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Geometric picture of entanglement and Bell inequalities

R. A. Bertlmann, H. Narnhofer, and W. Thirring
Institut für Theoretische Physik, Universita¨t Wien, Boltzmanngasse 5, A-1090 Wien, Austria

~Received 22 November 2001; published 27 September 2002!

We work in the real Hilbert spaceHs of Hermitian Hilbert-Schmidt operators and show that the entangle-
ment witness which shows the maximal violation of a generalized Bell inequality~GBI! is a tangent functional
to the convex setS,Hs of separable states. This violation equals the Euclidean distance inHs of the entangled
state toSand thus entanglement, GBI, and tangent functional are only different aspects of the same geometric
picture. This is explicitly illustrated in the example of two spins, where also a comparison with familiar Bell
inequalities is presented.
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I. INTRODUCTION

The importance of entanglement@1,2# of quantum states
became quite evident in the last ten years. It is the basis
such physics, like quantum cryptography@3–6# and quantum
teleportation@7,8#, and it triggered a new technology: qua
tum information@9,10#. Entangled states lead to a violatio
of Bell inequalities~BI! which distinguish quantum mechan
ics from ~all! local realistic theories@11#. Much effort has
been made in studying the mathematical structure of
tanglement, especially the quantification of entanglem
~see, for instance, Refs.@12,13#!. There exist different kinds
of measures of entanglement indicating somehow the dif
ence between entangled and separable states, which is
ally related to the entropy of the states~see, e.g., Refs.@14–
19#!. In this paper we define a simple and quite natu
measure for entanglement, a distance of certain vector
Hilbert space which has as elements both observables
states, and we relate it to the maximum violation of a gen
alized Bell inequality~GBI!. We work with a bipartite sys-
tem in a finite-dimensional Hilbert space but generalizatio
are possible.

The Hilbert-Schmidt distanceD of a state to the set o
separable states has previously been proposed as a me
of entanglement@20,21#. Our point is that if one admits all o
B(HA^ HB) as entanglement witnesses then the maxim
violation B of the corresponding GBI equals the distanceD
numerically. SinceD can be written as a minimum andB as
a maximum, upper and lower bounds are readily available
fact, in some standard examples one can make them coin
and thus calculateB5D exactly.

Though distinct from the entropic entanglement desc
tions, the Hilbert-Schmidt distanceD as a quantitative de
scription of entanglement is insofar reasonable; as con
ered as functional of the state it is convex and invari
under local unitary transformations. This implies that sta
more mixed in the sense of Uhlmann@22# have a lower en-
tanglement. However,D is not monotonic decreasing und
arbitrary completely positive maps inHA or HB but only if
they have norm one. Thus whether they satisfy monotoni
in ‘‘local operations and classical communication’’ depen
on the exact definition of this term.

We consider a finite-dimensional Hilbert spaceH5CN,
where observablesA are represented by all Hermitian matr
1050-2947/2002/66~3!/032319~9!/$20.00 66 0323
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ces and statesw by density matrices. It is useful to regar
these quantities as elements of a real Hilbert spaceHs

5RN2
with scalar product

~wuA!5Tr wA ~1.1!

and corresponding norm

iAi25~Tr A2!1/2 ~1.2!

~we identify quantities with their representatives inH). Both
density matrices and observables are represented by ve
in Hs , a density matrix is positive and has trace unity.

Unitary operatorsU in H induce via UAU* 5OA or-
thogonal operatorsO in Hs , but the homomorphismU→O
is neither injective nor surjective.

II. SPIN EXAMPLES

Let us begin with two examples which will be of ou
interest.

Example I: one spin. Generally an observable can be wr
ten as

A5a11aW •sW with aPR, aW PR3. ~2.1!

The operatorA is a density matrix iff a51/2 and iaW i
<1/2, it gives a pure state iffiaW i51/2 orA25A. If the state
is

w5
1

2
~11wW •sW ! ~2.2!

the expectation value ofA is

~wuA!5a1aW •wW . ~2.3!

For us the important structural element is a tensor prod
H5HA^ HB which defines the setSof separable~classically
correlated! statesrA

i ,rB
j ,

S5H r5(
i , j

ci j rA
i

^ rB
j U 0<ci j <1,(

i , j
ci j 51J .

~2.4!
©2002 The American Physical Society19-1
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Example II: two spinssW A and sW B , ‘‘ Alice and Bob.’’ An
observableA can be represented by

A5a11aisA
i

^ 1B1bi1A^ sB
i 1ci j sA

i
^ sB

j , ~2.5!

1

4
iAi2

25a21(
i

~ai
21bi

2!1(
i , j

ci j
2 . ~2.6!

Note thatci j can be diagonalized by two independent o
thogonal transformations onsA

i andsB
j @23#. The operatorA

is a density matrix ifa51/4 and the operator normi i` of
A21/4 is <1/4. Sincei i2>i i` this is satisfied if

(
i

~ai
21bi

2!1(
i , j

ci j
2 <1/16. ~2.7!

For pure statesi i25i i` andiri251 is necessary and su
ficient for purity. A pure separable state has the form

r5
1

4
~11nisA

i
^ 1B1mi1A^ sB

i 1nimjsA
i

^ sB
j !,

~2.8!

with nW 25mW 251, and gives the expectation value ofA,

~ruA!5a1nW •aW 1mW •bW 1nimjci j . ~2.9!

III. GENERALIZED BELL INEQUALITY

States that are not separable are called entangledwPSc,
the complement in the set of states. We introduce as a m
sure of entanglementD(w) theHs distance ofw to the setS
of separable states,

D~w!5 min
r PS

ir2wi2 . ~3.1!

Since

ir2wi2
25Tr~r21v222ArvAr!

<Tr~r21v2!<2

we generally have

0<D~w!<A2. ~3.2!

Usually the Bell inequality refers to an operator in the ten
product where by classical arguments only some range
expectation values can be expected whereas quantum
chanics permits other values. A Bell inequality in a gener
ized sense is given by an observableA>” 0 for which

~ruA!>0 ; rPS. ~3.3!

Thus' w such that

~wuA!,0 for some wPSc. ~3.4!

Such elementsAPAW are called entanglement witness
@24,25#. A product operator can never bePAW but already
the sum of two products serves for the CHSH~Clauser,
03231
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Horne, Shimony, and Holt! inequality @26#. But the number
of summands is not restricted inAW . The operatorAPAt
becomes a tangent functional if in addition' r0 PS such
that (r0uA)50. SinceS is a convex subset of the state spa
such tangentialA’s always exist. Even more, the setS is
characterized by the tangent functionals and ther0’s with
(r0uA)50, for someAPAt , are the boundary]S of S.

Frequently a bigger set thanS is considered as classicall
explainable in a local hidden variable theory. Bell inequa
ties are those which contradict even those sets. To av
misunderstandings we call generalized Bell inequalities
pectation values which contradict the predictions fromS, the
set of separable states.

Thus the GBI~3.3! is violated by an entangled statew,
Eq. ~3.4!, and we get the following inequality for someA
PAW :

~ruA!.~wuA! ; rPS. ~3.5!

Considering now the maximal violation of the GBI,

B~w!5 max
iA2ai2<1

@ min
r PS

~ruA!2~wuA!#, ~3.6!

we find the following result.
Theorem.
~i! The maximal violation of the GBI is equal to the dis

tance ofw to the setS,

B~w!5D~w! ; w. ~3.7!

~ii ! The min ofD is attained for somer0 and the max of
B for

Amax5
r02w2~r0ur02w!1

ir02wi2
PAt . ~3.8!

~iii ! For B5D the following two-sided variational prin-
ciple holds:

min
r PS

S r2w U r82w

ir82wi2
D <B~w!<ir82wi2

; r8PS. ~3.9!

~For an illustration, see Fig. 1!
Remark. The proof of the Theorem does not use the pro

uct structure of the Hilbert spaceH but only the geometric
properties of the Euclidean distance inHs . It can be illus-
trated already with one spin where the set of separable s
S is replaced bySz ,

Sz5H r5
1

2
~11lsz!, ulu<1J , ~3.10!

and

w5
1

2
~11wW •sW !, iwi2<1 ~3.11!
9-2
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is considered as the analog of an entangled state, ifwx or
wyÞ0.

The observablesA with iAi251 are of the form

A5
a11aW •sW

A2 ~a21a2!1/2
and a5iaW i , aW PR3.

~3.12!

For the Hs distanceD, our measure of entanglement, w
calculate

min
r

ir2wi2
25min

l

1

4
ilsz2wW •sW i2

2

5min
l

1

2
@~l2wz!

21wx
21wy

2#

5
1

2
~wx

21wy
2!

attained forl5wz , so that we have

D~w!5
1

A2
~wx

21wy
2!1/2. ~3.13!

Otherwise, we find for the maximal violation of the GB

B~w!5max
aW , a

min
l

1

2 S lsz2wW •sW U a11aW •sW

A2~a21a2!1/2D
5max

aW , a

21

A2

uazu1wW •aW

~a21a2!1/2

5
1

A2
~wx

21wy
2!1/2. ~3.14!

FIG. 1. Illustration of Theorem~3.7!. The maximal violation of
GBI B(w), Eq. ~3.6!, which is equal to theHs distanceD(w), Eq.
~3.1!, of an entangled statew to the setS of separable states, i
shown together with the tangent plane defined byAmax ~3.8!.
03231
Here the observable

Amax52
wxsx1wysy

A2 ~wx
21wy

2!1/2
~3.15!

is the tangent functional; rPSz , ]Sz5Sz .
Note that for the maximal violation of the GBI~3.14! the

minrPS is attained for1
2 (12sz) if az.0 and not for 1

2 (1
1wzsz) as in case of the distance~3.13!. It means that forD
the minr is not necessarily attained for a pure state but foB
it is since it is effectively a max. Thus the equalityB5D,
Theorem part~3.7!, is not so trivial since the extrema may b
attained at disjointed sets. Then min max may be bigger t
max min as can be seen already in mini and maxj for the
matrix

Mi j 5S 0 1

1 0D .

Proof of the Theorem: Eq. (3.7). D(w)5minrPSir2wi2 is
attained for somer0 sincei i2 is continuous andS is com-
pact. Now take forA2a5(r02w)/ir02wi2 in the defini-
tion of B and use the orthogonal decomposition with resp
to this unit vector,Hs{v5v i1v' , (v'ur02w)50. There-
fore we can apply simple Euclidean geometry and deco
pose the vectorr2w in the above sense.

We also remember thatr02w is the normal to the tangen
plane toS, which means

i~r2w! ii2>i~r02w! ii25ir02wi2

sinceS is convex, see Fig. 2. We can prove this in the fo
lowing way. The tangentAmax divides the state space int
Hw5$r:i(r2w) ii2,i(r02w) ii2%, which containsw, and
H w

c , the complement toHw . If Hw were to containrPS
then because of the convexity ofS it would contain allrl

5(12l)r01lr, lP@0,1#. Sincerl would have an angle
of less than 90° withr02w there would be arl inside the

FIG. 2. For illustration we have drawn the vectors used in
Proof of Theorem~3.7!.
9-3
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ball i(r2w)i2,i(r02w)i25D(w) and r0 would not be
the point ofS of minimal distance tow. ThereforeS,H w

c

and i(r2w) ii2>i(r02w)i2 ; rPS.
Using above arguments we obtain

B~w!>min
r

S r2w U r02w

ir02wi2
D

>min
r

S ~r2w! i U r02w

ir02wi2
D

>S r02w U r02w

ir02wi2
D

5ir02wi25D~w!.

However, D and B can be written as minrmaxA and
maxAminr of (r2wuA) and generally we have minmax
>max min. Soa priori we knowD(w)>B(w) and we con-
cludeD(w)5B(w).

IV. PROPERTIES OF THE GENERALIZED
BELL INEQUALITY

Now we discuss the properties ofD(w), Eq. ~3.1!, theHs

distance ofw to the setS of separable states, which is equ
to B(w), Eq. ~3.6!, the maximal violation of the GBI.

Properties of D„w…

D(w) has following properties.

~i! D(w) is convex.
~ii ! D(w) is continuous.
~iii ! D(w)5D(UA^ UBw UA* ^ UB* ) ; unitary operators

UA,B .
~iv!D(w) is monotonic decreasing under mixing enhan

ing maps; see, e.g., Ref.@27#.

Corresponding remarks

~i! It means that by mixing the entanglement decrea
and the maximally entangled states must be pure. This i
be expected since the tracial statewtr51/(dimHAdimHB) is
separable⇔D(w)50. Furthermore, the set$w u D(w),c%
is convex.

~ii ! It tells us that the neighborhood of an entangled st
is also entangled, provided that it is small enough. Actuall
neighborhood of the tracial state is also separable.

~iii ! The state space decomposes into equivalence cla
of states with the same entanglement. All pure separa
states are in the same equivalence class.

~iv! Mixing enhancing maps are essentially a combinat
of unitary transformations and convex combinations.
03231
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Proofs of theB, D properties

~i! B(w) andD(w) are continuous,

u~w1d2ruA!2~w2ruA!u<«

; idi2<«, iAi2<1

⇒u~B or D !~w1d!2~B or D !~w!u<«

; idi2<«.
~ii ! B(w) is convex,

BS (
i

l iwi D 5max
A

(
i

l i@min
rPS

~ruA!2~wi uA!#

<(
i

l i$max
A

@min
rPS

~ruA!2~wi uA!#%

5(
i

l iB~wi !.

~iii ! D(w)5D(UA^ UBw UA* ^ UB* ) follows from the in-
variance ofS underUA^ UB .

~iv! The monotonic decrease under mixing enhanc
maps is a consequence of points~i! and ~iii !.

The ‘‘most’’ separable statewtr51/dimH is a convex
combination of most entangled states. From the propertie
D(w) we get the following artistic impression. In the sta
space there is a plane aroundwtr with D(w)50. From it
emerge valleys withD(w)50 to the pure separable states
the boundary. In their neighborhood are entangled sta
thusD slopes up in such a way that the regionsD<c, with
0<c<Dmax, are convex. On the boundary of the state sp
also sit the states withD5Dmax, forming a rim. SinceUA
^ UB act continuously in a neighborhood of maximally e
tangled states there are others withD5Dmax but also some
with D,Dmax which one gets by mixing in a little bit with
the separable states.

This somewhat poetic description is mathematica
supplemented by consideringSas a subset of the state spa
SøSc,Hs , so the boundary]S are those elements ofS
where in each neighborhood there are entangled states.

V. GEOMETRY OF SEPARABLE STATES

What is the geometric structure of the setS of separable
states? Let us investigate its properties.

Properties of S

~i! The dimensions of bothS andSc areN221.
~ii ! Pure separable states belong to the boundary]S and

convex combinations of two of them are still on]S.
~iii ! If a mixture r5( i 51

n m ir i is on ]S then there is a
face, i.e.,

r̄5(
i 51

n

m̄ ir iP]S ; m̄ i>0, (
i 51

n

m̄ i51.

~iv! If HA5HB (5CAN) then ]S contains at leastN di-
mensional faces.

~v! S is invariant underTA^ 1B , with TA any positive map
B(HA)→B(HA).

~vi! If A>” 0 but (TA^ 1B)A>0 then APAW and if
' r0 PS such that (r0uA)50 thenAPAt .
9-4
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Corresponding remarks

~i! It means that bothS andSc are everywhere thick and
do not have pieces of lower dimensions.

~ii ! Clearly the convex combination of two pure states l
~for N.2) on the boundary of the state space since in e
neighborhood there are not positive functionals. Here
have the stronger statement that in each neighborhood t
are entangled states.

~iii ! If ]S has ann dimensional flat part this means th
mixtures ofn pure states are on]S. Point ~iii ! affirms the
converse in the sense that in the decomposition ther i ’s span
a face.

~iv! It says thatn5N actually occurs.
~v! Strangely, the tensor product of two positive maps

not necessarily positive, but applied to separable states

Proofs of the properties of S

~i! S has the full dimension ofN since a neighborhood o
the tracial statewtr51/N is separable and as a convex se
has the same dimension everywhere. The complementSc,
the set of entangled states, has the full dimension sinceD is
continuous and ifD(w).0 it is so for a neighborhood ofw.

~ii ! r is pure and separable, i.e.,rP]S. If

r5uf ^ c&^f ^ cu
~pure and separable! then

uf ^ c1«f8^ c8&^f ^ c1«f8^ c8u
comes for«→0 arbitrarily close and is; « pure and not a
product state, it is entangled, i.e.,rP]S. r i is pure and
separable, i.e.,rl5lr11(12l)r2P]S. Let us taker i
5uf i ^ c i&^f i ^ c i u and consider

luf1^ c11«f2^ c2&^f1^ c11«f2^ c2u

1~12l!uf2^ c21«8f1^ c1&^f2^ c21«8f1^ c1u.

For «, «8→0 it comes arbitrarily close torl but in the two-
dimensional Hilbert subspace spanned byf i ^ c i( i 51,2) the
only separable pure states are of the formr1,2. Thus a state
that is not a linear combination ofr1 and r2 needs for its
decomposition into pure states at least one pure entan
state, and is therefore entangled itself. Therefore we hav
entangled state arbitrarily close torl ⇒ rlP]S ~compare
with Refs.@28,29#!.

~iii ! For a tangent functionalA at r5(m ir i , r iPS, we
have

05~ruA!5( m i~r i uA! ⇒ ~r i uA!50 ; i

⇒ S ( m̄ ir iUAD50 ⇒ ( m̄ ir iP]S.

~iv! For a given tangent functionalAt5A12A2 , Ai>0,
iA2i251 there exists an entangled statew with (wuAt)5

2(wuA2)<211«. The homotopic statew̄5(12«/2)w
1«/2wtr is also entangled sinceD(w̄) is continuous, and the
corresponding density matrix is invertible and needsN com-
ponents to be decomposed into pure states. There exi
03231
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continuous path from the entangledw̄ to the separablewtr

formed from states with corresponding invertible density m
trices. When this path passes the boundary]S then according
to property~iii ! we obtain a separable state embedded i
N-dimensional face of]S.

~v! Follows from the results in Ref.@24#.
~vi! Follows from ~v! and the definitions ofAW andAt .

VI. GEOMETRY OF ENTANGLED AND SEPARABLE
STATES OF SPIN SYSTEMS

We focus again on the two spin example and calculate
entanglement of the following quantum states.

Example: Alice and Bob, the ‘‘ Werner states.’’ Let us con-
sider Werner states@30# which can be parametrized by

wa5
12asW A^ sW B

4
, ~6.1!

and they are possible density matrices for21/3<a<1 since
sW A^ sW B has the eigenvalues23,1,1,1. To calculate the en
tanglement we first mix product states to get

1

2 H ~1A2sA
x ! ^ ~1B1sB

x !

2
1

~1A1sA
x ! ^ ~1B2sB

x !

2 J
5

12sA
x

^ sB
x

4

and then withx→y, x→z, finally

r05
1

4 S 12
1

3
sW A^ sW BDPS. ~6.2!

This seems a goodr0 for wa if 1/3,a<1; and we use it for
r 8 in the Theorem part~iii !, Eq. ~3.9!. With r02wa5 1

4 (a
21/3) sW A^ sW B and isW A^ sW Bi252A3 we get

D~wa!<
A3

2
~a21/3!. ~6.3!

The observable which according to Eq.~3.8! violates the
GBI ~3.5! maximally isA52 sW A^ sW B/2A3. In fact,

S wa U 2
sW A^ sW B

2A3
D 5a

A3

2
~6.4!

and a pure productr gives (r u sW A^ sW B)5nW •mW . Since
unW •mW u<1 and this cannot be increased by mixing, we ha
provedB(wa)>(A3/2)(a21/3). But D andB can be writ-
ten as minrmaxA and maxAminr of (r2w u A) and generally
min max>max min so a priori we know D(w)>B(w).
Therefore the above inequalities imply
9-5
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D~wa!5B~wa!5
A3

2
~a21/3! ; 1/3<a<1. ~6.5!

Furthermore, the minimizingr0 is given by Eq.~6.2! and the
maximizing observable is2sW A^ sW B/2A3. Considering the
state witha51 we finally get

~r u2sW A^ sW B!<1 ; rPS

and

~wa51u2sW A^ sW B!53, ~6.6!

and the GBI is violated by a factor 3. But this ratio is n
significant since byA→A1c1 it can be given any value
B(w) is meaningful since it is not affected by this change

For the parameter values21/3<a<1/3 the stateswa
~6.1! are separable, for 1/3,a,1 they are mixed entangled
and the limita51 represents the spin singlet state which
pure and maximally entangled.

Let us consider next the tangent functionals. From exp
sion ~3.8! we get the flip operator@30#

At5
1

4
~11sW A^ sW B!. ~6.7!

It is not positive but applying the transposition operatorT,
defined byT(s i)kl5(s i) lk , on Bob it turns into a positive
operator

~1A^ TB!At5
1

4
~11sA

x
^ sB

x 2sA
y

^ sB
y 1sA

z
^ sB

z !,

~6.8!

which can be nicely written as 434 matrices,

At5
1

4 S 2 0 0 0

0 0 2 0

0 2 0 0

0 0 0 2

D ~1A^ TB!At5
1

4 S 2 0 0 2

0 0 0 0

0 0 0 0

2 0 0 2

D .

~6.9!

OperatorAt is not only a tangent functional for the mixe
separable stater0 ~6.2! but with

~ruAt!5
1

16
Tr@~11nisA

i
^ 1B1mi1A^ sB

i

1nimjsA
i

^ sB
j !~11sW A^ sW B!#

5
1

4
~11nW •mW !50 ~6.10!

it is a tangent functional for all pure separable states w
mW 52nW , which is especially the case for those states used
r0 ~6.2!. This illustrates point~iii ! of the properties ofS.

However, for the pure separable states in this face we
find other tangent functionals. For example, for the state
03231
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rz5
1

4
~11sA

z
^ 1B11A^ sB

z 1sA
z

^ sB
z ! ~6.11!

we easily see within 434 matrices that the operators

rz5
1

4 S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

D ~6.12!

and

At5
1

a21b2 S 0 0 0 ab

0 a2 0 0

0 0 b2 0

ab 0 0 0

D
~1A^ TB!At5

1

a21b2 S 0 0 0 0

0 a2 ab 0

0 ab b2 0

0 0 0 0
D . 0

~6.13!

satisfy the requirement of a tangent functional. For the s
rx @let z→x in Eq. ~6.11!#, however, we have (rxuAt)51.

Remark.At this stage we would like to compare our a
proach to generalized Bell inequalities with the more fam
iar type of inequalities~compare also with Refs.@25,31#!.
Usually the BI is given by an operator in the tensor produ
where by classical arguments only some range of expecta
values can be expected, whereas the quantum case pe
another range. In our case, classically we would expect

0<~rclassu11sW A^ sW B!<2 or u~rclassusW A^ sW B!u<1
~6.14!

because the expectation value of the individual spin is ma
mally 1 and the largest~smallest! value should be obtained
when they are parallel~antiparallel!. This range of expecta
tion values can exactly be achieved by all separable st
rPS, whereas we can find an entangled quantum state,
spin singlet statewa51 ~6.1!, which gives

~wa51u11sW A^ sW B!522 or u~wa51usW A^ sW B!u53.
~6.15!

This demonstrates that the tensor product operatorsW A^ sW B
cannot be written as a CHSH operator, where the ratio
limited by A2. If we perturb a pure separable state like

r«5
1

4
@11ni sA

i
^ 1B2ni 1A^ sB

i 2~ninj1« i j ! sA
i

^ sB
j #

~6.16!

then the expectation value

~r«u11sW A^ sW B!5O~«! ~6.17!

is of orderO(«), as the operator constructed in Ref.@32#,
which shows the sensitivity ofAt ~6.13! as entanglemen
witness.
9-6
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In the familiar Bell inequality derived by CHSH@26#

~ruACHSH!<2, ~6.18!

with rPS ~actually CHSH consider classical statesrclass, a
generalization of separable states, in their work@26#!, a
rather general observable~a four parameter family of observ
ables!

ACHSH5aW •sW A^ ~bW 2bW 8!•sW B1aW 8
•sW A^ ~bW 1bW 8!•sW B

~6.19!

is used, whereaW ,aW 8,bW ,bW 8 are any unit vectors inR3.
However, the spin singlet statewa51 ~6.1! gives

~wa51uACHSH!52aW •~bW 2bW 8!2aW 8
•~bW 1bW 8!,

~6.20!

which violates the CHSH inequality~6.18! maximally

~wa51uACHSH!52A2, ~6.21!

for appropriate angles: (aW ,bW )5(aW 8,bW )5(aW 8, bW 8)5135°,
(aW ,bW 8)545°, whereas in this case we find~for all separable
statesrPS)

max
r PS

~ruACHSH!5A2. ~6.22!

Bell in his original work@33# considers only three differ
ent directions in space@which corresponds to the specifi
caseaW 852bW 8 in CHSH ~6.19!# and assumes a strict ant
correlation

~ r u aW 8
•sW A ^ aW 8

•sW B!521. ~6.23!

Then he derives the inequality

~ruABell!<1, ~6.24!

@which clearly follows from Eq.~6.18! under the mentioned
conditions#, where now the observable is

ABell5aW •sW A^ ~bW 2bW 8!•sW B2bW 8
•sW A^ bW •sW B .

~6.25!

The expectation value of Bell’s observable in the spin sing
state

~wa51uABell!52aW •~bW 2bW 8!1bW 8
•bW ~6.26!

lies ~maximally! outside the range of BI~6.24!,

~wa51uABell!5
3

2
, ~6.27!

for the angles (aW ,bW 8)5(bW 8,bW )560°, (aW ,bW )5120°, whereas
now we have for all anticorrelated separable statesra5$r
PS u with nW •mW 521%
03231
t

max
ra PS

~ruABell!5
3

4
. ~6.28!

Note that generally; rPS the maximum~6.28! is larger,
namely,A3/2 instead of 3/4.

We observe that the maximal violation of the GBI, E
~3.6!, is largest for our observable2sW A^ sW B , where the dif-
ference between singlet state and separable state is 2@recall
Eq. ~6.6!#, whereas in case of CHSH it isA2 and in Bell’s
original case it is 3/4.

Although the violation of BI’s is a manifestation of en
tanglement, as a criterion for separability it is rather po
There exists a class of entangled states which satisfy
considered BI’s, CHSH~6.18!, Bell ~6.24!, but not our GBI
~3.3! or ~6.6!. For a given entangled state there exists alwa
some operator~entanglement witness! so that it satisfies the
GBI for separable states but not for this entangled state.
class of these operators can be obtained by the posit
condition of Ref.@24#. However, as a criterion for nonloca
ity the violation of the familiar BI’s is of great importance

Let us finally return again to the geometry of the quantu
states~see also Ref.@34#!. For two spins there is a one pa
rameter family of equivalence classes of pure states, inte
lating between the separable one and the one contai
wa51. The latter is quite big and contains four orthogon
projections, the ‘‘Bell states.’’ They are obtained by rotati
sW A by 180° around each of the axis,

wa515
1

4
~12sA

x
^ sB

x 2sA
y

^ sB
y 2sA

z
^ sB

z !5:P0

→ 1

4
~12sA

x
^ sB

x 1sA
y

^ sB
y 1sA

z
^ sB

z !5:P1

→ 1

4
~11sA

x
^ sB

x 2sA
y

^ sB
y 1sA

z
^ sB

z !5:P2

→ 1

4
~11sA

x
^ sB

x 1sA
y

^ sB
y 2sA

z
^ sB

z !5:P3 .

However there are far more sincesA andsB can be rotated
independently.

The matrixci j in Eq. ~2.5! will in general not be diago-
nalizible but by two independent orthogonal transformatio
on both spins it can be diagonalized. Thus the correlat
part of a density matrixwc contains three parametersci ,

wc5
1

4 S 11(
i 51

3

ci sA
i

^ sB
i D . ~6.29!

Density matrixwc can be expressed as convex combinat
of the projectors onto the four Bell states. Positivity requir
that theci are contained in the convex region spanned by
four points (21,21,21), (21,1,1), (1,21,1), (1,1,21).
9-7
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FIG. 3. In the left figure above
we have plotted the tetrahedron o
states described by the densi

matrix wc ~6.29! in the cW space
and to the right the reflected set o
states (1A^ TB)wc is shown. In
the left figure below we have plot
ted the intersection of the two set
(wc and its mirror image! and, fi-
nally, to the right the double pyra
mid of separable statesSù$wc%.
ro

n

m
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e
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e
able
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gled
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w-
r,
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This region is screwed and the intersection with its mir
image—compare with point~vi! of the properties of
S—characterizes the separable states( i 51

3 uci u<1. Reflec-
tion in c space is effected by time reversal on one spin a
not on the other~‘‘partial transposition’’! and the classically
correlated states form the set invariant under this transfor
tion. These properties are illustrated in Fig. 3~see also Refs
@35,36#!.

Finally, we would like to mention that the quantum stat
which are used in the model for decoherence of entang
systems in particle physics@37,38# also lie in the regions of
the plotted separable and entangled states.

VII. SUMMARY AND CONCLUSION

In this paper we have used tangent functionals on the
of separable states as entanglement witnesses defining a
eralized Bell inequality. The operators are vectors in the H
03231
r

d

a-

s
d

et
en-

l-

bert spaceHs with Hilbert-Schmidt norm. We show that th
Euclidean distance of an entangled state to the separ
states is equal to the maximal violation of the GBI with t
tangent functional as entanglement witness. This descrip
gives a nice geometric picture of separable and entan
states and their boundary, especially in the example of
spins. The advantage of considering the larger set of GBI
that they are a criterion for separability~or entanglement!
whereas the usual BI’s are not.
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