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Characterization of Gaussian operations and distillation of Gaussian states

Géza Giedke and J. Ignacio Cirac
Max-Planck–Institut für Quantenoptik, Hans-Kopfermann-Strasse, D-85748 Garching, Germany

~Received 19 April 2002; published 23 September 2002!

We characterize the class of all physical operations that transform Gaussian states to Gaussian states. We
show that this class coincides with that of all operations that can be performed on Gaussian states using linear
optical elements and homodyne measurements. For bipartite systems we characterize the processes that can be
implemented by local operations and classical communication, as well as those that can be implemented using
positive partial transpose preserving maps. As an application, we show that Gaussian states cannot be distilled
by local Gaussian operations and classical communication. We also define and characterize positive~but not
completely positive! Gaussian maps.
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I. INTRODUCTION

Many applications in the field of quantum informatio
require the ability of preparing general states and of perfo
ing arbitrary transformations with them. However, there
physical systems where the set of states that can be ge
ated, as well as the transformations that can be impleme
are very restricted. For example, in quantum optical syste
linear transformations involving beam splitters, phase pla
homodyne measurements and polarizers are readily im
mented, whereas more general ones can only be perfor
with a low efficiency. Moreover, with these tools and
squeezer one can generate only a small class of states
so-called Gaussian states. Despite this fact, in these sys
a surprising richness of quantum information protocols
been found within the realm of linear optics: entanglem
generation@1#, teleportation@2#, key distribution@3#, quan-
tum error correction@4#, and cloning@5#, some of which
have already been implemented@6#. For the moment it is not
known how ~or whether! important operations, such as e
tanglement distillation or a~useful! depolarization of con-
tinuous variable states, can be implemented with linear
tics @7–12#. This raises the question which transformatio
can be realized in general by the concatenation of such
erations, i.e. the tools currently available in the lab.

A partial answer to this question is contained in a ma
ematical paper written in the seventies@13#. There a subclass
of operations that transform Gaussian states into Gaus
states have been mathematically characterized, namely, t
which are trace preserving. The relation of these maps t
some of the experimentally feasible operations has been
cussed by Eisert and Plenio in Ref.@12#, and used by these
authors to derive a criterion for the interconvertibility of tw
mode Gaussian states under feasible local transformat
Unfortunately, the set of operations considered in Ref.@13#
does not include measurements~that are not trace preserv
ing!. However, one of the main strengths of linear optics
the highly efficient measurement of the quadrature obs
ablesX and P, which homodyne detection affords. Furthe
more, measurements followed by classical communica
have been seen to be an essential ingredient in certain b
quantum information protocols such as quantum telepo
tion @14# or entanglement distillation@15#. Thus it is impor-
1050-2947/2002/66~3!/032316~7!/$20.00 66 0323
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tant to find a mathematical formulation of the physical a
tions that can be applied to Gaussian states in which also
trace-preserving operations~measurements! are included
@16#.

In this work we give a full answer to this problem b
providing a simple description of all operations of this so
As an application we discuss the question of distillation
Gaussian states by local Gaussian operations and clas
communication~LOGCC!. In this context, it was recently
shown@17# that the entanglement of a symmetric two-mo
Gaussian state of two parties cannot be increased with
help of another copy of that state and a homodyne meas
ment. Here we give a proof that distillation is not possib
for an arbitrary number of modes per site, general Gaus
states and general Gaussian operations.

This paper is organized as follows. In Sec. II we fix o
notation for Gaussian states, setting the stage for the re
given in the following sections. Section III contains the ma
results of this paper: we give a characterization of all co
pletely positive maps that transform Gaussian states
Gaussian states~Gaussian operations!. We show that they
can all be implemented with the currently available mea
We derive a simple, compact form of these maps. In Sec
we consider Gaussian operations on bipartite systems;
classify them with respect to their locality and separabil
properties. As an application of the methods introduced
fore, we show that Gaussian states cannot be distilled
using Gaussian LOCC. In Sec. V we describe posit
Gaussian maps and characterize them completely. The
pendix contains some material on a new entanglement m
sure for Gaussian states introduced and used in Sec. IV.

II. GAUSSIAN STATES

We consider the Hilbert space ofn-harmonic oscillators
H5L2(Rn). A Gaussian state is described by a density o
erator r whose characteristic function@18# xr(x)
ªtr@rW(x)# is a Gaussian function inxPR2n ~or, equiva-
lently, by a Gaussian Wigner function, which is related tox
by a symplectic Fourier transformation!. The operators

W~x!5exp@2 ixTR#, ~1!
©2002 The American Physical Society16-1
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are the Weyl operators~displacement operators! and R
5(X1 ,P1 ,X2 , . . . ,Pn), with @Xk ,Pl #5 idkl . Since the den-
sity operator is bounded, we can write without loss of ge
erality @19#

r5p2nE
R2n

dxe2(1/4)xTgx1 idTxW~x!, ~2!

where we have used tr@W(x)#5pnd(x) @19# to normalizer.
Occasionally, we will denoter as in Eq.~2! by rg,d . The
matrix g5gT> iJn is a 2n32n real matrix calledcorrela-
tion matrix ~CM! andd is a 2n-real vector calleddisplace-
ment. These two quantities fully characterize the Gauss
stater. Thesymplectic matrix Jn is

Jn5 %
k51

n

J1 , J15S 0 21

1 0 D , ~3!

~We will omit the index whenever there is no risk of conf
sion.! Note that the CM usually contains all the interesti
information about the properties of the state that are us
for quantum information in general; in particular, the e
tanglement properties of a Gaussian state is solely de
mined by its CM. Thus, in some parts of this paper, in ord
to simplify the notation we will omit the displacement fro
our discussions when it does not play a relevant role.

Of course, Gaussian states can also be defined for c
posite systems, e.g., those whose density operators a
B(H) ^ B(H). An important example of a Gaussian state
the maximally entangled stateF @20#. The stateF is the
limit r→` of Gaussian states (n-identical two-mode
squeezed states! with CM:

g~r !5S Ar Cr

Cr Ar
D , ~4!

whereAr5coshr1 andCr5sinhrL are 2n32n square ma-
trices, and

L5diag~1,21,1,21, . . . ,21!. ~5!

The density operator ofF is a projector on the imprope
state vectoruF&12}(k>0uk&1uk&2.

III. GAUSSIAN OPERATIONS

Physical actions are mathematically characterized
terms of completely positive~CP! maps acting on the corre
sponding density operators. The best way of characteriz
them is using the isomorphism between CP maps~physical
actions! and positive operators~unnormalized states! @21#.

A. General form of Gaussian operations

Given a CP mapE acting on bounded operatorsB(H), we
define the positive operatorEPB(H) ^ B(H) as follows:

E125~E^ 1!~ uF&12̂ Fu!. ~6!
03231
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This equation has a direct physical meaning. It tells us t
given E, we can always obtain the stateE by preparing a
maximally entangled state and acting with the map on
second subsystem. Conversely, given the stateEPB(H)
^ B(H) and a staterPB(H), if we measure the secon
subsystem ofE andr in the ‘‘Bell basis,’’ i.e., an orthonor-
mal basis of maximally entangled states containinguF&, and
obtain the result corresponding to the stateuF&, then the
resulting state isE(r). Thus, given the stateE we can always
implement ~probabilistically! the mapE provided we can
perform Bell measurements. This can be viewed as ‘‘te
porting r through the gateE’’ @22#. In formulas, we have

E~r!}tr2@E12
T2r2#5tr23~E12r3uF&23̂ Fu!. ~7!

Thus, given a CP map we can generate the correspon
state and given the state we can physically implemenE
~probabilistically! @23#.

Now we define a Gaussian completely positive~GCP!
map,G by the properties that bothG and1^ G map Gaussian
states to Gaussian states. With the help of the isomorphis
is straightforward to characterize them. First, we use the
that the stateuF& appearing in Eq.~6! is Gaussian, so that th
corresponding operatorG must be Gaussian@24#. We write it
as

G5E
R4n

dxe2(1/4)xTGx1 iD Tx2CW~x!. ~8!

Clearly G>0 if G,D,C are real andG> iJ; that is,G is a
GCP map if the Gaussian operator isomorphic toG is de-
scribed by a proper CMG and, conversely, to each suc
operator corresponds a GCP mapG. Since all Gaussian state
can be generated~e.g., from the vacuum state! by unitary
Gaussian operations and discarding subsystems@25# this
shows that all Gaussian operations can be implemented
these means plus Bell measurements~homodyne detection!.

Now, we determine the action of the mapG on a general
Gaussian stater in terms ofG. Apart from normalization, we
have

G:rg,d°rg8,d8 , ~9!

and we find forg8,d8:

g85G̃12G̃12

1

G̃21g
G̃12

T , ~10a!

d85D11G̃12

1

G̃21g
~D21d!, ~10b!

where we have denoted

G5S G1 G12

G12
T G2

D , D5S D1

D2
D , ~11!

and

G̃5~1% L!G~1% L!. ~12!
6-2
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Thus, we have that all GCP maps onB(H) are characterized
by a correlation matrixG> iJ2n and a displacement vectorD.

In order to derive Eqs.~10!, we just use Eq.~7!, replacing
E12 by G and r2 by a Gaussian staterg,d as in Eq.~2!. In
evaluating the trace we use the commutation relat
W(x)W(y)5ei /2xTJyW(x1y) @18# and tr@W(x)#}d(x) to
obtain

rg8,d8}tr2~GT2rg,d!, ~13!

with g8,d8 as in Eqs.~10!.

B. Examples

How to interpret the operation described by (G,D)? To
better understand what actions (G,D) describe, we now
briefly discuss how the familiar Gaussian operations are c
tained in our formalism. To do this, we apply these ope
tions to the first subsystem of the maximally entang
Gaussian stateF with CM G5 limr→`g(r ), with g(r ) as in
Eq. ~4!.

Obviously, the identity operation corresponds to the ma
mally entangled stateF, i.e., to G5 limrg(r ),D50. Now,
performing a displacement operation onF leaves the CM
unchanged, but produces a displacementD5(D1,0). Now
we turn to the trace-preserving GCP maps considered in
@13#. These describe all actions that can be performed or
by first adding ancillary systems in Gaussian states, then
forming unitary Gaussian transformations on the whole s
tem, and finally discarding the ancillas. On the level of CM
these operations were shown to be described
g°MTgM1N. A Weyl operator W(x) is mapped to
(detM )21e21/4xT(M21)TNM21xW(M 21x) by these operations
It then follows that the Gaussian operator that correspond
this operation has the CM:

G5 lim
r→`

S MTArM1N MTCr

CrM Ar
D .

Using formulas Eq. ~10! gives g85 limrM
TArM1N

2MTCrL(LArL1g)21LCrM . For r→` we have
(LArL1g)21→Ar

212Ar
21gAr

211o(coshr)23 that yields
the desired result@26#.

Finally, we consider an example of Gaussian measu
ments. The typical measurement is homodyne detect
which realizes the von Neumann measurement of the op
tor X. It has been shown before@27# that with the use of an
ancillary system and a beam splitter, homodyne meas
ments may be used to realize the generalized measure
corresponding to the positive-operator-valued meas
~POVM! $ua&^au,aPC %, whereua& is a coherent state, i.e
in the language of CMs a state with CM,g51 and displace-
mentd5(Rea,Im a). Since every other pure Gaussian sta
can be obtained fromua& by Gaussian unitaries, this implie
that all POVMs of the form$ug,d&^g,du:dPR2n% can be
performed with homodyne detection and suitable preproc
ing.

To see which CMG corresponds to the measurement
ug,d&^g,du we apply it toF. In order to get an interesting
03231
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result, we perform only a partial measurement, i.e., we c
sider an (n1m)-mode system and measure only the lastm
modes. The corresponding operator is

E5^g,duFug,d&,

where ug,d& describes a pure Gaussian state ofm modes.
Expressing F in terms of Weyl operators, replacin

^g,duW(x)ug,d& by e21/4xTgx2 idTx and integrating over the
modes measured we obtain a CM

G5S Ar Cr 0

Cr Ar 0

0 0 g21
D ~14!

and a displacementD5(0, 0, d)T. Note that the first row
corresponds to system ‘‘1,’’ while the second and third ro
refer to system ‘‘2.’’ This represents a straightforward gen
alization of the situation considered in Sec. III to maps th
decrease the number of modes present. Evaluating Eq.~7! for
a n1m mode Gaussian state with CMg:

g5S A C

CT BD ,

we obtain@26#

g85A2C
1

B1gp
CT, ~15a!

d85
1

2
C

1

B1gp
d, ~15b!

which corresponds to the change in CM derived in Ref.@17#
for projections into pure Gaussian states. Homodyne de
tion itself represents the limiting case in which the CMgp
becomes infinitely squeezed. In this limit, the inverse in E
~15! is to be understood as the pseudoinverse~inverse on the
range!.

In general,noise-free Gaussian operations~unitaries and
von Neumann measurements! correspond topure state
CMs G and noise added to the CM describing the operat
directly translates into noise added to the output state,
we have that G85G1P>G implies that GG8(g)
>GG(g);g> iJ. To see this, consider the operationGG8 and
write G in Eq. ~13! as a mixture of states with CMG. This
shows that the stateGG8(rg,d) is a Gaussian mixture of state
GG(rg,d1d2

) displaced byd1, wherex5(d1 ,d2) are distrib-
uted according to a probability distribution proportional
exp(21/4xTP21x). But since a displacementd2 of the input
state does only affect the displacement of the output state@cf.
Eqs.~10!#, it follows thatGG8(rg,d) is nothing but a Gaussian
mixture of statesGG(rg,d) displaced by some valuey which
is distributed according to a Gaussian distribution with co
riance depending onP andg. Thus the operationGG8 could
be realized~for known g) by first performingGG and then
performing random displacements to add the appropr
noise, which proves the assertion. Since displacements
6-3
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be done locally, this becomes particularly useful in the d
cussion of entanglement distillation with Gaussian means
low.

C. Deterministic operations

In general, the transformation Eq.~9! is not trace preserv
ing. This is related to the fact that we have considered o
one of the possible Bell measurements in Eq.~7!. The pro-
jector uF&^Fu can be extended to a POVM by consideri
all displacementsW(x)uF&, xPR4n. Using the second rela
tion in Eq. ~7! it is easy to see that ifGG,0(r)
5tr23(E12r3uF&23̂ Fu) then GG,D(r)5tr23@E12r3W
(2D)uF&23̂ FuW(D)#, i.e., D can be understood as th
~continuous! output of the Bell-measurement implementin
G.

Note thatD has no influence on the CM of the resultin
state. Hence, providedg andG are known,G can be turned
into a trace-preserving operation by postprocessing: co
tional on the measurement result (D1 ,D2) the corresponding
displacementD11G̃12(G̃21g)21D2 can be undone, leadin
to a deterministictransformation that maps every Gaussi
staterg,d to rg8,G̃12(G̃21g)21d with certainty. Note that this is

true even ifg is a state on a multipartite system, since d
placements can be done locally. It is a curious feature
Gaussian operations that even measurements do not ch
the CM nondeterministically.

IV. BIPARTITE SYSTEMS. APPLICATIONS

In this section we consider Gaussian mapsG on bipartite
systems. In this situation it is interesting to distingui
whetherG can be implemented withlocal operationson the
subsystems A and B~possibly enhanced by classical comm
nication, LOCC! or whether interaction between the syste
is necessary. Our formalism yields a very convenient fo
for any local Gaussian operations, and allows us to de
mine the nonlocal properties for any given Gaussian ma

As an application we use our formalism to show that e
tanglement distillation is not possible with Gaussian mea
This extends the results of Ref.@17# to any number of modes
all kinds of Gaussian operations, and all kinds of Gauss
states. Note that, there are other means of performing d
lation that do not require Gaussian maps, as long as a
nonlinearity or photodetection are available@7,9#. However,
at the moment these protocols still pose considerable exp
mental challenges and none has been implemented to d

A. Local Gaussian maps assisted by classical communication

To determine whetherG can be implemented withlocal
operationson the subsystemsA andB ~possibly enhanced by
classical communication, LOCC! or whether interaction be
tween the systems is necessary we can use the the ide
Ref. @28# ~that extend the Jamiołkowski isomorphism to b
partite systems!. This allows us to read off the answer to th
question from the Gaussian stateG isomorphic toG. If G is
separable, then it can be generated by local action and
sical communication. Note that following the discussion
03231
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the end of the previous section this implementation can
donedeterministicallyprovided the CM of the state on whic
we act is known.

If G is entangled, two cases can be distinguished: isG has
positive partial transpose~PPT!, the corresponding map ca
be implemented with a so-called PPT-preserving chan
otherwise full-fledged quantum interaction betweenA andB
is needed.

The separability criterion for Gaussian states@29,30# al-
lows us to decide for every given map, whether it is se
rable @30#, PPT-preserving@29# or neither. Moreover, the
characterization of separable CMs given in Ref.@31#, namely
that g is separable if' gA ,gB> iJ such thatg>gA% gB
implies that—except for added correlated noise—all Gau
ian LOCC operations are of product form.

B. Gaussian states cannot be distilled with Gaussian local
operations and classical communication

Entanglement distillation is a process in which two sep
rate partiesA andB transform a large number of copies of
bipartite mixed entangled staterAB ~jointly written asrAB

^ n)
into a statecAB

(n) , which, asn goes to infinity approaches
pure maximally entangled state. To this end,A and B are
allowed to perform arbitrary local operations~correlated by
classical communication! on their respective part ofrAB

^ n . In
the following we show that such a process is not poss
whenrAB is Gaussian and only Gaussian operations are
lowed.

We consider a bipartite system composed of subsystemA
andB and a partially entangled Gaussian state with CMgAB
and want to check if a separable Gaussian map can incr
the entanglement. To this end we define a simple funct
V(g) to quantify the entanglement of a general bipartite C
Let V(gAB) be the largest valuep<1 such thatgAB>p(gA
% gB), for some CMsgA andgB . Note that for a maximally
entangled Gaussian stateV50 @this and further properties o
V(g) which are used in the following are proved in Appe
dix#, and therefore the goal of a Gaussian distillation pro
col would be to decreaseV(gAB). In general one would al-
low an arbitrary number copies of the state with CMgAB ,
i.e., a state with the CM% k51

n gAB . As shown in the Appen-
dix, V does not change when adding more copies of the s
state. The question then is, whether there is a local Gaus
operationG that produces from these states an output s
gAB8 with V(gAB8 ),V(gAB) or even allows us to reachV
→0 in the limit of infinitely many copies.

In the following we show that with local Gaussian oper
tions it is impossible to decreaseV at all. Our proof makes no
assumptions on the size or type of the entangled state
sidered or the local Gaussian operations performed. In
ticular, it covers any number of copies of a (n3n)-mode
input state.

We consider a separable Gaussian completely pos
map acting on two systemsA andB. As discussed above, th
action of such a map on the correlation matrixgAB is com-
pletely characterized by another correlation matrixG acting
on an extended space of systemsA, A8, B, andB8. The fact
that the map is separable implies thatG5GAA8% GBB81P,
6-4
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whereP is a positive matrix. In light of the discussion at th
end of Sec. III B this means thatG can be implemented by
first performing the~completely uncorrelated! operation cor-
responding toGAA8% GBB8 and then performing~classically
correlated! random displacements of the resulting state
cording to a probability distribution depending onP and the
CM gAB of the input state. Since these displacements do
increase the entanglement, we can concentrate on the e
of the product transformationGAA8% GBB8 .

Now let

GAA85S A1 CA

CA
T A2 D , GBB85S B1 CB

CB
T B2 D . ~16!

Let us denote bygAB8 the correlation matrix ofA andB after
the action of the mapGAA8% GBB8 . Then we havegAB8
>RA% RB , where

RA5Ã12C̃A

1

Ã21pgA

C̃A
T>Ã12C̃A

1

Ã21piJ
C̃A

T , ~17!

and similarly for RB . Now, we use thatGAA8>0, i (J% J)
sinceG is a CM and therefore,G̃AA8>p@ iJ % (2 iJ)#. This
implies that the right-hand side of Eq.~17! is > ipJ and we
immediately obtain thatgA8[1/pRA is a correlation matrix.
From this follows that gAB8 >p(gA8 % gB8 ) and therefore,
V(gAB8 )>V(gAB).

What does this imply for distillation? First, it proves th
the maximally entangled state cannot be approached e
asymptotically ~i.e., in the limit when initially infinitely
many copies ofgAB are available!. This follows directly
from the fact ~cf. Appendix! that V(gAB% gAB)5V(gAB),
i.e., V is invariant when adding more copies of the sa
resource. So entanglement distillation of Gaussian st
with Gaussian means is impossible. More generally,V(gAB)
puts a bound on all state transformations that can
achieved by Gaussian LOCC@and even Gaussian LOCC
supplemented by an unlimited amount of auxiliary entang
Gaussian states ofV(raux)>V(gAB)].

However, the result still leaves room for interesting e
tanglement transformations with Gaussian means. The
thing that could happen—respecting the bound set byVmin
5V(gAB)—is to have the pure entangled state with
V(rpure)5Vmin . Our proof does not rule out the possibilit
of ‘‘entanglement purification,’’ i.e., of transforming a larg
number of Gaussian mixed entangled states into a~asymp-
totically! pure entangled state with the same value ofV with
Gaussian means. First calculations indicate that this m
indeed be possible. These results will be reported elsewh

V. GAUSSIAN POSITIVE MAPS

In this section we show how to extend the approach p
sented in Sec. III to include Gaussianpositivebut not com-
pletely positive maps. To this end, we first define the se
Gaussian operators, generalizing Gaussian density mat
to not self-adjoint operators. Every operatorAPB(H) is
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completely determined byxA(x)ªtr@AW(x)# @18#. It fol-
lows thatA may be written in terms ofxA as @19#

A5p2nE
Rn

dxxA~x!W~2x!. ~18!

We define the set of Gaussian operators onH by

Q~H!ªH A:A5E
R2n

dxe2(1/4)xTgx1 ibTx2cW~x!J , ~19!

wheregT5gPM2n(C), bPC2n, andcPC. It is straightfor-
ward to check thatA is ~i! boundediff Re g.0; ~ii ! self-
adjoint iff Im g50, Imb50, Imc50; and ~iii ! positive iff
self-adjoint and g> iJ; and ~4! tr(A)5e2c, where
tr@W(x)#5pnd(x), xPR2n was used. To prove~3!, consider
one mode,g5g12. The corresponding operator is;g>0
diagonal in the number basis~for g>1 it describes the well-
known thermal states of a field mode! and the eigenvalues
^nuAgun& are seen to be all positive iffg>1, otherwise odd
numbers correspond to negative eigenvalues. Finally, re
that all self-adjoint Gaussian operators can be transform
into ~a tensor product of Gaussian operators of! that form by
quasifree unitaries, performing the normal mode decomp
tion of r or, equivalently, the symplectic diagonalization
g, which concludes the proof.

Now we turn to linear maps onB(H). Generalizing Sec.
III we define a Gaussian mapas a linear mapG:B(H)
→B(H8) that maps Gaussian operators to Gaussian op
tors, i.e.,G@Q(H)#,Q(H8). Again, we can use the isomor
phism of Ref.@21# to show that all Gaussian maps onB(H)
correspond to Gaussian operators onB(H) ^ B(H). i.e., they
may be described by a matrixG, a vectorD, and a phase/
normalization constantC. Then we can use Eq.~7! to calcu-
late how the Gaussian mapG corresponding to (G,D,C) acts
on the Weyl operatorW(x). One finds

G„W~x!…5E e2(1/4)S x

y DT
G̃S x

y D1 iD̃ TS x

y D2CW~y!dy,

whereG̃,D̃ belong to the partial transpose of the operatorG
isomorphic toG.

One quickly convinces oneself that the mapG is self-
adjoint, that isG(A†)†5G(A) iff G is self-adjoint, i.e., iff
Im G50, ImD50, ImC50.

A Gaussian mapG is called aGaussian positive map~GP
map! iff it maps Q(H)1 to Q(H)1 . In terms of matrices
this means thatG is Gaussian positive~g-positive! iff G(g)
> iJ;g> iJ. Expressing the action ofG through its matrixG
this is equivalent to the condition

G̃12G̃12

1

G̃21g
G̃12

T > iJ ;g> iJ.

Inverted this inequality it is seen to be equivalent toG̃1
> iJ and
6-5
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~20!

which can now be written in ag-independent way as

minzPC2n max$z†~M1 iJ !z,z†~M2 iJ !z%>0. ~21!

To see that this is equivalent to condition~20! note that for
any z5zr1 iziPC2n there exists a symplectic mapS such
thatz†SSTz5u iz†Jzu52uzr

TJzi u5c2; this can be seen imme
diately by extending$s15zr /c,s25zi /c% to a symplectic ba-
sis $sk% and definingS by Ssk5ek , whereek refers to the
canonical basis. Therefore, if condition~20! is to hold for all
g, it holds in particular forg5STS.

The minimum of these maxima can for givenG be effi-
ciently sought numerically, thus providing a practical ch
acterization of all positive Gaussian maps. We emphas
that such a practical characterization of positive maps
commonly not available for general maps ond-level systems.

Condition ~21! says that the matrixG of a positive map
can be such that neitherÑªG2 iJ>0 nor NªG̃2 iJ>0,
but there may be no vectorxPC2n such that bothxTÑx and
xTNx are negative. Examples are~i! CP maps (G> iJ, cf.
Sec. III!; ~ii ! maps for whichG>” iJ but G̃> iJ. These are
decomposablepositive maps~such as transposition!; ~iii !
Gaussian maps for which neitherN nor Ñ is positive can also
be constructed; these and the case ofnondecomposableGP
maps, i.e., those that are not derived from transposition
the relation of g-positivity to the usual notion of positivit
will be discussed elsewhere@32#.

VI. CONCLUSIONS

We have characterized all the physical actions that can
performed using linear optics, squeezers, and homod
measurements. We have also characterized those that c
implemented with LOCC and those that can be implemen
using PPT-preserving maps. We have used the methods
veloped in the preceding sections to show that Gaus
states cannot be distilled by local Gaussian operations
classical communication.

Finally we have extended the definitions given before
general linear maps that map Gaussian states to Gau
states and provided a complete characterization ofpositive
Gaussian maps. This emphasizes that Gaussian state
worth studying not only because of their experimental r
evance~which will reduce as non-Gaussian states beco
more accessible!, but also on mathematical grounds that th
class of states is simple enough to derive strong results w
being large enough to encompass most~if not all! aspects of
entanglement.

Note added:Upon completion of this work we learne
that Jaromı´r Fiurášek @34# independently arrived at a simila
description of general Gaussian operations and, in partic
of Gaussian LOCCs.
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APPENDIX: PROPERTIES OF V„g…

In this section we collect a number of useful properties
the quantityV(g) introduced in Sec. IV B.V is defined for
bipartite CMsg ~or, equivalently, for Gaussian statesrg,d)
as

V~g!ªmaxgA ,gB> iJ$p<1:g>p~gA% gB!%. ~A1!

(i) V for more than one state.

V~g % g8!5min$V~g!,V~g8!%, ~A2!

that is,V does not decrease when several entangled state
joined together. Rather,V of the combined state is given b
the smallestV of the individual states.

To see this, let v5V(g),v85V(g8). Clearly,
V(g % g8)>min$v,v8% since by definition ofV we have
g % g8>v(gA% gB) % v8(gA8 % gB8 )>min$v,v8%(gA% gB% gA8
% gB8 ). On the other handV(g % g8)<min$v,v8% since g
% g8>V(g % g8)(gAA8% gBB8) also holds for the reduced
states with subsystemsAB or A8B8 traced out. More gener
ally, it follows thatV( % kgk)5min$V(gk)%.

(ii) An upper bound for V.

V~rg!<min$lmin~g!,1%, ~A3!

where lmin(g) is the smallest symplectic eigenvalu
~smaller than 1! of the CM g̃ of the partially transposed stat
rg

TA . lmin,1 is necessary and sufficient for the correspon
ing state to have a nonpositive partial transpose.

(iii) V for the maximally entangled stateuF&.

V~F!5 lim
r→`

V„g~r !…50, ~A4!

sincelmin„g(r )…5e2r .
(iv) V and negativity [33].For 13N systems~i.e., in sys-

tems where no PPT-entanglement exists@31#! we also have
V(r)>lmin since in that caseg/lmin has positive partial
transpose and therefore is separable. This shows thatV(r) is
related to the negativity measure of entanglement@33#, and
for 13N systems2 log2@V(rg)# coincides with the log nega
tivity ~up to a factor!. In contrast, for PPT-entangled Gaus
ian states@31# V(g) is strictly smaller than 1, while the nega
tivity of such states is zero (lmin>1).

(v) V as a Gaussian measure of entanglement.We have
seen thatV(g) does not decrease under local Gauss
operations. Hence it can be considered a measure
6-6
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entanglement for Gaussian states. In view of Eq.~4!, we see
that V does quantify both NPT- and PPT-Gaussi
entanglement—in contrast to most other measures of
tanglement calculated to date.
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(vi) V is computable.It is worth pointing out thatV(g) is
also computable, as one can use the separability criteri
derived in Ref.@30# to find the largestp for which g/p is
separable.
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