poten
V(r ) and nonrelativistic wave functionC(r ).

In fact, our present approach allows one to obtain
explicit and relatively simple formulas for the photodetac
ment cross sections of any weakly bound system, includ
the Ps2 and H2 ions. Such formulas can be used to det
mine the photodetachment cross sections for various ene
of incident photon, e.g., in the ultrarelativistic, relativist
and semirelativistic cases and also to produce the clas
limit. Our present approach is also very useful for the und
standing of all important features of the relativistic photod
tachment in weakly bound systems. Moreover, we exp
that this approach must also be quite accurate quantitave
actual applications. However, the model potential appro
is only an approximate method which ignores all electro
electron correlations in the considered Ps2 and H2 ions as
well as the Pauli principle for two- and many-electron sy
tems. In our next study@12# a more accurate three-body a
2-7
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proach is developed which allows one to consider all thr
body effects missing in the course of our present analysis
conclusion, it is important to note that for the consider
energies of incident photons (\v>100 keV) the photode-
tachment of the Ps2 and H2 ions is the dominant photon-io
process, since its cross section significantly exceeds the c
sections of all other photon-ion processes, e.g., the Rayl
. J

s.

,

l
s

-

,

03271
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scattering, Compton scattering, and some others~see, e.g.,
Ref. @21#!.
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