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Generalized Gaunt coefficients

Brett I. Dunlap
Code 6189, Theoretical Chemistry Section, U.S. Naval Research Laboratory, Washington DC 20375-5342

~Received 15 April 2002; published 25 September 2002!

Solid-harmonic derivatives of solid-harmonic-Gaussian integrals are evaluated. Cross differentiation and the
n-j generalized Gaunt coefficients are defined. The generalized Gaunt coefficients ensure that cross differen-
tiation in uncoupled,n-center, solid-harmonic derivatives of rotationally invariant Gaussian matrix elements
subtracts zero total angular momentum. This preserves the spherical-tensor properties of quantum-chemical
matrix elements. The generalized Gaunt coefficients are (n21)-dimensional objects because the sum of the
azimuthal quantum numbers is zero, which facilitates their use in computer programs. The 4-j and higher
number of centers generalized Gaunt coefficients are characterized by quantum numberski j , the angular
momentum lost directly by cross differentiation from solid harmonics of differential operators about centersi
and j. The generalized Gaunt coefficients vanish if the absolute value of the sum of thei and j azimuthal
quantum numbers is greater than the sum of the two total angular momenta minus twiceki j . This constraint
further limits the number of coefficients that must be processed at one time. All coefficients for any given
number of centers satisfy the same recurrence relations but differ, because different terms in any given
recurrence relation vanish according to the various azimuthal-quantum-number bounds. Direct and recursive
FORTRAN-90code has been written for the 3-j to 6-j generalized Gaunt coefficients.
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I. INTRODUCTION

Analytic Gaussian integral evaluation is the foundation
the quantum-chemical software industry. Currently that
dustry is based on global recursive Gaussian integral ev
ation using the Cartesian Gaussian basis@1–3#. Gaussian in-
tegrals may be thought of as large matrices having m
indices, where each index can represent an azimuthal q
tum number, primitive exponent, contraction number, Ca
sian derivative, etc. If, for example, three-index integrals
computed using global recursion, then three-index quant
are combined to generate higher three-indexed quantities
yield the required three-index integrals. Other codes us
the solid-harmonic Gaussian basis are being develo
@4–6#. Two of those codes use global recursion@5,6#. Ulti-
mately such codes can at best be marginally more effic
because a simple basis set transformation connects the
harmonic basis and a subset of the Cartesian basis. Ne
theless, a solid-harmonic Gaussian code that had earlie
corporated efficient use of symmetry-adapted solid-harmo
atomic orbitals@7# enabled the largest-basis-setab initio cal-
culation of that time@8#. That same technology, now para
lelized, is apparently still setting records@9#, 14,000 con-
tracted orbital basis functions, which is three times the s
of the basis in Ref.@8#. The state of the art using solid
harmonic Gaussians is not completely satisfactory, howe
Analytic normal-mode analysis, which requires second
rivatives of the energy with respect to nuclear motion,
standard in commercial Cartesian Gaussian codes@10#. There
is obvious need for efficiently computed first and seco
derivatives of solid-harmonic Gaussian integrals. This pr
lem is challenging because the solid-harmonic basis~and all
of its derivatives! is the Cartesian basis in momentum spa
On the other hand, once one has written a general Carte
Gaussian integral code it can be directly used to get der
tives of those integrals. The solid-harmonic basis, howe
1050-2947/2002/66~3!/032502~7!/$20.00 66 0325
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is the unique basis that diagonalizes angular momen
about its center. It facilitates analysis of chemical bond
because the Gaussian basis sets of quantum chemistry@11#
are eigenfunctions of angular momentum. Furthermore
very large number of different and exclusive recurrence
lations for Cartesian Gaussian integral evaluation have b
published and are used in very complex sorting algorithm
Currently speed is gained by increasing the number of
ferent ways any given integral can be computed@1,2#. On the
other hand, recurrence on the solid harmonics either al
the angular momentum or else is unlikely to be useful. In t
work only solid harmonics are used; these methods are
directly appropriate for bases larger than the solid harmon
@12#.

The first solid-harmonic Gaussian derivative codes h
begun to appear@13–17#. Our original code@14–16# for
computing first derivatives in the solid-harmonic Gauss
basis set is based on reusing the list of cross derivatives
and over again for eachn-tuple of Gaussian exponents th
result if up to four solid harmonics of differential operato
act on a Gaussian. Unfortunately, that method of deriva
integral evaluation when coded inFORTRAN-90is remarkably
slow, and puts significant calculations out of reach. Anot
approach to solid-harmonic derivative integral evaluation
to compute the first and second derivatives of all factors t
go into the computation of the derivatives of solid-harmon
integrals. That method is practical@18#; however, the code
requires that an array, of length 28 for second derivatives
three-center integrals, be associated with every quantity.
approach of Saunders to multicenter solid-harmonic integ
is to expand each product of solid-harmonic Gaussians
terms of Hermite Gaussians about its center@4#. Computer
algebra is probably essential for optimizing that approa
@19#. Such an approach, however, is unlikely to be sign
cantly faster than the equivalent Cartesian Gaussian b
approach. Ro¨sch and co-workers use spherical-tensor me
©2002 The American Physical Society02-1
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ods to compute first derivatives of two-center solid-harmo
Gaussian integrals@20#, i.e., first derivatives were evaluate
using spherical-harmonic technology relevant top-type or-
bital basis functions@5#. Toward generalizing that approac
to more centers and higher derivatives, code for genera
the generalized Gaunt coefficients is developed in this wo
Closed-form expressions for solid harmonics of differen
operators acting on three- to five-center Gaussians of sc
arguments have appeared@5,18,21#. For three centers the an
gular factor that arises is proportional to the Gaunt coe
cient. The corresponding angular factors for four and fi
centers have been shown to be invariants@21#. It might be
possible to use these factors effectively to compute tw
center~second! derivatives of solid-harmonic Gaussian int
grals. As a first step toward that goalFORTRAN-90 code has
been written to recursively generate these 3-j to 6-j general-
ized Gaunt coefficients, which are necessary for closed-f
evaluation of, e.g., two-center solid-harmonic derivatives
two- to four-center Coulomb integrals.

II. THE n-j GENERALIZED GAUNT COEFFICIENTS

The solid-harmonics Gaussians may be writt
@r #M

L exp(2ar2), where square brackets have been used
avoid theY of conventional notation for the solid harmonic
@22#. The unnormalized solid harmonic

@r #M
L 5~21!mr LYLM~u,f!A4p/~2L11!~L1M !! ~L2M !!

5(
k

~21!k~x1 iy !M1k~x2 iy !kzL2M22k

22k1M~M1k!!k! ~L2M22k!!
, ~1!

contains the spherical harmonicYLM(u,f), of Edmonds
@23#, and the second equality is Eq.~3.153! of Ref. @24#. In
practice these solid harmonics are generated recursively

~L2M !@r #M
L 5z@r #M

L2112@r #21
1 @r #M11

L21 , ~2!

from @r #21
1 5(x1 iy)/2 and the corresponding equation ge

erated by taking the complex conjugate of this equat

and then using the spherical-tensor identity@r #M
L*

5(21)M@r #2M
L . Using these unnormalized solid harmoni

avoids all square-root factors and streamlines the work
equations. The factors that normalize these solid harmo
vary by as much asA(2L)!/L! but are not large enough t
be problematical throughL56 in double-precision arith-
metic.

The simplest two-center Gaussian function may be w
ten,

G5exp@2a~a2b!2#. ~3!

This Gaussian matrix element has Gaussian exponenta and
centersa andb. Such a Gaussian is called ans-type matrix
element because it is invariant under rotation of the en
coordinate system. The product or overlap of any numbe
Gaussians is such a Gaussian function. The argument
function of centers, which will be labeled by lower case l
tersa, b, c,... . The derivatives of the argument of the Gau
ian with respect to each of these centers must be a ve
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Each such vector divided by the original Gaussian will
indicated by upper-case lettersA, B, C,... . Thus the gradien
with respect to the sixth center defines the sixth vec
“ fG5FG.

Eigenfunctions of definite angular momentum are gen
ated by a solid harmonic of the gradient with respect to
center operating on ans-type Gaussian matrix element. Fo
our simple two-center matrix element a solid-harmon
Gaussian is generated through differentiation:

@“a#M1

L1 G5@2a~b2a!#M1

L1 G[@A#M1

L1 G. ~4!

Angular momentum can also be generated from the sec
center using the product rule of differentiation via the sol
harmonic addition theorem

~@“b#M2

L2 !* @“a#M1

L1 G

5(
jm

~@B#M22m
L22 j

!* G~@“b#m
j !* @A#M1

L1

5(
jm

~2 j 21!!! ~@B#M22m
L22 j

!* @A#M12m
L12 j a12

j G/

~ j 1m!! ~ j 2m!! ~5!

where a125“a•B/352a, the expression for the solid
harmonic gradient of a solid harmonic@25# has been used
and the sum is over all values ofj and m for which the
angular momenta of the two solid harmonics are physic
One can say that the first term in the summation after
second equality is simplest because ifj 5m50 then both
solid harmonics act only on the Gaussian. That first te
involves no cross differentiation. Each other term involv
cross differentiation. The same amount of angular mom
tum is lost from each solid harmonic of the two vectors b
cause part of the solid harmonic of one gradient acted on
other solid harmonic, not on the Gaussian. The terms invo
ing cross differentiation are simpler, however, in the se
that each solid-harmonic differentiation of a solid harmon
reduces the total angular momentum by two units. In fact
and only if the two initial solid harmonics are the sam
M15M2 and L15L25L, then the final term on the right
hand side of Eq. ~4! is (2L21)!!a12

L G/(L1M1)!(L
2M1!, and there is no angular momentum left. If both initi
angular momenta arep type then the right-hand side has on
or two terms depending on whether the two azimuthal qu
tum numbers match.

The derivatives of then-center Gaussian matrix eleme
can be expressed in uncoupled form@21#,

@“a#M1

L1 @“b#M2

L2
¯@“n#Mn

Ln G

5(
k,m

@A#M12m1

L12 j 1 @B#M22m2

L22 j 2
¯@N#Mn2mn

Ln2 j n Gm
k , ~6!

where j i5( j Þ i , j 51
n ki j , k is symmetric ~the diagonal ele-

ments can be considered zero!, and the sum over a boldfac
quantity means a sum over all unique, allowedn-tuples for
that set of integers. Then equations definingj can be used to
2-2
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eliminate the variableskin and kn21n22 @18,21#. Note that
the as yet undefined coefficientGm

k is independent of all
initial quantum numbersL . The initial quantum numbers oc
cur only in the quantum numbers of the solid harmonics
the right-hand side of Eq.~6!. The sums overk andm stand
for the sum over each of their components and are limite
those values for which all resultant quantum numbers
physical and every component ofk is nonnegative.

The Gaussian transform of the Coulomb operator is
integral of a Gaussian, 1/r 52*0

` exp(2u2r2)du/Ap. There-
fore, for n-center Coulomb integrals these exponents w
contain the final integration variable, and the relevant sph
cal tensors should be expanded into a higher-dimensi
object @18# @C11u2C2#M

L 5S jmu2 j@C1#M2m
L2 j @C2#m

j via the
solid-harmonic addition theorem. The extra dimension is
dicated byj and has lengthL11. The molecular-orientation
independent factors may be expressed as

Gm
k /G5d~m11m21¯1mn!Vm1m2¯mn21

j k )
i , j 52

n

a i j
ki j .

~7!

As the argument of a Gaussian is quadratic in distances
gradients of the vectors that result from operating on
Gaussian with a gradient are combinations of Gaussian
ponents, which are represented as ana that has two sub-
scripts corresponding to the two centers in Eq.~7!, “a•F
5“ f•A53a16. Explicit evaluation of the remaining nu
03250
n

to
re

e

l
i-
al

-

he
a
x-

merical factors, which are called generalized Gaunt coe
cients, involves an antisymmetric matrixn, which gives the
azimuthal quantum numbersmi5( j 51

n ni j . This set of n
21 independent equations can be used to substitute for
highest row ofn. Thus in the followingn represents an an
tisymmetric matrix of rankn21. The weights associate
with the elements ofn are easily obtained using the produ
rule for differentiation via the solid-harmonic addition the
rem and then using the known expression@25# for the solid-
harmonic derivative of a solid harmonic@5,18,21#. The rela-
tive weights are expressed as

pi j ~ni j !5
~21!ni j ~2ki j 21!!!

~ki j 1ni j !! ~ki j 2nji !!

5
~21!ni j ~2ki j 21!!!

~ki j 1ni j !! ~ki j 2ni j !!
. ~8!

The allowed values for the elements ofn are those for which
the factorials have nonnegative arguments. It is convenien
shift the allowed values ofn to be nonnegative,

f i j 5
~2ki j 21!!!

~2ki j 2ni j !!ni j !
. ~9!

Note the phase change between this and the previous e
tion, which is accumulated in an overall phase later. A wei
of the same form holds for the last row ofn, which can be
transformed to introduce the important quantum numbers
s of
enters
f in5

S 2 j i22(
j Þ i

n21

ki j 21D !!

S j i1mi22(
j , i

ki j 2 (
j Þ i

n21

ni j D ! S j i2mi22(
j . i

n21

ki j 1 (
j Þ i

n21

ni j D !

. ~10!

These definitions simplify the general expression for then-j generalized Gaunt coefficient,

Vm1m2¯mn21

jk 5~21!L1 j n1mn(
n

)
i , j 52

n

f i j , ~11!

whereL5( j 11 j 21¯1 j n)/2 is integral and the summation overn indicates a summation over the independent element
the (n21)-dimensional antisymmetric matrix. Thus the generalized Gaunt coefficient in three, four, five, and six c
involves, respectively, one-, three-, six-, and tenfold summations; specifically for six centers,

Vm1m2m3m4m5

j 1 j 2 j 3 j 4 j 5 j 6k12k13k23k14k24k34k15k25k355
~21! j n1mn

~22!Lk! (
n

F )
i , j 52

5 S 2ki j

ni j
D G3S 2 j 122k1222k1322k1422k15

j 11m12n122n132n142n15
D

3S 2 j 222k1222k2322k2422k25

j 21m21n122n232n242n25
D3S 2 j 322k1322k2322k3422k35

j 31m31n131n232n342n35
D

3S 2 j 422k1422k2422k3422k45

j 41m41n141n241n342n45
D3S 2 j 522k1522k2522k3522k45

j 51m51n151n251n351n45
D , ~12!
2-3
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wherek455L2 j 62k122k132k232k142k242k342k152k25

2k35 and k![P i , j 52
6 ki j !. The summations are over th

standard range for binomial coefficients 0<ni j <2ki j .
For more than three centers, the generalized Gaunt c

ficients can be expanded in more than one way as a pro
of 3-j symbols to explicitly demonstrate that Eq.~11! couples
all the angular momenta to zero. The expansion coefficie
in any such expression can be obtained by projecting
each of the 3-j symbols using a free azimuthal quantum nu
ber. Then the methods of Racah can be used to simplify
resulting expressions@21#. That affords one route to nonre
cursive solid-harmonic Gaussian integral evaluation, but
reduced matrix elements remain rather complicated—a fi
fold summation for 5-j generalized Gaunt coefficients in co
trast to the in general sixfold summation involved in a dire
evaluation of Eq.~11!.

The generalized Gaunt coefficients are independent o
original angular momenta. Thus they can be reused for
basis sets about each center. The following examines u
azimuthal recursion to evaluate, at least partially, the ge
alized Gaunt coefficients for four to six coupled angular m
menta.

III. RECURSION

FORTRAN-90 code exists to evaluate Eq.~11! directly for
up to six centers. The generalized Gaunt coefficients can
be evaluated semirecursively. The three-center recurrenc
lations are given in Ref.@21#. In Ref.@18# that code was used
repeatedly in the innermost loop, where the entire set of n
zero Gaunt coefficients were recomputed again and a
rather than stored, with insignificant computational cost
way to develop recurrence relations for higher dimension
number of angular-momentum quantum numbers is to c
sider special cases of Eq.~11!. If m152 j 1 thenn1i50 for
i 52 to n21. If in addition mn215 j n21 then nin2150 for
i 51 to n22. Then standard methods raise an azimut
quantum number if all the generalized Gaunt coefficients
known that result from raising every other azimuthal qua
tum number,

05~ j 11m111!Vm111m2¯mn21

jk

1~ j 21m211!Vm1m211¯mn21

jk 1¯

1~ j n2m12m22¯2mn21!Vm1m2¯mn21

jk , ~13!

or lower an azimuthal quantum number if the others
known,

05~ j 12m111!Vm121m2¯mn21

jk

1~ j 22m211!Vm1m221¯mn21

jk 1¯

1~ j n1m11m21¯1mn21!Vm1m2¯mn21

jk ~14!

In these equations thejk superscripts can be taken to repr
sent the entire matrixk or all the angular momenta and th
remaining linearly independent part ofk. Care must be taken
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in these equations either to zero each coefficient with out
range azimuthal quantum numbers or else not to use th
coefficients.

IV. 4- j GENERALIZED GAUNT COEFFICIENTS

The 4-j generalized Gaunt coefficients have three a
muthal quantum numbers that are treated explicitly~because
all four sum to zero!. The unfamiliar bounds areumi1mj u
< j i1 j j22ki j . For three centers 2ki j 5 j i1 j j2 j k and this
bound reduces toumku< j k . No bounds involving the fourth
angular momentum are used because, e.g., the boundsum2
1m3u< j 21 j 322k23 and um11m4u5um21m3u< j 11 j 4
22k14 are identical givenk235L2 j 42k122k13 and k14
5 j 12k122k13 @18#. Table I is a measure of the tightness
these unusual bounds. It gives the ratio of the number
potentially nonzero 4-j generalized Gaunt coefficients, be
cause they satisfy all bounds, to the number of coefficie
that satisfy onlyumi u< j i and m452m12m22m3 . All co-
efficients are examined in the rangej max>j4>j3>j2>j1>1.
Roughly a quarter of all 4-j generalized Gaunt coefficient
are affected by these unusual bounds.

Direct examination of Eq.~11! shows that form15 j 1 and
m352 j 3 nonzero 4-j generalized Gaunt coefficients are pr
portional to a binomial coefficient,

Vj 1m22 j 3

j 1 j 2 j 3 j 4k12k235~21! j 21m2S 2k24

j 21m222k23
D Y ~22!Lk!,

~15!

and thus havem2 values bounded betweenm2
252 j 2

12k23 and j 222k12. These Gaunt coefficients are generat
recursively from the lower bound on the second azimut

quantum number,V
j 1m

2
22 j 3

j 1 j 2 j 3 j 4k12k2351/(22)Lk!, by including

an additional phase in the standard recursion for binom
coefficients,

Vj 1m22 j 3

j 1 j 2 j 3 j 4k12k235~2k241m2
22m211!

3Vj 1m2212 j 3

j 1 j 2 j 3 j 4k12k23/~m2
22m2!. ~16!

Next Eq. ~14! is used to lowerm1 , and finally Eq.~13! is
used to raisem3 .

TABLE I. The fraction ofn-j generalized Gaunt coefficients tha
satisfy the bounds on sums of azimuthal quantum numbersumi

1mj u< j i1 j j2ki j , etc., out of all the potentially nonzero coeffi
cients satisfyingumi u< j i , as a function of the number of angula
momentan and j max>jn>¯>j1>1.

j max 4- j 5- j 6- j

1 0.82 0.19
2 0.80 0.47 0.34
3 0.76 0.52 0.42
4 0.75 0.56 0.47
5 0.73 0.58 0.50
6 0.73 0.60 0.53
2-4
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V. 5-j GENERALIZED GAUNT COEFFICIENTS

The independent physical variables for five angular m
menta are taken to bej 1– j 5 , m1–m4 , and k12, k13, k23,
k14, andk24. The 5-j generalized Gaunt coefficients can
nonzero only ifum11m21m31m4u< j 5 because the sum o
the azimuthal quantum numbers must be zero in order for
angular momenta to be coupled to a scalar by the 5-j gener-
alized Gaunt coefficients. There are nine more, unusual c
straints on the nonzero 5-j generalized Gaunt coefficients:
um11m2u< j 11 j 222k12, um11m3u< j 11 j 322k13, um1
1m4u< j 11 j 422k14, um21m3u< j 21 j 322k23, um21m4u
< j 21 j 422k24, um11m21m3u< j 41 j 522k45, um11m2
1m4u< j 31 j 522k35, um11m31m4u< j 21 j 522k25, and
um21m31m4u< j 11 j 522k25. None of these constraints ar
redundant. Table I measures the tightness of these unu
d
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tly

ar
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bounds. It gives the ratio of the number of potentially no
zero 5-j generalized Gaunt coefficients to the number of c
efficients that satisfy onlyumi u< j i and m552m12m2

2m32m4 . All coefficients are examined in the rangej max

>j5>j4>j3>j2>j1>1. There is no entry forj max51 because
the sum of the angular momenta is even for nonzero ge
alized Gaunt coefficients. Roughly half of all 5-j generalized
Gaunt coefficients are affected by these unusual bound
way to easily handle this sparsity is to set up a logical ar
that is true if all the screens are passed.

A recursive generation of all the 5-j generalized Gaun
coefficients can proceed via raising and lowering all a
muthal quantum numbers, respectively, through Eqs.~13!
and~14! if the coefficients have all been evaluated except
two azimuthal quantum numbers,
Vm1m22 j 3 j 4

k 5(
u

~21!L1 j 31 j 41 j 51m11m21uS 2k12

u D S 2k15

j 11m122k132uD S 2k25

j 22m222k242uDY2Lk!

[ f 125~ j 11m122k13, j 22m222k24!/~22!Lk!. ~17!
-

ers
led

re
thal
-

t
o-
enta

-

These special 5-j generalized Gaunt coefficients have limite
range due to the selection rules onk,

2 j 112k13<m1< j 122k14,
~18!

2 j 212k23<m2< j 222k24,

and are invariant under the symmetry of the three binom
coefficients,

m1→2k1322k142m1 ,
~19!

m2→2k2322k242m2 .

Thus only half of the coefficients must be computed direc

VI. 6- j GENERALIZED GAUNT COEFFICIENTS

For six angular momenta the independent physical v
ables are taken to bej 1– j 6 , m1–m5 , andk12, k13, k23, k14,
l

.

i-

k24, k34, k15, k25, andk35. The 6-j generalized Gaunt co
efficients can be nonzero only ifum11m21m31m41m5u
< j 6 because the sum of the azimuthal quantum numb
must be zero in order for the angular momenta to be coup
to a scalar by the 6-j generalized Gaunt coefficients. The
are ten unusual constraints on the sum of two azimu
quantum number for nonzero 6-j generalized Gaunt coeffi
cients: umi1mj u< j i1 j j22ki j for i , j ,6, and five more
involving four azimuthal quantum numbersum11m21m3
1m4u< j 51 j 622k56, um11m21m31m5u< j 41 j 622k46,
um11m21m41m5u< j 31 j 622k36, um11m31m41m5u
< j 21 j 622k26, and um21m31m41m5u< j 11 j 622k26.
Table I measures the sparsity of the 6-j generalized Gaun
coefficients. For low values of the maximum angular m
mentum they are rather sparse. For high angular mom
approximately one-half are nonzero.

Again, one way to start the 6-j generalized Gaunt coeffi
cient recursion is to use binomial coefficients,
Vm1m2m32 j 4 j 5

k 5 (
u,v,w

~21!L1 j 41 j 51 j 61m11m21m31u1v1wS 2k12

u D S 2k13

v D S 2k23

w D S 2k16

j 11m122k142u2v D
3S 2k26

j 21m222k1222k241u2wD S 2k36

j 32m322k352v2wDY2Lk!

5(
v,w

~21!L1 j 31m3S 2k13

v D S 2k23

w D S 2k36

j 32m322k352v2wD f 126~ j 11m122k142v, j 22m222k2322k251w!,

~20!
2-5
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where the second equality gives a computational simplifi
tion that is repeated for the summation overv. In coding this
it is convenient to evaluate the binomial coefficients by
cursion while at the same time alternating the signs of e
coefficient starting from either end, (0

2n)5(2n
2n)511. That

accounts for all the phase in this equation except (21)L.
Even for these special generalized Gaunt coefficients, all
other unusualk constraints must be tested. The most imp
tant are related to the two extreme azimuthal quantum n
bers,

2 j 112k14<m1< j 122k15,

2 j 212k24<m2< j 222k25, ~21!

2 j 312k34<m3< j 322k35.

The rest of these coefficients are generated using Eqs.~13!
and ~14!.

VII. DISCUSSION

This work has stressed the similarity ofn-center solid-
harmonic derivatives of Gaussian functions. For four a
more centers, however, no common matrix element app
to be completely general. The Coulomb matrix elements
quantum chemistry are often called two-electron integr
because they are the Coulomb interaction of two charge
tributions. If in a four-center Coulomb integral centers 1 a
2 contribute one charge distribution, then the matrix elem
is independent ofk13. Thus in filling out the extreme 4-j
generalized Gaunt coefficient matrix the unused quan
number can and therefore should be summed@18#,

Wm12 j 2 j 3

j 1 j 2 j 3 j 4k125(
k13

Vm12 j 2 j 3

j 1 j 2 j 3 j 4k12k13. ~22!

Each of theV’s satisfy the same recurrence relations. The
fore W satisfies the same recurrence relations~but has fewer
zeros!. First derivatives of three-center integrals are also s
pler than the general four-center solid-harmonic Gaussian
tegral. If one is taking a solid-harmonic derivative of a thre
center integral with respect to the first center, then there
only four Gaussian exponent combinations,a11, a12, a13,
and a23. In general there are six such exponent combi
tions. Thus for higher numbers of centers and solid-harmo
derivatives each individual code can gain significant perf
mance through customization.

Then-j generalized Gaunt coefficients have been defin
Two ways to compute them have been given for four throu
six angular momenta. They couple then angular momenta to
zero@21#. It is possible that they can be used to advantag
Gaussian integral evaluation. Their properties are unus
however, and are explored toward writing efficient sol
s.
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harmonic Gaussian integral and gradient code. No finis
integral or gradient code exists, however, butREAL*8
FORTRAN-90code for generating these generalized Gaunt
efficient is available from the author upon request. Som
times authors of Gaussian integral codes quote flop~floating-
point operation! counts. All equations in this work involve
integers, apart from arbitrary normalization. If the gener
ized Gaunt coefficients were redefined to include an addi
factor of 2Lk! , then they would all be integral, specificall
products of binomial coefficients as suggested by Eqs.~12!,
~17!, and ~20!, and could be evaluated with no flops. Th
azimuthal quantum numbers of then-j generalized Gaun
coefficient sum to zero because they couple total ang
momentum to zero. Thus they are really (n21)-dimensional
objects. If they are used to computen-index integrals, then
only the final step need involven-index quantities~if one is
working with the complex solid harmonics!.

It is possible that these or similar coefficients are use
with exponential-type orbitals. In any event, using these
efficients to evaluate an extremely large number of differ
solid-harmonic Gaussian integrals is straightforward. Ap
from the (3-j ) Gaunt coefficients, no conventional vect
coupling coefficients have appeared in this work. That
because all angular-momentum coupling in thekn basis is
maximal, and this primitive angular-momentum coupling d
fines the generalized Gaunt coefficients.

Preliminary work shows that these methods in one
many possible implementations are at least competitive@18#.
It is likely that quantum chemistry can become significan
more powerful by abandoning global recursion for integ
evaluation, particularly for calculations involving man
heavy atoms. The simplest generalized Gaunt coeffici
which generates rotational invariants from four solid h
monics, is being incorporated into our analytic approach@26#
to density-functional chemical dynamics@14–16#. To extend
this methodology to hybrid functionals@27# requires the 5-j
generalized Gaunt coefficients. Ultimately, any direct, non
cursive approach to second derivatives within sol
harmonic Gaussian quantum chemistry would require one
the generalized Gaunt coefficients discussed above. The
that has been developed for the generalized Gaunt co
cients might best serve as a template. It will be best to s
over as many components ofk as is possible before begin
ning the recursion process, which will affect the input a
short sections of these subroutines, which accordingly co
pute then-j coefficients for a singlek at a time. How a
customized code can accumulate as much of the calcula
as possible, of course, will depend on the specific integra
solid-harmonic derivative in question.
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