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Optimum unambiguous discrimination between subsets of nonorthogonal quantum states
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It is known that unambiguous discrimination among nonorthogonal but linearly independent quantum states
is possible with a certain probability of success. Here, we consider a variant of that problem. Instead of
discriminating among all of the different states, we shall only discriminate between two subsets of them. In
particular, for the case of three nonorthogonal stgtes,), | )| #s)}, we show that the optimal strategy to
distinguish|¢,) from the set{|#,),|3)} has a higher success rate than if we wish to discriminate among all
three states. Somewhat surprisingly, for unambiguous discrimination the subsets need not be linearly indepen-
dent. A fully analytical solution is presented, and we also show how to construct generalized interferometers
(multiport) which provide an optical implementation of the optimal strategy.
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[. INTRODUCTION bert space containing the states to be distinguished and an
ancilla, which would allow one to discriminate amoiN

According to the quantum theory of measurement, it isstates, and derived matrix inequalities which must be satis-
impossible to unambiguously discriminate between nonorfied for the desired transformations to exist. In our previous
thogonal quantum states with unit success probability. Ifpaper[13], we presented the necessary conditions for opti-
however, we settle for less and do not require that we suomal unambiguous discrimination and used them to derive a
ceed every time, then unambiguous discrimination becomesethod for implementing the optimal solution. For the case
possible. This procedure uses a nonunitary operation thaif three states, we presented optical networks that accom-
maps the nonorthogonal states onto orthogonal ones, amgish this. One can also consider what happens if the dis-
these can then be discriminated without error using a starsrimination is not completely unambiguous, i.e., if it is pos-
dard von Neumann measurement. Although such an operaible for errors to occur, and this was done by Chefles and
tion will always have a certain probability of failure, we can Barnett[14]. For an overview of the state of the art on state
always tell whether or not the desired transformation hagliscrimination see the excellent recent review by Chefles
succeeded. This allows us to achieve unambiguous discrimj15].
nation. When the attempt fails, we obtain an inconclusive In these works discrimination among all of the states was
answer. The optimal strategy for accomplishing this is theconsidered. In the present paper, we consider a variant of that
one that minimizes the average probability of failure. problem. Instead of discriminating among all states, we ask

The problem of unambiguously distinguishing betweenwhat happens if we just want to discriminate between subsets
two nonorthogonal states was first considered by Ivanoviof them. A motivation to consider this variant comes from its
[1], and then subsequently by Diel® and Pere$3]. These application to comparing strings of qubits in order to find out
authors found the optimal solution when the two states ard they are identical or not, which is certainly one of the basic
being selected from an ensemble in which they are equallyasks in quantum information processing. In particular, if
likely. The optimal solution for the situation in which the there are three nonorthogonal statgs/.),|¥»),|¥s)}, we
states have different weights was found by Jaeger and Shwish to find the optimal strategy to unambiguously distin-
mony [4]. We proposed an optical implementation of the guish|,) from the sef|#,),|¥3)}. We refer to this problem
optimal procedure along with a more compact rederivatioras unambiguous quantum state filtering. In this context we
of the general results and also showed that the method should note that recently an analytical solution has been
useful in other areas of quantum information proces§flg found to the following closely related problem. Instead of
such as, for example, entanglement enhanceff@niState  unambiguously distinguishing between two complementary
discrimination measurements have been performed in labsubsets of an arbitary numbbrrof nonorthogonal quantum
ratory, first by Huttneret al. [7] and, more recently, by states, occupying a two-dimensional Hilbert space, errors are
Clarkeet al.[8]. Both used the polarization states of photonsallowed but the probability of erroneously assigning the state
to represent qubits. The case of three states was examined toyone of the substes is minimiz¢d6]. The term “quantum
Peres and Terng9]. It was subsequently extended to the state filtering” has been introduced there for the case when
general problem of discriminating amoi states. Chefles one of the subsets contains one state and the other contains
[10] found thatN nonorthogonal states can be probabilisti- all of the remainingN— 1 states. Here, we shall present the
cally discriminated without error if and only if they are lin- analytical solution for the case of the other possible discrim-
early independent. Chefles and Barrjdtt] solved the case nation strategy, namely, that of unambiguous quantum state
in which the probability of the procedure succeeding is thefiltering.
same for each of the states. Duan and Gl@) considered The paper is divided into six sections. In Sec. Il, based on
general unitary transformations and measurements on a Hisimple but rigorous arguments, we present the optimal ana-
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lytical solution to the problem. In Sec. Ill, we compare these |¢{C>in:|¢iﬂ>_ (2.2
optimal failure probabilities for two different procedures:
discrimination betweemy,) and{|,),|¥3)} and discrimi- A unitary transformationlJ, which acts in the entire spaée
nation among all three states. We find that the failure probis now applied to the input vector, resulting in the state
ability for the first procedure is smaller than that for the |y, which is given by
second. In Sec. IV, we propose a possible experimental
implementation using the method proposed in our previous Y oue= 0 T+ 17 = Ui, (2.3
paper[13], which uses a single-photon representation of the
quantum states and an optical multiport together with phototwhere, in our casey/;) can always be unambiguously dis-
detection at the output ports to implement the procedure. Ainguished from the sef#5),|#5)}. Then a measurement is
brief discussion and conclusions are given in Sec. V. Finallyperformed on /), that projects ¢), either onto| )
in the Appendix, we present an alternative derivation, basedr |¢;) (by construction, they are in orthogonal subspaces
on the method of Lagrange multipliers, to obtain t_he resultsf jt DijeCtSWi}C)out onto|!), the procedure succeeds, be-
of Sec. Il. The method closely parallels the techniques usegayse| ) can always be distinguished frofity),|45)}.
for unambiguous discrimination between all states. The probability to get this outcome, if the input statéus),

is

II. DERIVATION OF THE OPTIMAL SOLUTION

. . pi = 4i). (2.9

Suppose we are given a quantum system prepared in the
state|), which is guaranteed to be a member of the set off the measurement projedtg™),,; onto| ¢;), the procedure
three nonorthogonal statépy,),|#,),|#3)}, but we do not fails. The probability of this outcome is
know which one. We want to find a procedure which will tell
us that| ) was prepared ihy,), or will tell us that| ) was qi=1—pi=(¢il#)- (2.9
prepared in one of|,),|#3)}. That is, the procedure can _ _
distinguish| ;) from {[1,),]#5)}. We also want this proce- The nature of t_he problem we are trying to solve imposes
dure to be error free, i.e., the procedure may fail to give u number f’f requirements on the output vectors. The condi-
any information about the state, and if it fails, it must let ustion that| ) be distinguishable frorfy;) and|y3) requires
know that it has, but if it succeeds, it should never give us ghat
wrong answer. We shall refer to such a procedure as quantum o oo
state filtering without error. We find that, in contrast to the (1l =(¥al¥h3)=0.
unambiguous state discrimination problem, this will be pOS-1
sible even if|4) is not linearly independent from the set
{l42).93)}- i is uni

If the states are not orthogonal then, according to th%ﬁtﬁj ?cr)]r? dﬁjt?é?g E¢R.6) and the fact thall is unitary leads
guantum theory of measurement, they cannot be discrimi-

(2.6

hese lead to conditions on the failure vectdes,). Taking
the scalar product betweeizr;i/f)out and the other two output

nated perfectly. In other words, if we are givefy), we will —
have some probabilitp; to determine what it is successfully (b1l2)=(plv2),
and, correspondingly, some failure probabildy;=1—p;, to (1| sy =(4p1| ). 2.7

obtain an inconclusive answer. If we denote by the a
priori probability that the system was prepared in the stateur objective is to find the optimdly’) and |} which
|4}, the average probabilities of success and of failure taatisfy Egs.(2.4—(2.7) and also give the maximum success
distinguish the statelsy;) are probability P.
Let us now consider the failure vectors. If they were lin-
_ 2 early independent, we could apply a state discrimination pro-
P= i 7iPis cedure to theni10]. That means that if our original proce-
dure fails, and we end up in the failure spagk, then we
still have some chance of determining what our input state
Q= 2 70 , (2.1)  was. This clearly implies that our original procedure, which
[ led to the vectorsys'), was not optimal, because that process
followed by another on the failure vectors would lead to a
respectively. Our objective is to find the set fyf;} that  higher probability of distinguishinfy,) from |,) and| ).
maximizes the probability of succeds, Therefore, the optimal procedure should lead to failure vec-
The procedure we shall use is a “generalized measuretors to which we cannot successfully apply a state discrimi-
ment,” which can be described as follows. Liétdenote a nation procedure, implying that they are linearly dependent.
total Hilbert space, which is the direct sum of two subspacedin fact, we will now prove that for optimal discrimination
K=H& A. The spaceH is a three-dimensional space that they must be collinear, by demonstrating that the contrary
contains the vectorgy;), and A is an auxiliary space. The leads to contradiction. To this end, we assume that we have
input state of the system is one of the vectaks, which is  achieved optimal unambiguous discrimination|¢f) from
now a vector in the subspaé¢ of the total spacéC, so that |,) and|ys) but the failure vectors areot collinear. Then
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at least one of the two failure vectotg,),| #3), will have a  This set of equations can only be true if the matvixwhere
component in the direction that is perpendiculaf¢q). We ,

can set up a detector projecting onto this direction and a M = (1) — Voo Ok x), (2.19
positive outcome of the measureméatlick of the detector
will tell us that our input state was nd#,) but one of the
other two states. Thus, contrary to our assumption that our

is positive semidefinite, as discussed in detail in R&S).
Using againO;,=(¥;|¢y), M can be expressed as

procedure has been optimal, further distinction is possible. 1-q, 0 0
Hence, the failure vectors must be collinear for optimal dis- 5
crimination. 0 1 1044 021043
We shall now explore the consequences of this conclu- M= (o] 2 o
sion. Sincd ¢;)(i=1, ... h) are collinear, the failure space, 0.0 10,42
A, is one dimensional. Ifu) is the basis vector spanning this 0  Og— it s
Hilbert space we can write the failure vectors hg;) Q1 Q1
= Jg;e'X'|u). Substituting this representation of the failure (219
vectors into Eq(2.7), we find that Clearly, this matrix will be positive semidefinite if<0q,
B 2 <1, and if the 2<2 submatrix is also positive semidefinite.
Aa02= (¥l 2| This will be true if both the trace and determinant of the

AL |2 2.9 submatrix are greater than or equal to zero. Positivity re-
13 HYs/ ' quires that the diagonal matrix elements of the submatrix be

These two conditions are a consequence of unitarity and imon-negative, so that it must be true tigt=|01,|* andq;

ply that only one of the three failure probabilities can be=|013”. Without loss of generality, we can assume that
chosen independently. If we chogeas the independent one |014=[014 by simply arranging the states in set 2 in the
we can express the other two as=|(1|,)|?/q; and g, prder of decr.e'asing overlaps witly, ). Doing so and impos-'
=|(4n|¢s)|%a;. If we introduce the notatio®;; = (y;|¢;) NG the condition thatj;=|0,,/?> guarantees that the condi-
then, with the help of these two equations, the average failtion q;=|014* is also satisfied, and together they imply that

ure probability can be written explicitly as the trace is greater than or equal to zero.
The condition that the determinant be non-negative gives
us a lower bound ouq,
QZEi 7i0i '
|O |2 |O |2 9= |Ol2|2+ |013|2_(012023O31+ O13032021)
+ 1= .
— 721912 73113 . 2.9 1— |023|2
a1 (2.17

If we further introduce the notatioA= 7,/015%+ 73/014%  We want to interpret this inequality, in particular, we want to
for the frequently occuring average overlap then, from thefind what the right-hand sidehs) is equal to. In order to do

condition so, we shall find the projection operatét,;, that projects
onto the subspace spanned [a%) and |¢3). One of the
d_QZO, (2.10 basis vectors in this subspace can be chosen {g/feand,

da; using the Gram-Schmidt orthogonalization method, the other

is defined as thénormalized orthogonal component ,
we find the optimal value ofj; to be a 9 g P 403)

q,=VA/ ;. (2.1 |l~ﬂ3>:

This value, however, cannot always be realized. For it to
be true, there must be a unitary transformation, from EqThis leads to
(2.3, that takeg ;) to [;)o, Which, together with the one o
dimensionality of the failure space yields Poa= o)Wl + |h3) (sl (2.19

1) our= 4] )+ Vajl€i]u). (2.12  Let us represent the input statey;), as|y)=|yi)+|¢h),
. where |¢7)=(1—Py3)| 1) is the component of the input
Here we have tha¢yj|u)=0, (41|¢{)=0 for j=2,3, and  yector that is perpendicular to the subspace spannégfy
the phase factors are fixed by the requirenjeftEq. (2.7]  and |y;) and|yl)=P,4¢,) is the component in that sub-
that space. Then, using Eq&2.18 and (2.19, the explicit ex-
pression for the parallel component is given by

1
mq th3) = O3l 2)). (2.18
23

(4l gy =aq;e a0 (2.13
for j=2,3. These equations imply that I 2021_ 025031 +O31_ 03021
! ! i — v - 23| - 23]
(W10 = (1) — Vaae! ), (2.14 (2.20
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Calculating the norm of this expression yields

|012| 2410432~ (012023031 + 01803,01)

—|024?

(hlyn)=

(2.21

which is identical to the right-hand side of E@.17).
Thus, Eq.(2.17) tells us that the failure probabilityg;,
has a lower bound which is given by the werght|¢f1> in

the other subspackP g [|2= (11| Pog )= (k| ¥l), a re-

PHYSICAL REVIEW A66, 032315 (2002

Q=4 ¢1| ¢1> (2.28

A
(hlvhy
Equations(2.23—(2.28 summarize our main results. In

the intermediate range of the average overfgghe optimal
failure probability, Eq.(2.24), is achieved by a generalized
measurement or positive operator valued measurement
(POVM). Outside this region, for very large average overlap,
A= 7,, or very small average overlap= 7,|(l|#})|2 the
optimal failure probabilities, Eq%2.26) and(2.28), are real-

sult that is intuitively obvious. Clearly, this expression is ized by standard von Neumann measurements. For very large

larger than(or at most equal t0|O;;2. This implies that,

becauseay,=|0,5%/q;, we have

o0 10w
,< _ 2 <1,
(W) 1012+ [(Pral 1) |2

and similarly forqs.

(2.22

We can then distinguish three different regimes of th
parameters. If the rhs of E 2 11 is greater than 1 then

q.=1, if it is less than(yl|¢)) theng,=(yl|4}), and in
the intermediate range the optimum given by E21]) is
realized. This can be summarized as follows.

(i) If al(uh| ¥h)|P<A<py, then
g,=VA/ 9y,
Q2= 71/Al01]?

d3=\71/A| 0147, (223
yielding the average failure probability
Q=2\mA. (2.24)
(i) If A=17,, then
q:=1,
=104,
d3=1044>. (2.29
yielding the average failure probability
Q=nt+A. (2.26
(iii) 1t A< ny|(A|¥1)|?, then
A= (vl v}
_ |012|2
(Al )
—M (2.27
(vl

yielding the average failure probability

A the optimal von Neumann measurement consists of projec-
tions onto| ;) and two orthogonal directions whose direc-
tionality needs not be specified further. A click alohg;)
corresponds to failure because it can have its origin in any of
the two subsets and a click in the orthogonal directions
uniquely assigns the input state to the §et,),|#3)}. For
very smallA the optimal von Neumann measurement con-
sists of projections ontbtb”1> and two orthogonal directions

hat are uniquely determined by the requirement that they

correspond to two mutually exclusive alternatives. One of
them is ontd 7 ) and the other onto the remaining orthogo-
nal direction in the subspace §fij,),|#3)}. A click along

|¢//1> corresponds to failure because it can originate from any
of the input states while a click in any of the alternative
directions unambiguously assigns the input to one or the
other of the two mutually exclusive subsets. It is interesting
to observe that the failure space is one dimensional for each
of the three different optimal measurements in the three dif-
ferent regions. At the boundaries of their respective regions
of validity, the optimal measurements transform into one an-
other continuously. Furthermore, each of the two von Neu-
mann expressions can be written as the arithmetic mean of
two terms and the POVM result as the geometric mean of the
same two terms. Therefore, in its range of validity the
POVM performs better than any von Neumann measure-
ment.

In closing this section we want to point out an interesting
feature of the solution. The results hold true even when there
is no perpendicular component of the first input sthid,)
=0, i.e., it lies entirely in the Hilbert space spanned by the
other two vectors or, in other words, the two sets are linearly
dependent. In this case the two von Neumann measurements
coincide and the range of validity of the POVM solution
shrinks to zero. A click in the detector along the first input
vector corresponds to failure—it might originate from either
of the two subsets—and a click in the detector along the
single direction orthogonal to it unambiguously identifies the
set of the other two vectors.

An alternative derivation of the above results, which is
based on the method of Langrange multipliers, is given in the
Appendix.

Ill. COMPARISON TO THE CASE WHEN ALL STATES
ARE DISCRIMINATED

In this section we want to compare the average probabil-
ity of failure Q of the filtering problem to that of distinguish-
ing all three states. L&)’ denote the average probability of
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failure for distinguishing all the statd$i),|¢,),|3)}. We
can see immediately, that the probability of failure to distin-
guish | i) from {|i,),|#3)}, Q, should be no larger than
Q'. For the latter problem, the necessary condition for

PHYSICAL REVIEW A66, 032315 (2002

Long dashed line: Q' = s P

4
-,
~,
~,

achieving optimal discrimination is P
Py

0.5 P2
2
1 012 013 /,,/'” Short dashed line: @ = 243'@3

01, d» O =0. (3.1 7 Solid line: Q@ = 1 + 25

* * P
13 O3 03 e

S

When comparing this equation to E@1), we see that, in- 0.5 1

stead of a given constafil,; that appears in Eq3.1), there FIG. 1. We compar® andQ'. For 0<s< y2/2 we have that
are the variables and @ in Eq. (Al). These variables are Q'=s andQ=(242/3)s. For y2/2<s=<1, we still have tha®’
chosen to minimize the average probability of failu@  —g putQ=1+2%s?. Note thatQ is always smaller tha@’.
Therefore,Q should be no larger tha@’, Q=<Q’.

To illustrate this point, we use a simple symmetric case, A second example is more illuminating. The overlaps are
where all of the overlaps between the states are real angyy given by
equal,

(Pl ) = (gl ) = (Wl ) =, (3.2 (lya)=(inlga)=sr,

with 0<s<<1. We shall also assume that thepriori prob-
abilities are equal for all the examples in this paper. From o
previous work we know that in this case, the optimal valuesVhere, for simplicity.s, ands, are real, 6<s,,s,<1, and
of the failure probabilities when we wish to distinguish
among all of the state§|#1),|,),|¥3)} are q;=s, which
implies thatQ’ =s [13].

For the problem of distinguishinigs,) from {|¢),|#3)},
from the results of Eqs(2.23 and (2.25, we have(i) if 0
<s</2/2, then

(ol h3) =55, (3.5

2
0<51<J7_, s?<s,, ands;<2s,. (3.6

The probabilities of failure for discriminatingi,) from

{l42).|3)} are

q:1= \/ES, gq.= \/ES]_,
2 2
QZZQ3:7Sa q2=q3=781, (3.7
22 and the average failure probability is
Q= 22 3.3 g P Y
3
2\2
So the average probability of failu@ is less thanQ’'=s; Q= Tsl- 3.9
(i) if \2/2<s<1, then
The optimal probabilities of failure for discriminating among
9:=1, all three state$|,),|¥,),|3)} are given by[13]
L2
J2=0s=s" q,:Sj
12, s ts
Q— §+ §S . ( . ) , ,
02=03=S2,
These solutions are illustrated and compare@tan Fig. 1.
Note that in both cases we have ti@ts=Q’. , 1,
Now we shall compare filtering to the problem of distin- Q"= 3l(s1/s9) +25,]. (3.9

guishing two state§|1),|#»)}, when all thea priori prob-
abilities are equal. If we denote Iy’ the average probabil-
ity of failure when distinguishing between the two states
{|¢1) and| )}, we know thatQ”=]0,,| (Refs.[1-4]). For
the case we are considering);,|=|0.4=s, and we see
thatQ<Q".

Q can be compared tQ' by examining the ratio

Q 2\2s5,
- = <1

=———=1.
Q' si+2s5

(3.10
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Mirror whereM;, are the elements of @44 unitary matrixM(4).
S CSSSSSSSNSSSSSSS In the Schrdinger picture, then and out states are related

by
|¢>out:U|¢>in- 4.3

It can be showr{13] that when using single-photon states
representation, the matrix elemelt; is the same as the
matrix element ofU between the single-particle statg$
=a/|0) and|l)=a[|0), i.e.,

F_IG. 2 An opFicaI eight-port_interferometer. The bea_ms are (i|U|I)=M”. (4.4
straight lines, a suitable beam splitter is placed at each point where
twq beams intersect, phase shifters are at one input of each beam To design the desired eight-port interferometer, we first
splitter and at each output. calculate the optimal value af,. Then from Eq.(2.5) and
the fact that our failure space is one dimensional, the vectors

From the above equation, we see that whgnis much |4;) are given by
|

smaller thans,, Q is much smaller tha®’. For example,
whens;=/2/5,s,= %, Q/Q’=0.47. 6= ai| 14 = Vg;al] 0), 4.5

IV. OPTICAL REALIZATION where the stat¢1“) denotes one-photon state in the failure
space, which is just one photon in mode 4. Once the vectors
r]_qﬁi) are determined, the inner productsy|y;) (ij
=1,2,3) are given by

(W )y =il )in—( Pil &) (4.6)

r'\_Ne then have to find vectotgs ) that satisfy this equation.
The answer is not unique, and one way of proceeding is the
Following. If we define the Hermitian matrik to be

Now we shall present a scheme for a possible experime
tal realization of the optimal discrimination betweé, )
and{|#,),|#3)}. The method is similar to the one we pro-
posed in a previous publicatigi3]. We shall use single-
photon states to represent the input and output states, and an
optical eight-port interferometer together with photon detec
tors placed at the output ports to realize the unitary transfo
mation and subsequent measurements.

Our states will be a single-photon split among severa
modes. Each mode will serve as an input to an optical eight- N
port interferometer. Recall that the dimension of the total Li = (Wil din— (il 41), S
Hilbert space is four, so we shall require four modes, and th
input stateg ;) will be represented by single-photon states
as

fhen we note from Eq2.7) thatL,,=L43=0. This implies
that the simplest choice fdis;) is a vector with only one
nonzero component. Then the vectdrs,) and |y35) will

4 have nonzero components in only their other two places. The
lgi)=> dijéﬂO}, (4.1  obvious choice is
=1
4 At . Vb1
where21-=1|dij|2=1, anda;r is the creation operator for the 0
jth mode. We shall requird;,=0 fori=1,2,3, that is, the |y = . (4.9
initial single-photon state is sent to the first three input ports, 0
and the vacuum into the fourth input port. The first three 0
modes correspond to the spatg,containing the states to be
distinguished and the fourth mode to the failure spate,  In this column vector, the first entry is the amplitude of the

In general, an optical l2-port interferometer is a lossless photon to be in mode 1, the second is the amplitude to be in
linear device withN input ports andN output ports. Its action mode 2, etc. Mode 4 corresponds to the failure spate,
on the input states can be described by a unitary operatothe vectord ;) and|y3) will have nonzero components in

U,y . and physically it consists of an arrangement of beamynly their second and third places, and if their overlap is real,
splitters, phase shifters, and mirrors. Since the dimension Qfe can choose

the input and output states is four, here we shall use an eight-

port interferometefsee Fig. 2. If we denote the annihilation 0 0
operators corresponding to the input modes of the eight-port
interferometer bya;, j=1,...,4,then the output operators )= \/p_z 0 )= \/p—30080 9
are given by 2 Jposing |7 ¥ | —Jpasing |
4 0 0
a,i=U"taU=D, M,ay, 4.2
jout ) 121 kK 4.2 where
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1 Los ) 1
02—0031( . (4.10 ——(1+2s)12
2 VP2P3 V3
This simple choice works for the last example in this section 1 2
[see EQq.(4.22), below]. For the first, somewhat more gen- o= - %(1_5)
eral, example we are forced to choose the second component 2/in k
of |) to be nonzero and then the first and third components 1 "
of the other two success vectors are different from zero. They E(l_S)
can be obtained by simply interchanging the first and second
components in the above expressions of the ve¢tgrs[see 0
Eq. (4.13, below.
Once we have the input and output vectors, the unitary
transformationU, which maps the input states onto the out-
put states then can be chosen, and this, as shown by Eq. i(1+25)1/2
(4.4), gives the explicit form oM (4). Furthermore M (4) J3
can be factorized as a product of two-dimensiobR2)
transformationg 13,17, and anyU(2) transformations can _ i(l—s)l’z
be implemented by a lossless beam splitter and a phase | h3)in= J6 ) (4.12
shifter with appropriate parameters. A beam splitter with a
phase shifter at one output port transforms the input opera- B i(l—s)l’z
tors into output operators as 2
a; e?sinw e?cosw)(a; 0
= . , 4.1
a, COSw —sinw | \a, (4.13

out in

The output vectors|y;)ou=| ¢ ) +|¢;), can be computed

wherea, ,a, are the annihilation operators of modes 1 and 2
respectivelyw describes the reflectivity and transmittance of
the beam splitter, an@ describes the effect of the phase
shifter (in the factorization method given by Reekal.[17],
the phase shifters described ky should be placed at the
input ports. Therefore, we can use appropriate beam split-
ters, phase shifters, and a mirror to construct the desired
eight-port interferometer.

Finally, photon detection is performed at the four output
ports. We can design the total transformation in such a way
that if the photon is detected at the first output port, we claim
with certainty that the initial state wag, ), if the photon is
detected at the second or the third output port, we claim with
certainty that the initial state was eithef,) or |3), but we
do not know which of these two states it was. If the photon is
detected at the fourth output port, we obtain no information
about the input state.

We shall now consider two examples. The first is more
general than the second, but the second has the advantage
that it is simple and the eight-port interferometer that it re-
quires consists of only two 50-50 beam splitters. In the first
example, all of the input vectors have the same overlap,
which is given bys, and we shall consider the case<8
<1/\/2. The optimal failure probabilities for this case are
given in Eq.(3.3). For the input vectors we shall take

1

by the method outlined above. Doing so gives us

0

(1_ \/55)1/2
|¢1>out: 0 )

(sV2)¥2

[(1+5s—5s2)/2]"2
B 0
|‘//2>out_ [(1—3)/2]1/2 !

(S/ \/E) 1/2

[(1+s—sy2)/2]Y2
0
|43) out= C[(1-s)/2]22
(S/\/E)lIZ

(4.13

(1+2s)Y2

V3

2
|1)in= \[5(1—3)1/2 :
0

0

Our next step is to determine the transformatidrihat de-
scribes the eight-port interferometer, or, more specifically,
the matrixM (4) that describes its action in the one-photon
subspace. It must satisfy;)ou=U| )i, and, in addition, it
must map the vector that is orthogonal to all three input
vectors, onto the vector that is orthogonal to all three output
vectors,
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—(s\2)¥B 0

1| —(sV2)*c| 0
A o =M@ 4| (4.14

BC 1

where

PHYSICAL REVIEW A66, 032315 (2002

B=(1-sy2)"?,

C=(1+s-s\2)¥2 (4.15

These equations determin®1(4) and it is given by

A=[(1-s)(1+2s)]*? M(4)=

2 C C B
- _ - _ —(S\/E) 1/2
31+2s V3(1-5s) A
B 2 B C
- \ﬁ_ _ _(S\/§)1/2
3(1+2s) 3J1-s A (4.16
0 0 0
(V2+1)(sy2)"? (J2-1)(sV2)*? BC
V3(1+2s) V3(1-5s) A
|
This matrix can be expressed as the product of three matri- J2/3
ces, each of which corresponds to a beam splitter. In particu-
lar, we have that 1) in= 0
1/in 1/\/§ 1
M(4)=T,4T14T1,2, (4.17 0
0
where the matrix , , represents the action of a beam splitter 13
that mixes only modep andg. The 4x4 matrix forT, , can )i =
be obtained from that of ax44 identity matrix,|, by replac- SR ENCTE
ing the matrix elementk;, andl 4 by the transmissivity of 0
the beam splittert, replacingl 4 by the reflectivity,r, and
replacinglq, by —r. The transmissivities and reflectivities 0
for beam splitters in Eq4.17) are
| (419
¥3)in= . .
Tos =B, r=—(sy2)"?, v2i3
0

C B
Tia =7, rz—(S\/E)UZK, (4.18

This constitutes a complete description of the optical net-
work that optimally discriminates betweehy,);, and
{l#2)in | ¥3)in}, Where these input states are given in Eq.
(4.12), and it is shown schematically in Fig. 3.

An especially simple network will suffice for our second
example. The input vectors are

032315-8

These input states have the property that

FIG. 3. The eight-port interferometer described by E416)
can be constructed from three beam splitters and a mirror.
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in<¢1| ‘/’2>in: in<¢l| ’p3>in :\/?51

1
in<¢2|¢3>in:§- (4.20

The optimal failure probabilities are found to be=2/3 and
g,=03=1/3. Using Eqgs(3.7) and(3.8) this gives

4

PHYSICAL REVIEW A66, 032315 (2002

1 1
T3'4: t:_ r=——. (425)

V2’ V2

This last example constitutes what is probably the simplest
choice of the set of parameters for a possible experimental
realization.

V. CONCLUSIONS

The usual problem considered when trying to unambigu-

for the minimum average failure probability of this kind of _OUSIV_ d|3ﬁ_r|rE|nate among quantum .stathes IS tok correc:]ly
generalized measurement. This is to be compared to 13/2¥d€ntify which state a given system is in when one knows the

the average failure probability of a von Neumann type pr
jective measurement, from E¢R.26).

o-Set of possible states in which it can be prepared. Here we

have considered a different problem. The set of possible

The output vectors|y;)ou=|#!)+|d;), can again be States is divided into two subsets, and we only want to know
computed by the method outlined previously. Doing so gived® Which subset the quantum state of our given system be-

us
13
0
| lr//l>OUt: O 1
R

0

13
|¢2>0ut_ 1/\/§ ’

13

0

—-1/3
|¥3)out= w3 | (4.22

(13

The matrixM(4) can be chosen to be

12 0 0 —142

0 1 0 0

MB=1 _1 0 1z —12 | ©#28
12 0 12 112
and it can be expressed as
M(4)=T3z4T14. (4.24

In this case, botf; ,andT; 4 represent 50-50 beam splitters,
and they are given explicitly by

longs. As this is a less ambitious task than actually identify-
ing the state, we expect that our probability to be successful
will be greater for attaining this more limited goal.

We considered the simplest instance of this problem, the
situation in which we are trying to discriminate between a set
containing one quantum state and another containing two. A
method for finding the optimal strategy for discriminating
between these two sets was presented, and analytical solu-
tions for particular cases were given. In addition, we have
shown that if the quantum states are single-photon states,
where the photon can be split among several modes, the
optimal discrimination strategy can be implemented by using
a linear optical network.

These ideas can be extended in a number of different
ways. One possibility is to consider the situation in which
one is givenN qubits, each of which is in either the state
|41) of |4,), where these states are not orthogonal. What we
would like to know is how many of the qubits are in the state
|#1). In order to phrase this problem in a way that makes its
connection to the problems considered in this paper clear, we
note that the total set of possible states for this problem con-
sists of 2 stateg(the states are strings df qubits, and this
can be divided up into the subs&s, where the members of
S, are sequences of qubits in whichn are in the statéy).

For a given sequence of qubits, our problem is to determine
to which of the setsS, it belongs. Another possibility is to
use these methods to compare strings of qubits in order to
find out if they are identical or not. Again, suppose that we
have strings ofN qubits in which each qubit is in one of the
two nonorthogonal statej,) or |#,). We are given two of
these strings and want to know if they are the same or not. In
this case, our set of possible states consists of pairs of
strings, and hence hag"2members. This is divided into two
subsets, the firstS.q,a, consisting of pairs of identical
N-qubit strings (2 membery and its complementSe qyal,
consisting of everything else. Our task, when given two se-
quences oN qubits, is to decide if they are iBeqy, OF in

Sequal [18]. More detailed consideration of these problems
remains for future research.
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APPENDIX: DERIVATION OF THE OPTIMAL SOLUTION
VIA THE METHOD OF LAGRANGE MULTIPLIERS

In this appendix, we shall show that by using the method
of Lagrange multipliers, we can derive the conclusions con-

tained in Eqs(2.23—(2.28) rigorously, starting from the fact
that for optimal discrimination, the vectofg;) must be lin-

early dependent. To express this statement in a compact form

we define the positive semidefinite matr® where C;;
=(¢i|¢;). Then, in general, if¢;)(i=1, ... n) are linearly
dependent, the determinant of matr®x must vanish,A
=det(C) =0 [13]. With the help of Eqs(2.5 and(2.7), we
can eliminate two of the three overlaps from the matix
and obtain explicitly

q1 O, Ogs

A=|O01, g, re”
* —i0

13 re’! ds

=0109203— r2Q1_ |013|ZQZ— |012|2Q3

+2|012||013|I’COE(0—01)=O. (Al)

Here O;; again denotesyi|y;), re'’=(¢,|¢s) is the re-
maining overlap whereandé are to be determined from the
conditions for optimum, and:= —arg(0,,075). SinceC is
positive semidefinite, all the diagonal subdeterminanta of
must be non-negative.

We now wish to minimize the average probability of fail-
ure Q, Eqg. (2.1), subject to the constraint in EAL). This
can be done by minimizing the quantity

3
QZZ 710t NA, (A2)
where\ is a Lagrange multiplier. The conditions for mini-

mum with respect to and 6, 9Q/dr =0 anddQ/96=0, lead
immediately to
|01,]|O14cog 6—a)—qyr =0, (A3)

r/012][O14sin(6—a)=0. (A4)

equations:

0:A=A1,A43=0, (A7)

JQ
Qia_qlz 7105+ N(A 1A 13+]0192A 13+]0152A 1) =0,
(A8)
JQ
Er 72+ NA13=0, (A9)
Q
——=n3tNA1p,=0, (A10)

J03
whereA ;, and A 5 are the diagonal subdeterminantsAgf

A15=010,—]014%, (A11)

A13=0103—|043% (A12)

We now have four variableg;,q,,q3, and\, and four
equations, Eqs(A7)—(A10), to find them. Equation A7)
tells us that at least one of the diagonal subdeterminants
vanishes. With no loss of generality we can assume this to be
A,,=0. Comparing this to EqA10) we see thakh must be
singular. The singularity, however, is tractable since the same
equation tells us that the produxi\,, is finite. Then it fol-
lows from the singular behavior of and Eq.(A9) that the
other diagonal subdeterminant also vanisides= 0, but the
productA A4, also remains finite. Using these finite values
from Egs.(A9)—(A10) in Eqg. (A8), we can summarize our
findings as follows:

A1p=A43=0, (A13)
which is just Eq.(2.8), and
7105~ 172|014 %~ 73| 0192+ NA A 13=0.  (A14)

Multiplying Eq. (A9) by A4, [or Eq. (A10) by A;4 and
taking into account EqA13) gives that the singularity i
is such that A 1,A 13=0. Using this in Eq(A14) we finally
obtain

The solutions of these equations, corresponding to the mini-

mum of Q, are
(A5)

0=«

and

7105 — 172|014 ?— 73| O14%=0. (A15)

This is the solution found in Sec. I, EQR.11), and the rest
of Sec. Il follows from here and EqA13).
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For the sake of completeness we also give the expressiomhich exhibits no singularity. In fact, =0 when A,

for 1/\, =A,3=0, as expected. Finally, let us note that E413),
which is identical to Eq(2.8), implies that all of the failure
1:_ /A12A13 (A16) vectors,|¢;), are parallel to each other, i.e., they lie in a
A nom3 space,A4, of dimension one.
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