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Photodetachment of the PS ion by high-energy photons: Model potential approach
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Photodetachment of the P§e e e ™) ion by high-energy photongiw~m.c?) is considered. Our present
approach is essentially based on the analytical solution of the first-order perturbation equation with the Dirac-
type Hamiltonian. The main goal is to produce the universal formulas for the photodetachment cross sections
which can be used for photons with arbitrarily high energies. Also, we wanted to study the angular distribution
of the emitted photoelectrons and consider correlations between the incident photon and emitted photoelectron.
The obtained formulas for the photodetachment cross sections can also be used to describe relativistic photo-
detachment of arbitrary few-body systems with unit charges. In particular, it can be applied to tbe &hd
to the muonic molecules.
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I. INTRODUCTION m. In these units, we havé w=w>1, and hence£—m
=(y—1)m=w—I~w>1, wherevy is the Lorentzy factor

In our previous study1] the nonrelativistic photodetach- and¢ is the kinetic energy of the findl.e., free photoelec-
ment of the Ps ion was considered. Presently, our analysistron. This means that the kinetic energyof the emitted
is generalized to the case of high-energy photofigs (  photoelectron is significantly larger than the maximal ampli-
~m.c?) when the emitted photoelectron has to be considtude of interparticle interactions in the Pson. Therefore,
ered as a relativistic particle with the bispinor wave function.the influence of the final two-bodyeutra) system Ps on the
In fact, this case corresponds to the situation whers1, emitted photoelectron can be considered as a small perturba-
wherew is the frequency of the incident photon ahi the  tion. In fact, in our present study all our formulas are re-
electron affinity of the Ps ion (1=0.012 a.u. stricted to the first-order perturbation theory upon the fine-
=0.3266 eV). In general, however, the nonrelativistic con-structure constar.
sideration can also be applied to the cases whee-| [1]. Note that the approximatio@> 1 is quite common for the
So, it is important to note that relativistic approach is reallyphotodetachment of arbitrary atomic and molecular systems
needed when the energy of incident photdnmwj is compa- by high-energy photons. However, for the negative ions one
rable with the rest mass of an electran£?~512 keV). In  can introduce another general approximation which is based
other words, if the photon energy is larger than 100-15®n the fact that the binding energies of such systems are
keV, then only the relativistic approach can represent quitsmall in comparison to the atomigonization) energies of
accurately the photodetachment of the Ren. Our main the final(neutra) atoms. This means that the rattof bind-
goal in this study is to develop such an approach. In fact, it isng energye of such an ion to the ionization energyof the
shown below that the same approach can be used to describmaining(neutra) atom is relatively small. For instance, for
relativistic photodetachment in arbitrary Coulomb three-the Ps and H ions the parameters are ~0.048 and
body system with unit charges, including the hydrogen nega~0.055, respectively, i.e., they are significantly smaller than
tive ion H™. Note that the photodetachment of the Rsnd 1. Furthermore, it is easy to find that for an arbitrary negative
H™ ions by low-energy photons has been considered imtomic ion the parameter is bounded between 0.048 and
[1-3]. Such problems are of great interest in astrophysic®.075. This means that all negative ions are relatively weakly
[4-7]. For instance, the visible spectrum of our Sun andbound structures. In other words, the outer electron can be
other Stars can be understood only by considering the phaonsidered as almost free particle which moves in the filed of
todetachmentand photorecombinatigmf the H™ ion[6]. In  some effective(or mode) potential V(r). In fact, such an
some cases, however, it is important to determine the photeeffective potential V(r) is a weak potential with non-
detachment cross-sections for high-energy photons, e.g., f@oulomb asymptotic at large distanaedn the first approxi-
the annihilationy quanta which propagate into the macro- mation we can assume that this potentdk) is a central
scopic electron-positron mixtures. This explains our presenpotential V(r). In actual negative ions, including the Ps
interest to the relativistic photodetachment of the negativelyon, the spin-spin and spin-orbit components also contribute,
charged ions. but, in general, such contributions are relatively small.

We begin with a few words about some notation and some Below, this one-patrticle approximation is called the weak-
basic approximations. First, in our present study only relativfield approximation. Note that the weak-field approximation
istic units are used. In these unids-14=1, and therefore, can be applied to describe photodetachment of arbitrary
e’=a, me=a !, anda,=(m.e?) '=1. Here and belowg  negatively charged ions, including the Pand H ions.
is the velocity of light,e is the charge of a protora, is the  However, in the case of negative ions with large nuclear
Bohr radius,m, is the electron mass andis the fine struc- chargeZ, the probability of photoionizatior®; of internal
ture constant. Below, we shall designate the electron mass tatomic shells increases rapidly with [in general,P;~Z°
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(see, e.g., Ref$8,9])]. In fact, already foZ=4 (i.e., for the 1 A 1.
Be™ ion) the considered relativistic photodetachment of the  ¢;=——=(1+ kP1o)—=u(1)¥{(1)[wW(2)exp(1p-r5,)
outer electron is negligible in comparison to the photode- 2\2 Vém
tachment of the internal sf-electron shell. Presently, how- +8(2)] 3)
ever, our main attention will be given to the photodetach- f ’
ment of the Ps and H ions, whereZ=1. Note that in each where P,, is the electron-electron permutatior=—1 in
of these ions withZ=1 only the groundS(L=0) state is the case of the Psand H™ ions,w(j) (belowj=1,2) is the
stable. The photodetachment of these two ions is considerasispinor amplitude of the photoelectropw* (j)yow(j)
below by using the weak-field approximation mentioned=2m] andu(i) is the bispinor amplitude of the electron at
above. This approximation plays a central role in our presentest [u* (j) you(j)=2m]. The explicit forms of these bis-
study, since it is used to develop the model potential appinors are not important for our present consideration. Also,
proach. The model potential approach is discussed in detaiih this equatiori?’¢(1) is the final(bound two-body system
in Sec. lIl. The ultrarelativistic and nonrelativistic cases are(Ps oree™) and 8i;(2) is the small relativistic correction
considered in Sec. IV. Concluding remarks can be found irf{~«a) to the wave functior(i.e., to the plane wayeof the
the last section. emitted photoelectron. The bispinor wave function
Uu(1)¥ (1) of the two-body(final) system Ps also includes
the first-order relativistic correctiofsee below.
Il. PHOTODETACHMENT CROSS SECTION The initial wave functiony; is essentially the nonrelativ-
. . istic three-body functionV'(1,2) of the PS ion which must
Formally, our present problem is to compute the d|fferen-be multiplied by the two bispinor amplitudeg1) andu(2).
tial photodetachment cross sectids which is written in the However, it can be shown that such a wave function cannot
form (see, e.g., Ref10]) produce the correct expression for the probability amplitude
Mi¢. The corrected wave function must include the

£l first-order correction upone which corresponds to the

do=e?———|M;|2dQ, (1) Lorenzt boost of the nonrelativistic wave function
27w [~(ay-V,o)u(2)¥,(1,2)]. Finally, the correct initial wave
function ¢; is written in the form
wherep=_£&v/c? is the momentum of the emitted photoelec- 1 .
tron, £ andyv are the kinetic energy and velocity of the photo- ¢;=——=(1+ Khlz)—U(1)< 1- 2—(a2- Vz)) u(2)¥i(1,2),
electron, respectively. Presently, we shall assume that the 2\2 m m
kinetic energy€ includes the rest energy of electron, i.&., 4
=ym. Also, in this equatiorM;; is the corresponding prob- \here x=—1 for the PS ion and the function¥;(1,2) is
ability amplitude the three-body bound-state wave function of the R (or
the H™ ion, respectively. As mentioned above in the Ps
and H ions only the groun®(L =0) states are boun(le.,
M”:f f%(1,2)(&2-e)exp(lk- ro)i(1,2d%r,d%r,, stablg. Now, the bispinor wave function of the hydrogenlike
systemu(1) ¥ rom Eqg.(3) can be written in analogous
@) ()W) f Eq.(3) b I
form
- - - - ~ o~ I~
where a= v,y and y, and y=(yx,7y,¥,) are the Diracy u(l)\Pf(l):(l— 2—(a1-V1)) u(1)w(1),
matrices. In contrast with our previous stuldy] in the last m

equation the initiakj;(1,2) and finaly(1,2) electron wave \whereW((1) is the exact nonrelativistic wave function of the

functions are the doubled bispinor functions. Also, in thiShydrogenIike Pgor ete™) system.

equationk is the momentum of incident photdor propaga- The formulas presented above are sufficient to produce

tion vector[11], k?=w?) ande is the polarization vector of the analytical expressions for the Pshotodetachment prob-

the incident photon. Presently, for the incident photons weypility amplitude M;; and cross sectiomo. The detailed

shall use only the radiatiofor Coulomb gauge, in which  gpalytical computations can be found in our next staB).

kLe Moreover, only photons with linear polarization are However, in this study out main attention is given to the

considered. This means thet (e, e, ,e,) is a real vector, weak-field approximation which is essentially the one-

i.e., alle; (i=x,y,z) are real(in fact, in Coulomb gauge,  particle approximation. Obviously, in this case the formulas

=0 always. for the bispinor functiong/; and¢; presented above have to
Now, let us discuss the eXp"Cit forms of the initial and be modified. In this case the final wave function is

final wave functions. Below, we shall assume that for any

considered three-particle system the particles 1 and 2 are 1

electrons. The particle 3 is the positrefi for the PS ion ‘ﬁf:\/?g[w exp(Ip- 1)+ oy, (5

and proton p for the hydrogen H ion. The electron wave

function of the final statey; (below, the final wave function, where now only one coordinate is presented. The initial

for shord in the case of Psion takes the form wave function takes the form
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1 Lo The first term in this equation can be written in the form
lﬁi:—% 1_ﬁ(a'v)>uwi- (6) )
M 1=——w(y-e)u-d(p—k
In this equatiorw andu are the constant bispinors, whid/; o JEm (79 (p=k)

is anr-dependent bispinor function. In the last equatibnis
the wave function of the original bound state in the Fan o — .
determined in the weak-field approximation. These formulas - WW(V'@J exfli(k=p)-r]
are used in the following section.
X(a-V)u-W(r)dr. (10
Ill. NEGATIVE IONS IN THE WEAK-FIELD
APPROXIMATION By integrating in this equation the second term by parts, one

As mentioned above, in the weak-field approximation thec@n transfer the operat® to the exponential factor. Finally,

original three- and many-body problems are replaced b§he partial probability amplitud®; , takes the form
some effective one-particle problem. Indeed, in the weak-

field approximation it is assumed that the electron moves in M 1 _(A U b (p—k)+ 1 _(A o
some effective potential field/(r). The corresponding non- 1175 oy O PP e WLy
relativistic Schrdinger equation for the bound-state wave em myem
function ¥ (r) is X[a-(k—p)Ju-®(p—k)

1A+2e2V(r) 2E|¥(r)=0 ) L ‘{(A )+ ! (v-©)vo(y-(K—=p))

m 2\/€_m Y 2m Y YolY p
whereE is the total bound-state energy and the fine structure Xu-®(p—Kk). (11
a(=e?) is shown explicitly in front of the effective potential
V(r). Note that in our present case the total eneffgyoin- The second partial amplitudd; , is written in the form

cides exactly with the corresponding ionization potential
Our goal below, is to show that the photodetachment cross

o . . 1 -
section in the case of E¢l) can be obtained with the use of M. o= f SU()(v-eu-W(rexak-rd3r
only Fourier transforms of the wave functioih(r) and po- "2 2JEm (e (nexp( yarr.
tential V(r). In addition to these functions one also has to (12

know the numerical value of the radial function [i.e.,
W(r=0)] for the considered system. In other words, if the The physical meaning of the bispinor functiég(r) is ob-

two following functions vious. Indeed, this is a small perturbation &) to the final
plane wave. The nonrelativistic ground-state wave function
_ .3 ¥ (r) of the PS ion corresponds to the spherically symmet-

©(k) f\lf(r)exp( tk-r)d*r and ric S(L=0) state, i.e., in this cas#&(r)=V¥(r). Moreover,

this radial function is a monotonic function which is slowly
W(k):f V(r)exp(—1k-r)d°3r, (8)  varying (decaying with radiusr. Therefore, we can expect
that its Taylor series expansion around0 (or r=0) point

and value¥ (r=0) are known, then one can easily deter-

mine the differential §o) and total ) photodetachment W(r)=W(r=0)+r dw(r) +Er2d2\If(r)
cross sections. Note that, in the general case, the potential dr 2 dr?
V(r) and wave functionV (r) are not necessarily spherically N
symmetric functions. B e an
Now for the probability amplitudévi;; we can write —\P(0)+zl n! Flprv(r)] (13

1 — A converge quite rapidly. In this equatign=(—1)d/dr. Now,
Mif_z,/gmj w(y-e)exili(k=p)-r] note that in our present cas#,(r) is the nonrelativistic
atomic wave function, and thereforé;,)~ay,=1 and{p,)
~a, i.e.,ve~ac. In general, the electron and positron mo-

1—%(&-V))u~\lf(r)}d3r

X menta in the Psion (as well as the electron momenta in the
H™ iong are~mé/#, i.e., small () in comparison with
1 — . 3 mc. In the limit «— 0 only then=0 term[i.e., ¥ (r=0)] in
+ 2 em Sipi(y-eu-W(r)expik-r)d°r this series survives. Also, note that higher-order terms from
Eqg. (13) cannot contribute to the matrix element EG2)
=Mis 1+ Mis 5. (99  computed in the first order upam, since the bispinor func-
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tion 8y is already a small value~«). Finally, the partial
probability amplitudeM;j¢ , in our present approximation
takes the form

)(y-e)uexpik-r)d3r, (14)

M _YO St
if,2_4\/77_—grn l/’f(r

where W (0) is the value of the nonrelativistic radial wave
function at short distances~A =aa,, where A is the
Compton radius.

The functiondy; can be found from the following equa-
tion [10,13

e2(yoW)V(r)exp(ip-r).
(15

(yo&+1y-V—m)di(r)=

Or, in other words

<A+p2)5wf<r>=e2<yoe+l&~V+m><yow>V<r>exmpdg

Now, multiplying both sides of this equation by
exp(—1k-r) and integrating oved®r one can reduce the last
equation to the fornj13]

(p2—k?) 8:(k)=€2(yoE— y-k+m)(yoW)W(k—p),

17
where the following notations
5¢(b):f Sye(r)exp(—1b-r)d® and
W(b)=J V(r)exp(—1b-r)d®r (18

are used. Now, note that the bispinor amplitwdesatisfies
the following equation £yo— yp—m)w=0. From here one
finds

(Eyot+y-p—m)yow=0, or myoW=(570+7-p)Vo\£V-)
19

Now, the partial amplitudé/;; , is written in the form

e?¥(0) W(k—p)

Mite= y Tmem (k)

W(2yoE+ ¥-(k—p))yo( y- ©)U.
(20)

Note that this expression can also be represented in the form

Mis 2= aoW(y-e)u+w(y-¢)yo(y-e)u, (21)

where the explicit expressions for the scadarand vectorc
can easily be found from Eq20),

e?¥(0)W(p—k)

2 mEm(p—k?)’

e?¥ (0)W(p—k)

_4m\/ wEm(p?— kz(_)

(22
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The formula for theM ¢ ; can also be rewritten in analogous
(but slightly differenj form

Mif.1=a;w(y-e)u+w(y-€) yo(y-b)u, (23)

where the scalap; and vectorb can now be determined
from Eq. (11). Their values are

L%k ek
T oem | amydem

Note thatb=\,(p—k) andc=\,(p—k), where the numeri-
cal factorsh; and\, are

(p—k). (29)

LBk @vowe-k
Yamyfem’ amymEm(p?—k?2)’

Also it follows from these equations that;=2m\;, a,
=2mh,, and thereforea=2m(\,;+\,). Finally, the ex-
pression for theM ¢ (=Mj; 1+ Mj; o) amplitude is

M;;=wAu=aw(y-e)u+w(y-e)yo(y-b)u

+W(y-¢)yo( -, (26)
where nowa=a, +a, and 4<4 matrix A is
A=a(y-e)+ (78 yo(y-b)+(¥-0)yo(y-0). (27
The cross sectiodo is written in the form
do=¢? L(wAu)(UyOA+ Yow)dQ. (29

In our present case, this expression must be summed over all
(initial and fina) directions of the electron spin. This gives
the common factor 4. Then, the answer has to be multiplied
by 3 (this corresponds to the averaging over the initial
direction of the electron spin The computation of the
(WAU) (uy,ATyow) matrix element is performed by using
the formal rules from Ref.10] (see also Ref13)). First, the
product of the bispinor amplitude components must be
changed in the following way;u,— p;yc and w;w,— pj),
where

m 1
p= 5(70+ 1) and p’=§(*yo€— y-p+m),

wherep andp’ are the density A4 matrices. Now, to de-
termine the matrix element one has to calculate the trace of
the following 4X 4 matrix

— A m
(WAU) (uyoATyow) = 7 SH(y0E= ¥-p+1)

XA(yo+ 1A y,], (29
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where the 4 4 matrix A is given by Eq.(27) andSp(B) is

the trace of the % 4 matrixB. The computation of this trace
is straightforward and final general expression takes the form

(WAU) (UyoATyow) =m(E—m)a2+m(E+m)(b—c)?
—2map-(b—c)+4m(E+m)(b-e)
X(c-e)+4dma(b-e)(p-e), (30

where all notations are exactly the same as in ). In
fact, in our present casg?=E?—m? and (p—k)-e=p-e,
sincek L e.
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ment cross section can be easily produced from the last equa-
tion by using the Lorentz factor.

In all formulas for the photodetachment cross sections
presented above we assumed that the incident photons have a
linear polarizatione. For unpolarized photons all these for-
mulas must be averaged over the directionseofor the
systems with central potentis(r) in the last expression one
has to replaceos¢ by its averaged valug(27) == and
multiply all other terms by Z. Indeed, according to Egs.
(33) for an arbitrary central potentidl(r) the constanta ;
and\, in the last equation can depend only on polar angle
cosé. Finally, one finds for the photodetachment cross sec-

The formula for the photodetachment cross section is nof/on in the case of unpolarized photons and for a central

written in the following form

E+m

— ezmg 2 2
g_—m[(é’—m)a +(E+m)(b—c)*—2ap- (b

o=

o
—c)+4(E+m)(b-e)(c-e)+4a(b-e)(p-e)]dQ, (31

or, in other wordgsincea=2m(\1+\5)]

e’mé [E+m 2
do=——\/ g T4M*(E=m)(\y+ o) >+ (E+m) (A,

—N)%(p—k)Z—Am(\i-Ao)p- (p—k)+4(E

+M)N A o(p-€)2+8m(AZ+ N\ \,)(p-e)?]dQ. (32

This formula can be rewritten to a slightly different form by

introducing the polar anglé between the directions @fand

k, i.e., cost=(p/|p|)- (k/w)=p-klwJw(E+m). The azi-
muthal angle¢ can be determined from the relatign e

=|p|sin #cos¢. Moreover, it is straightforward to obtain that

in our present case the following relations

p?—k?=2m(E-m), (p—k)2=2&E—m)(1—v cosh),
(33

p-(p—k)=(E—m)(E+m—Ev cosh)

are obeyed. Here and below=|v| is the velocity of the
emitted photoelectron. In fact, in our present case
=1-m?/£%=1-1/y?, wherey is the Lorentzy factor,

i.e., y=&m.

potential\V(r),
do=4e2mEVEZ— M 2m2(A 1+ X )2+ (E+ M) (N —\p)2
X (E—JE2—mP? cosh) —2m(A2—\2)(E+m
—JEZ—mZ cosh) + (E+m)2\ N, SO+ 2m(E+m)

X(N34N1\p) - sirP@]sin0d 6. (35

In this case the differential cross sectiondepends only
upon the polar angl®. In the general case of noncentral
potential V(r), the averaging of Eq(34) over azimuthal
angle ¢ is more complicated.

IV. DISCUSSION

The angular distribution of the emitted photoelectrons and
correlations betweek andp vectors are of specific interest
in a number of applications. In general, to study the angular
dependence for the photodetachment cross section one has to
consider the explicit expressions for the factarsand A\,
from the last equation. However, a few important conclu-
sions can be deduced from the consideration of B3y8.and
(35). For instance, the main difference between our present
case and nonrelativistic results from REE] can be formu-
lated as follows. The right hand sides of E¢34) and(35)
include the linear and quadratic powers of épwhile in the
nonrelativistic cas¢l], analogous expression contains only
the quadratic powers of cadq14]. This is mainly related to
the fact that the dipole approximation is very accurate in the
nonrelativistic case i.e., all corrections to the dipole approxi-
mation are relatively small. Note also, that formulas for the

Finally, one finds for the photodetachment cross section yptodetachment cross sections obtained with the use of

2e’mé&
o
—Np)%(E— JEZ—m? cosh) —2m(A2 =A%) (E+m
—JEZ—m? cosh) + 2(E+m)2\ N, siH coL
+Am(E+m)(A2+ N\ \,)sir0 cog¢]sinodod .
(34)

do= VEZ—m2[2m2( A+ Np) 2+ (E+m)(Ay

This form corresponds to the(&) dependence. By substi-
tuting £&= w+m one can obtain the explicit formula for the maximum at very small

three-body approach also contain the linear powers obcos
In the ultrarelativistic casege>m) Eq. (34) takes the form

2e’mée?

o

o= [2M?(N 1+ Np)%+E2(N1—N,)2(1—cosh)

—2mENT—\3)(1—c0s0) +2E2\ |\, SirP O coS ¢

+4mEN2+ N1\ ,)sir? 0 cog ¢]sin od od . (36)
For ultrarelativistic energiesé&m) the distribution of the
emitted photoelectrons is tipped forward and has a sharp
polar angle®=arcsinfe)

o(w) function. Another useful formula for the photodetach- ~(m/&) = (1/y). For 6 which are close to the maximal angle
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Omax=m/ & all terms in this expression can be written in the 87 Z5e%m>® 64725 [ e*m) 72
form £2(m/€)>~m?, i.e., they are finite. However, the factor o=a(2m)'? T AT 5 (—)
: 2 : , 3mie 3m?e*\ 2w
sin6do~(1/£°)d&IE determines the final dependence of the
photodetachment cross sectian&) upon the photoelectron 64775 lo) 772
energy€ [o(£)~ £~ 2~y 2] in the ultrarelativistic case. =—3 aad p (41)

In the opposite(i.e., nonrelativistit case, whenw<m
(but w>1), the photodetachment cross-sectahn can also

wherel ,=(e*m/2w) is the ionization potentigiin this cas
be obtained from Eqg34) and(35). Only in this case one 0= ©) P al &

=2 s and ap=(me?) ! is the Bohr radius. The last result coin-
has to use the substitutidgi=m-+ w, where the incident pho-  jes exactly with the known formula for the one electron,
ton frequencyw is the small parameter. In this case, themulti-charged ions with the nuclear chargdsee, e.g., Ref.
explicit expression for the photodetachment cross secti0[1l6])_ In this case, the asymptotic behavior of the cross sec-

do, Eq.(34), takes the form tion ~ (1o/w)"?is correct only ifw<m. For higher energies

8e?m?* of the incident photorw all terms from Eq.(34) are also
o= V2mw\Z? sir? 6 cog ¢pd Q) contributed.
m The second coefficient, (A,~a\;) in Egs. (34)—(36)
o contains the factowW(p—Kk), which is the Fourier transform
=E\/medbz(p—k)sin20c052¢sin0d0dqb. of the model interaction potentia¥(r). In general, the

W(p—k) function essentially coincides with the scattering
(37 amplitude fg(p—k) computed in the Born approximation
, L (see, e.g., Ref.17]). By using this scatteringBorn) ampli-
As follows from this formula the nonrelativistic photodetach- 1,4es one can rewrite our formulas for the photodetachment
ment cross sectiodo is invariant unde— a— 6 transfor- 555 section Eqg34) and (35) in a number of different
mation. Moreover, if®(p—k) is a regular(i.e., analyti¢  orms. In general, this means that, if the nonrelativistic scat-
function of p—k, then such cross sections explicitly depe”dtering amplitudef 5(p—k) is known, then the reconstruction

on semi-integer powers a@b. Also, the non-relativistic pho-  f the relativistic photodetachment cross section simplifies
todetachment cross-section contains only the Fourier trangjgnificantly.

form of the bound-state wave function and does not include Thus, as follows from Eqg¢34)—(36) the relativistic pho-

the Fourier transform of t?e potentié(r). Furthermore, the  {ggetachment cross section can be reconstructed completely,
factor  sirfocos'¢~(e-p) represents the well-known it the radial § function W (r=0) and Fourier transforms of
photon-electron momentum correlation for the low-energyihe wave function¥ (r) and potentiaV(r) are known. For
photodetachment of arbitrary two-body systems. In fact, alyme potentiald/(r) the corresponding Schinger equa-
mentioned properties of the nonrelativistic photodetachments, can be solved analytically, but in actual applications the
cross sections are supported by the results of numerous exgnd-state wave functiolr(r) is usually approximated nu-
periments and earlier theoretical studiesee, e.g., Refs. merically by using, e.g., the exponential variational expan-
[8,15], and references thergin ] sion. Also, note that for the considered negative ions &sd

Let us consider the case of Coulomb potentiélr) 14~ the model potentiaM(r) must be reconstructed as a

=—2Z7€Ir. In the cqnsidered .nonrelatiViStiC Ca§&><€nj. short range, non-Coulomb potential. A very good choice for
but w>1) the normalized solution of the appropriate Sehro {he model potentiaV/(r) is the regularized polarization po-
dinger equatior(ground statgtakes the form(in relativistic  {aniial [18,19 which has the correct asymptotic forvy(r)
units) at larger and has no singularity at=0. For the considered
73126377312 Ps and H ions the correct asymptotic forivia(r) is [19]

_s = o2
W(r) = exp(—Ze mr), (38 A, £+O
r6

1
—7) . (42
and therefore, r
8/ Z5%e5mp? whereA; and A, are the dipole and quadruple polarizabil-
d(p—k)= ——m——. (39 ities, respectively, whil@, is the nonadiabatic term. In gen-
(p—k)* eral, the regularized polarization potential can be chosen in a
o few different forms, which include some numerical param-
Now, one easily finds eters. Later, such parameters can be varied to make the po-
tential V(r) more realistic. The realistic potential§r) must
I e . reproduce quite accurately the bound-state energies for the
do=ay2me Sir6 cos ¢dq. (40 groundS(L=0) states in the Psand H™ ions (all excited
states in these systems must be unbguktbreover, such a
By using Eq.(33) one finds p—k)*=165%w*(1—v cos§)*  potential must also be able to reproduce all known scattering
~16m*w*(1—v cosh)*. Also, the integration over spherical data (phase shifts, or cross sectiorior the (e~ ,Ps) and
angles gives the factor (#3). Finally, we have for the total (e ,H) scattering. The results of our numerical study with
photodetachment cross section some model potentials will be published elsewhere.

3225610m5
(p—k)®
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The formulas obtained above can also be used to produce V. CONCLUSION
(evaluate the photorecombination cross sectiog, which
is of great interest in astrophysics. By using the principle o
detailed balancingsee, e.g., Ref13]) one finds the follow-

ing relation between the corresponding cross section . ! ) ¢ >
giPiZUHFQfoZUfﬂi- Here g,(a=i,f) are the statistical on the model potential approximation. Briefly, this means

weights of the incident and final statgs,(a=i,f) are the that the original three-body, wea_tkly bound syst.em_is replaped
momenta of the relative motion of the particles, whilg. by a model two-.body system with some effective mtergcuqn
anda;_; are the corresponding cross sectigius the direct ~ PotentialV(r). Finally, the photodetachment cross section is
and inverse processedn our present casay=2 for the  'epresented by the two parameter formulsse Eqs(34)—
photon. Finally, we find for the photorecombination cross(36)]. For any given values of these two paramefers and
sectionag(€) N\, in Egs. (34)—(36)] the photodetachment cross section is
uniformly determined. In general, the, and\, parameters
are easily determined by using the potential- and bound-state
wave functions of the Schdinger equation. The results of
this study can be applied to describe the relativistic photode-
tachment in various systems, including the negative ions of
light elements and arbitrary three- and few-body systems
where op(€) is the photodetachment cross section deteryith unit charges.
mined for the same electron eneridgs. (34)—(36)]. It is interesting to note a few differences between our
In gonclusmn, it should_be mentioned that the a_ppro_acfbresem results Eq¥34)—(36) and nonrelativistic photode-
u_sed In our present stu_dy IS pased ona few approximationg, chment of the Psion considered in Refl1]. The main
First, Fhe model.potentlal/(r) is relatively weak, i.e., it is difference can be found for the angular dependence of the
frﬂ?:#é?ecovr\?gar::\?en :r?at(?ee ;iStar:;JS; Otfi(;[rqetr?zlﬁcmtrz Fnligximr?lativistic and nonrelativistic photodetachment cross sec-
’ P ions. The nonrelativistic photodetachment cross sedtlgn

electron momentunp cannot exceed the value(mc) [in . ! .
relativistic units «(mc)=1]. This means that our present ;:or:talzs tegrr;s t:]lat are;LthI((ar conlsta(l;lgson 0)’d0r 't';Cllee
approach cannot be applied to describe the photodetachmeﬁ'HC or—Ccos ¢, where co (k-p). Ino erwords, the non-
of internal electron shells in heavy atoms and ions. Anothef® ativistic photodetachment cross section is invariant under

restriction of this approach is related with the ignoredthe 0— m— Btransformatiqn. In the relativistic case, the pho-
electron-electron correlations in the Pand H™ ions. How-  todetachment cross sections for the' Rend H' ions also
ever, the electron-electron correlations are extremely imporinclude terms which are linear upon o#sThe general de-
tant to obtain the correct bound-state spectra in these ions. Rendence of the relativistic photodetachment cross-section
fact, the boundness of the grous@L =0) states in the Ps  upon cos) takes a very complicated form, since each of the
and H ions can easily be shown by using the fully corre-two parameters; and\, in Egs.(34)—(36) is alsod depen-
lated trial wave functions written in the relative three-bodydent. This means that the relativistic photodetachment cross-
coordinates 3, r3;, andr,q [20]. In contrast with this, the section is not invariant under th— 77— 6 transformation.
Hartree-Fock and other simildr.e., one particle methods In the ultrarelativistic case the distribution of the emitted
fail to reproduce the bound states in the Rsxd H™ ions. photoelectrons is confined to small angles in the forward
In addition to the electron-electron correlations in thedirection. The photodetachment cross sectienfalls off in
model potential approach developed above we have nehotoelectron energg approximately ag ~2. However, its
glected all effects arising from the electron-electron permufinal asymptotic form depends on the considered potential
tations. In fact, the both Psand H ions are the two- V(r) and nonrelativistic wave functiow (r).
electron systems, i.e., their wave functions must be In fact, our present approach allows one to obtain the
antisymmetric under the simultaneous interchange of thexplicit and relatively simple formulas for the photodetach-
spatial and spin coordinates of the two electrons. This enment cross sections of any weakly bound system, including
sures that the Pauli exclusion principle is satisfied. In factthe PS and H ions. Such formulas can be used to deter-
the photodetachment of the Pand H™ ions by high-energy mine the photodetachment cross sections for various energies
photons can accurately be described only in terms of thef incident photon, e.g., in the ultrarelativistic, relativistic
three-body approach. The model potential approach deveknd semirelativistic cases and also to produce the classical
oped above can be considered as the first approximation fimit. Our present approach is also very useful for the under-
actual systems, which, however, gives a correct qualitativgtanding of all important features of the relativistic photode-
account of the relativistic photodetachment of the Rsid  tachment in weakly bound systems. Moreover, we expect
H™ ions. Likewise, this method has a significant flexibility, that this approach must also be quite accurate quantitavely in
since by varying the nonlinear parameters in the model poactual applications. However, the model potential approach
tential V(r) one can easily improve the final agreement withis only an approximate method which ignores all electron-
the experimental data. In fact, we expect that the maximaglectron correlations in the considered Pand H™ ions as
deviation between our present results and results producadell as the Pauli principle for two- and many-electron sys-
by the three-body approach will not exceed—-10 %. tems. In our next studj12] a more accurate three-body ap-

f Thus, in our present study we have considered the photo-
detachment of the positronium negative ion {P$®y high-
gnergy photong w~m.c?. Our analysis is based essentially

oR(E) L (&), (43
w

w
_ g -
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proach is developed which allows one to consider all threescattering, Compton scattering, and some otlise®, e.g.,
body effects missing in the course of our present analysis. IRef.[21]).
conclusion, it is important to note that for the considered
energies of incident photong: =100 keV) the photode-

tachment of the Psand H ions is the dominant photon-ion

process, since its cross section significantly exceeds the cross It is a pleasure to thank the Natural Sciences and Engi-
sections of all other photon-ion processes, e.g., the Rayleigheering Research Council of Canada for financial support.
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