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Geometric picture of entanglement and Bell inequalities
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We work in the real Hilbert spack, of Hermitian Hilbert-Schmidt operators and show that the entangle-
ment witness which shows the maximal violation of a generalized Bell inequé&iy) is a tangent functional
to the convex seBC H, of separable states. This violation equals the Euclidean distari¢gafithe entangled
state toS and thus entanglement, GBI, and tangent functional are only different aspects of the same geometric
picture. This is explicitly illustrated in the example of two spins, where also a comparison with familiar Bell
inequalities is presented.
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[. INTRODUCTION ces and statew by density matrices. It is useful to regard
these quantities as elements of a real Hilbert spage
The importance of entanglemelrt,2] of quantum states —RN? with scalar product
became quite evident in the last ten years. It is the basis for
such physics, like quantum cryptogradld6] and quantum (W|A)=TrwA 1.1
teleportation7,8], and it triggered a new technology: quan- )
tum information[9,10]. Entangled states lead to a violation and corresponding norm
of Bell inequalities(BI) which distinguish quantum mechan-
ics from (all) local realistic theorie$11]. Much effort has

been made in studying the mathematical structure of en- . . . . . . .
tanglement, especially the quantification of entanglemengWe identify quantities with their representativesif). Both

(see, for instance, Ref§12,13). There exist different kinds density matrices and observables are represented by vectors

e e in Hs, a density matrix is positive and has trace unity.
of measures of entanglement indicating somehow the differ Unitary operatorsU in H induce viaUAU* =OA or-

ence between entangled and separable states, which is usy- . .
ally related to the entropy of the statewe, e.g., Ref$14— ?_Hogqnal ‘?p.efaFor@ In 7t " bu_t the homomorphisry -0
is neither injective nor surjective.

19)). In this paper we define a simple and quite natural
measure for entanglement, a distance of certain vectors in

Hilbert space which has as elements both observables and Il. SPIN EXAMPLES

states, and_we re'ﬁte it to the max‘m“”? violat_ion qf agener- | ot us begin with two examples which will be of our
alized Bell inequality(GBI). We work with a bipartite sys- interest.

temina f|n|te—d|men3|onal Hilbert space but generalizations Example I: one spinGenerally an observable can be writ-
are possible. ten as

The Hilbert-Schmidt distanc® of a state to the set of
separable states has previously been proposed as a measure
of entanglement20,21]. Our point is that if one admits all of
B(HA®Hg) as entanglement witnesses then the maxim . . o -
vi(ola?ion BB)of the corrgsponding GBI equals the distamze alrhe o.per.atorA s a dens!t)i matrix iff ¢=1/2 and |a]
numerically. Since can be written as a minimum arlas ~ =1/2, it gives a pure state iffa]| = 1/2 orA’= A. If the state
a maximum, upper and lower bounds are readily available. I
fact, in some standard examples one can make them coincide
and thus calculat8=D exactly.

Though distinct from the entropic entanglement descrip-
tions, the Hilbert-Schmidt distand® as a quantitative de-
scription of entanglement is insofar reasonable; as considhe expectation value & is
ered as functional of the state it is convex and invariant ..
under local unitary transformations. This implies that states (WA)=a+a-w. 2.3
more mixed in the sense of Uhimaf®2] have a lower en- ) )
tanglement. Howeve is not monotonic decreasing under ~ For us the important structural element is a tensor product
arbitrary completely positive maps H, or Hg but only if ~ H=MHa®Hg which defines the s&of separabléclassically
they have norm one. Thus whether they satisfy monotonicitgorrelated statesp, , pg ,
in “local operations and classical communication” depends
on the exact definition of this term. ) i j _

We consider a finite-dimensional Hilbert spake=CN, S= P_izj Cij PA®Pg 0$Cij$1ai2j Cij—l]-
where observableA are represented by all Hermitian matri- (2.4

1Al = (Tr A%)*2 (1.2

A=al+a-c with aeR, aeRS. (2.1

W=%(1+VT/-5) (2.2)
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Example II: two spinsr, and g, “Alice and Bo’ An  Horne, Shimony, and Holtinequality [26]. But the number
observableA can be represented by of summands is not restricted id,,. The operatoA e A,
_ _ _ _ becomes a tangent functional if in additi@Ghpy € S such
A=altaop®lgt+bla®optcjos®oh, (2.5  that(pg)A)=0. SinceSis a convex subset of the state space
such tangentiaA’s always exist. Even more, the sBtis
1 characterized by the tangent functionals and ghs with
4 ”AH%Z&Z’LZ (ai2+bi2)+i§j: ¢ (2.6 (po|A)=0, for someAe A, are the boundaryS of S
' Frequently a bigger set thaéis considered as classically
Note thatc;; can be diagonalized by two independent or-explainable in a local hidden variable theory. Bell inequali-
thogonal transformations an, andok [23]. The operatoA  ties are those which contradict even those sets. To avoid
is a density matrix ifa=1/4 and the operator north||., of misunderstandings we call generalized Bell inequalities ex-
A—1/4 is<1/4. Since|| |,=] |.. this is satisfied if pectation values which contradict the predictions fr8nthe
set of separable states.
Thus the GBI(3.3) is violated by an entangled staie

2 2 2
Z‘ (a7 +bj H%: ¢jj=<1/16. (2.7 Eqg. (3.4), and we get the following inequality for some
S AW:
For pure state$ ||,=|| ||.. and||p|,=1 is necessary and suf-
ficient for purity. A pure separable state has the form (p|A)>(W|A) V peS. (3.5

1 i i i i Considering now the maximal violation of the GBI,
p:Z (1+niO'A®1B+mi1A®O'B+nimj0'A®0'B),
2.8 B(w)= max [min(p|A)—(WA)], (3.6
[A-alla<1 p S

. —’2: *2: . .
with n“=m“=1, and gives the expectation value Af we find the following result,
(2.9 Theorem.

' (i) The maximal violation of the GBI is equal to the dis-

tance ofw to the setS

(p|A)=a+n-a+m-b+nmc; .

Ill. GENERALIZED BELL INEQUALITY

States that are not separable are called entangle@°, B(w)=D(w) V w. 37

the complement in the set of states. We introduce as a mea-

sure of entanglemem(w) the Hg distance ofw to the setS (if) The min of D is attained for somy, and the max of

of separable states, B for
D(w)= min||p—wl|,. (3.1 A po—W—(po|po—W)1 A 38
p =S lpo—wl2
Since _ (iii) For B=D the following two-sided variational prin-
lp—wl2=Tr(p?+ 02— 2\pwp) ciple holds:

=Trp*+eh=2 min(p—w o )sB(w)snp'—wnz
we generally have peS lp" —wl

0=D(w)=\2. (3.2 V p'es. (3.9

Usually the Bell inequality refers to an operator in the tensor(For an illustration, see Fig.)1
product where by classical arguments only some range of Remark The proof of the Theorem does not use the prod-
expectation values can be expected whereas quantum méct structure of the Hilbert spacé but only the geometric

chanics permits other values. A Bell inequality in a generalproperties of the Euclidean distance?fy. It can be illus-
ized sense is gi\/en by an observaBl#Z0 for which trated already with one Spin where the set of Separable states

Sis replaced bys,,

(p|A)=0 V peS. (3.3
1
Thus3 w such that S,= p=§(1+)\0'2), IN|<1}, (3.10
(w|A)<0 forsome we S°. (3.9

and

Such elementAe Ay, are called entanglement witnesses 1
[24,25. A product operator can never bheA,, but already _ > >

=— (1+w- < .
the sum of two products serves for the CHS8lauser, W=3 (1+w-0),  [w=1 3.19
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FIG. 1. lllustration of Theoreng3.7). The maximal violation of
GBI B(w), Eq.(3.6), which is equal to thé{, distanceD (w), Eq.
(3.1), of an entangled stat& to the setS of separable states, is
shown together with the tangent plane definedfhy, (3.9).

is considered as the analog of an entangled statw, ibr
wy#0.
The observables with ||A|,=1 are of the form

al+a-o

——F and a= 5, é)ERa.
\/E (a2+a2)1/2 ” ”

(3.12
For the H, distanceD, our measure of entanglement, we

calculate

, , 1 -
min p —w3=min [, 13
p N

. 1 2.0 W22
:rrllnz[()\—wz) + Wi+ Wi ]

1

S W)

attained for. =w,, so that we have

D(w)= N (Wi+wp)Y2 (3.13
Otherwise, we find for the maximal violation of the GBI,
Bw) ,1)\ o al+a-o )
w)=maxming| No,—W-0 | ———————
5, LA 2 z \/E(aZ_,r_aZ)l/Z
~1 |a,/+w-a
=Mmax— ———
é, Y \/5 (a2+a2)1/2
=—= (wWi+w))2 (3.19

2
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FIG. 2. For illustration we have drawn the vectors used in the
Proof of Theorem(3.7).

Here the observable

Wyoyt+Wyay
V2 (wi+w?)H2

(3.15

Amax= —

is the tangent function&f peS,, JS,=S,.

Note that for the maximal violation of the GEBB.14) the
min, s is attained forz(1—o,) if a,>0 and not forz(1
+w,0,) as in case of the distan¢g.13. It means that foD
the min, is not necessarily attained for a pure state butEor
it is since it is effectively a max. Thus the equalB=D,
Theorem part3.7), is not so trivial since the extrema may be
attained at disjointed sets. Then min max may be bigger than
max min as can be seen already in jand max for the

matrix
0 1

Proof of the Theorem: Eq. (3.7p(w)=min,_dlp—W, is
attained for some, since| ||, is continuous and is com-
pact. Now take folA— a=(po—W)/||pg—W||, in the defini-
tion of B and use the orthogonal decomposition with respect
to this unit vectorHss v=v|+v, , (v |po—w)=0. There-
fore we can apply simple Euclidean geometry and decom-
pose the vectop—w in the above sense.

We also remember that)—w is the normal to the tangent
plane toS which means

[(p=w)[2=[(po—wW)ll2=Ilpo— Wl

sinceSis convex, see Fig. 2. We can prove this in the fol-
lowing way. The tangen#\,, divides the state space into
Hy={p:[[(p=w) 1< (po—w), |2}, which containsw, and
H.,, the complement td&4,,. If H, were to containpe S
then because of the convexity 8fit would contain allp,
=(1—-N\)po+Ap, Ne[0,1]. Sincep, would have an angle
of less than 90° witlpy—w there would be @, inside the
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ball |[(p—w)[.<||(po—W)|,=D(w) and p, would not be Proofs of theB, D properties
the point of S of minimal distance tov. ThereforeSC ¢, (i) B(w) andD(w) are continuous,
and[(p—w)2=] (p~W)> ¥ peS

Using above arguments we obtain [(W+8=plA)=(w=p|A)[<e

V |dl=<e, lIAl,=<1

Po—W =|(B orD)(w+8)—(B orD)(w)|<e
=>mi — R
st =i o | v ol=e.
(i) B(w) is convex,
_— Po—W )
=min| (p=wW)y | T4 Bl 2 Niw; | =max>, N[min(p|A)—(w;|A)]
p 0 2 l Al peS
—-w
>(PO_W po—) <2 N{max [min(p|A) - (wi|A)T}
lpo—wll, i A peS
=lpo—w[2=D(w).
=2 NiB(wy).
However, D and B can be written as mjmax, and (i) D(w)=D(U,®Ugw Ux®UZ) follows from the in-
max,min, of (p—w|A) and generally we have minmax variance ofSunderU,®Ug.
=max min. Soa priori we knowD(w)=B(w) and we con- (iv) The monotonic decrease under mixing enhancing
clude D(w)=B(w). maps is a consequence of poifitsand (iii ).

The “most” separable statev,=1/dim7? is a convex
combination of most entangled states. From the properties of
D(w) we get the following artistic impression. In the state
space there is a plane aroumg, with D(w)=0. From it
emerge valleys witd (w) =0 to the pure separable states on
the boundary. In their neighborhood are entangled states,

Now we discuss the properties D{w), Eq.(3.1), theHs  thusD slopes up in such a way that the regidds:c, with
distance ofw to the setS of separable states, which is equal 0=<c<D,,,,, are convex. On the boundary of the state space
to B(w), Eqg.(3.6), the maximal violation of the GBI. also sit the states witD =D o, forming a rim. SinceU
®Ug act continuously in a neighborhood of maximally en-
tangled states there are others wiil+ D ,,,, but also some
with D <D, Which one gets by mixing in a little bit with
) ) the separable states.

D(w) has following properties. This somewhat poetic description is mathematically
(i) D(w) is convex. supplemented by considerirf@jas a subset of the state space
(i) D(w) is continuous. SUS*CHg, so the boundaryS are those elements &

(iil) D(W)=D (U8 Ugw UX@U%) ¥ unitary operators where in each neighborhood there are entangled states.

Uag- V. GEOMETRY OF SEPARABLE STATES
(iv)D(w) is monotonic decreasing under mixing enhanc-

ing maps; see, e.g., RgR7].

IV. PROPERTIES OF THE GENERALIZED
BELL INEQUALITY

Properties of D(w)

What is the geometric structure of the &bf separable
states? Let us investigate its properties.

Corresponding remarks Properties of S

_ o (i) The dimensions of bot andS® areN?—1.
(i) It means that by mixing the entanglement decreases (ji) Pure separable states belong to the bound&mand
and the maximally entangled states must be pure. This is toonvex combinations of two of them are still .

be expected since the tracial statg=1/(dimH,dim Hg) is (iii) If a mixture p=={"_,uip; is on 4S then there is a
separable=D(w)=0. Furthermore, the sétv | D(w)<c} face, i.e.,
is convex. o o no
(ii) It tells us that the neighborhood of an entangled state p=2 mipi€dS V u;=0, 2 mi=1.
is also entangled, provided that it is small enough. Actually a =1 =1
neighborhood of the tracial state is also separable. (iv) If Ha=Hg (=C'N) then 39S contains at leasN di-

(i) The state space decomposes into equivalence classe®nsional faces.
of states with the same entanglement. All pure separable (v) Sis invariant undefl,® 15, with T, any positive map

states are in the same equivalence class. B(Ha)— B(H,).
(iv) Mixing enhancing maps are essentially a combination (vi) If A#0 but (To,®15)A=0 then Ae Ay, and if
of unitary transformations and convex combinations. 3 py € S such that po|A)=0 thenAe A;.
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Corresponding remarks continuous path from the entangla_dto the separablev,

(i) It means that botls and S° are everywhere thick and formed from states with corresponding invertible density ma-
do not have pieces of lower dimensions. trices. When this path passes the bound&yhen according

(ii) Clearly the convex combination of two pure states liesto property(iii) we obtain a separable state embedded in a
(for N>2) on the boundary of the state space since in eaci-dimensional face ofS.
neighborhood there are not positive functionals. Here we (v) Follows from the results in Ref24].
have the stronger statement that in each neighborhood there (vi) Follows from(v) and the definitions ofd,, and A, .
are entangled states.

(iii) If S has ann dimensional flat part this means that
mixtures ofn pure states are o8S. Point (i) affirms the
converse in the sense that in the decompositiorpfisespan

a face. We focus again on the two spin example and calculate the
(iv) It says thatn=N actually occurs. entanglement of the following quantum states.
(v) Strangely, the tensor product of two positive maps is  Example: Alice and Balthe“ Werner stated Let us con-

not necessarily positive, but applied to separable states it isjder Werner statel80] which can be parametrized by

VI. GEOMETRY OF ENTANGLED AND SEPARABLE
STATES OF SPIN SYSTEMS

Proofs of the properties of S - -
1_ aa’A® og

7 , (6.9

(i) Shas the full dimension ofl since a neighborhood of W,
the tracial statav, = 1/N is separable and as a convex set it
has the same dimension everywhere. The complerg8&nt _ _ ) _
the set of entangled states, has the full dimension dnge ~ @nd they are possible density matrices fot/3<a<1 since

continuous and iD(w)>0 it is so for a neighborhood of. ~ Ta® 0 has the eigenvalues 3,1,1,1. To calculate the en-

(i) p is pure and separable, i.@.g JS. If tanglement we first mix product states to get
=p® ®
oure and separabinen 7Y 1 { (Ih= oDt od) | (1A+o/§>®<1s—oé>}
[p@y+ed’ @y N doyted @y 2 2 2
comes fore—0 arbitrarily close and i¥ ¢ pure and not a 1- o @ o
_UA® O-B

product state, it is entangled, i.ea,cdS. p; is pure and
separable, i.e.p,=\p;+(1—\)p,edS. Let us takep; 4
=|¢i® ,){ $;i® ;| and consider
and then withx—y, x—z, finally
M@1® 1+ 8 ho® o) P1® by + £ 2@ iy

FLN) 628 ot 8" 318 Y (b8 ths 5" $r@ . P (1_§5A®5B) cs 6.2

Fore, ¢’ —0 it comes arbitrarily close tp, but in the two-
dimensional Hilbert subspace spanneddbw (i=1,2) the  This seems a goog, for w,, if 1/3<a<1; and we use it for
only separable pure states are of the fgrpy. Thus a state o "in the Theorem partiii), Eq. (3.9). With pg—w,=(a

that is not a linear combination ¢f; and p, needs for its - - - S
decomposition into pure states at least one pure entangled 1/3) oa2 0 and|oa@ gl .= 213 we get
state, and is therefore entangled itself. Therefore we have an

entangled state arbitrarily closepQ = p, edS (compare V3

with Refs.[28,29). ' Dlwy)< == (a—1/3). 6.3
(iif) For a tangent functiond atp=Zw p;, p; €S, we

have

The observable which according to E@.8) violates the
GBI (3.5 maximally isSA=— o,®ap/2y3. In fact,

=a \/75 (6.4)

0=(plA)=2 mi(pilA) = (pi|A)=0 Vi
B _&A®&B
2 MiPi

23

(iv) For a given tangent function#=A;—A;, A=0, and a pure producp gives (p | ca®ag)=n-m. Since
IAz],=1 there exists an entangled statewith (WlA) = In-m|<1 and this cannot be increased by mixing, we have
—(W[Az)<—1+e. The homotopic statew=(1-e/2)w  provedB(w,)=(1/3/2)(a—1/3). ButD andB can be writ-

+ /2wy is also entangled sind2(w) is continuous, and the ten as mipmax, and maxmin, of (p—w | A) and generally
corresponding density matrix is invertible and neBdsom- ~ min max=maxmin soa priori we know D(w)=B(w).
ponents to be decomposed into pure states. There existsTaerefore the above inequalities imply

=

A):o = 3 wipieds (Wa
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3 1
D(w,)=B(w,)= \/7— (a—1/3) V 1/3sa<1. (6.5 p=7 (1+o3® 1+ 1\@og+oa®og) (6.1
Furthermore, the minimizing, is given by Eq(6.2 and the W€ easily see within X4 matrices that the operators

maximizing observable is- ¢,® og/2\/3. Considering the 1000
state witha=1 we finally get 1/0 0 0 O
L Pz=7, (6.12
(p |—oa®0p)<1 V peS 40 0 00
0 00O
and
and
(Woei|— opA® ag) =3, (6.6) 0 0 0 ab
L - L 1 0 a2 0 ©
and the GBI is violated by a factor 3. But this ratio is not A=
significant since byA—A+cl it can be given any value. " a24p2l 0 0 b? 0
B(w) is meaningful since it is not affected by this change. ab 0 0 O
For the parameter values 1/3=a<1/3 the statesw,
(6.1) are separable, for 188a<1 they are mixed entangled, 0 0 0 0
and the limita=1 represents the spin singlet state which is 0 a2 ab 0
pure and maximally entangled. L@T)A = -~ 0
Let us consider next the tangent functionals. From expres- (1A Te)A: 24+p? 0 ab b* 0
sion (3.8) we get the flip operatdr30] 0O 0 0 O
1 L (6.13
At_Z (1t oa® ). 6.9 satisfy the requirement of a tangent functional. For the state
_ N _ N py [let z—x in Eq. (6.11)], however, we haved,|A,) =1.
It is not positive but applying the transposition operafor Remark At this stage we would like to compare our ap-
defined byT(o') = ('), on Bob it turns into a positive proach to generalized Bell inequalities with the more famil-
operator iar type of inequalitiescompare also with Refd25,31)).

Usually the Bl is given by an operator in the tensor product,
1 X X ey 7o 2 where by classical arguments only some range of expectation
(1a®Te)A=7 (1+0p®0g—op® 0+ 0a®0p), values can be expected, whereas the quantum case permits
(6.9 another range. In our case, classically we would expect

0=<(pelasd1+ Ta®0B)<2 0OF |(pelasdTa®ag)|<1

(6.19

which can be nicely written as>44 matrices,

2 000 2 00 2 because the expectation value of the individual spin is maxi-
110 0 2 0 110 o 0 0 mally 1 and the largestsmallest value should be obtained
At:Z 02 0 0 (1a®Tg)A= 2lo 0 o ol when they are parallglntiparalle]. This range of expecta-
tion values can exactly be achieved by all separable states
0 0 0 2 2 0 0 2 pe S, whereas we can find an entangled quantum state, the
(6.9 spin singlet statev,_, (6.1), which gives

OperatorA, is not only a tangent functional for the mixed — (Wo=1|/1+0a®0g)==2 o0 [(Wo—1/oa®0p)|=3.

separable statg, (6.2) but with 6.19
1 This demonstrates that the tensor product operé]m (}B
A= —Tr(1+noh@1a+ Ml ® o cannot be written as a CHSH operator, where the ratio is
(p t) 16 [( 1Y A B i+A B

limited by 2. If we perturb a pure separable state like

+nimoh®@ok)(1+ oa® 0g)] 1 . . o
t pSIZ[1+ni Uk@lB_ni 1A®O'IB_(ninj+8ij) O'IA®(TJB]

== (1+n-m)=0 (6.10 (6.16
then the expectation value
it is a tangent functional for all pure separable states with

m= —n, which is especially the case for those states used for (pe|1+oa® ) =0(e) (6.17)

po (6.2). This illustrates pointiii) of the properties of. is of orderO(e), as the operator constructed in RE32],
However, for the pure separable states in this face we cawhich shows the sensitivity ofd; (6.13 as entanglement
find other tangent functionals. For example, for the state  witness.

032319-6



GEOMETRIC PICTURE OF ENTANGLEMENT AND BEL . ..

In the familiar Bell inequality derived by CHSFR26]

(plAchsn =<2, (6.18

with p e S (actually CHSH consider classical stajgs,ss, a
generalization of separable states, in their wag]), a
rather general observahla four parameter family of observ-
ables

ACHSH:5'5A®(6_6 ’)'(;'B_Fé ’(;A®(6+5 ,)'&B

(6.19

is used, wher@,a ',b,b " are any unit vectors i3,
However, the spin singlet state,_, (6.1) gives

- - -

(Woe1|Achsp=—a-(b—b )—a "-(b+b ),
(6.20

which violates the CHSH inequalit§6.18 maximally
(Wo-1lAchsn) =22, (6.23)

for appropriate angles:a(b)=(a ',b)=(a’, b')=135°,
(a,b ')=45°, whereas in this case we fifidr all separable
statespe S)

max (p|AcnsH) = V2. (6.22

p €S

Bell in his original work[33] considers only three differ-
ent directions in spacéwhich corresponds to the specific

casea =—Db ' in CHSH (6.19] and assumes a strict anti-
correlation
(pla -on®a og=—1 (6.23
Then he derives the inequality
(p|Agen)=1, (6.249

[which clearly follows from Eq(6.18 under the mentioned
conditiong, where now the observable is

Agen=a-oa®(b—b ')-05—b - g,®b-0p.

PHYSICAL REVIEW A 66, 032319 (2002

3

1 (6.28

max (p|Agen) =
pa €S

Note that generallW p e S the maximum(6.28 is larger,
namely,\/3/2 instead of 3/4.
We observe that the maximal violation of the GBI, Eq.

(3.6), is largest for our observable c® oz, Where the dif-
ference between singlet state and separable stat¢recall
Eq. (6.6)], whereas in case of CHSH it ig2 and in Bell's
original case it is 3/4.

Although the violation of Bl's is a manifestation of en-
tanglement, as a criterion for separability it is rather poor.
There exists a class of entangled states which satisfy the
considered Bl's, CHSH6.18), Bell (6.24), but not our GBI
(3.3 or (6.6). For a given entangled state there exists always
some operatofentanglement witnegso that it satisfies the
GBI for separable states but not for this entangled state. The
class of these operators can be obtained by the positivity
condition of Ref[24]. However, as a criterion for nonlocal-
ity the violation of the familiar BI's is of great importance.

Let us finally return again to the geometry of the quantum
states(see also Ref[34]). For two spins there is a one pa-
rameter family of equivalence classes of pure states, interpo-
lating between the separable one and the one containing
w,-1. The latter is quite big and contains four orthogonal
projections, the “Bell states.” They are obtained by rotating

5A by 180° around each of the axis,

Wa=l:Z(1_ TANROR— AR oL — Ta® og) =Py
H%(1—02@0@%—0%@0%4—0’1@0%)::Pl
—>%(1-%0’2@0@-0’%@0%-1—0’1@025):ZP2
—>%(1+0’2®0‘E+0’X®0‘>é_0'i®0'z5):ZP3.

However there are far more sineg, and og can be rotated
independently.

The expectation value of Bell's observable in the spin singlet "€ matrixc;; in Eq. (2.5 will in general not be diago-

(6.25
state
(Wo-1|Agen)=—a-(b—b )+b b (6.2
lies (maximally) outside the range of B(6.24),
3
(Wa=1|ABeII): Er (627)

for the angles4,b )= (b ',b)=60°, (a,b)=120°, whereas
now we have for all anticorrelated separable staigs{p
eS| with n-m=—1}

nalizible but by two independent orthogonal transformations
on both spins it can be diagonalized. Thus the correlation
part of a density matrixv. contains three parametets,

3

1+ ¢ oh@ok]. (6.29
i=1

WCZZ

Density matrixw,; can be expressed as convex combination
of the projectors onto the four Bell states. Positivity requires
that thec; are contained in the convex region spanned by the
four points (—-1,-1,—-1), (-1,1,1), (1;-1,1), (1,1-1).
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FIG. 3. In the left figure above
we have plotted the tetrahedron of
states described by the density
matrix w, (6.29 in the ¢ space
and to the right the reflected set of
states (,®Tg)w, is shown. In
the left figure below we have plot-
ted the intersection of the two sets
(w¢ and its mirror imageand, fi-
nally, to the right the double pyra-
mid of separable statedN{w.}.

This region is screwed and the intersection with its mirrorpert spaceH, with Hilbert-Schmidt norm. We show that the
image—compare with point(vi) of the properties of Euclidean distance of an entangled state to the separable
S—characterizes the separable stafeggﬂcilsl. Reflec- states is equal to the maximal violation of the GBI with the
tion in ¢ space is effected by time reversal on one spin andangent functional as entanglement witness. This description
not on the othef“partial transposition” and the classically gives a nice geometric picture of separable and entangled
correlated states form the set invariant under this transformzatates and their boundary, especially in the example of two
tion. These properties are illustrated in Fig(s@e also Refs. Spins. The advantage of considering the larger set of GBI's is
[35,36)). that they are a criterion for separabilitpr entanglement
Finally, we would like to mention that the quantum stateswhereas the usual Bl's are not.
which are used in the model for decoherence of entangled
systems in particle physid87,3§ also lie in the regions of
the plotted separable and entangled states. We are thankful to Katharina Durstberger for her draw-
ings and to Fabio Benatti,&lav Brukner, Franz Embacher,
Walter Grimus, Beatrix Hiesmayr, and Anton Zeilinger for
fruitful discussions. We also thank Frank Verstraete and Jens
In this paper we have used tangent functionals on the séfisert for useful comments. The research was performed
of separable states as entanglement witnesses defining a gevithin FWF Project No. P14143-PHY of the Austrian Sci-
eralized Bell inequality. The operators are vectors in the Hil-ence Foundation.
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