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Characterization of Gaussian operations and distillation of Gaussian states
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We characterize the class of all physical operations that transform Gaussian states to Gaussian states. We
show that this class coincides with that of all operations that can be performed on Gaussian states using linear
optical elements and homodyne measurements. For bipartite systems we characterize the processes that can be
implemented by local operations and classical communication, as well as those that can be implemented using
positive partial transpose preserving maps. As an application, we show that Gaussian states cannot be distilled
by local Gaussian operations and classical communication. We also define and characterize (pasitive
completely positivie Gaussian maps.
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[. INTRODUCTION tant to find a mathematical formulation of the physical ac-
tions that can be applied to Gaussian states in which also not
Many applications in the field of quantum information trace-preserving operationgmeasurementsare included
require the ability of preparing general states and of perform[16].
ing arbitrary transformations with them. However, there are In this work we give a full answer to this problem by
physica| systems where the set of states that can be gen@[OViding a Simple description of all Operations of this sort.
ated, as well as the transformations that can be implementef¥ an application we discuss the question of distillation of
are very restricted. For example, in quantum optical system&aussian states by local Gaussian operations and classical
linear transformations involving beam splitters, phase platessommunication(LOGCC). In this context, it was recently
homodyne measurements and polarizers are readily impl&hown[17] that the entanglement of a symmetric two-mode
mented, whereas more genera| ones can 0n|y be perform&aUSSian state of two parties cannot be increased with the
with a low efficiency. Moreover, with these tools and a help of another copy of that state and a homodyne measure-
squeezer one can generate only a small class of states, tRgent. Here we give a proof that distillation is not possible
so-called Gaussian states. Despite this fact, in these systerf® an arbitrary number of modes per site, general Gaussian
a surprising richness of quantum information protocols hastates and general Gaussian operations.
been found within the realm of linear optics: entanglement This paper is organized as follows. In Sec. II we fix our
generation 1], teleportation[2], key distribution[3], quan- notation for Gaussian states, setting the stage for the results
tum error Correctior[4], and C|oning[5], some of which giVen in the fO”OWing sections. Section Ill contains the main
have already been implementg&]. For the moment it is not  results of this paper: we give a characterization of all com-
known how (or whethe) important operations, such as en- Pletely positive maps that transform Gaussian states into
tanglement distillation or dusefu) depolarization of con- Gaussian stategGaussian operationsWe show that they
tinuous variable states, can be implemented with linear opcan all be implemented with the currently available means.
tics [7—12). This raises the question which transformationsWe derive a simple, compact form of these maps. In Sec. IV
can be realized in general by the concatenation of such opVe consider Gaussian operations on bipartite systems; we
erations, i.e. the tools currently available in the lab. classify them with respect to their locality and separability
A partial answer to this question is contained in a math-Properties. As an application of the methods introduced be-
ematical paper written in the Sevent[ag]_ There a subclass fore, we show that Gaussian states cannot be distilled by
of operations that transform Gaussian states into Gaussidtfing Gaussian LOCC. In Sec. V we describe positive
states have been mathematically characterized, namely, tho§&ussian maps and characterize them completely. The Ap-
which aretrace preserving The relation of these maps to Pendix contains some material on a new entanglement mea-
some of the experimentally feasible operations has been digure for Gaussian states introduced and used in Sec. IV.
cussed by Eisert and Plenio in Rgt2], and used by these
authors to derive a criterion for the interconvertibility of two-
mode Gaussian states under feasible local transformations. Il. GAUSSIAN STATES
Unfortunately, the set of operations considered in RREg] We consider the Hilbert space afharmonic oscillators
does not include measureme.mtbat are not trace preserv- /= 2(R"). A Gaussian state is described by a density op-
ing). However, one of the main strengths of linear optics isgrator p whose characteristic ~function[18] X,p(X)
the highly efficient measurement of the quadrature observe p\W(x)] is a Gaussian function ime R2" (or, equiva-
ablesX and P, which homodyne detection affords. Further- |gnily, by a Gaussian Wigner function, which is relatedyto

more, measurements followed by classical communicatioy 5 symplectic Fourier transformatiorThe operators
have been seen to be an essential ingredient in certain basic

guantum information protocols such as quantum teleporta-
tion [14] or entanglement distillatiofil5]. Thus it is impor- W(x)=exg —ix"R], (1
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are the Weyl operators(displacement operatgrsand R This equation has a direct physical meaning. It tells us that
=(X1,P1, X5, ... Py, with [ X, ,P,]=i48,,. Since the den- given &, we can always obtain the stafeby preparing a
sity operator is bounded, we can write without loss of gen-maximally entangled state and acting with the map on the
erality [19] second subsystem. Conversely, given the stateB(H)
®B(H) and a statep e B(H), if we measure the second
subsystem of andp in the “Bell basis,” i.e., an orthonor-
mal basis of maximally entangled states containibgy, and
obtain the result corresponding to the stgde), then the
where we have used W(x)]=7"5(x) [19] to normalizep. ~ resulting state i£(p). Thus, given the staté we can always
Occasionally, we will denotg as in Eq.(2) by p, 4. The implement(probabilistically the map& provided we can
matrix y=y"=iJ, is a 20X 2n real matrix calledcorrela- ~ perform Bell measurements. This can be viewed as “tele-
tion matrix (CM) andd is a 2n-real vector calleddisplace-  porting p through the gate€™ [22]. In formulas, we have
ment These two quantities fully characterize the Gaussian

p= ﬂ_—nfRzndxe—(1/4)xTyx+ideW(X), (2)

T
statep. The symplectic matrix J is &(p)otro B 5po] = oy E1ops| @ )o( D). (7)
n 0 -1 Thus, given a CP map we can generate the corresponding
J,= @ Jq, 31:( ) 3 state and given the state we can physically implemgnt
k=1 10 (probabilistically [23].

Now we define a Gaussian completely positil@CP
(We will omit the index whenever there is no risk of confu- Map.g by the properties that boh andl® G map Gaussian
sion) Note that the CM usually contains all the interesting States to Gaussian states. With the help of the isomorphism it
information about the properties of the state that are usefuf Straightforward to characterize them. First, we use the fact
for quantum information in general; in particular, the en-that the stat¢d) appearing in Eq(6) is Gaussian, so that the
tanglement properties of a Gaussian state is solely deteforresponding operat@ must be Gaussiar24]. We write it
mined by its CM. Thus, in some parts of this paper, in orde@S
to simplify the notation we will omit the displacement from
our discussions when it does not play a relevant role. sz dxef(1/4)xTFx+iDTx7CW(X)_ ®)
Of course, Gaussian states can also be defined for com- R4

posite systems, e.g., those whose density operators are 5] —n - . .
B B(H). An important example of a Gaussian state is earIyG/.O if ,D,C are real and“.;u, that.|s,'g IS a

(H)© B(H) P b GCP map if the Gaussian operator isomorphigites de-

the maximally entangled sta® [20]. The state® is the :
limit r—o of Gaussian states nfidentical two-mode scribed by a proper CNI' and, cqnversely, to e.ach such
squeezed statesith CM: operator corresponds a GCP n@pSince all Gausaan_states
can be generatete.g., from the vacuum statdy unitary
A C Gaussian operations and discarding subsystg?a$ this
y(r)=( ' '), (4) shows that all Gaussian operations can be implemented by
C A these means plus Bell measuremghitsmodyne detection
Now, we determine the action of the mgpon a general
whereA, = coshrl andC, =sinhrA are 201X 2n square ma- Gaussian statg in terms ofG. Apart from normalization, we
trices, and have
A=diag1,-1,1-1,...,—1). (5) Gipyd—=> Py dr s 9)

The density operator ofb is a projector on the improper and we find fory’,d":
state vectof®) 5% 2= o|K)1|K),.

-~ ~ 1 -
y'=I1— F12~—F121 (103
Ill. GAUSSIAN OPERATIONS oty
Physical actions are mathematically characterized in 5 1
terms of completely positivéCP) maps acting on the corre- d'=D;+TI = (Dy+d), (10b
sponding density operators. The best way of characterizing oty

them is using the isomorphism between CP maysy/sical

actions and positive operator@nnormalized state$21]. where we have denoted

1—‘Il 1—‘12 Dl
A. General form of Gaussian operations r=| .1 , D= : (11)
'y I D,
Given a CP mag acting on bounded operata8§#), we
define the positive operatd e B(H) ® B(H) as follows: and
E1o=(£01)(|®)14P]). 6) T=(1eA)T(18A). (12)
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Thus, we have that all GCP maps B(iH) are characterized result, we perform only a partial measurement, i.e., we con-
by a correlation matriX'=iJ,,, and a displacement vectbr. sider an (+m)-mode system and measure only the last

In order to derive Eq910), we just use Eq(7), replacing modes. The corresponding operator is
Ei, by G andp, by a Gaussian state, 4 as in Eq.(2). In
evaluating the trace we use the commutation relation E=(y,d|®[y,d),
W(X)W(y) =€ MW(x+y) [18] and tFW(x)]=8(x) to

obtain where |y,d) describes a pure Gaussian statenoimodes.

Expressing ® in terms of Weyl operators, replacing
Py ar*tra(GT2p, ), (13)  {7.d|W(x)|y,d) by e~ V&Ty—id™ and integrating over the
modes measured we obtain a CM
with y’,d" as in Eqs(10).

A C, O
B. Examples r=|C¢ A O (14
How to interpret the operation described bly,D)? To 0 0 vt

better understand what action$’,0) describe, we now

briefly discuss how the familiar Gaussian operations are corand a displacemerd = (0, 0, d)". Note that the first row

tained in our formalism. To do this, we apply these opera<orresponds to system “1,” while the second and third row

tions to the first subsystem of the maximally entangledrefer to system “2.” This represents a straightforward gener-

Gaussian stat® with CM I'=lim,_ . y(r), with y(r) asin  alization of the situation considered in Sec. Il to maps that

Eq. (4). decrease the number of modes present. Evaluating/Etpr
Obviously, the identity operation corresponds to the maxi-a n+m mode Gaussian state with Ciyt

mally entangled staté, i.e., toI'=lim,y(r),D=0. Now,

performing a displacement operation dnleaves the CM B A C

unchanged, but produces a displacement (D 1,0). Now Y“lct B)

we turn to the trace-preserving GCP maps considered in Ref.

[13]. These describe all actions that can be performeg on we obtain[26]

by first adding ancillary systems in Gaussian states, then per-

forming unitary Gaussian transformations on the whole sys- 1

tem, and finally discarding the ancillas. On the level of CMs v =A-C B+, c, (153
these operations were shown to be described by

y—=MTyM+N. A Weyl operator W(x) is mapped to 1 1

(detM) ~Le~ ¥4 (M™HTNM S\ ~1x) by these operations. d'=5Cg7 Y d, (15D
It then follows that the Gaussian operator that corresponds to P

this operation has the CM: which corresponds to the change in CM derived in RE7)

MTAM+N MT for projections into pure Gaussian states. Homodyne detec-
_ M+ Cr tion itself represents the limiting case in which the
I'=lim . S T ) ;

r—o C:M A becomes infinitely squeezed. In this limit, the inverse in Egs.
(15) is to be understood as the pseudoinvénseerse on the

Using formulas Eq. (10) gives y'=lmMTAM+N range.

~MTC,A(AAA+7y)"*AC,M. For r—o= we have In general,noise-free Gaussian operatiofignitaries and
(AAA+7y) 1A= A yA 1+ o(coshr) ™3 that yields Vvon Neumann measurementsorrespond topure state
the desired resul26]. CMsTI and noise added to the CM describing the operation

Finally, we consider an example of Gaussian measuredirectly translates into noise added to the output state, i.e.,
ments. The typical measurement is homodyne detectiove have that T"=I'+P=T"implies that Gr:(y)
which realizes the von Neumann measurement of the operag Gr(¥)V y=iJ. To see this, consider the operatigp and
tor X. It has been shown befof@7] that with the use of an Write G in Eq. (13) as a mixture of states with CM. This
ancillary system and a beam splitter, homodyne measuréghows that the stat@r(p,, 4) is @ Gaussian mixture of states
ments may be used to realize the generalized measurement(py,d+d,) displaced byd;, wherex=(d,,d,) are distrib-
corresponding to the positive-operator-valued measurated according to a probability distribution proportional to
(POVM) {|a)(a|,aeC}, where|a) is a coherent state, i.e., exp(—1/4x"P~1x). But since a displacemeds of the input
in the language of CMs a state with Chi=1 and displace- state does only affect the displacement of the output tate
mentd= (Rea,Im ). Since every other pure Gaussian stateEgs.(10)], it follows thatGr(p,, ) is nothing but a Gaussian
can be obtained frorfw) by Gaussian unitaries, this implies mixture of stategir(p,,q) displaced by some valugwhich
that all POVMs of the form{|y,d)(y,d|:deR?"} can be is distributed according to a Gaussian distribution with cova-
performed with homodyne detection and suitable preprocessiance depending oR and y. Thus the operatiogy, could
ing. be realized(for known y) by first performingGr and then

To see which CMI" corresponds to the measurement of performing random displacements to add the appropriate
|v,d)(y,d| we apply it to®. In order to get an interesting noise, which proves the assertion. Since displacements can
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be done locally, this becomes particularly useful in the disthe end of the previous section this implementation can be
cussion of entanglement distillation with Gaussian means bedonedeterministicallyprovided the CM of the state on which
low. we act is known.

If Gis entangled, two cases can be distinguishe es
positive partial transpos@”PT), the corresponding map can
be implemented with a so-called PPT-preserving channel,

In general, the transformation E() is not trace preserv- otherwise full-fledged quantum interaction betweeand B
ing. This is related to the fact that we have considered onlys needed.
one of the possible Bell measurements in Ef). The pro- The separability criterion for Gaussian stafg$,30 al-
jector |®)(®| can be extended to a POVM by considering lows us to decide for every given map, whether it is sepa-
all displacement®\V(x)|®), x e R*". Using the second rela- rable [30], PPT-preserving29] or neither. Moreover, the
tion in Eqg. (7) it is easy to see that ifGrq(p) characterization of separable CMs given in R81L], namely
=1troy(E1op3| @) oy P|) then Gro(p)=trod E1jppsW  that y is separable if3 ya,yg=iJ such thaty=y,® yg
(—D)|®),5(®|W(D)], i.e., D can be understood as the implies that—except for added correlated noise—all Gauss-
(continuou$ output of the Bell-measurement implementing ian LOCC operations are of product form.

g.

Note thatD has no influence on the CM of the resulting  B. Gaussian states cannot be distilled with Gaussian local
state. Hence, providegl andI" are known,G can be turned operations and classical communication
into a trace-preserving operation by postprocessing: condi-

tional on the measurement resull{,D,) the correspondin h .
~ {,D2) P g rate partiesA andB transform a large number of copies of a

. =~ -1 .
displacemenD, +I';(I', + 7) "D, can be undone, leading bipartite mixed entangled statgg (jointly written aspag
to a deterministictransformation that maps every Gaussian. t tates™  which to infinit h
statep,, q t0 p,/ T (i, + »-1a With certainty. Note that this is into a statey,g, which, asn goes to infinity approaches a

L L . . pure maximally entangled state. To this eddand B are
true even ify is a state on a multipartite system, since dis-ooved to perform arbitrary local operatiofsorrelated by
placements can _be done locally. It is a curious feature o lassical communicatigron their respective part f23. In
Eiuéi}lago%%(zgrlr%?ﬁistggélﬁ/ven measurements do not chaqu% following we show that such a process is not possible

' when p,g is Gaussian and only Gaussian operations are al-
lowed.
IV. BIPARTITE SYSTEMS. APPLICATIONS We consider a bipartite system composed of subsysfems

In this section we consider Gaussian mgpsn bipartite ~@ndB and a partially entangled Gaussian state with @A
systems. In this situation it is interesting to distinguish@nd want to check if a separable Gaussian map can increase
whetherg can be implemented witlocal operationson the the entanglement. To this end we define a snnple functlon
subsystems A and Bpossibly enhanced by classical commu- V() to quantify the entanglement of a general bipartite CM.
nication, LOCG or whether interaction between the systemLet V(vag) be the largest valup<1 such thatyag=p(a
is necessary. Our formalism yields a very convenient forni® ¥s), for some CMsy, and yg . Note that for a maximally
for any local Gaussian operations, and allows us to detefentangled Gaussian state=0 [this and further properties of
mine the nonlocal properties for any given Gaussian map. V(%) which are used in the following are proved in Appen-

As an application we use our formalism to show that endix], and therefore the goal of a Gaussian distillation proto-
tanglement distillation is not possible with Gaussian means¢ol would be to decreasé(yag). In general one would al-
This extends the results of R¢L7] to any number of modes, low an arbitrary number copies of the state with Mg,
all kinds of Gaussian operations, and all kinds of Gaussiahe€., & state with the CMb;_;yag . As shown in the Appen-
states. Note that, there are other means of performing distidix, V does not change when adding more copies of the same
lation that do not require Gaussian maps, as long as a Kegtate. The question then is, whether there is a local Gaussian
nonlinearity or photodetection are availap&9]. However, operationg that produces from these states an output state
at the moment these protocols still pose considerable experiyag With V(yag) <V(7yag) Or even allows us to reack
mental challenges and none has been implemented to date-~0 in the limit of infinitely many copies.

In the following we show that with local Gaussian opera-
tions it is impossible to decreastat all. Our proof makes no
assumptions on the size or type of the entangled state con-

To determine whetheg can be implemented wittocal ~ sidered or the local Gaussian operations performed. In par-
operationson the subsystem& andB (possibly enhanced by ticular, it covers any number of copies of aXn)-mode
classical communication, LOQ®r whether interaction be- input state.
tween the systems is necessary we can use the the ideas ofWe consider a separable Gaussian completely positive
Ref.[28] (that extend the Jamiotkowski isomorphism to bi- map acting on two systen#fsandB. As discussed above, the
partite systems This allows us to read off the answer to this action of such a map on the correlation matyixg is com-
guestion from the Gaussian stdEeisomorphic tog. If Gis  pletely characterized by another correlation mattiacting
separable, then it can be generated by local action and clasn an extended space of systesA’, B, andB’. The fact
sical communication. Note that following the discussion atthat the map is separable implies tHaE ' sp @ 'ggr + P,

C. Deterministic operations

Entanglement distillation is a process in which two sepa-

A. Local Gaussian maps assisted by classical communication
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whereP is a positive matrix. In light of the discussion at the completely determined by (x):=tff AW(x)] [18]. It fol-

end of Sec. IlI B this means th&t can be implemented by |ows thatA may be written in terms of, as[19]

first performing the(completely uncorrelatgdperation cor-

responding td " sa @ 'ggr and then performingdclassically

correlated random displacements of the resulting state ac- A=7T_“J LAXxA(X)W(=X). (18
cording to a probability distribution depending &nand the K
CM vy,g Of the input state. Since these displacements do n%e
increase the entanglement, we can concentrate on the effect
of the product transformatiohisp ®'gp: -

Now let O(H) :=( A:A= dxe*(l/4)xTyx+ibTx7cW(X) , (19

R2"

define the set of Gaussian operatorsioby

Ar Ca Bi Csg
Fan=lcl A,|: Tee=|cl B,|- 16 wherey'=yeM,,(C), be(?, andceC. Itis straightfor-
ward to check thaf is (i) boundediff Re y>0; (ii) self-
_ _ adjoint iff Imy=0, Imb=0, Imc=0; and(iii) positiveiff
Let us denote byy,g the correlation matrix oA andB after self-adjoint and y=iJ; and (4) tr(A)=e °, where

the action of the mad'an ®I'gg . Then we haveyag  tr[W(x)]=m"8(x), x e R?" was used. To prové), consider

=Ra®Rg, Where one mode,y=gl,. The corresponding operator ¥g=0
diagonal in the number basifor g=1 it describes the well-
RE & ETo% B 1 & an known thermal states of a field mgdand the eigenvalues
— — - = — = , oy . = .
AT AL AA2+p7A A=A AA2+ 0iJ (n|Ag|n) are seen to be all positive iff=1, otherwise odd

numbers correspond to negative eigenvalues. Finally, recall
- . that all self-adjoint Gaussian operators can be transformed
a.nd S|m.|IarIy forRg. Now, we use tharAA’ZQ’ '(‘JGN_) into (a tensor product of Gaussian operatorstbét form by
sincel’ is a CM and thereforel’ o =p[iJ®(—iJ)]. This  gyasifree unitaries, performing the normal mode decomposi-
implies that the right-hand side of E(L7) is =ipJ and we  jon of p or, equivalently, the symplectic diagonalization of
immediately obtain that,=1/pR, is a correlation matrix. y, which concludes the proof.
From this follows that y,g=p(ya®yg) and therefore, Now we turn to linear maps oB(H). Generalizing Sec.
V(vag)=V(7as)- Il we define aGaussian mapas a linear mapg: B(H)

What does this imply for distillation? First, it proves that — 3(+') that maps Gaussian operators to Gaussian opera-
the maximally entangled state cannot be approached evabrs, i.e.,G[ Q(H)]C Q(H'). Again, we can use the isomor-
asymptotically (i.e., in the limit when initially infinitely phism of Ref[21] to show that all Gaussian maps B(H)
many copies ofy,g are availablg This follows directly  correspond to Gaussian operatorsR{ft) ® B(H). i.e., they
from the fact(cf. Appendi¥ that V(yag® yas)=V(vas):  may be described by a matriX, a vectorD, and a phase/
i.e., V is invariant when adding more copies of the samenormalization constar. Then we can use E@7) to calcu-
resource. So entanglement distillation of Gaussian stategte how the Gaussian mapcorresponding tol{,D,C) acts
with Gaussian means is impossible. More gener&(yyag) on the Weyl operatow/(x). One finds
puts a bound on all state transformations that can be
achieved by Gaussian LOC{@nd even Gaussian LOCC X|F(X| (X
supplemented by an unlimited amount of auxiliary entangled Q(W(x))=f e*(l"‘)(y) dy)“D (y]*CW(y)dy,
Gaussian states of(pau0) =V(7ap)]-

However, the result still leaves room for interesting en- ~ )
tanglement transformations with Gaussian means. The be4therel’,D belong to the partial transpose of the operagor
thing that could happen—respecting the bound seVhy, |somorph|q tog. _ _
=V(yag)—is to have thepure entangled state with ~ One quickly convinces oneself that the mégpis self-
V(ppure) =Vmin- Our proof does not rule out the possibility adjoint, that isG(AT)'=G(A) iff G is self-adjoint, i.e., iff
of “entanglement purification,” i.e., of transforming a large ImI'=0, ImD=0, ImnC=0.
number of Gaussian mixed entangled states intasymp- A Gaussian may is called aGaussian positive mafGP
totically) pure entangled state with the same valu&/afith ~ map iff it maps Q(H) . to Q(H), . In terms of matrices
Gaussian means. First calculations indicate that this migHhis means thag is Gaussian positivég-positive iff G(y)

indeed be possible. These results will be reported elsewher&iJV y=iJ. Expressing the action @& through its matrix”
this is equivalent to the condition

V. GAUSSIAN POSITIVE MAPS

-~ o~ 1 -
In this section we show how to extend the approach pre- [-Tp=—-T1,=id Vy=il.
sented in Sec. Il to include Gaussipositivebut not com- Faty
pletely positive maps. To this end, we first define the set of -
Gaussian operators, generalizing Gaussian density matricésverted this inequality it is seen to be equivalentlIig
to not self-adjoint operators. Every operatare B(H) is  =iJ and
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which can now be written in &-independent way as 1999-11053

min, . c2n max{z' (M +id)z,z'(M-iJ)z}=0.  (21) APPENDIX: PROPERTIES OF V(7)
In this section we collect a number of useful properties of

the quantityV(y) introduced in Sec. IVBY is defined for

bipartite CMsy (or, equivalently, for Gaussian statgs q)

To see that this is equivalent to conditi@®0) note that for
any z=z,+iz;e C?" there exists a symplectic ma® such
thatz'SSz=iz"J2=2|z[ Jz| =c?; this can be seen imme-

diately by extendindgs; =z, /c,s,=z;/c} to a symplectic ba- as
sis{s,} and definingS by Ss.=¢e,, wheree, refers to the
canonical basis. Therefore, if conditi¢20) is to hold for all V(y)=max,, , -i{p<1:y=p(ya®vs)}. (Al
v, it holds in particular fory=S'S.
The minimum of these maxima can for givénbe effi- (i) V for more than one state

ciently sought numerically, thus providing a practical char-
acterization of all positive Gaussian maps. We emphasize,
that such a practical characterization of positive maps is
commonly not available for general mapsaievel systems.

Condition (21) says that the matrif' of a positive map thatis,V does not decrease when several entangled states are
can be such that neithét:=I'—iJ=0 nor N:=I'—iJ=0 joined together. Rathe¥ of the combined state is given by

' the smallesV of the individual states.

To see this, let v=V(y),v'=V(y'). Clearly,
Sec. llD); (ii) maps for whichI’#iJ but I'=iJ. These are V(yey)=minjv,v'} since by definition ofV we have
decémp’CJsaquaOF;itive maps(such as tra;sp'ositiam (iii)) Y8y Z0(ya® v8) ®v' (Ya® yg)=Minfv,v }(Ya® 8P YA

_ ) : g » ®7yg). On the other hand/(y® y')<min{v,v’} since y

Gaussian maps for which neithidmor N is positive can also ¢, " >V/(y® y')(yan @ yse) also holds for the reduced

be constructed; these and the caseafdecomposabl&P states with subsystentsB or A’B’ traced out. More gener-
maps, i.e., those that are not derived from transposition ang”y it follows that V(@ yi) = min{V( )}

the relation of g-positivity to the usual notion of positivity (i) An upper bound for V
will be discussed elsewhef82].

V(y@y")=min{V(y),V(y")}, (A2)

but there may be no vectare C>" such that both"Nx and
x"Nx are negative. Examples afd CP ‘maps ['=iJ, cf.

V(Py)smin{)\min(')’)al}y (A3)
VI. CONCLUSIONS

We have characterized all the physical actions that can b&h€ré Amin(y) is the smallest symplectic eigenvalue
performed using linear optics, squeezers, and homodynemaller than Lof the CM vy of the partially transposed state
measurements. We have also characterized those that can ,bTé‘. Mmin<1 is necessary and sufficient for the correspond-
implemented with LOCC and those that can be implementeghg state to have a nonpositive partial transpose.
using PPT-preserving maps. We have used the methods de- (jii) V for the maximally entangled staié).
veloped in the preceding sections to show that Gaussian
states cannot be distilled by local Gaussian operations and
classical communication.

Finally we have extended the definitions given before to
general linear maps that map Gaussian states to Gaussi@ceX min(y(r))=e"".
states and provided a complete characterizatiopasitive (iv) V and negativity [33].For 1X N systemgi.e., in sys-
Gaussian maps. This emphasizes that Gaussian states &&s where no PPT-entanglement ex[§$]) we also have
worth studying not only because of their experimental rel-V(p)=\n;, since in that casey/\, has positive partial
evance(which will reduce as non-Gaussian states becoméranspose and therefore is separable. This showd/{gtis
more accessibjebut also on mathematical grounds that thisrelated to the negativity measure of entangleni&si, and
class of states is simple enough to derive strong results whiltor 1 XN systems—log,[V(p,)] coincides with the log nega-
being large enough to encompass m@smot all) aspects of tivity (up to a factoy. In contrast, for PPT-entangled Gauss-
entanglement. ian state$31] V(y) is strictly smaller than 1, while the nega-

Note added:Upon completion of this work we learned tivity of such states is zeron(,j,=1).
that Jaronm Fiurasek [34] independently arrived at a similar (v) V as a Gaussian measure of entanglemeve. have
description of general Gaussian operations and, in particulaseen thatV(y) does not decrease under local Gaussian
of Gaussian LOCCs. operations. Hence it can be considered a measure of

V(®)=limV(y(r))=0, (A4)
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entanglement for Gaussian states. In view of &g, we see (vi) V is computablelt is worth pointing out thaw/(y) is
that V does quantify both NPT- and PPT-Gaussianalso computable as one can use the separability criterion
entanglement—in contrast to most other measures of erderived in Ref.[30] to find the largesp for which y/p is

tanglement calculated to date. separable.
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