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Adiabatic creation of entangled states by a bichromatic field designed
from the topology of the dressed eigenenergies
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Preparation of entangled pairs of coupled two-state systems driven by a bichromatic external field is studied.
We use a system of two coupled s;ﬁrparticles that can be translated into a three-state ladder model whose
intermediate state represents the entangled state. We show that this entangled state can be prepared in a robust
way with appropriate fields. Their frequencies and envelopes are derived from the topological properties of the
model.

DOI: 10.1103/PhysRevA.66.032311 PACS nuntber03.67—a, 42.50.Hz, 03.65.Ta

[. INTRODUCTION portant role, due to the small anharmonicity of the system.
The anharmonicity of the equivalent three-level ladder sys-
Entanglement is a key concept in various contemporaryem is determined by the interaction of the spins. It can be in
areas of active research in quantum physics. It explicitlygeneral small enough such that the standard rotating wave
demonstrates the nonlocal character of quantum theory, hagPproximation(RWA), allowing to assign each field to a
ing potential applications in quantum communication, Cryp_unique transition, cannot be applied. In this case one needs to
tography, and computatiofl]. The preparation of an en- take full agcount of the bichrqmatic ef_‘feotsee, e.g., Ref.
tangled state is of great interest for both fundamental an&8))- We will show robust regions of field parameters that
applied reasons. During the last few years various method?ill generate the entangled state by adiabatic passage below
for preparation of entangled states of atomic systems ha\/%nd beyond the standard RWA.

; In Sec. Il, we describe the model of the two-spin system
f th tall : . ) ) .
ksjgztnedrirzogfsed and some of them experimentally demondrlven by a bichromatic external field and how it leads to an

equivalent three-level system. In Sec. lll, we show the result

Although a quantum system can be manipulated by tai ical simulati f hich develon in lat
lored sequences of resonant pulses of precise area, in partic?;f numerical simulations, for which we deveiop In fater sec-

lar, 7 and 7/2 pulses, respectively, for the complete inver- tions a detailed interpretation by constructing adapted effec-

sion and the equal weight coherent superposition, deviationtéve Hamﬂtomgns that take into account the dommatm_g reso-
nt or quasiresonant effects. In Sec. IV, we derive the

from the precise pulse area and from resonance can lead e . :
P P oguet Hamiltonian required to study the system of spins

significant errors. Adiabatic passage techniques provid Iressed by the external fields. Sections V and VI are devoted

much greater robustness against fluctuations in the intera derive relevant effective dressed Hamiltonians for differ-
tion parameters. The stimulated Raman adiabatic passal 2 : , . .
nt regions of parameters, respectively, in the weak field re-

(STIRAP) method[4] has been proposed for the creation of ~. . . !
j : .. gime (below the RWA and in the strong field regimée-
an entangled state of two three-level atoms in a QED cavit ond the RWA. We finally conclude in Sec. VII.

[5] and for A atomic system$6].

In this paper we propose a simple method for entangling
two subsystems driven by pulse-shaped external fields. For
definiteness, we take these to be two identical spins interact-
ing with each other and driven by radio-frequency fields. e consider two-spig- particles of the same gyromag-
This system can be translated in a three-level ladder modeletic ratiox, coupled by a magnetic dipolar interaction. In a
with the intermediate level corresponding to the entangledime-dependent magnetic fieBi(t) =[ B(t),B,(1),B,], the

state[7]. The goal is to populate completely this entangledqamiltonian of this system read# € 1),
state at the end of the pulses by adiabatic passage. The most

efficient couplings are obtained with two near one-photon H(t)=Ho+ uB(t)-(5,+5,), (1)
resonant fields. We will show that unlike in the STIRAP
process, one- and two-photon detunings are required te/here
populate most efficiently the intermediate level. . sz 2z R R N N
We show furthermore that bichromatic effects play an im- Hy=4£S05,-&6(5,:85,-+5,-8S5,,) 2

is the part describing the magnetic dipolar spin-spin interac-
*Email address: sguerin@u-bourgogne. fr tion, with ¢ the magnetic dipolar interaction constas,

"Present address: Institute of Physics, National Academy of Sci-:[ASE .S, S¢] the kth spin operator K=1,2), andS. =S
ences of Ukraine, prospekt Nauky, 46, 06350, Kiev-39, Ukraine. *iS}. We assume that the static magnetic fiBldin the z

Il. THE MODEL: TWO-SPIN SYSTEM
IN EXTERNAL FIELDS

1050-2947/2002/68)/03231111)/$20.00 66 032311-1 ©2002 The American Physical Society



GUERIN, UNANYAN, YATSENKO, AND JAUSLIN PHYSICAL REVIEW A 66, 032311 (2002

direction is strong enough £B,|>|&|) so that the Hamil- We consider the case when the spin system interacts with
tonianH, (2) is justified for this case of identical gyromag- @ constant magnetic field in thedirection and two radio-
netic ratiou. frequency fields of respective frequenciesandw, in the x

We first construct the general equivalent three-level modedlirection,
driven by external fields and next derive the approximate
Hamiltonian that takes into account the bichromatic effects
by improving the standard rotating wave approximation.

We remark that the effective Hamiltonian we obtain in Eq.

(11 Aa;pplfs also to a spin interaction of the fork, B,=0, 60)
=4{S1®S;.

B,=const, (6a)

BX=Ql(t)COS(w1t+ 01)+Qz(t)coiw2t+ 02), (Gb)

where we assume positi¥e; and(),. The state vectop(t)
A. The three-level model is 5(0|)Uti?r)‘ th tpe Sch'l:dinger e(Q)UEEti;)n i(d/dt)¢(:1)
i _ =H_(t) ¢(t) with the HamiltonianH.(t) (5) written in the
In the spin product state spagem);|m),} (m=1.1), basis{||]),]1T7).,|11)}. When the radio-frequency fields
where the statel§ ), and|7), denote, respectively, the spin- are off (8,=0)), we have thus the following energies,
down and spin-up states of th¢h spin, a complete basis of =¢-B,, E;+=—2& andE, =&+ ,. Without loss of
Z [ z

orthonormalized eigenstates Kf is given by generality we assum&<0 and,>0, leading for a strong
_ 3 enough static magnetic fiel, such thatg,= uB,>3|¢| to
[LD=1D4l1)2, (3a a ladder configuratiok || <E;+<E;;, whose anharmonic-
ity is given by
1
We apply near resonant fields,;~E;+—E |, w,~E;;
ITTY=11)alT)2, (30) —E,;+, i.e., with the detuningd; andA,,
1 w;=—3&+ B, A, (83
|11 >EE[H>1|T>2_|T>1H>Z]- (3d)

In this basis, the Hamiltoniafl) with I:|O of Eq. (2) can be

. . B. The bichromatic rotating wave approximation
exactly expressed in the block-matrix form g P

According to the RWA, one can neglect nonresonant

Ho(t) O counter-rotating terms under the conditiang,> (1, ,. The
H(t)= o ol (4)  rotating wave transformation
e_iElit 0 0
where R— 0 GIREL 0 9)
[ 1 7 0 0 e*i(Equlerwz)t
f_,Bz E(ﬂx"'iﬁy) 0
leads to the state vectab(t) =R ¢(t) (whose coefficients
3 1 ) _o 1 ) have thg same absolute values as the oneg afat satisfies
He= E(IBX_ iBy) § E(ﬁx“ﬁy) the Schrdinger equation
1 . d- .~
0 E(ﬁx_lﬁy) &+ B, |a (t)=Hc(t) &(1), (10)

i "5
© with the HamiltoniarH,=R"H.R—i (4R "/4t)R, where only
with B=[Bx.By.B.1=uB. The statg] | T ~) is thus decou- the quasiresonant terms have been kept,
pled from the other states; it describes the evolution of a
spin-0 singlet in a time-dependent magnetic field. This de- 0 O 0
coupling justifies our choice of the basis. The other three g :1 0, 2A, Q,
states|| ), |/ 17), and|17T) are coupled by the transverse €2
(xy) magnetic field. To complete the definition of the prob- 0 Q1 2(A174y)

lem, we suppose that initially the two-spin system is in the 0 e 1), 0
unentangled statg| | ). Our goal is to establish the condi- 1 5 ot
tions leading to the most efficient robust transfer into the T35 € Qs _0 70 |. 11y
entangled statg| ). 0 e %0, 0
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FIG. 1. Diagram of linkage patterns between the three states
showing the different couplings. Note thAt and A, have been 0 05 1 1.5
chosen negative here. 90/5
The frequency FIG. 2. Contour map of population transfer efficierigy() for
varying peak Rabi frequendy,/§ and varying detuning/ (with
0=w1—wpy=—65+A,— A, (120 A=A,=A,) for the sequence 1. White areas correspond to high

efficiency transfer(close to ) to the entangled state. Dark areas

characterizes theoupling ambiguity{8]. Note that the stan- correspond to low efficiency transfélose to 0 to the entangled
dard RWA, for whichQ;,Q,<|4|, corresponds to keeping state|2). The dashed lines separate different regions lab&le,
only the first term in the Hamiltoniafl1) if the field 1(field  and D’, associated with different effective Hamiltonians con-
2) is resonant with the 1-2 transitid@-3 transition. The full  structed in Secs. V and VI. The regimes of good population transfer
Hamiltonian |Z|C allows both fields to couple the two transi- are bounded by full lines predicted from the topological analysis.
tions when the field amplitude®, and Q, are not small  1Ne crosses labeledy), (a;), (d), and (dy) refer to parameters
compared td 5|. The competing coupling schemes are de_leadlng_to hlgh efﬁuency. They also refe_r to the pathways shown,
picted in Fig. 1 . Two limit channels can thus be exhibited, €SPeCtively, in Figs. 6, 7, 8, and 9. Besides regiérand D, we
each of which can be given by a standard RWA: the chann ave displayed the corresponding linkage patterns, respectively, for
A shown in the left part of Fig. Ichannel B shown in right =~ ° @ndA=—2¢
part of Fig. 2 corresponds to the situation when the field 1 ) I .~ )
(field 2) couplesonly the 1-2 transition and the field @eld ~ We indeed obtairR'(TH)R—i(dR'/at)R=Hc, with the
1) couplesonly the 2-3 transition. unitary transformation

The standard RWA can be made(lf,,<|al, whereQ pax 1
is the peak Rabi frequency fdR;, i=1,2. Furthermore,
adiabatic passage will require the standard condifigf,r R=|0 e 0. (14)
>1, wherer represents the time of interaction. A standard
weak interactior¢ of the order of 100 Hz will thus require a 0
time of interaction of the orderfd s tosatisfy both the RWA
and the adiabatic passage condition, which is of the order of IIl. NUMERICAL RESULTS
the spin relaxation time. Thus a weak interaction requires to . ) . ,
take into account the bichromatic effectsith a larger peak In this section, we describe the numerical results that are

Rabi frequency to shorten the time of interacliamorder to ~ 0Ptained by solving the Schimger equatiori10), for which
avoid the relaxation effects. we will present a detailed theoretical analysis in the follow-

We will study more precisely in Secs. V and VI the vari- INg Sections.

ous regimes that occur in this system. The problem of pre- Figures 2 and 3 display the population of the s{aeat
paring the entangled staf@)=|| 1 ") is thus reduced to the the end of a sequence of delayed Gaussian pulses of the same

study of the population transfer into the intermediate level inf€Ngths and the same peak amplitudes,

the ladder system driven by the quiltoniﬁ@ (11). Q4(t)=Qoexd — (t+ )T, (153
The populations given by the Scliioger equation(10)
are invariant under the following transformati@n Q,(t) = Qexd — (t— 7)2/T2], (15b)
A=Ay +4, (133 for various normalized peak amplitud8s,/§ and detunings
A/6S, where we have chosen
Ay—Ay,— 6, (13b
A=A =A,. (16)
60— —96, (130
We have considered this restriction of the parameters be-
01=05. (130 cause it gives preferentially large regions of good population
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IV. THE FLOQUET DRESSED HAMILTONIAN

In this section we derive the Floquet Hamiltonian describ-
ing the full Hamiltonian of the spin system dressed by the
strong fields. It will allow to predict and interpret the various
processes occurring in this system by adiabatic passage.

It is convenient to use the adiabatic Floquet theory in

order to study the Hamiltonial:lC (11) since its time depen-
dence contains a characteristic frequenty The Floquet

Hamiltonian corresponding thl. is [8,13]

J
[91,92]—_' —
K |fi5(9(9

0 0.5 1 1.5 _is
QO/8 . 0 O,+e "0, 0
i0 i0

FIG. 3. Contour map of population transfer efficieriey() for + 2 0+, 24, A+
varying peak Rabi frequencf,/é and. varying dgtunlng&/é for. 0 Qz+e_igﬂ1 2(A;1+Ay)
the sequence 2. The cross labeled)(in one region of low effi-
ciency and the ones labeledy), (d,), and @5) in the regions of (17)
high efficiency refer to the pathways shown, respectively, in Figs. 6,

7,8, and 9. We have formulated this Floguet Hamiltonian in a way

which derives naturally from the theory of quantized dressed

transfer. This will be justified in Secs. V and VI. Note that states in a cavitf12]. The Floquet Hamiltonian allows to
the caseA;=—A, is irrelevant since it corresponds to a take into account the photon exchanges between the atom
two-photon resonance between the product stités and  and the fields. It is formally constructed on the initial phases
[11). We could have considered equivalently the restrictionf1 and 6, of the fields which are treated as dynamical vari-
A,=A;+28 in accordance with the symmetfy3). The two  ables acting on the photonic Hilbert spafe= £,(d 6:/27)
possible orderings of pulses have been considered: the s&L2(d62/2m), where eachC,(d6;/2m) is the Hilbert space
quence 1 of Fig. Zthe sequence 2 of Fig) 8orresponds to  0f 27-periodic functions of the anglé [11]. Since we have
the w, pulse(the w, pulse being switched on first, with the applied a bichromatic rotating wave approximation, only the
delay 7=1.7T (7=—1.7T). Global adiabaticity is ensured frequencyd=w;—w,, associated with the dynamical vari-
by the choice of a large pulse ar€gT=50. able 9= 6,— 6, is left in the effective Hamiltonian. The ef-

One can distinguish three islands of robust high transfefective Floquet HamiltoniarK (17) acts thus on the Hilbert
(white region$. Specific parameters characterizing these isspace spanned by the three stdtds,[2),|3)} tensored by
lands are labeled byaj, (a'), (d), and @), with the sub- the effective photonic Hilbert spaa®,(d6/27). This photo-
script 1 or 2, respectively, for Figs. 2 of8xcept &,) which  nic Hilbert space allows to take into account the exchanges
is outside the regions of high transfefhese islands of high of the group ofw;-w, photons. The eigenstates &f are
transfer are analyzed in the following sections by using thdamilies of three states denotgttk, —k), |2;k—1,— k), and

dressed Hamiltonian correspondingHig (11) and the adia- [3tk—1,— k—1) with k a positive or negative integer. The
batic properties of the dynamics. We will characterize differ-corresponding — eigenvalueshyy —x, Apk-1-k and
ent regimes and associate them with different effective*ak-1-k-1 have the following periodicity property:
dressed Hamiltonians. We will show that the islands of good\n:k, k,= Mnik,—1k,+1T %8, for n=1,23. The notation
transfer can be understood from the topological properties din;k; k) characterizeéwhen the fields are offthe stategn)
the appropriate effective dressed Hamiltonian. dressed by the field df; w; photons and ok, w, photons.
We will show the following results. The integersk; and k, characterize thus relative photon
(i) Regions(a) correspond to a STIRAP-like process as- numbers of the respective fields of frequensy and w,.
sociated with the channel fsee Fig. 1that is perturbedin  The initial state is denoteld ;0,0. The problem can be for-
the sense of non-resonant perturbation thebythe channel mulated as followswe look for robust adiabatic connections
B. Note that the restriction ,=A;+25 would have given a between the initial statgl;0,00 and the final staté2;k—1,
STIRAP-like process associated with the channel B per—k) for some positive or negative integer k
turbed by the channel A. The Floguet Hamiltoniaril7) depends parametrically on
(i) Regions(d) (in the weak field regime, i.e£);,Q)»  the pulse shapes and the detunings. The possible connections
<|48]) correspond to an effective two-level SCRAP-like depend on the¢opology of the eigenenergy surfaces of Eq.
(Stark chirped rapid adiabatic passpgeocesd9,10]. (17) as functions of the field envelop€k, and(), for given
(i) Regions @’) (in the strong field regime, i.e., detuningsA; andA, [11,14]. The topology is characterized
0,,0,=|48]) correspond to an effective two-level bichro- by true crossings which occur generically when one of the
matic SCRAP proceséwith additional Stark shiffsas de- fields is off. We will study in the following the topology &t
scribed in Ref[11]. using different effective dressed Hamiltonians corresponding
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2.5
2 13)
w2
1.5 |2>
1 (0%}
)
TN05 1)
(4) ©) (D)
0 FIG. 5. Diagram of linkage patterns for the three regirtieshe
resonant cageA (A;=A,=0), C (A;=—45,A,=0), andD (A,
-0.5 =_5,A2=_6)
-1 lines) have been collected in Fig. 4, depending on the qua-
siresonances.
-15 (A) The transition 1-2 is quasiresonant with and per-

turbed byw,, 2-3 is quasiresonant witta, and perturbed by
w1.
FIG. 4. Schematic diagram of the regimes for a weak-field re- (B) 1-2 is quasiresonant witw, and perturbed byv,
gime as a function of the normalized detunings/é and A/ 5. 2-3 is quasiresonant witlh; and perturbed byw,.
The restrictionA,=A; has been used for Figs. 2 and 3. (C) 1-2 and 2-3 are both quasiresonant with, and per-
turbed byw;.

to different regimes. These regimes will depend on the (D) 1-2 is quasiresonant witl, and perturbed byo,,
ranges of the detunings and of the field amplitudes. 2-3 is perturbed byv, and w;.

In the next sections we will calculate the eigenenergy sur- (C) 1-2 and 2-3 are both quasiresonant with, and per-
faces for different relevant cases, using a numerical diagog,ipeq byw,.
nalization of Eq.(17). This can be done either by discretiza-
tion of the angled or equivalently by using a restricted finite

basis of the complete basﬁe‘k",keZ} of the photonic Hil- In the exact resonant cases, we have represented the re-
bert spaceC,(d6/27). Effective Hamiltonians will be deter- . I ' P
gimesA, C, andD in Fig. 5.

mined in the appropriate regions, which give good approxi- . - .
mations for these numerical surfaces, and provide an analytic As shown schematically in Fig. 4, the above regimes can
explanation of the different domains where adiabatic transfe e roughly bounded by
is efficient. , , , Ay=+582, Ay=—368/2, Ay==+5/2, Ay=35/2.

We classify the different regimes and construct effective (18)
dressed Hamiltonians by determining in the Hamilonian
(17) which terms argesonant(or quasiresonantand which By the symmetry(13), we recover the regim& from the
are onlyperturbative The resonant terms are treated by anregimeA, C from C, D from D (exchanging additionally
adapted unitary transformation which allows an explicit di-and(),).

agonalization, whereas the perturbative terms can be treated 11,0 regimesA andB are STIRAP-like regimesd andD

by stationary pertubation theory. This technique has beeq,. scrAP-like regimes.

presented in Ref15]. Note that for a simple RWA two-level We do not consider other regimes where the stajeis

system of Rabi frequenc§2 and detuningd, the perturba-  5imost not depopulated by adiabatic passage.

tive regime is such tha& <|A| and the resonant regime such  tha jineA = — §/2 appears as a dashed line in Figs. 2 and

that Q=|A|. We classify the different regimes as functions 3, where the restriction, = A, has been considered.

of the ranges of the field amplitudes and of the detunings.
In the following, we have normalized all the quantities

(D) 1-2 is quasiresonant witk; and perturbed byw,,
2-3 is perturbed by, and w,.

. A. Regime A
with respect tos. g
When the transition 1-2 is quasiresonant with the fre-
V. WEAK-FIELD REGIME quencyw; and the transition 2-3 quasiresonant with the fre-

quency w,, the process can be analyzed as the channel A

The weak-field regimeoccurs whenQ4(t),Q,(t)<é. perturbed(in the sense nonresonant perturbation theosy
Note that when one had;=A, additionally, this regime the channel B. We refer to it as the regime A as shown in
coincides with astrong spin couplingsince we have then Figs 2 and 3, where it is roughly bounded by the dashed lines
6| &>Q4(1),Q5(t). In this case of weak-field regime, we A=—6/2, A= 5/2 (not shown, andQ,= . This regime is
can intuitively analyze the different regimes with respect toapproximately characterized by the following effective
the range of the detunings using the diagram of linkage patHamiltonian in the basig|1;0,0, [2;—1,0), |3;—1,—1)}
terns (Fig. 1). Six relevant regimegbounded by dashed [13]:
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[ (Q,)? |
C2(8+Ay) ! 0
~a 1 (Q5)? (Q)?
| I STy s v TP vy = ! 19
(Q4)?
0 Q, 2(A1+A2)_2(T1A2)

which corresponds to the Hamiltonian characterizing the=A,=—§4 have been displayed. The eigenvalues of Eq.
channel A with additional time dependent Stark shifts the
diagona] induced by the channel B. Note that this effective );~ § andQ,~ & because of an additional dynamical reso-
Hamiltonian is less precise for bigg€r; or (), approaching

o.

1. Topology of the channel A in the RWA limit

(19 (not shown fit these surfaces well except in Fig. 7 when

nance(i.e., a resonance occuring beyond a threshold of the
field amplitude$ [15,8] which involves the surface con-
nected with3;0,—2) (which corresponds to the surface con-
nected to|3;—1,—1) and translated ob) and the surface

Before analyzing the dynamics given by this Hamiltoniantight below. o _
(19), we recall the results in the limit case of a very weak- Figure 6 shows that the two conical intersections, one
field Q,(t),Q,(t) <5 obtained in Ref[14]. In this case the occurring forQ,=0, the other one fof),=0, determine the

perturbative terms can be neglected and the Hamiltonian bd&oundary of the adiabatic connection between the initial state
comes |1;0,0 and the target staf@;—1,0). A detailed analysis of

the dynamics through the conical intersections can be found
in Ref. [14]. We summarize here the main results using an
0o O 0 example of a crossing occurring fér;=0: if the dynamics
.y 1 goesexactlythrough the crossing, whete, is exactly zero,
He— 2 0y 24, Q, (200 then adiabatic passage through the intersection occurs along

0 O, 2(A1+A4y) A=-8/20=A,
This resulting effective Hamiltonian corresponds to the chan-
nel A alone. The topology of the energy surfaces of this
Hamiltonian has been analyzed in R¢i4]. It has been
shown that the adiabatic transfer to stgg is topologically
allowed for

A,A,>0. (22)

The topological analysis shows moreover that for the se-
guence 1 the region of this process is bounded in the param-
eter space by the curves

Quasienergies

QOZZ\IAl(A1+ Az) (22)
and for the sequence 2 by the cury@®) and
QO=2\/A2(A1+ Az) (23)

92/5 v a Q /S

2. Topology of the channel A perturbed by the channel B ) ] ) )
FIG. 6. Quasienergy surfacdm units of §) as functions of

Taking now into account the perturbation by the channel, /s and Q,/8 for A,=A,=— 6/20. The path denoted, (se-
B [Hamiltonian (19)] leads to two kinds of topology as quence 1 for Q,=0.355, connects the statés) and|2) with the
shown in Figs. 6 and 7, where the surfaces of quasienergiegsorption of ones; photon. The path denoteg (sequence 12 for

as functions of the normalized Rabi frequencieg/ s and
0,18, respectively, forA=A;=A,=—5/20 and A=A,

0,=0.355, connects the statét) and|3) with the absorptions of
one w; photon and of onev, photon.

032311-6



ADIABATIC CREATION OF ENTANGLED STATES BYA.. .. PHYSICAL REVIEW A66, 032311 (2002

A, =—8/4=A2 |1;0,0 and the target sta{@;—1,0). More precisely, for the
sequence 1, these two conical intersections determine the

boundary of this adiabatic connection; the path denated

(also corresponding to the croa$ of Fig. 2) is an example

for the complete transfer. However, for the sequence 2 only

B the conical intersection occurring fé2,=0 binds now the
04" adiabatic connection; the path denotgdis an example for
the complete transfeialso corresponding to the croa$ of
02 Fig. 3.
3 Using the effective Hamiltonia(l9), the position of the
g 0+ previous conical intersections, fa2;=0 and Q,=0, re-
s spectively, lead to the three boundaries for the sequence 1,
8—0.2—
S 2,
044 A= 1as[—5Q,* VO(Q,)?+ 3257, (249
—0.6

Q= V2(5-A)[2(5+A)—V2(5+A)].  (24b)

08 06" .,
o0z o O Qs The delay between the pulses has been chosen sufficiently

92/6 1 large such that it is a good approximation to consider that the
adiabatic connectivity is quite well described by the value of
FIG. 7. Quasienergy surfaces as functionskf/§ andQ,/5  the peak amplitudes. Thus we have displayed these bound-
for A;=A,=— §/4. The two different paths, denoteg anda, (for ~ aries in Fig. 2 as full lines, witlf),= (), for Eq. (248 and
Q,=0.75) depending on the sequence of the pulses connect thaiith (),=Q, for Eq. (24b. They globally determine the
states|1) and|2) with the absorption of one; photon. boundary of the lower and upper part of the island of good
transfer of the regime A observed in the numerical computa-

a smooth line. If the dynamics slightly misses the crossing!ion- This island is crossed by the line of resonadce 0
ie., for a specificQ;#0, it encounters instead a thin around which the transfer {@) depends on the pulse areas,

avoided crossing. It is expected to be pasdbatically, S Shown by small oscillating islands.. .

i.e., with a jump from one branch to the other, for a suffi- _ For the sequence 2, the conical intersections involved
ciently smallQ, with respect to the speed of the passageJiVe the following boundaries:

according to a local Landau-Zener analysis. Thus the

Landau-Zener analysis provides the matching between the Q,

adiabatic evolution far from the conical intersection and the A= a5l 50— V9(0,)?+3257], (258
diabatic behavior near the intersection. Note that a too large
), with respect to the speed of the passage would lead either
(i) to an undesirable splitting of the population along the two
surfaces near the intersection, followed by an adiabatic evo-
lution of these two states, dii) for a larger(},, to an adia-
batic evolution staying on the initial surface.

For the sequence 1, the conical intersection occurring fof hese curves are displayed in Fig. 3, with= () for Eq.
Q,=0 is favorable for this adiabatic connectivity. The path (258 and with Q;=Q, for Eq. (25b). They give a good
denoteda; (also corresponding to the croag of Fig. 2 is  prediction of the island of good transfer of the regime A
an example for the complete transfer. However, for the seobserved numerically.
quence 2, the conical intersection occurring f5=0 is For the two sequences, the islands of good transfer to the
also favorable but the one occurring =0 is detrimental ~ State|2) of the regime A occur with absorption of one;
since it make$1;0,0 connect to3;—1,—1). The path de- Photon.
noteda, is an example for the complete transfer|8— 1,

—1) (also corresponding to the croas of Fig. 3).

For a bigger detuningin absolute valug the topology is
different as shown in Fig. 7. The previous conical intersec- This regime is characterized by the transition quasireso-
tion occurring forQ,=0 has now disappeared and anothernant 1-2 with the frequency, and the quasiresonant transi-
one invo|ving the surfaces connected |&); O,Q and |3,0, tion 2-3 with the frequency)l. This process can be analyzed
—2) has appeared. The two conical intersections, the onas the channel Berturbed(in the sense of nonresonant per-
occurring forQ);=0 and the other one fof),=0, are in- turbation theory by the channel A and is described by the

volved for the adiabatic connection between the initial stateeffective HamiltoniarHE = 7A?

Q.= V(56— A)[4A+ 5+ 5(5+8A)], for A<O.
(25)

B. RegimeB
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— —(91)2 Q 0 —
2A, 2
~p 1 Q1) (Qy)?
Ae=5| Q2 2a+9)+ 2A11 ~a, 0, : (26)
(Q,)?
0 Q Bh2)
] 1 2081+ 8,)+ 55— |

The regions of high transfer efficiency to the std@gare bounded in the same manner as in the regime A by the(Rdgand
(25) to which we apply the transformatidh (13).

C. RegimeC

The regimeC is characterized by a mixture of regim&sandB for which the transitions 1-2 and 2-3 are both quasiresonant
with the same frequency,. As long as thew, field is perturbative for both transitions, we have the following effective
Hamiltonian:

T (Qy)? 7
— Q 0
27, 2
.o 1 Q)% (Qy)?
He=> 2 2AH Ot Sy 2 : (27)
(Qy)?
0 Q U
i 2 2(A1+A2+5)+2(A2—5)_

in the basig{|1;0,0, |2;0,—1),3;0,—2)}. No efficient transfer is observed in this regime.

D. RegimeD

This regime is such that the only quasiresonance is between the states 1 ands2.wittthis case, in the bas{$1;0,0,
|2;0,—1), |3;0,—2)} we can construct an effective Hamiltonian from the previous|&ug(27)] considering that the field
is perturbative for the transition 2-3,

M (Qy)? -
— Q 0
2A, 2
.1 Q)% (Q)?  (9)?
o_=-| q - - 0
AP=3 2 2M+ Ot i o o, . (29)
(012 ()2
0 0
i 2(A1+A2+5)+2(A2_5)+ 25, |

We can remark that this Hamiltonian is valid for the field It is obtained when the difference of the dressed eigenvalues
amplitudeQ), below the position of the resonance occurringconnected td1;0,00 and |2;0,—1) (calculated without the
between the transition 2-3 and thg field that can be esti- Stark shift$ compensates the difference of the frequenéies

mated by This additional resonance is described as dynamical since it
occurs beyond a threshold of the, field amplitude. It is
5=2\A5(A;+A,+68) and A;+2A,+ 5<0. represented as the bent dashed line crossing the figure verti-

(29 cally (which separates the regimBsandD") in Figs. 2 and

o . ~ 3 with Q,=QY. The Hamiltonian(28) is thus approxi-
This limit is represented as the bent dashed line crossing th@ately validbeforethe dynamical resonandg0).
figure horizontally in Figs. 2 and 8with Q,=0Q3). Below Below this dynamical resonance, this Hamiltoni@8) is
this limit, one is allowed to decouple the staf2s0,—1) and  very similar to the one describing the Stark chirped rapid
|3;0,—2) from the Hamiltonian(27). A more detailed analy- adiabatic passage between the sta1e®,0 and|2;0,—1)
sis of this regime shows thatdynamical resonanceetween  [9]. The pump of this process is hefls, and the Stark pulse
the transition 1-2 and the field, induced by thew, field ;. We have herd), acting additionally as a Stark pulse.
occurs approximately for It is important to note that whef; = — &, the fieldw, is

ar exactly in resonance with the transition 1-2, and it cannot
Qp=07=V-A,(A,+26). (30 induce any complete population transfer frdt) to |2).

032311-8
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Below this boundaryplotted as a full line in Figs. 2 and 3 A =—98/10=A
i.e., for A;<— 4, the topology does not allow the transfer i 2
from |1) to |2). Above this boundaryX,>— &), the trans-

fer is possible as shown by the surfaces of quasiene(fries
A=A;=A,=96/10) in Fig. 8. The eigenvalues of E®8)

(not shown fit well these surfaces below the dynamical
resonances),<(,. Figure 8 shows that the conical inter-
section for(),=0 between the surfaces connectedltg0,0

and the target statf;0,—1) determines the boundary of
the adiabatic connection between these states. This charac-
terizes a transfer to the stdt2) with absorption of onev,
photon. This boundary is calculated from the effective
Hamiltonian(28),

Quasienergies

A2_52
A 26—A°

0,=2 (3D

It is plotted in Figs. 2 and 3 as a full line in the regibrand

determines the boundary of the upper island of good transfer

of this region. Qs
The cases beyond the dynamical resonance are studied in 2

the following section.

Q1/8

FIG. 8. Quasienergy surfaces as functiondxf/ 6 and Q, /46
for A;=A,=—96/10. Two different path¢denotedd; andd,) for
Q,=0.85 connect the statdd) and|2) with the absorption of one

The strong-field regimeoccurs when(,(t),Q,(t)=s. @2 photon.
For A;=A,, this corresponds to weak spin couplingince
one has then || =Q4(t),Q,(t). More resonances occur in yond the dynamical resonan¢g0), when the transition 1-2
this case and the previous effective Hamiltonians are nds quasiresonant with both the, andw, fields and when the
longer valid. We will study in detail the interesting regime transition 2-3 is not resonant with either thg field or the
D’ which gives quite large areas of transfer to s{&fe w-, field. This regime is thus characterized by the effective
This regime is located below the resonari2@) and be- dressed Hamiltonian,

VI. STRONG-FIELD REGIMES

0 Q,+e’0, 0
o Q)2 (Qp)?
, g 1| Q,+e 0, 2(A,+68)— - 0
KD =—io ot 2 1 2(A1%9) 2(A,—5) 24, . (32
0 0 2(Ag+A,+ )+ (0y)° JF(QZ)2
1m 22 2(A,—8)  2A,

It is equivalent to a two-level system driven by a bichromaticThis process corresponds to a multiphoton transfer to the
field [11] with additional Stark shifts. The surfaces of state|2), with absorption of twaw, photons and emission of
quasienergies as functions of the normalized Rabi frequersne w, photon.

cies Q;/6 and Q,/5 (for A=A;=A,=—76/5) are dis- The analysis of the topology allows to improve the trans-
played in Fig. 9. This figure shows that the two conical in-fer efficiency. It shows indeed that @, field amplitude

tersections, one fd2; =0 and one fof),=0, determine the \yeaker than thew, field amplitude is better in this regime
boundary of the adiabatic connection between the initial statjce the conical intersection f6r,=0 occurs for a smaller

|1;0,0 and the target stat¢2;1,—2). We calculate the 4,6 than the one fof,=0.
boundaries using the effective Hamiltoni&8®), which are This process of a two-level system driven by a bichro-

plotted as full lines in Figs. 2 and 3, matic field studied in Ref[11] shows that the transfer can
still occur for a stronger fieldi.e., for a weaker spin cou-
0= 2\/(A —0)[26-A-2V5(26-4)], (339 pling), but with absorption of more than twe, photons and
emission of more than one; photon. This result is shown in
Q,= 2\/A[5— A—~8(6—4M)]. (33b Fig. 10 where strong field white islands can be observed. The
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FIG. 10. Contour map of population transfer efficieriey(«)

01 BB 2 ' as in Fig. 2, but for stronger field amplitudes.

-024. T The implementation of the scheme we propose in this
. 5 paper can be realized for different physical systems. An ex-
' =, ample could be of the type similar to the one used in Ref.

0 o 05 1

3 Q. /5

[16] for the realization of two-qubit phase gates. The simi-
larity of our model with the nuclear magnetic resonance
scheme of Ref[16] is the adiabatic evolution. The Berry
adiabatic phase gate operation was, however, realized for
different nuclei i.e. with different gyromagnetic constants. In
this case the two-particle states are represented through a
four-level quantum systengsee, e.g., Ref[17]). In the
present paper we propose instead to use identical spins to

lower white islands correspond to good population transfeP€nerate an entangled state through a simpler effective three-

to the entangled staf@;k—1,—k), with k=1,2,3,4 from left |€vel system. _
to right. The methods employed here are quite general and can be

applied for a large variety of systems. We anticipate interest-
ing applications of this method in quantum computing and
quantum communication.

FIG. 9. Quasienergy surfaces as functiondyf/§ andQ, /6
for A;=A,=—74/5. Two different pathgdenotedd; andd;) for
Q,=36/2 connect the statd4) and|2) with the absorption of two
w, photons and the emission of oag photon.

VIl. CONCLUSION

In a system of two interacting identical spins in an exter-
nal bichromatic field, we have determined the choices of
laser pulses which can give a maximal final population in the We acknowledge support by INTAS 99-00019 and the
entangled state. The proposed strategies are robust with r€onseil Rgional de Bourgogne. S.G. acknowledges support
spect to the external parameters. We have found that in thieom a CNRS project “jeunes chercheurs” and thanks the
parameter space it is possible to find large regions where thiastitute of Physics of the National Academy of Sciences of
quantum system can be transferred to the entangled statg@menia in Ashtarak for kind hospitality. R.U. thanks for
with a high efficiency. These regions of good transfer havesupport by the Alexander Von Humboldt Foundation and
been characterized by the topology of the surfaces of dressétniversite de Bourgogne for kind hospitality. The authors
states as functions of the parameters. thank N. Vitanov for useful discussions.
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