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Optimum unambiguous discrimination between subsets of nonorthogonal quantum states
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It is known that unambiguous discrimination among nonorthogonal but linearly independent quantum states
is possible with a certain probability of success. Here, we consider a variant of that problem. Instead of
discriminating among all of the different states, we shall only discriminate between two subsets of them. In
particular, for the case of three nonorthogonal states,$uc1&,uc2&,uc3&%, we show that the optimal strategy to
distinguishuc1& from the set$uc2&,uc3&% has a higher success rate than if we wish to discriminate among all
three states. Somewhat surprisingly, for unambiguous discrimination the subsets need not be linearly indepen-
dent. A fully analytical solution is presented, and we also show how to construct generalized interferometers
~multiport! which provide an optical implementation of the optimal strategy.
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I. INTRODUCTION

According to the quantum theory of measurement, it
impossible to unambiguously discriminate between non
thogonal quantum states with unit success probability.
however, we settle for less and do not require that we s
ceed every time, then unambiguous discrimination beco
possible. This procedure uses a nonunitary operation
maps the nonorthogonal states onto orthogonal ones,
these can then be discriminated without error using a s
dard von Neumann measurement. Although such an op
tion will always have a certain probability of failure, we ca
always tell whether or not the desired transformation
succeeded. This allows us to achieve unambiguous discr
nation. When the attempt fails, we obtain an inconclus
answer. The optimal strategy for accomplishing this is
one that minimizes the average probability of failure.

The problem of unambiguously distinguishing betwe
two nonorthogonal states was first considered by Ivano
@1#, and then subsequently by Dieks@2# and Peres@3#. These
authors found the optimal solution when the two states
being selected from an ensemble in which they are equ
likely. The optimal solution for the situation in which th
states have different weights was found by Jaeger and
mony @4#. We proposed an optical implementation of t
optimal procedure along with a more compact rederivat
of the general results and also showed that the metho
useful in other areas of quantum information processing@5#
such as, for example, entanglement enhancement@6#. State
discrimination measurements have been performed in la
ratory, first by Huttneret al. @7# and, more recently, by
Clarkeet al. @8#. Both used the polarization states of photo
to represent qubits. The case of three states was examine
Peres and Terno@9#. It was subsequently extended to th
general problem of discriminating amongN states. Chefles
@10# found thatN nonorthogonal states can be probabilis
cally discriminated without error if and only if they are lin
early independent. Chefles and Barnett@11# solved the case
in which the probability of the procedure succeeding is
same for each of the states. Duan and Guo@12# considered
general unitary transformations and measurements on a
1050-2947/2002/66~3!/032315~11!/$20.00 66 0323
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bert space containing the states to be distinguished an
ancilla, which would allow one to discriminate amongN
states, and derived matrix inequalities which must be sa
fied for the desired transformations to exist. In our previo
paper@13#, we presented the necessary conditions for o
mal unambiguous discrimination and used them to deriv
method for implementing the optimal solution. For the ca
of three states, we presented optical networks that acc
plish this. One can also consider what happens if the
crimination is not completely unambiguous, i.e., if it is po
sible for errors to occur, and this was done by Chefles
Barnett@14#. For an overview of the state of the art on sta
discrimination see the excellent recent review by Che
@15#.

In these works discrimination among all of the states w
considered. In the present paper, we consider a variant of
problem. Instead of discriminating among all states, we
what happens if we just want to discriminate between sub
of them. A motivation to consider this variant comes from
application to comparing strings of qubits in order to find o
if they are identical or not, which is certainly one of the bas
tasks in quantum information processing. In particular,
there are three nonorthogonal states,$uc1&,uc2&,uc3&%, we
wish to find the optimal strategy to unambiguously dist
guishuc1& from the set$uc2&,uc3&%. We refer to this problem
as unambiguous quantum state filtering. In this context
should note that recently an analytical solution has b
found to the following closely related problem. Instead
unambiguously distinguishing between two complement
subsets of an arbitary numberN of nonorthogonal quantum
states, occupying a two-dimensional Hilbert space, errors
allowed but the probability of erroneously assigning the st
to one of the substes is minimized@16#. The term ‘‘quantum
state filtering’’ has been introduced there for the case w
one of the subsets contains one state and the other con
all of the remainingN21 states. Here, we shall present t
analytical solution for the case of the other possible discr
nation strategy, namely, that of unambiguous quantum s
filtering.

The paper is divided into six sections. In Sec. II, based
simple but rigorous arguments, we present the optimal a
©2002 The American Physical Society15-1
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lytical solution to the problem. In Sec. III, we compare the
optimal failure probabilities for two different procedure
discrimination betweenuc1& and $uc2&,uc3&% and discrimi-
nation among all three states. We find that the failure pr
ability for the first procedure is smaller than that for t
second. In Sec. IV, we propose a possible experime
implementation using the method proposed in our previ
paper@13#, which uses a single-photon representation of
quantum states and an optical multiport together with pho
detection at the output ports to implement the procedure
brief discussion and conclusions are given in Sec. V. Fina
in the Appendix, we present an alternative derivation, ba
on the method of Lagrange multipliers, to obtain the resu
of Sec. II. The method closely parallels the techniques u
for unambiguous discrimination between all states.

II. DERIVATION OF THE OPTIMAL SOLUTION

Suppose we are given a quantum system prepared in
stateuc&, which is guaranteed to be a member of the se
three nonorthogonal states$uc1&,uc2&,uc3&%, but we do not
know which one. We want to find a procedure which will te
us thatuc& was prepared inuc1&, or will tell us thatuc& was
prepared in one of$uc2&,uc3&%. That is, the procedure ca
distinguishuc1& from $uc2&,uc3&%. We also want this proce
dure to be error free, i.e., the procedure may fail to give
any information about the state, and if it fails, it must let
know that it has, but if it succeeds, it should never give u
wrong answer. We shall refer to such a procedure as quan
state filtering without error. We find that, in contrast to t
unambiguous state discrimination problem, this will be p
sible even if uc1& is not linearly independent from the s
$uc2&,uc3&%.

If the states are not orthogonal then, according to
quantum theory of measurement, they cannot be discr
nated perfectly. In other words, if we are givenuc i&, we will
have some probabilitypi to determine what it is successfull
and, correspondingly, some failure probability,qi512pi , to
obtain an inconclusive answer. If we denote byh i the a
priori probability that the system was prepared in the st
uc i&, the average probabilities of success and of failure
distinguish the statesuc i& are

P5(
i

h i pi ,

Q5(
i

h iqi , ~2.1!

respectively. Our objective is to find the set of$pi% that
maximizes the probability of success,P.

The procedure we shall use is a ‘‘generalized meas
ment,’’ which can be described as follows. LetK denote a
total Hilbert space, which is the direct sum of two subspac
K5H% A. The spaceH is a three-dimensional space th
contains the vectorsuc i&, andA is an auxiliary space. The
input state of the system is one of the vectorsuc i&, which is
now a vector in the subspaceH of the total spaceK, so that
03231
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uc i
K& in5uc i

H&. ~2.2!

A unitary transformation,U, which acts in the entire spaceK
is now applied to the input vector, resulting in the sta
uc i

K&out , which is given by

uc i
K&out5uc i8

H&1uf i
A&5Uuc i

K& in , ~2.3!

where, in our case,uc18& can always be unambiguously dis
tinguished from the set$uc28&,uc38&%. Then a measurement i
performed onuc i

K&out that projectsuc i
K&out either ontouc i8&

or uf i& ~by construction, they are in orthogonal subspace!.
If it projects uc i

K&out onto uc i8&, the procedure succeeds, b
causeuc18& can always be distinguished from$uc28&,uc38&%.
The probability to get this outcome, if the input state isuc i&,
is

pi5^c i8uc i8&. ~2.4!

If the measurement projectsuc i
K&out onto uf i&, the procedure

fails. The probability of this outcome is

qi512pi5^f i uf i&. ~2.5!

The nature of the problem we are trying to solve impos
a number of requirements on the output vectors. The co
tion thatuc18& be distinguishable fromuc28& anduc38& requires
that

^c18uc28&5^c18uc38&50. ~2.6!

These lead to conditions on the failure vectors,uf i&. Taking
the scalar product betweenuc1

K&out and the other two outpu
states and using Eq.~2.6! and the fact thatU is unitary leads
to the conditions

^f1uf2&5^c1uc2&,

^f1uf3&5^c1uc3&. ~2.7!

Our objective is to find the optimaluc i8& and uf i& which
satisfy Eqs.~2.4!–~2.7! and also give the maximum succe
probability P.

Let us now consider the failure vectors. If they were li
early independent, we could apply a state discrimination p
cedure to them@10#. That means that if our original proce
dure fails, and we end up in the failure space,A, then we
still have some chance of determining what our input st
was. This clearly implies that our original procedure, whi
led to the vectorsuc8&, was not optimal, because that proce
followed by another on the failure vectors would lead to
higher probability of distinguishinguc1& from uc2& anduc3&.
Therefore, the optimal procedure should lead to failure v
tors to which we cannot successfully apply a state discri
nation procedure, implying that they are linearly depende
In fact, we will now prove that for optimal discrimination
they must be collinear, by demonstrating that the contr
leads to contradiction. To this end, we assume that we h
achieved optimal unambiguous discrimination ofuc1& from
uc2& and uc3& but the failure vectors arenot collinear. Then
5-2
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at least one of the two failure vectors,uf2&,uf3&, will have a
component in the direction that is perpendicular touf1&. We
can set up a detector projecting onto this direction an
positive outcome of the measurement~a click of the detector!
will tell us that our input state was notuc1& but one of the
other two states. Thus, contrary to our assumption that
procedure has been optimal, further distinction is possi
Hence, the failure vectors must be collinear for optimal d
crimination.

We shall now explore the consequences of this con
sion. Sinceuf i&( i 51, . . . ,n) are collinear, the failure space
A, is one dimensional. Ifuu& is the basis vector spanning th
Hilbert space we can write the failure vectors asuf i&
5Aqie

ix i uu&. Substituting this representation of the failu
vectors into Eq.~2.7!, we find that

q1q25u^c1uc2&u2,

q1q35u^c1uc3&u2. ~2.8!

These two conditions are a consequence of unitarity and
ply that only one of the three failure probabilities can
chosen independently. If we choseq1 as the independent on
we can express the other two asq25u^c1uc2&u2/q1 and q3
5u^c1uc3&u2/q1. If we introduce the notationOi j 5^c i uc j&
then, with the help of these two equations, the average
ure probability can be written explicitly as

Q5(
i

h iqi

5h1q11
h2uO12u21h3uO13u2

q1
. ~2.9!

If we further introduce the notationA5h2uO12u21h3uO13u2
for the frequently occuring average overlap then, from
condition

dQ

dq1
50, ~2.10!

we find the optimal value ofq1 to be

q15AA/h1. ~2.11!

This value, however, cannot always be realized. For i
be true, there must be a unitary transformation, from
~2.3!, that takesuc j& to uc j&out which, together with the one
dimensionality of the failure space yields

uc j&out5uc j8&1Aqj ueix j uu&. ~2.12!

Here we have that̂c j8uu&50, ^c18uc j8&50 for j 52,3, and
the phase factors are fixed by the requirement@cf. Eq. ~2.7!#
that

^c1uc j&5Aq1qje
i (x j 2x1) ~2.13!

for j 52,3. These equations imply that

^c j8uck8&5^c j uck&2Aqjqke
i (xk2x j ). ~2.14!
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This set of equations can only be true if the matrixM, where

M jk5^c j uck&2Aqjqke
i (xk2x j ), ~2.15!

is positive semidefinite, as discussed in detail in Ref.@13#.
Using againOjk5^c j uck&, M can be expressed as

M5S 12q1 0 0

0 12
uO12u2

q1
O232

O21O13

q1

0 O322
O31O12

q1
12

uO13u2

q1

D .

~2.16!

Clearly, this matrix will be positive semidefinite if 0<q1
<1, and if the 232 submatrix is also positive semidefinite
This will be true if both the trace and determinant of t
submatrix are greater than or equal to zero. Positivity
quires that the diagonal matrix elements of the submatrix
non-negative, so that it must be true thatq1>uO12u2 andq1
>uO13u2. Without loss of generality, we can assume th
uO12u>uO13u by simply arranging the states in set 2 in th
order of decreasing overlaps withuc1&. Doing so and impos-
ing the condition thatq1>uO12u2 guarantees that the cond
tion q1>uO13u2 is also satisfied, and together they imply th
the trace is greater than or equal to zero.

The condition that the determinant be non-negative gi
us a lower bound onq1,

q1>
uO12u21uO13u22~O12O23O311O13O32O21!

12uO23u2
.

~2.17!

We want to interpret this inequality, in particular, we want
find what the right-hand side~rhs! is equal to. In order to do
so, we shall find the projection operator,P23, that projects
onto the subspace spanned byuc2& and uc3&. One of the
basis vectors in this subspace can be chosen to beuc2& and,
using the Gram-Schmidt orthogonalization method, the ot
is defined as the~normalized! orthogonal component ofuc3&,

uc̃3&5
1

A12uO23u2
~ uc3&2O23uc2&). ~2.18!

This leads to

P235uc2&^c2u1uc̃3&^c̃3u. ~2.19!

Let us represent the input state,uc1&, asuc1&5uc1
'&1uc1

i &,
where uc1

'&5(12P23)uc1& is the component of the inpu
vector that is perpendicular to the subspace spanned byuc2&
and uc3& and uc1

i &5P23uc1& is the component in that sub
space. Then, using Eqs.~2.18! and ~2.19!, the explicit ex-
pression for the parallel component is given by

uc1
i &5

O212O23O31

12uO23u2
uc2&1

O312O32O21

12uO23u2
uc3&].

~2.20!
5-3
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Calculating the norm of this expression yields

^c1
i uc1

i &5
uO12u21uO13u22~O12O23O311O13O32O21!

12uO23u2
,

~2.21!

which is identical to the right-hand side of Eq.~2.17!.
Thus, Eq.~2.17! tells us that the failure probability,q1,

has a lower bound which is given by the weight ofuc1& in
the other subspace,iP23c1i25^c1uP23uc1&5^c1

i uc1
i &, a re-

sult that is intuitively obvious. Clearly, this expression
larger than~or at most equal to! uO12u2. This implies that,
becauseq25uO12u2/q1, we have

q2<
uO12u2

^c1
i uc1

i &
5

uO12u2

uO12u21u^c̃3uc1&u2
<1, ~2.22!

and similarly forq3.
We can then distinguish three different regimes of

parameters. If the rhs of Eq.~2.11! is greater than 1 then
q151, if it is less than̂ c1

i uc1
i & then q15^c1

i uc1
i &, and in

the intermediate range the optimum given by Eq.~2.11! is
realized. This can be summarized as follows.

~i! If h1u^c1
i uc1

i &u2<A<h1, then

q15AA/h1,

q25Ah1 /AuO12u2,

q35Ah1 /AuO13u2, ~2.23!

yielding the average failure probability

Q52Ah1A. ~2.24!

~ii ! If A>h1, then

q151,

q25uO12u2,

q35uO13u2. ~2.25!

yielding the average failure probability

Q5h11A. ~2.26!

~iii ! If A<h1u^c1
i uc1

i &u2, then

q15^c1
i uc1

i &,

q25
uO12u2

^c1
i uc1

i &
,

q35
uO13u2

^c1
i uc1

i &
, ~2.27!

yielding the average failure probability
03231
e

Q5h1^c1
i uc1

i &1
A

^c1
i uc1

i &
. ~2.28!

Equations~2.23!–~2.28! summarize our main results. I
the intermediate range of the average overlap,A, the optimal
failure probability, Eq.~2.24!, is achieved by a generalize
measurement or positive operator valued measurem
~POVM!. Outside this region, for very large average overla
A>h1, or very small average overlap,A<h1u^c1

i uc1
i &u2, the

optimal failure probabilities, Eqs.~2.26! and~2.28!, are real-
ized by standard von Neumann measurements. For very l
A the optimal von Neumann measurement consists of pro
tions ontouc1& and two orthogonal directions whose dire
tionality needs not be specified further. A click alonguc1&
corresponds to failure because it can have its origin in an
the two subsets and a click in the orthogonal directio
uniquely assigns the input state to the set$uc2&,uc3&%. For
very smallA the optimal von Neumann measurement co
sists of projections ontouc1

i & and two orthogonal directions
that are uniquely determined by the requirement that t
correspond to two mutually exclusive alternatives. One
them is ontouc1

'& and the other onto the remaining orthog
nal direction in the subspace of$uc2&,uc3&%. A click along
uc1

i & corresponds to failure because it can originate from a
of the input states while a click in any of the alternati
directions unambiguously assigns the input to one or
other of the two mutually exclusive subsets. It is interest
to observe that the failure space is one dimensional for e
of the three different optimal measurements in the three
ferent regions. At the boundaries of their respective regi
of validity, the optimal measurements transform into one
other continuously. Furthermore, each of the two von N
mann expressions can be written as the arithmetic mea
two terms and the POVM result as the geometric mean of
same two terms. Therefore, in its range of validity t
POVM performs better than any von Neumann measu
ment.

In closing this section we want to point out an interesti
feature of the solution. The results hold true even when th
is no perpendicular component of the first input state,uc1

'&
50, i.e., it lies entirely in the Hilbert space spanned by t
other two vectors or, in other words, the two sets are linea
dependent. In this case the two von Neumann measurem
coincide and the range of validity of the POVM solutio
shrinks to zero. A click in the detector along the first inp
vector corresponds to failure—it might originate from eith
of the two subsets—and a click in the detector along
single direction orthogonal to it unambiguously identifies t
set of the other two vectors.

An alternative derivation of the above results, which
based on the method of Langrange multipliers, is given in
Appendix.

III. COMPARISON TO THE CASE WHEN ALL STATES
ARE DISCRIMINATED

In this section we want to compare the average proba
ity of failure Q of the filtering problem to that of distinguish
ing all three states. LetQ8 denote the average probability o
5-4
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failure for distinguishing all the states$uc1&,uc2&,uc3&%. We
can see immediately, that the probability of failure to dist
guish uc1& from $uc2&,uc3&%, Q, should be no larger than
Q8. For the latter problem, the necessary condition
achieving optimal discrimination is

U q1 O12 O13

O12* q2 O23

O13* O23* q3

U50. ~3.1!

When comparing this equation to Eq.~A1!, we see that, in-
stead of a given constantO23 that appears in Eq.~3.1!, there
are the variablesr and u in Eq. ~A1!. These variables are
chosen to minimize the average probability of failureQ.
Therefore,Q should be no larger thanQ8, Q<Q8.

To illustrate this point, we use a simple symmetric ca
where all of the overlaps between the states are real
equal,

^c1uc2&5^c1uc3&5^c2uc3&5s, ~3.2!

with 0,s,1. We shall also assume that thea priori prob-
abilities are equal for all the examples in this paper. Fr
previous work we know that in this case, the optimal valu
of the failure probabilities when we wish to distinguis
among all of the states$uc1&,uc2&,uc3&% are qi5s, which
implies thatQ85s @13#.

For the problem of distinguishinguc1& from $uc2&,uc3&%,
from the results of Eqs.~2.23! and ~2.25!, we have~i! if 0
,s<A2/2, then

q15A2s,

q25q35
A2

2
s,

Q5
2A2

3
s. ~3.3!

So the average probability of failureQ is less thanQ85s;
~ii ! if A2/2,s,1, then

q151,

q25q35s2,

Q5
1

3
1

2

3
s2. ~3.4!

These solutions are illustrated and compared toQ8 in Fig. 1.
Note that in both cases we have thatQ,s5Q8.

Now we shall compare filtering to the problem of disti
guishing two states$uc1&,uc2&%, when all thea priori prob-
abilities are equal. If we denote byQ9 the average probabil
ity of failure when distinguishing between the two stat
$uc1& anduc2&%, we know thatQ95uO12u ~Refs.@1–4#!. For
the case we are considering,uO12u5uO13u5s, and we see
that Q,Q9.
03231
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A second example is more illuminating. The overlaps a
now given by

^c1uc2&5^c1uc3&5s1 ,

^c2uc3&5s2 , ~3.5!

where, for simplicity,s1 ands2 are real, 0,s1 ,s2,1, and

0,s1,
A2

2
, s1

2,s2 , ands1,2s2 . ~3.6!

The probabilities of failure for discriminatinguc1& from
$uc2&,uc3&% are

q15A2s1 ,

q25q35
A2

2
s1 , ~3.7!

and the average failure probability is

Q5
2A2

3
s1 . ~3.8!

The optimal probabilities of failure for discriminating amon
all three states$uc1&,uc2&,uc3&% are given by@13#

q185
s1

2

s2
,

q285q385s2 ,

Q85
1

3
@~s1

2/s2!12s2#. ~3.9!

Q can be compared toQ8 by examining the ratio

Q

Q8
5

2A2s1s2

s1
212s2

2
<1. ~3.10!

FIG. 1. We compareQ andQ8. For 0,s<A2/2 we have that
Q85s and Q5(2A2/3)s. For A2/2,s<1, we still have thatQ8
5s, but Q5

1
3 1

2
3 s2. Note thatQ is always smaller thanQ8.
5-5
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From the above equation, we see that whens1 is much
smaller thans2 , Q is much smaller thanQ8. For example,
whens15A2/5, s25 4

5 , Q/Q850.47.

IV. OPTICAL REALIZATION

Now we shall present a scheme for a possible experim
tal realization of the optimal discrimination betweenuc1&
and $uc2&,uc3&%. The method is similar to the one we pro
posed in a previous publication@13#. We shall use single-
photon states to represent the input and output states, an
optical eight-port interferometer together with photon det
tors placed at the output ports to realize the unitary trans
mation and subsequent measurements.

Our states will be a single-photon split among seve
modes. Each mode will serve as an input to an optical eig
port interferometer. Recall that the dimension of the to
Hilbert space is four, so we shall require four modes, and
input statesuc i& will be represented by single-photon stat
as

uc i&5(
j 51

4

di j â j
†u0&, ~4.1!

where( j 51
4 udi j u251, andâ j

† is the creation operator for th
j th mode. We shall requiredi450 for i 51,2,3, that is, the
initial single-photon state is sent to the first three input po
and the vacuum into the fourth input port. The first thr
modes correspond to the space,H, containing the states to b
distinguished and the fourth mode to the failure space,A.

In general, an optical 2N-port interferometer is a lossles
linear device withN input ports andN output ports. Its action
on the input states can be described by a unitary oper
U2N , and physically it consists of an arrangement of be
splitters, phase shifters, and mirrors. Since the dimensio
the input and output states is four, here we shall use an e
port interferometer~see Fig. 2!. If we denote the annihilation
operators corresponding to the input modes of the eight-
interferometer byaj , j 51, . . . ,4, then the output operator
are given by

ajout5U21ajU5 (
k51

4

M jkak , ~4.2!

FIG. 2. An optical eight-port interferometer. The beams a
straight lines, a suitable beam splitter is placed at each point w
two beams intersect, phase shifters are at one input of each b
splitter and at each output.
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whereM jk are the elements of a 434 unitary matrixM (4).
In the Schro¨dinger picture, thein and out states are related
by

uc&out5Uuc& in . ~4.3!

It can be shown@13# that when using single-photon state
representation, the matrix elementMil is the same as the
matrix element ofU between the single-particle statesu i &
5ai

†u0& and u l &5al
†u0&, i.e.,

^ i uUu l &5Mil . ~4.4!

To design the desired eight-port interferometer, we fi
calculate the optimal value ofqi . Then from Eq.~2.5! and
the fact that our failure space is one dimensional, the vec
uf i& are given by

uf i&5Aqi u1A&5Aqia4
†u0&, ~4.5!

where the stateu1A& denotes one-photon state in the failu
space, which is just one photon in mode 4. Once the vec
uf i& are determined, the inner productŝc i8uc j8& ( i , j
51,2,3) are given by

^c i8uc j8&5^c i uc j& in2^f i uf j&. ~4.6!

We then have to find vectorsuc i8& that satisfy this equation
The answer is not unique, and one way of proceeding is
following. If we define the Hermitian matrixL to be

Li j 5^c i uc j& in2^f i uf j&, ~4.7!

then we note from Eq.~2.7! that L125L1350. This implies
that the simplest choice foruc18& is a vector with only one
nonzero component. Then the vectorsuc28& and uc38& will
have nonzero components in only their other two places.
obvious choice is

uc18&5S Ap1

0

0

0

D . ~4.8!

In this column vector, the first entry is the amplitude of t
photon to be in mode 1, the second is the amplitude to b
mode 2, etc. Mode 4 corresponds to the failure space,A.
The vectorsuc28& and uc38& will have nonzero components i
only their second and third places, and if their overlap is re
we can choose

uc28&5S 0

Ap2cosu

Ap2sinu

0

D , uc38&5S 0

Ap3cosu

2Ap3sinu

0

D , ~4.9!

where

re
am
5-6
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u5
1

2
cos21S L23

Ap2p3
D . ~4.10!

This simple choice works for the last example in this sect
@see Eq.~4.22!, below#. For the first, somewhat more gen
eral, example we are forced to choose the second compo
of uc18& to be nonzero and then the first and third compone
of the other two success vectors are different from zero. T
can be obtained by simply interchanging the first and sec
components in the above expressions of the vectorsuc i8& @see
Eq. ~4.13!, below#.

Once we have the input and output vectors, the unit
transformation,U, which maps the input states onto the ou
put states then can be chosen, and this, as shown by
~4.4!, gives the explicit form ofM (4). Furthermore,M (4)
can be factorized as a product of two-dimensionalU(2)
transformations@13,17#, and anyU(2) transformations can
be implemented by a lossless beam splitter and a ph
shifter with appropriate parameters. A beam splitter with
phase shifter at one output port transforms the input op
tors into output operators as

S a1

a2
D

out

5S eif sinv eif cosv

cosv 2sinv
D S a1

a2
D

in

, ~4.11!

wherea1 ,a2 are the annihilation operators of modes 1 and
respectively,v describes the reflectivity and transmittance
the beam splitter, andf describes the effect of the phas
shifter ~in the factorization method given by Recket al. @17#,
the phase shifters described byf should be placed at th
input ports!. Therefore, we can use appropriate beam sp
ters, phase shifters, and a mirror to construct the des
eight-port interferometer.

Finally, photon detection is performed at the four outp
ports. We can design the total transformation in such a w
that if the photon is detected at the first output port, we cla
with certainty that the initial state wasuc1&, if the photon is
detected at the second or the third output port, we claim w
certainty that the initial state was eitheruc2& or uc3&, but we
do not know which of these two states it was. If the photon
detected at the fourth output port, we obtain no informat
about the input state.

We shall now consider two examples. The first is mo
general than the second, but the second has the adva
that it is simple and the eight-port interferometer that it
quires consists of only two 50-50 beam splitters. In the fi
example, all of the input vectors have the same over
which is given bys, and we shall consider the case 0,s
<1/A2. The optimal failure probabilities for this case a
given in Eq.~3.3!. For the input vectors we shall take

uc1& in5S 1

A3
~112s!1/2

A2

3
~12s!1/2

0

0

D ,
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uc2& in5S 1

A3
~112s!1/2

2
1

A6
~12s!1/2

1

A2
~12s!1/2

0

D ,

uc3& in5S 1

A3
~112s!1/2

2
1

A6
~12s!1/2

2
1

A2
~12s!1/2

0

D . ~4.12!

The output vectors,uc i&out5uc i8&1uf i&, can be computed
by the method outlined above. Doing so gives us

uc1&out5S 0

~12A2s!1/2

0

~sA2!1/2

D ,

uc2&out5S @~11s2sA2!/2#1/2

0

@~12s!/2#1/2

~s/A2!1/2

D ,

uc3&out5S @~11s2sA2!/2#1/2

0

2@~12s!/2#1/2

~s/A2!1/2

D . ~4.13!

Our next step is to determine the transformationU that de-
scribes the eight-port interferometer, or, more specifica
the matrixM (4) that describes its action in the one-phot
subspace. It must satisfyuc i&out5Uuc& in , and, in addition, it
must map the vector that is orthogonal to all three inp
vectors, onto the vector that is orthogonal to all three out
vectors,
5-7
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1

A S 2~sA2!1/2B

2~sA2!1/2C

0

BC

D 5M ~4!S 0

0

0

1

D , ~4.14!

where

A5@~12s!~112s!#1/2,
at
ic

te

s

e

q

d
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B5~12sA2!1/2,

C5~11s2sA2!1/2. ~4.15!

These equations determineM (4) and it is given by
M (4)5
S A2

3

C

A112s
2

C

A3~12s!
0 2

B

A
~sA2!1/2

B

A3~112s!
A2

3

B

A12s
0 2

C

A
~sA2!1/2

0 0 1 0

~A211!~sA2!1/2

A3~112s!

~A221!~sA2!1/2

A3~12s!
0

BC

A

D . ~4.16!
This matrix can be expressed as the product of three m
ces, each of which corresponds to a beam splitter. In part
lar, we have that

M ~4!5T2,4T1,4T1,2, ~4.17!

where the matrixTp,q represents the action of a beam split
that mixes only modesp andq. The 434 matrix forTp,q can
be obtained from that of a 434 identity matrix,I, by replac-
ing the matrix elementsI pp and I qq by the transmissivity of
the beam splitter,t, replacingI pq by the reflectivity,r, and
replacingI qp by 2r . The transmissivities and reflectivitie
for beam splitters in Eq.~4.17! are

T2,4: t5B, r 52~sA2!1/2,

T1,4: t5
C

A
, r 52~sA2!1/2

B

A
, ~4.18!

T1,2: t5A2~12s!

3
, r 52A112s

3
.

This constitutes a complete description of the optical n
work that optimally discriminates betweenuc1& in and
$uc2& in ,uc3& in%, where these input states are given in E
~4.12!, and it is shown schematically in Fig. 3.

An especially simple network will suffice for our secon
example. The input vectors are
ri-
u-

r

t-

.

uc1& in5S A2/3

0

1/A3

0

D ,

uc2& in5S 0

1/A3

A2/3

0

D ,

uc3& in5S 0

21/A3

A2/3

0

D . ~4.19!

These input states have the property that

FIG. 3. The eight-port interferometer described by Eq.~4.16!
can be constructed from three beam splitters and a mirror.
5-8
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in^c1uc2& in5 in^c1uc3& in5
A2

3
,

in^c2uc3& in5
1

3
. ~4.20!

The optimal failure probabilities are found to beq152/3 and
q25q351/3. Using Eqs.~3.7! and ~3.8! this gives

Q5
4

9
, ~4.21!

for the minimum average failure probability of this kind o
generalized measurement. This is to be compared to 13
the average failure probability of a von Neumann type p
jective measurement, from Eq.~2.26!.

The output vectors,uc i&out5uc i8&1uf i&, can again be
computed by the method outlined previously. Doing so giv
us

uc1&out5S 1/A3

0

0

A2/3

D ,

uc2&out5S 0

1/A3

1/A3

1/A3

D ,

uc3&out5S 0

21/A3

1/A3

~1/A3

D . ~4.22!

The matrixM (4) can be chosen to be

M ~4!5S 1/A2 0 0 21/A2

0 1 0 0

21/2 0 1/A2 21/2

1/2 0 1/A2 1/2

D , ~4.23!

and it can be expressed as

M ~4!5T3,4T1,4. ~4.24!

In this case, bothT1,4 andT3,4 represent 50-50 beam splitter
and they are given explicitly by

T1,4: t5
1

A2
, r 52

1

A2
,

03231
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T3,4: t5
1

A2
, r 52

1

A2
. ~4.25!

This last example constitutes what is probably the simp
choice of the set of parameters for a possible experime
realization.

V. CONCLUSIONS

The usual problem considered when trying to unambi
ously discriminate among quantum states is to corre
identify which state a given system is in when one knows
set of possible states in which it can be prepared. Here
have considered a different problem. The set of poss
states is divided into two subsets, and we only want to kn
to which subset the quantum state of our given system
longs. As this is a less ambitious task than actually ident
ing the state, we expect that our probability to be succes
will be greater for attaining this more limited goal.

We considered the simplest instance of this problem,
situation in which we are trying to discriminate between a
containing one quantum state and another containing tw
method for finding the optimal strategy for discriminatin
between these two sets was presented, and analytical
tions for particular cases were given. In addition, we ha
shown that if the quantum states are single-photon sta
where the photon can be split among several modes,
optimal discrimination strategy can be implemented by us
a linear optical network.

These ideas can be extended in a number of differ
ways. One possibility is to consider the situation in whi
one is givenN qubits, each of which is in either the sta
uc1& of uc2&, where these states are not orthogonal. What
would like to know is how many of the qubits are in the sta
uc1&. In order to phrase this problem in a way that makes
connection to the problems considered in this paper clear
note that the total set of possible states for this problem c
sists of 2N states~the states are strings ofN qubits!, and this
can be divided up into the subsetsSn , where the members o
Sn are sequences ofN qubits in whichn are in the stateuc1&.
For a given sequence of qubits, our problem is to determ
to which of the setsSn it belongs. Another possibility is to
use these methods to compare strings of qubits in orde
find out if they are identical or not. Again, suppose that
have strings ofN qubits in which each qubit is in one of th
two nonorthogonal states,uc1& or uc2&. We are given two of
these strings and want to know if they are the same or no
this case, our set of possible states consists of pairs
strings, and hence has 22N members. This is divided into two
subsets, the first,Sequal, consisting of pairs of identica
N-qubit strings (2N members!, and its complement,S̄equal,
consisting of everything else. Our task, when given two
quences ofN qubits, is to decide if they are inSequal or in
S̄equal @18#. More detailed consideration of these problem
remains for future research.
5-9
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APPENDIX: DERIVATION OF THE OPTIMAL SOLUTION
VIA THE METHOD OF LAGRANGE MULTIPLIERS

In this appendix, we shall show that by using the meth
of Lagrange multipliers, we can derive the conclusions c
tained in Eqs.~2.23!–~2.28! rigorously, starting from the fac
that for optimal discrimination, the vectorsuf i& must be lin-
early dependent. To express this statement in a compact
we define the positive semidefinite matrixC, where Ci j
5^f i uf j&. Then, in general, ifuf i&( i 51, . . . ,n) are linearly
dependent, the determinant of matrixC must vanish,D
5det(C)50 @13#. With the help of Eqs.~2.5! and ~2.7!, we
can eliminate two of the three overlaps from the matrixC
and obtain explicitly

D5U q1 O12 O13

O12* q2 reiu

O13* re2 iu q3

U
5q1q2q32r 2q12uO13u2q22uO12u2q3

12uO12uuO13ur cos~u2a!50. ~A1!

Here Oi j again denoteŝc i uc j&, reiu5^f2uf3& is the re-
maining overlap wherer andu are to be determined from th
conditions for optimum, anda52arg(O12O13* ). SinceC is
positive semidefinite, all the diagonal subdeterminants oD
must be non-negative.

We now wish to minimize the average probability of fa
ure Q, Eq. ~2.1!, subject to the constraint in Eq.~A1!. This
can be done by minimizing the quantity

Q̃5(
i

3

h iqi1lD, ~A2!

wherel is a Lagrange multiplier. The conditions for min
mum with respect tor andu, ]Q̃/]r 50 and]Q̃/]u50, lead
immediately to

uO12uuO13ucos~u2a!2q1r 50, ~A3!

r uO12uuO13usin~u2a!50. ~A4!

The solutions of these equations, corresponding to the m
mum of Q, are

u5a ~A5!

and
03231
I.
-
l

d
-

rm
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q1r 5uO12uuO13u. ~A6!

Next, we perform the optimization with respect to the r
maining variables. Notice that the derivative ofQ̃ with re-
spect tol returns Eq.~A1!. Therefore, we use the optima
values ofr andu in Eq. ~A1! and in the conditions for mini-
mum with respect to the failure probabilities,]Q̃/]qi50 for
i 51,2,3. After some algebra we obtain the following set
equations:

q1D5D12D1350, ~A7!

q1
2 ]Q̃

]q1
5h1q1

21l~D12D131uO12u2D131uO13u2D12!50,

~A8!

]Q̃

]q2
5h21lD1350, ~A9!

]Q̃

]q3
5h31lD1250, ~A10!

whereD12 andD13 are the diagonal subdeterminants ofD,

D125q1q22uO12u2, ~A11!

D135q1q32uO13u2. ~A12!

We now have four variablesq1 ,q2 ,q3, and l, and four
equations, Eqs.~A7!–~A10!, to find them. Equation~A7!
tells us that at least one of the diagonal subdetermina
vanishes. With no loss of generality we can assume this to
D1250. Comparing this to Eq.~A10! we see thatl must be
singular. The singularity, however, is tractable since the sa
equation tells us that the productlD12 is finite. Then it fol-
lows from the singular behavior ofl and Eq.~A9! that the
other diagonal subdeterminant also vanishes,D1350, but the
productlD12 also remains finite. Using these finite valu
from Eqs.~A9!–~A10! in Eq. ~A8!, we can summarize ou
findings as follows:

D125D1350, ~A13!

which is just Eq.~2.8!, and

h1q1
22h2uO12u22h3uO13u21lD12D1350. ~A14!

Multiplying Eq. ~A9! by D12 @or Eq. ~A10! by D13] and
taking into account Eq.~A13! gives that the singularity inl
is such thatlD12D1350. Using this in Eq.~A14! we finally
obtain

h1q1
22h2uO12u22h3uO13u250. ~A15!

This is the solution found in Sec. II, Eq.~2.11!, and the rest
of Sec. II follows from here and Eq.~A13!.
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For the sake of completeness we also give the expres
for 1/l,

1

l
52AD12D13

h2h3
, ~A16!
n,

ys

03231
onwhich exhibits no singularity. In fact, 1/l50 when D12

5D1350, as expected. Finally, let us note that Eq.~A13!,
which is identical to Eq.~2.8!, implies that all of the failure
vectors,uf i&, are parallel to each other, i.e., they lie in
space,A, of dimension one.
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