
y,

PHYSICAL REVIEW A, 66, 032318 ~2002!
Controlled dense coding for continuous variables using three-particle entangled states
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A simple scheme to realize quantum controlled dense coding with a bright tripartite entangled state light
generated from nondegenerate optical parametric amplifiers is proposed in this paper. The quantum channel
between Alice and Bob is controlled by Claire. As a local oscillator and balanced homodyne detector are not
needed, the proposed protocol is easy to be realized experimentally.
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In the development of theoretical and experimental st
ies of quantum information, the quantum teleportation tha
the disembodied transport of an unknown quantum s
from a sender to a remote receiver@1# and the dense codin
in which the single bit sent from a sender to a receiver
successfully carry two bits of classical information@2#, have
attracted extensive interests. The nonlocal quantum entan
ment plays a determinant role in the quantum informat
processing. Towards possible applications in quantum c
munication, both theoretical and experimental investigati
increasingly focus on quantum states of continuous varia
in an infinite-dimensional Hilbert space, since the Einste
Podolsky-Rosen~EPR! entangled state can be efficient
generated using squeezed light and beam splitters, for
stance, the entangled EPR pairs resulting from two-m
squeezed vacuum state have been successfully employ
demonstrating unconditional quantum teleportation@3#.
Later, the schemes realizing highly efficient dense coding
continuous variables are theoretically proposed, in which
two-mode squeezed-state entanglement is utilized to ach
unconditional signal transmission@4–6#. The bright EPR
beams have been experimentally produced with a nonde
erate optical parametric amplifier~NOPA! @7# and the dense
coding for continuous variables based on bright EPR be
has been demonstrated initially@8#. Loock and Braunstein
have given that the superposition of more than independe
squeezed states can yield multipartite entanglement for
tinuous variables and presented the scheme of quantum
portation using entangled three-mode state@9#. The fidelity
in this scheme depends on the measurement of the third
ticle. Controlled dense coding for discrete variables was p
posed recently using the Greenberger-Horne-Zeilinger s
~GHZ! @10#. Inspired by the similarity and difference be
tween dense coding and quantum teleportation, in this pa
we study dense coding using the tripartite entangled stat
is shown that when using the tripartite entangled state,
information transmission capacity of dense coding is c
trolled by the measurement of the third particle. We int
duce a simple, experimentally realizable, controlled de
coding protocol for continuous variables by exploring no
degenerate optical parametric amplifier. Due to adopting
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bright EPR beams and the simple direct measurement
Bell state, the controlled dense coding is within the reach
current technology and significantly simplify the impleme
tation.

The schematic diagram for phase-sensitive NOPA
shown in Fig. 1. Two coherent input signalsal anda↔ with
same frequencyv0 and orthogonal polarization are injecte
into a NOPA. For simplification, the polarizations of the i
jected signal and idler field are orientated along the vert
and horizontal directions, and their intensities and origi
phases before NOPA are considered to be identical. The
plifier is pumped with the second-harmonic wave ofvp
52v0 and amplitude of pump fieldap@al ,a↔ ; in this case
the pump field can be considered as a classical field with
depletion during the amplification process. The output sig
and idler fields polarized along the vertical and horizon
directions are rotated by a half-wave plate at angleq/2, then
pass a polarizing beam splitter with the output fieldsbl and
b↔ . We define the operators of the light fields at the cen
frequencyv0 in the rotating frame,

Ô~ t !5ô~ t !eiv0t, ~1!

whereÔ5@ âl ,â↔ ,b̂l ,b̂↔# are the field envelope operato
andô5@Âl ,Â↔ ,B̂l ,B̂↔# are the field operators correspon
ing to input and output signal and idler fields. By the Four
transformation, we have

Ô~V!5
1

A2p
E dtÔ~ t !e2 iVt. ~2!

FIG. 1. The schematic for phase-sensitive NOPA. DM rep
sents dichroic mirror.
©2002 The American Physical Society18-1
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Here, the fields are described as functions of the modula
frequencyV with commutation relation@Ô(V),Ô1(V8)#
5d(V2V8). A practical light field can be decomposed to
carrier Ô(0) oscillating at the center frequencyv0 with an
average amplitude (Oss) that equals to the amplitude of it
steady-state field, and surrounded by ‘‘noise sideban
Ô(V) oscillating at frequencyv06V with zero average am
plitude @4#

^Ô~V50!&5Oss; ^Ô~V5” 0!&50. ~3!

The noise spectral component at frequencyV is the hetero-
dyne mixing of the carrier and the noise sidebands. The
plitude and phase quadrature are expressed by

X̂O~V!5Ô~V!1Ô1~2V!;

ŶO~V!5
1

i
@Ô~V!2Ô1~2V!#, ~4!

with

@X̂O~V!,ŶO~V8!#52id~V1V8!. ~5!

The input-output Heisenberg evolutions of the field modes
the NOPA are given by@11,12#

b̂0l5sinq~mâ0l1nâ0↔
1 !1cosq~mâ0↔1nâ0l

1 !,

b̂0↔5cosq~mâ0l1nâ0↔
1 !2sinq~mâ0↔1nâ0l

1 !,

b̂1l5sinq~mâ1l1nâ1↔
1 !1cosq~mâ1↔1nâ1l

1 !,

b̂1↔5cosq~mâ1l1nâ1↔
1 !2sinq~mâ1↔1nâ1l

1 ! ,

b̂2l5sinq~mâ2l1nâ2↔
1 !1cosq~mâ2↔1nâ2l

1 !,

b̂2↔5cosq~mâ2l1nâ2↔
1 !2sinq~mâ2↔1nâ2l

1 !,
~6!

whereâ,â1, and b̂,b̂1 denote the annihilation and creatio
operators of the input and the output modes. The subind
0 and6 stand for the central mode at frequencyv0 and the
sidebands at frequencyv06V, respectively. The paramete
m5coshr andn5eiup sinhr are the function of the squeez
ing factor r (r}Lx2uapu, L is the nonlinear crystal length
x2 is the effective second-order susceptibility of the nonl
ear crystal in NOPA, andap is the amplitude of pump field!
and the phaseup of the pump field. In the following calcu
lation, the phaseup is set to zero as the reference of relati
phase of all other light fields. For bright optical field, th
quadratures of the output orthogonal polarization modes
certain rotated phaseu are expressed by
03231
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X̂b̂l~u!5
b0l* b̂1le2 iu1b0lb̂2l

1 eiu

ub0lu

5b̂1le2 i (u1w)1b̂2l
1 ei (u1w),

X̂b̂↔~u!5b̂1↔e2 i (u1w)1b̂2↔
1 ei (u1w), ~7!

wherew5arg(b0l)5arg(b0↔)5arg(eiF1e2 iF tanhr) is the
phase of the modesb̂0l ,b̂0↔ relative toup , and F is the
phase of the modesâ0l ,â0↔ relative toup . Takingu50 and
u5p/2 in Eq.~7!, the amplitude and phase quadrature of t
output field are obtained,

X̂b̂l5X̂b̂l~0!5b̂1le2 iw1b̂2l
1 eiw,

X̂b̂↔5X̂b̂↔~0!5b̂1↔e2 iw1b̂2↔
1 eiw,

Ŷb̂l5X̂b̂lS p

2 D52 i ~ b̂1le2 iw2b̂2l
1 eiw!,

Ŷb̂↔5X̂b̂↔S p

2 D52 i ~ b̂1↔e2 iw2b̂2↔
1 eiw!. ~8!

When the injected subharmonic signal and harmonic pu
field are in phase (F5w50), maximum parametric ampli
fication is achieved@7#. The difference of the amplitude
quadratures and the sum of the phase quadratures bet
two orthogonal polarization modes atq50 are

X̂b̂l2X̂b̂↔5e2r X̂âl2e2r X̂â↔,

Ŷb̂l1Ŷb̂↔5e2r Ŷâl1e2r Ŷâ↔. ~9!

Under the limit r→`, the output orthogonal polarizatio
modes are the perfect EPR beams~bipartite entanglement!
with quadrature amplitude correlation and quadrature ph
anticorrelation@7#. When the injected subharmonic sign
and harmonic pump field are out of phase, i.e.,F5w
5p/2, NOPA operates at parametric deamplification@8,13#.
Therefore the sum of the amplitude quadratures and the
ference of the phase quadratures of the orthogonal pola
tion modes atq50 are as follows:

X̂b̂l1X̂b̂↔5e2r Ŷâl1e2r Ŷâ↔

Ŷb̂l2Ŷb̂↔5e2r X̂âl2e2r X̂â↔. ~10!

Obviously, the EPR beams with the quadrature amplitu
anticorrelation and quadrature phase correlation are obta
for r .0. Recently, the dense coding for continuous variab
demonstrated experimentally@8# is just based on bright EPR
beam from NOPA operating at parametric deamplification

The proposed scheme is shown in Fig. 2. We gene
tripartite entangled state using two NOPAs that can yi
four-particle entangled state~discard a squeezed mode!. We
assume that the two NOPAs operating at parametric de
8-2
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plification have the squeezing factorsr 1 andr 2, respectively.
The polarizations of two output modes from NOPA1 are
tated withq15arcsin@(A221)/A6# by a half-wave plate and
the polarizations of two output modes from NOPA2 are
tated withq2545° by a half-wave plate, then the beams
mixed respectively on polarizing beam splitters~PBS1 and
PBS2!. The resulting output beams are given by

X̂ĉ1
5

1

A6
Ŷâ1

~e2r 11A2er 1!1
1

A6
Ŷâ2

~e2r 12A2er 1!,

Ŷĉ1
5

1

A6
X̂â1

~er 11A2e2r 1!1
1

A6
X̂â2

~er 12A2e2r 1!,

X̂b̂
28
5

1

A6
Ŷâ1

~A2e2r 12er 1!1
1

A6
Ŷâ2

~A2e2r 11er 1!,

Ŷb̂
28
5

1

A6
X̂â1

~A2er 12e2r 1!1
1

A6
X̂â2

~A2er 11e2r 1!,

X̂b̂3
5

1

A2
~Ŷâ3

er 22Ŷâ4
er 2!,

Ŷb̂3
5

1

A2
~X̂â3

e2r 22X̂â4
e2r 2!, ~11!

where^b̂28&5A2^ĉ1&@^b̂3&. The beamsb̂28 and b̂3 then are
mixed on a 50% beam splitter~BS1!. Finally three output
modesĉ1 , ĉ2, and ĉ3 obviously exhibit tripartite entangle
ment,

FIG. 2. Schematic for controlled dense coding using NOPA.
03231
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X̂ĉ1
5

1

A6
Ŷâ1

~e2r 11A2er 1!1
1

A6
Ŷâ2

~e2r 12A2er 1!,

Ŷĉ1
5

1

A6
X̂â1

~er 11A2e2r 1!1
1

A6
X̂â2

~er 12A2e2r 1!,

X̂ĉ2
5

1

A12
Ŷâ1

~A2e2r 12er 1!1
1

A12
Ŷâ2

~A2e2r 11er 1!

1
1

2
~Ŷâ3

er 22Ŷâ4
er 2!,

Ŷĉ2
5

1

A12
X̂â1

~A2er 12e2r 1!1
1

A12
X̂â2

~A2er 11e2r 1!

1
1

2
~X̂â3

e2r 22X̂â4
e2r 2!,

X̂ĉ3
5

1

A12
Ŷâ1

~A2e2r 12er 1!1
1

A12
Ŷâ2

~A2e2r 11er 1!

2
1

2
~Ŷâ3

er 22Ŷâ4
er 2!,

Ŷĉ3
5

1

A12
X̂â1

~A2er 12e2r 1!1
1

A12
X̂â2

~A2er 11e2r 1!

2
1

2
~X̂â3

e2r 22X̂â4
e2r 2!, ~12!

where ^ĉ1&5^ ĉ2&5^ĉ3&@0. The outgoing bright ‘‘GHZ-
like’’ state is a ‘‘three-mode position eigenstate’’ with tot
position X̂ĉ1

1X̂ĉ2
1X̂ĉ3

→0 and relative momentaŶĉi
2Ŷĉj

→0 (i , j 51,2,3). It corresponds to a three-mode squee
state, obtained by superimposing one bright amplitu
quadrature-squeezed state and two vacuum ph
quadrature-squeezed states. Now we construct contro
dense coding protocol using this tripartite entanglement s
and involving three participants Alice, Bob, and Claire. L
us send the three modes of Eqs.~12! to Alice, Bob, and
Claire, respectively. We assume that Alice wants to se
classical information to Bob, while Claire supervises a
controls the transmission through his measurement. To s
the information to Bob, Alice modulates classical amplitu
and phase signals on two quadratures of her modeĉ1 by
amplitude and phase modulators, which lead to a displa
ment ofas

ĉ185 ĉ11as , ~13!

whereas5Xs1 iYs is the sent signal via the quantum cha
nel. From Eqs.~12!, we know the amplitude and phas
8-3
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quadrature of EPR beams have large noise,^d(X̂ĉ1
)2&

→`, ^d(Ŷĉ1
)2&→` for r 1 ,r 2→`. The signal-noise ratios

are given by

RX5
^d~Xs!

2&

^d~X̂ĉ1
!2&

→0, RY5
^d~Ys!

2&

^d~Ŷĉ1
!2&

→0. ~14!

No one other than Bob and Claire can gain any signal in
mation from the modulated EPR beam in the ideal condit
because the signal is submerged in large noises. Then A
sends the beamĉ18 to Bob. Now Bob demodulates the tran

mitted signal from the beamĉ18 . He combines her modeĉ2

with ĉ18 on another 50% beam splitter BS2 and before co
bination ap/2 phase shift is imposed between them. The t
bright output beams are directly detected byD1 and D2.
Each photocurrent ofD1 and D2 is divided into two parts
through the power splitter. The sum and difference of
divided photocurrents are expressed by@6#

î 15
1

A2
~X̂ĉ

18
1X̂ĉ2

!

5
1

A2
F S 2

A6
e2r 11

1

A12
er 1D Ŷâ1

1S 2

A6
e2r 12

1

A12
er 1D Ŷâ2

1
1

2
~Ŷâ3

er 22Ŷâ4
er 2!G1

1

A2
Xs , ~15!

î 25
1

A2
~Ŷĉ

18
2Ŷĉ2

!5
1

A2
S 3

A12
X̂â1

e2r 12
3

A12
X̂â2

e2r 1

1
1

2
X̂â3

e2r 22
1

2
X̂â4

e2r 2D 1
1

A2
Ys . ~16!

Assumingr 15r 25r , we obtain the power spectra of phot
currents,

^d~ î 1!2&5
2

3
e22r1

1

3
e2r1

1

2
VXs

,

^d~ î 2!2&5e22r1
1

2
VYs

. ~17!

Thus if r→`, Bob only can gain the phase signal with hig
accuracy, however, he cannot gain the amplitude signal
is submerged in large noise. Bob wants to extract the am
tude signal, so he must need the Claire’s result of
amplitude-quadrature detection. Claire detects the amplit
quadrature of her modeĉ3 and sends the result to Bob. Bo
displaces the Claire’s result on the sum photocurrent
03231
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î 18 5
1

A2
F S 21gA2

A6
e2r 11

12gA2

A12
er 1D Ŷâ1

1S 21gA2

A6
e2r 12

12gA2

A12
er 1D Ŷâ2

1
12gA2

2
~Ŷâ3

er 22Ŷâ4
er 2!G1

1

A2
Xs , ~18!

whereg describes gain at Bob for the transformation fro
Claire’s photocurrent to his sum photocurrent. Assumingr 1

5r 25r and g51/A2, we obtain the power spectra of su
photocurrent,

^d~ î 18 !2&5
3

2
e22r1

1

2
VXs

. ~19!

Thus Bob also gains amplitude signal with the help of Clai
at this time the coding capacity reaches twice. Therefo
Claire can control the information transmission capacity
dense coding by entangling with the other two parties.

We consider the general condition for finite squeezin
There is an optimum gain for the maximum squeezing ofî 18 ,
which one can easily find by minimizingVî

18

gopt5
e2r 113e2r 224e22r 1

A2~e2r 113e2r 212e22r 1!
. ~20!

Assumingr 15r 25r , the optimum gain and the power spe
tra of photocurrent are given by

gopt5
222s2

A2~21s2!
,

^d~ î 2!2&5s1
1

2
VYs

,

^d~ î 1!2&5
2s211

3s
1

1

2
VXs

,

^d~ î 18 !2&opt5
3s

21s2
1

1

2
VXs

, ~21!

wheres5e22r . Figure 3 shows the noise floor of phase s
nal, amplitude signal without Claire’s help, and amplitu
signal with Claire’s help forr 15r 25r . In this case, the
noise floor of phase and amplitude signal with Claire’s h
are below the quantum noise limit~QNL! when r .0. The
noise floor of amplitude signal without Claire’s help is belo
the QNL with 1.s.0.5 and above the QNL only withs
,0.5 ~3-dB squeezing in each mode!. However, the noise
floor of amplitude signal with Claire’s help is consistent
below that without Claire’s help. This shows Claire is e
tangled with Bob. The GHZ state generated from thr
beams of equal squeezingr 15r 25r is not maximal, as dis-
cussed in Ref.@14#, because the correlations between t
8-4
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beams are biased in amplitude and phase quadratures
shown in Eq.~21!, the noise floor of amplitude signal is no
equal to that of phase signal. One reason is that the nonm
mal GHZ state is used, the other reason is that decod
amplitude signal must have the aid of Claire’s classical
formation and phase signal only needs the joint meas
ment. Forr 15r andr 250, the optimum gain and the powe
spectra of photocurrent are given by

gopt5
113s24s2

A2~113s12s2!
,

^d~ î 2!2&5
3s11

4
1

1

2
VYs

,

^d~ î 1!2&5
8s213s11

12s
1

1

2
VXs

,

^d~ î 18 !2&opt5
3s~113s!

2~113s12s2!
1

1

2
VXs

. ~22!

Figure 4 shows the noise floor of phase signal, amplitu
signal without Claire’s help, and amplitude signal wi

FIG. 3. Noise floor of amplitude and phase signals forr 15r 2

5r .

FIG. 4. Noise floor of amplitude and phase signals forr 250.
03231
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Claire’s help forr 250. In this case, the noise floor of phas
and amplitude signal with Claire’s help can be also below
QNL when r .0. The noise floor of phase signal can on
reach 0.25~6-dB squeezing! for r→`. The noise floor of
amplitude signal without Claire’s help is above the QNL on
with s,1/8 ~roughly 9-dB squeezing!.

The quantum channel capacity for dense coding has
cently been obtained in Ref.@5# by sharing a two-particle
entangled state. In the following, we briefly give the chan
capacity of controlled dense coding forr 15r 25r . We as-
sume that the original signal is subject to the Gaussian
tribution @5#

Pin~a!5
1

ps2
expF2

uau2

s2 G , ~23!

where the parameters2 is the average value of the sign
photon number. The information carrying capacity by sh
ing a three-particle entangled state is given from Eq.~21!,

I n2c
dense5

1

2
lnS 11

s2

s D1
1

2
lnS 11

3ss2

2s211
D ,

I c
dense5

1

2
lnS 11

s2

s D1
1

2
lnS 11

s2~s212!

3s D , ~24!

whereI n2c
denseand I c

denseare the Shannon mutual informatio
of dense coding without and with Claire’s help, respective
Suppose that the communication system is supplied with
average photon numbern̄ per mode. The photon number
supplied to the communication system are used for the sig
and squeezing, and thus the following equality should
satisfied:

n̄5s21sinh2 r . ~25!

For simplification, we only maximize the mutual informatio
of the phase quadrature under the constraint, Eq.~25!. When
n̄5er sinhr and s25sinhr coshr, we obtain the approxi-
mate optimum channel capacities

Cn2c
dense5

1

2
ln~11n̄1n̄2!1

1

2
lnS 11

3~ n̄21n̄!

21~2n̄11!2D ,

Cc
dense5

1

2
ln~11n̄1n̄2!1

1

2
lnS 11

2

3
~ n̄1n̄2!

1
n̄1n̄2

3~2n̄11!2D . ~26!

whereCn2c
denseandCc

denseare optimum channel capacities o
dense coding without and with Claire’s help, respective
The channel capacity for dense coding has recently been
tained by sharing a two-particle entangled state@5#,

CEPR
dense5 ln~11n̄1n̄2!. ~27!
8-5
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A fairer comparison is against single-mode coherent-s
communication with heterodyne detection. Here the chan
capacity is well known@15# for the mean photon numbe
constraint to be

Ccoh5 ln~11n̄!, ~28!

which is always beaten by the optimal controlled dense c
ing scheme described by Eq.~26!. An improvement on
coherent-state communication is squeezed state commu
tion with a single mode. The channel capacity of this chan
has been calculated@15# to be

FIG. 5. Comparison of the channel capacity.
, a

.

, H

.

.

03231
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Csq5 ln~112n̄!. ~29!

The channel capacity for the different quantum channels
shown in Fig. 5 as the functions of the supplied avera
photon number. The transmitted information with Claire
help is twice of that without Claire’s help for the larg
squeezingr.

In conclusion, we propose an experimental scheme of
quantum controlled dense coding with bright tripartite e
tangled state light. The bright tripartite entangled state li
that is a ‘‘three-mode position eigenstate’’ with total positio
X̂11X̂21X̂3→0 and relative momentaŶi2Ŷj→0 (i , j
51,2,3) generates from two NOPAs operating in the state
deamplification. Due to exploiting the bright entangle
beams generated from NOPA and the directly measu
technique of the ‘‘Bell state,’’ the trouble to meet high effi
ciency of mode matching in experiment is eliminated. T
mature technique of producing entangled beams from NO
and the simplicity of direct measurement make this sche
valuable for performing experiments.

This research was supported by the National Fundam
tal Research Program~Grant No. 2001CB309304!, the Na-
tional Natural Science Foundation of China~Grant Nos.
60178012 and 69837010!, and the Shanxi Province Youn
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