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Generalized Gaunt coefficients
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Solid-harmonic derivatives of solid-harmonic-Gaussian integrals are evaluated. Cross differentiation and the
n-j generalized Gaunt coefficients are defined. The generalized Gaunt coefficients ensure that cross differen-
tiation in uncoupledn-center, solid-harmonic derivatives of rotationally invariant Gaussian matrix elements
subtracts zero total angular momentum. This preserves the spherical-tensor properties of quantum-chemical
matrix elements. The generalized Gaunt coefficients arel()-dimensional objects because the sum of the
azimuthal quantum numbers is zero, which facilitates their use in computer programs. | Tdred Aigher
number of centers generalized Gaunt coefficients are characterized by quantum nignbéne angular
momentum lost directly by cross differentiation from solid harmonics of differential operators about denters
andj. The generalized Gaunt coefficients vanish if the absolute value of the sum ofathetj azimuthal
quantum numbers is greater than the sum of the two total angular momenta minus;fwitais constraint
further limits the number of coefficients that must be processed at one time. All coefficients for any given
number of centers satisfy the same recurrence relations but differ, because different terms in any given
recurrence relation vanish according to the various azimuthal-quantum-number bounds. Direct and recursive
FORTRAN-90code has been written for thej3e 64 generalized Gaunt coefficients.
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[. INTRODUCTION is the unique basis that diagonalizes angular momentum
about its center. It facilitates analysis of chemical bonding
Analytic Gaussian integral evaluation is the foundation ofbecause the Gaussian basis sets of quantum cheridiry
the quantum-chemical software industry. Currently that in-are eigenfunctions of angular momentum. Furthermore, a
dustry is based on global recursive Gaussian integral evalwery large number of different and exclusive recurrence re-
ation using the Cartesian Gaussian basis3]. Gaussian in- lations for Cartesian Gaussian integral evaluation have been
tegrals may be thought of as large matrices having manpublished and are used in very complex sorting algorithms.
indices, where each index can represent an azimuthal quaGurrently speed is gained by increasing the number of dif-
tum number, primitive exponent, contraction number, Carteferent ways any given integral can be compyte@]. On the
sian derivative, etc. If, for example, three-index integrals arether hand, recurrence on the solid harmonics either alters
computed using global recursion, then three-index quantitiethe angular momentum or else is unlikely to be useful. In this
are combined to generate higher three-indexed quantities thatork only solid harmonics are used; these methods are not
yield the required three-index integrals. Other codes usinglirectly appropriate for bases larger than the solid harmonics
the solid-harmonic Gaussian basis are being developed2].
[4-6]. Two of those codes use global recurs{&ng]. Ulti- The first solid-harmonic Gaussian derivative codes have
mately such codes can at best be marginally more efficierttegun to appeaf13—17. Our original code[14-1§ for
because a simple basis set transformation connects the sottdmputing first derivatives in the solid-harmonic Gaussian
harmonic basis and a subset of the Cartesian basis. Nevdyasis set is based on reusing the list of cross derivatives over
theless, a solid-harmonic Gaussian code that had earlier imnd over again for each-tuple of Gaussian exponents that
corporated efficient use of symmetry-adapted solid-harmonicesult if up to four solid harmonics of differential operators
atomic orbitald 7] enabled the largest-basis-sét initio cal-  act on a Gaussian. Unfortunately, that method of derivative
culation of that timg 8]. That same technology, now paral- integral evaluation when coded RORTRAN-90is remarkably
lelized, is apparently still setting record8], 14,000 con- slow, and puts significant calculations out of reach. Another
tracted orbital basis functions, which is three times the sizepproach to solid-harmonic derivative integral evaluation is
of the basis in Ref[8]. The state of the art using solid- to compute the first and second derivatives of all factors that
harmonic Gaussians is not completely satisfactory, howevego into the computation of the derivatives of solid-harmonic
Analytic normal-mode analysis, which requires second deintegrals. That method is practicgl8]; however, the code
rivatives of the energy with respect to nuclear motion, isrequires that an array, of length 28 for second derivatives of
standard in commercial Cartesian Gaussian cpti@s There  three-center integrals, be associated with every quantity. The
is obvious need for efficiently computed first and secondapproach of Saunders to multicenter solid-harmonic integrals
derivatives of solid-harmonic Gaussian integrals. This probis to expand each product of solid-harmonic Gaussians in
lem is challenging because the solid-harmonic bémisl all  terms of Hermite Gaussians about its cerfgt Computer
of its derivative$ is the Cartesian basis in momentum spacealgebra is probably essential for optimizing that approach
On the other hand, once one has written a general Cartesi§fh9]. Such an approach, however, is unlikely to be signifi-
Gaussian integral code it can be directly used to get derivacantly faster than the equivalent Cartesian Gaussian based
tives of those integrals. The solid-harmonic basis, howevempproach. Rech and co-workers use spherical-tensor meth-
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ods to compute first derivatives of two-center solid-harmonidEach such vector divided by the original Gaussian will be
Gaussian integralg20], i.e., first derivatives were evaluated indicated by upper-case lettess B, C,.... Thus the gradient
using spherical-harmonic technology relevantpttype or-  with respect to the sixth center defines the sixth vector,
bital basis function$5]. Toward generalizing that approach V;G=FG.

to more centers and higher derivatives, code for generating Eigenfunctions of definite angular momentum are gener-
the generalized Gaunt coefficients is developed in this workated by a solid harmonic of the gradient with respect to a
Closed-form expressions for solid harmonics of differentialcenter operating on asitype Gaussian matrix element. For
operators acting on three- to five-center Gaussians of scalaur simple two-center matrix element a solid-harmonic
arguments have appeargi)18,21. For three centers the an- Gaussian is generated through differentiation:

gular factor that arises is proportional to the Gaunt coeffi- L

cient. The corresponding angular factors for four and five [Vl G=[2a(b— a1,  G=[A]y G. 4
centers have been shown to be invarid®s|. It might be

possible to use these factors effectively to compute twoAngular momentum can also be generated from the second
center(second derivatives of solid-harmonic Gaussian inte- center using the product rule of differentiation via the solid-
grals. As a first step toward that goabRTRAN-90 code has harmonic addition theorem

been written to recursively generate thesgt8-64 general-

L
ized Gaunt coefficients, which are necessary for closed-form ([Vb] ) [Valy, G
evaluation of, e.g., two-center solid-harmonic derivatives of
two- to four-center Coulomb integrals. _Z [B]'—z j )*G([Vb] )* [A]k/ll
1
Il. THE n-j GENERALIZED GAUNT COEFFICIENTS
— |-2 J |—1 J j

The solid-harmonics Gaussians may be written 2 (2] =By, ) *[Alw, “me12G/
[r]k,I exp(—ar?), where square brackets have been used to
avoid the) of conventional notation for the solid harmonics (j+m!(—m! (5

22]. Th lized solid h [ . .
[22]. The unnormalized solid harmonic where «a,=V,-B/3=2«a, the expression for the solid-

[r]5= (=)™, (0, ) Vam/(2L+1)(L+M)I(L—M)! harmonic gradient of a solid harmonii25] has been used,
and the sum is over all values ¢fand m for which the
(—DM(x+iy)MTK(x—iy)kzt~M—2k angular momenta of the two solid harmonics are physical.
=2 2ZKFMM +K) Tkl (L—M—2K)! (1) One can say that the first term in the summation after the
second equality is simplest becausej # m=0 then both
contains the spherical harmoni¢,,(8,¢), of Edmonds solid harmonics act only on the Gaussian. That first term
[23], and the second equality is E@®.153 of Ref.[24]. In  involves no cross differentiation. Each other term involves
practice these solid harmonics are generated recursively, cross differentiation. The same amount of angular momen-
tum is lost from each solid harmonic of the two vectors be-
(L=M)[rIy=2rTy *+20r]1trlyah, (20 cause part of the solid harmonic of one gradient acted on the
other solid harmonic, not on the Gaussian. The terms involv-
from [r]%,=(x-+iy)/2 and the corresponding equation gen-ing cross differentiation are simpler, however, in the sense
erated by taking the complex conjugate of this equationthat each solid-harmonic differentiation of a solid harmonic
and then using the spherical-tensor identn[yr]M* reduces the total angular momentum by two units. In fact, if
_( 1) [r] M - US|ng these unnormalized solid harmon|csand Only if the two initial solid harmonics are the same,
avoids all square-root factors and streamlines the working!1=M_ andL;=L,=L, then the final term on the right-
equations. The factors that normalize these solid harmomd@aﬂd side of Eq.(4) is (2L—1)1af,G/(L+M;)!(L
vary by as much as/m but are not large enough to — M,!, and there is no angular momentum left. If both initial
be problematical through.=6 in double-precision arith- angular momenta angtype then the right-hand side has one

metic. or two terms depending on whether the two azimuthal quan-
The simplest two-center Gaussian function may be writfum numbers match. . _
ten, The derivatives of ther-center Gaussian matrix element

can be expressed in uncoupled fof#d],

[Vl [Voli - [Val G
This Gaussian matrix element has Gaussian expomemd "
centersa andb. Such a Gaussian is called aitype matrix
element because it is invariant under rotation of the entire =2 [A]
coordinate system. The product or overlap of any number of
Gaussians is such a Gaussian function. The argument isvaherejizE?#j:lkij , k is symmetric(the diagonal ele-
function of centers, which will be labeled by lower case let-ments can be considered zgrand the sum over a boldface
tersa, b, c,.... The derivatives of the argument of the Gauss-quantity means a sum over all unique, allowetlples for
ian with respect to each of these centers must be a vectahat set of integers. Theequations defining can be used to

G=ex{ —a(a—b)?]. (3

v m B 2 - [NJy n G, (6)

My—mL P M, —m,
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eliminate the variablek;, andk,_1,-» [18,21]. Note that merical factors, which are called generalized Gaunt coeffi-
the as yet undefined coefficie@, is independent of all ~cients, involves an antisymmetric matrix which gives the
initial quantum numberk. The initial quantum numbers oc- azimuthal quantum numbermi=21-”:1nij . This set ofn
cur only in the quantum numbers of the solid harmonics on—1 independent equations can be used to substitute for the
the right-hand side of Ed6). The sums ovek andm stand  highest row ofn. Thus in the followingn represents an an-
for the sum over each of their components and are limited toisymmetric matrix of rankn—1. The weights associated
those values for which all resultant quantum numbers arevith the elements of are easily obtained using the product
physical and every component kfis nonnegative. rule for differentiation via the solid-harmonic addition theo-
The Gaussian transform of the Coulomb operator is theem and then using the known expressf@s| for the solid-
integral of a Gaussian, 2§ exp(—u?r?)du/\7. There- harmonic derivative of a solid harmoni6,18,21. The rela-
fore, for n-center Coulomb integrals these exponents willtive weights are expressed as
contain the final integration variable, and the relevant spheri-

— Njj L
cal tensors should be expanded into a higher-dimensional pii(Ni) = (—1)Ni(2k; — )N
object [18] [Cy+Uu?Cyly=3mu?[Cyly [ Coll, via the P2 (ki 4 mi) ! (ki — ngi)!
solid-harmonic addition theorem. The extra dimension is in- (—1)Mi(2k; — 1)1
dicated byj and has length + 1. The molecular-orientation- = : ! "| _ (8)
independent factors may be expressed as (kij i) (ki —yj)!
n The allowed values for the elementsrofre those for which
Gﬁ]/G= S(My+my+---+ mn)ani e H aik_ij_ the_ factorials have nonnegative arguments. It is convenient to
112 Wn-157=o 1) shift the allowed values afi to be nonnegative,
(7

o S 2k =Dl ©

As the argument of a Gaussian is quadratic in distances, the T2k — )i

gradients of the vectors that result from operating on a

Gaussian with a gradient are combinations of Gaussian eXNote the phase change between this and the previous equa-
ponents, which are represented ascaathat has two sub- tion, which is accumulated in an overall phase later. A weight
scripts corresponding to the two centers in Ef, V,-F  of the same form holds for the last row of which can be
=V;-A=3a. Explicit evaluation of the remaining nu- transformed to introduce the important quantum numbers

n—-1
(Zji—ZE ki,-—1>n
J#i

fin= n—1 n—1 n—1 : (10
j<i j#i j>i j#I
These definitions simplify the general expression forrnkegeneralized Gaunt coefficient,
n
VI e, = (DA T £y, (11)

noi<j=2

whereA=(j;+],+---+],)/2 is integral and the summation oveiindicates a summation over the independent elements of
the (n—1)-dimensional antisymmetric matrix. Thus the generalized Gaunt coefficient in three, four, five, and six centers
involves, respectively, one-, three-, six-, and tenfold summations; specifically for six centers,

—1)intm 5 i _ _ _
\/1 1i2J3l als6k1ak1Kogk1aKoakaaKaskasKas (= 1) H ( 2k ) % ( 2.1 17 2K~ 2Ki3— 2Kyg 2k15)
My MaM3MyMs (—2)%k! & {ig=2 | N JitMi—Ny—Ni3— Ny~ Ngg

( 2j2—2Kyp— 2Kp3— 2Kp4— 2k25) y ( 2j3—2Ky3— 2ko3— 2K3s— sts)
J2t M+ N1—Noz—Nps—Nos J3t M3+ N3t Ny3—N3s—N3s
( 2)4—2K1a— 2Kpa— 2Kga— 2k45) y

( 2]5— 2Ky5— 2Ka5— 2Kg5— 2Kys
Jat Mg+ N1+ NogtN3g—Nys

JstMs+Ni5t+ N5+ NgstNys

), 12
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wherek s= A —jg—kqo— k13— Koz— K14~ Kou—kaa—kis—Kkos  in these equations either to zero each coefficient with out-of-
—kss and k!zl‘[?<j:2kij!. The summations are over the range azimuthal quantum numbers or else not to use those
standard range for binomial coefficients=@;; < 2k;; . coefficients.

For more than three centers, the generalized Gaunt coef-
ficients can be expanded in more than one way as a product |V, 4-j GENERALIZED GAUNT COEFFICIENTS
of 3-j symbols to explicitly demonstrate that E§1) couples ) ) o ]
all the angular momenta to zero. The expansion coefficients "€ 4i generalized Gaunt coefficients have three azi-
in any such expression can be obtained by projecting ouf?uthal quantum numbers that are treated expli¢hiycause
each of the 3-symbols using a free azimuthal quantum num-all four sum to zern The unfamiliar bounds argm; +m|
ber. Then the methods of Racah can be used to simplify th&1i+1;—2kij. For three centerskg=j;+];—j, and this
resulting expressiong21]. That affords one route to nonre- Pound reduces timy|<j,. No bounds involving the fourth
cursive solid-harmonic Gaussian integral evaluation, but th@ngular momentum are used because, e.g., the bdumds
reduced matrix elements remain rather complicated—a fiveT Ma|<j2+ja—2kys and [my+my[=[my+ms|<j;+]j,4
fold summation for 5-generalized Gaunt coefficients in con- —2Ky4 are identical givenkys=A —j,—kio—kiz and ki,
trast to the in general sixfold summation involved in a direct=j1—Ki2—Ki3[18]. Table I is a measure of the tightness of
evaluation of Eq(11). these unusual bounds. It gives the ratio of the number of

The generalized Gaunt coefficients are independent of afotentially nonzero 4-generalized Gaunt coefficients, be-
original angular momenta. Thus they can be reused for afause they satisfy all bounds, to the number of coefficients
basis sets about each center. The following examines usirijat satisfy only|m;|<j; and m;=—m;—m,—ms. All co-
azimuthal recursion to evaluate, at least partially, the geneefficients are examined in the rangga,=js=jz=j>=j:=1.

alized Gaunt coefficients for four to six coupled angular mo-Roughly a quarter of all 4-generalized Gaunt coefficients
menta. are affected by these unusual bounds.
Direct examination of Eq(11) shows that fom;=j, and
Ill. RECURSION ms;= — j3 honzero 4-generalized Gaunt coefficients are pro-
portional to a binomial coefficient,
FORTRAN-90 code exists to evaluate E¢L1) directly for
up to six centers. The generalized Gaunt coefficients can aIsij 1izigiakikog_ 2k ) / ovA
= i (—2)"kt,
Jo+my—2Kos

. : . : —1)i2tm;
be evaluated semirecursively. The three-center recurrence re- iim—is3 (=1

lations are given in Ref21]. In Ref.[18] that code was used (15
repeatedly in the innermost loop, where the entire set of non- B _
zero Gaunt coefficients were recomputed again and aga@"d thus havem, values bounded betweem, =—j,

rather than stored, with insignificant computational cost. A+ 2Kz andj,—2k;,. These Gaunt coefficients are generated
way to develop recurrence relations for higher dimension ifecursively from the_bV_V(Ef bound on the second azimuthal
number of angular-momentum quantum numbers is to conguantum number,\/}“zjfj“_ 1423 1/(—2)"k!, by including

ider ial f EQLD). If my=—j, thenny;=0 for y 1M ~la . N
Is_dg t(S)pneEfil (I:fa;eZdoditio%ril _} ]tﬁén?] 1'_8 fgr an additional phase in the standard recursion for binomial
- . n-1—Jn-1 in—-1— § A
i=1 to n—2. Then standard methods raise an azimuthaFoeff'c'ems’
quantum number if all the generalized Gaunt coefficients are vivzlsiaados_ o) 4 m=moy)
known that result from raising every other azimuthal quan- imp—ig N2 TR
tum number S

! IEVEIEIPLSES -

xvjirﬁzii‘jl?sz?’/(mz —-my). (16

0=(ja+m+ DVE 4 1m, om
l_ 2o Next Eq.(14) is used to lowem,, and finally Eq.(13) is
+(J2tmy+ 1)an|§1m2+l---mn,1+'“ used to raisens.

+(jp—mMy—Mmy—---— mn_l)vjnlf'lmz"mn—l , (13 TABLE I. The fraction ofn-j generalized Gaunt coefficients that
satisfy the bounds on sums of azimuthal quantum numhers
or lower an azimuthal quantum number if the others are” MiI=<iit];—ki;, etc., out of all the potentially nonzero coeffi-
known cients satisfyingm;|<j;, as a function of the number of angular
' momentan and j m=jn=: =) =1

0=(j,—m+1)VK

my=imymy gy Jmax 4-j 5-j 6-j
(2= Myt DV om0 1 0.82 0.19
_ " 0.80 0.47 0.34
H(p Myt myte My )Vig o (14) 3 0.76 0.52 0.42
4 0.75 0.56 0.47
In these equations th& superscripts can be taken to repre- 5 0.73 0.58 0.50
sent the entire matrik or all the angular momenta and the 6 0.73 0.60 0.53

remaining linearly independent part lof Care must be taken
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V. 5-) GENERALIZED GAUNT COEFFICIENTS bounds. It gives the ratio of the number of potentially non-

The independent physical variables for five angular mo2€ero 5} generalized Gaunt coefficients to the number of co-

menta are taken to bg—js, m;—m,, andkj,, ki3, Kug, efficients that satisfy only|mj|<j; and ms=—m; —m,

kus, andk,,. The 5§ generalized Gaunt coefficients can be ~Ms~Ma- All coefficients are examined in the ranggax
nonzero only iffm, +m,+ms+m,|<js because the sum of >ls=j4+=1=]2=]1=1. There is no entry fojna—=1 because
the azimuthal quantum numbers must be zero in order for thi® Sum of the angular momenta is even for nonzero gener-
angular momenta to be coupled to a scalar by theéner- alized Gaunt coefficients. Roughly half of allj seneralized
alized Gaunt coefficients. There are nine more, unusual coff>aunt coefficients are affected by these unusual bounds. A
straints on the nonzeroj5generalized Gaunt coefficients: ~ Way to easily handle this sparsity is to set up a logical array
[my+my|<ji+]jo— 2k, |My+mg<j;+j3— 2Kz, |my that is true if all the screens are passed.
+My|<j1+ja—2Kpa, |Mo+mg|<jo+j3—2Koz, |My+my A recursive generation of all the j5generalized Gaunt
<jot+ja—2Kos, |Mit+my+mg|<j,+js—2kss, |my+m,  coefficients can proceed via raising and lowering all azi-
+mMy|<js+js—2Kas, |My+ms+my<j,+js—2kys, and muthal quantum numbers, respectively, through EA4S)
|m,+ms+m,y<j;+j5—2k,s5. None of these constraints are and(14) if the coefficients have all been evaluated except for
redundant. Table | measures the tightness of these unususlo azimuthal quantum numbers,

Vl'fﬂlm2*1'31'4: % (— 1)A+j3+j4+j5+ml+m2+u( 2k12) ( 2ky5 )( . 2Ko5 ) /2Ak!

u J\jit+tmg—2kiz—u/ljo—my—2kyu—u

=f105(j 1+ My — 2Ky3,j2— My— 2Kag)/(—2) KL (17)

These special $generalized Gaunt coefficients have limited k,,, ka4, k;s, kos, andkgzs. The 6§ generalized Gaunt co-
range due to the selection rules fon efficients can be nonzero only jfn+m,+ mg+m,+ ms|

2k =My =, 2Ky, <|e because the sum of the azimuthal quantum numbers
’ (18) must be zero in order for the angular momenta to be coupled
— ot 2Kps=<My<j,— 2K,g, to a scalar by the $-generalized Gaunt coefficients. There

are ten unusual constraints on the sum of two azimuthal
and are invariant under the symmetry of the three binomiauantum number for nonzerojégeneralized Gaunt coeffi-
coefficients, cients: |m;+m;|<j;+j;—2k; for i<j<6, and five more
involving four azimuthal quantum numbefa,;+m,+m;
+My|<js+je—2Kse, [My+My+mg+ms|<js+je— 2Ky,
19 |my+myt+my+ms<js+js—2ksg, Mg+ Mg+my+mg|
$j2+j6_2k261 and |m2+m3+m4+m5|$j1+j6—2k25.
Thus only half of the coefficients must be computed directly.Table | measures the sparsity of thg Generalized Gaunt
coefficients. For low values of the maximum angular mo-
VI. 6-j GENERALIZED GAUNT COEFFICIENTS mentum they are rather sparse. For high angular momenta
approximately one-half are nonzero.
For six angular momenta the independent physical vari- Again, one way to start the j6generalized Gaunt coeffi-

m]_*) 2k13_ 2k14_ ml y

m2—> 2k23_ 2k24_ m2 .

ables are taken to He—jg, m;—ms, andk,,, K3, Koz, Kq4, cient recursion is to use binomial coefficients,
|
VK - E (_1)A+j4+j5+j6+m1+m2+m3+u+v+w 2K1p) [ 2Ky3| [ 2kog _ 2k1g
MMM =igls 4 u v w /\jitmi—2ky,—u—v

% 2k26 2k36 2Ak|
j2+m2_2k12_2k24+u_w j3_m3_2k35_l)_W ’

o 2Kya [ 2Kss 2Kag . .
:§(—1)A+'3+m3( v )( w | ja—ms—2Kaes— v —w fro6(] 1+ My—2Kyu—v,jo— My — 2Ky3— 2kps+ W),

(20
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where the second equality gives a computational simplificaharmonic Gaussian integral and gradient code. No finished
tion that is repeated for the summation overin coding this  integral or gradient code exists, however, bREAL*8

it is convenient to evaluate the binomial coefficients by re-FORTRAN-90code for generating these generalized Gaunt co-
cursion while at the same time alternating the signs of eackfficient is available from the author upon request. Some-
coefficient starting from either end2V)=(2")=+1. That times authors of Gaussian integral codes quote (flopting-
accounts for all the phase in this equation exceptL}’. point operatioh counts. AII equations in f[hls work involve
Even for these special generalized Gaunt coefficients, all thif/t€9€rs, apart from arbitrary normalization. If the general-
other unusuak constraints must be tested. The most impor_|zed Gaunt coefficients were redefined to include an addition

| . o
tant are related to the two extreme azimuthal quantum numf-"’ICtor of ZAk'.’ then they quuld all be integral, specifically
products of binomial coefficients as suggested by Et@),

bers, (17), and (20), and could be evaluated with no flops. The
—j1+2K<my<j;— 2Kys, azimuthal quantum numbers of thej generalized Gaunt
coefficient sum to zero because they couple total angular
—joF 2Kousmy<j,— 2Kys, (21)  momentum to zero. Thus they are realty|1)-dimensional
objects. If they are used to computdndex integrals, then
—Jj3t 2Kk s=m3=<j3— 2Kgzs. only the final step need involve-index quantitieif one is
working with the complex solid harmonics
The rest of these coefficients are generated using E. It is possible that these or similar coefficients are useful
and (14). with exponential-type orbitals. In any event, using these co-
efficients to evaluate an extremely large number of different
VII. DISCUSSION solid-harmonic Gaussian integrals is straightforward. Apart

from the (34) Gaunt coefficients, no conventional vector

X ecause all angular-momentum coupling in #re basis is

more centers, however, no common matrix element appears. . ST .
: aximal, and this primitive angular-momentum coupling de-
to be completely general. The Coulomb matrix elements of. . -
ines the generalized Gaunt coefficients.

guantum chemistry are often called two-electron integrals Preliminary work shows that these methods in one of

because they are the Coulomb interaction of two charge dis- N .
tributions. If in a four-center Coulomb integral centers 1 and 2y possible implementations are at least compe(ifige

. T : t is likely that quantum chemistry can become significantly
2 contribute one charge distribution, then the matrix elemenk : . :
is independent ok, Thus in filling out the extreme 4- more powerful by abandoning global recursion for integral

eneralized Gaunt coefficient matrix the unused aquantu evaluation, particularly for calculations involving many
9 q nﬂeavy atoms. The simplest generalized Gaunt coefficient,
number can and therefore should be sumifis],

which generates rotational invariants from four solid har-
i T monics, is being incorporated into our analytic approf&sj
W‘r;ii'j?’;fg 12= %) vialsldadas (22)  to density-functional chemical dynamifs4—16. To extend

CE this methodology to hybrid functional27] requires the 5¢
generalized Gaunt coefficients. Ultimately, any direct, nonre-

fore W satisfies the same recurrence relatiémst has fewer fc}urswe_ agproagh to secom:] dgrlvatlvesl q within solid- ;
zerog. First derivatives of three-center integrals are also Sim_harmonlc I.auzs(gan q“a”“;fm ¢ em&stry WO% Lequlr(_e”:) ne o d
pler than the general four-center solid-harmonic Gaussian ifi'€ 9eneralized Gaunt coefficients discussed above. The code

tegral. If one is taking a solid-harmonic derivative of athree-that has_ bheekr)w developed for the Igenelrall_z"eg Gbaunt coeffi-
center integral with respect to the first center, then there argients might best serve as a template. It will be best to sum
only four Gaussian exponent combinations;, a1y, ais, over as many qomponents bfas_ IS p935|ble befor(_a begin-
and a,s. In general there are six such exponent combinalind the recursion process, which will affect the input and

tions. Thus for higher numbers of centers and solid-harmoni&nOrt Sections of these subroutines, which accordingly com-

derivatives each individual code can gain significant perforpu'[e th_en-J coefficients for a singlek at a time. How a .
mance through customization. customized code can accumulate as much of the calculation

The n-j generalized Gaunt coefficients have been defined®S .possible, 9f course, W"! depenq on the speciiic integral or
Two ways to compute them have been given for four througr"F\'OI'd'h""rmomC derivative in question.
six angular momenta. They couple thangular momenta to ACKNOWLEDGMENT
zero[21]. It is possible that they can be used to advantage in
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