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Adiabatic creation of entangled states by a bichromatic field designed
from the topology of the dressed eigenenergies
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Preparation of entangled pairs of coupled two-state systems driven by a bichromatic external field is studied.
We use a system of two coupled spin-1

2 particles that can be translated into a three-state ladder model whose
intermediate state represents the entangled state. We show that this entangled state can be prepared in a robust
way with appropriate fields. Their frequencies and envelopes are derived from the topological properties of the
model.
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I. INTRODUCTION

Entanglement is a key concept in various contempor
areas of active research in quantum physics. It explic
demonstrates the nonlocal character of quantum theory,
ing potential applications in quantum communication, cry
tography, and computation@1#. The preparation of an en
tangled state is of great interest for both fundamental
applied reasons. During the last few years various meth
for preparation of entangled states of atomic systems h
been proposed and some of them experimentally dem
strated@2,3#.

Although a quantum system can be manipulated by
lored sequences of resonant pulses of precise area, in pa
lar, p and p/2 pulses, respectively, for the complete inve
sion and the equal weight coherent superposition, deviat
from the precise pulse area and from resonance can lea
significant errors. Adiabatic passage techniques prov
much greater robustness against fluctuations in the inte
tion parameters. The stimulated Raman adiabatic pas
~STIRAP! method@4# has been proposed for the creation
an entangled state of two three-level atoms in a QED ca
@5# and forL atomic systems@6#.

In this paper we propose a simple method for entang
two subsystems driven by pulse-shaped external fields.
definiteness, we take these to be two identical spins inter
ing with each other and driven by radio-frequency field
This system can be translated in a three-level ladder m
with the intermediate level corresponding to the entang
state@7#. The goal is to populate completely this entangl
state at the end of the pulses by adiabatic passage. The
efficient couplings are obtained with two near one-pho
resonant fields. We will show that unlike in the STIRA
process, one- and two-photon detunings are required
populate most efficiently the intermediate level.

We show furthermore that bichromatic effects play an i
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portant role, due to the small anharmonicity of the syste
The anharmonicity of the equivalent three-level ladder s
tem is determined by the interaction of the spins. It can be
general small enough such that the standard rotating w
approximation~RWA!, allowing to assign each field to
unique transition, cannot be applied. In this case one need
take full account of the bichromatic effects~see, e.g., Ref.
@8#!. We will show robust regions of field parameters th
will generate the entangled state by adiabatic passage b
and beyond the standard RWA.

In Sec. II, we describe the model of the two-spin syst
driven by a bichromatic external field and how it leads to
equivalent three-level system. In Sec. III, we show the res
of numerical simulations, for which we develop in later se
tions a detailed interpretation by constructing adapted ef
tive Hamiltonians that take into account the dominating re
nant or quasiresonant effects. In Sec. IV, we derive
Floquet Hamiltonian required to study the system of sp
dressed by the external fields. Sections V and VI are devo
to derive relevant effective dressed Hamiltonians for diff
ent regions of parameters, respectively, in the weak field
gime ~below the RWA! and in the strong field regime~be-
yond the RWA!. We finally conclude in Sec. VII.

II. THE MODEL: TWO-SPIN SYSTEM
IN EXTERNAL FIELDS

We consider two-spin-1
2 particles of the same gyromag

netic ratiom, coupled by a magnetic dipolar interaction. In
time-dependent magnetic fieldB(t)5@Bx(t),By(t),Bz#, the
Hamiltonian of this system reads (\51),

Ĥ~ t !5Ĥ01mB~ t !•~Ŝ11Ŝ2!, ~1!

where

Ĥ054jŜ1
z

^ Ŝ2
z2j~Ŝ11 ^ Ŝ221Ŝ12 ^ Ŝ21! ~2!

is the part describing the magnetic dipolar spin-spin inter
tion, with j the magnetic dipolar interaction constant,Ŝk

5@Ŝk
x ,Ŝk

y ,Ŝk
z# the kth spin operator (k51,2), andŜk65Ŝk

x

6 iŜk
y . We assume that the static magnetic fieldBz in the z

i-
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direction is strong enough (umBzu@uju) so that the Hamil-
tonian Ĥ0 ~2! is justified for this case of identical gyromag
netic ratiom.

We first construct the general equivalent three-level mo
driven by external fields and next derive the approxim
Hamiltonian that takes into account the bichromatic effe
by improving the standard rotating wave approximation.

We remark that the effective Hamiltonian we obtain in E
~11! applies also to a spin interaction of the formĤ08

54zŜ1
z

^ Ŝ2
z .

A. The three-level model

In the spin product state space$um&1um&2% (m5↓,↑),
where the statesu↓&k and u↑&k denote, respectively, the spin
down and spin-up states of thekth spin, a complete basis o
orthonormalized eigenstates ofĤ0 is given by

u↓↓&[u↓&1u↓&2 , ~3a!

u↓↑1&[
1

A2
@ u↓&1u↑&21u↑&1u↓&2], ~3b!

u↑↑&[u↑&1u↑&2 , ~3c!

u↓↑2&[
1

A2
@ u↓&1u↑&22u↑&1u↓&2]. ~3d!

In this basis, the Hamiltonian~1! with Ĥ0 of Eq. ~2! can be
exactly expressed in the block-matrix form

H~ t !5FHc~ t ! 0

0 0G , ~4!

where

Hc53
j2bz

1

A2
~bx1 iby! 0

1

A2
~bx2 iby! 22j

1

A2
~bx1 iby!

0
1

A2
~bx2 iby! j1bz

4
~5!

with b[@bx ,by ,bz#5mB. The stateu↓↑2& is thus decou-
pled from the other states; it describes the evolution o
spin-0 singlet in a time-dependent magnetic field. This
coupling justifies our choice of the basis. The other th
statesu↓↓&, u↓↑1&, and u↑↑& are coupled by the transvers
(xy) magnetic field. To complete the definition of the pro
lem, we suppose that initially the two-spin system is in t
unentangled stateu↓↓&. Our goal is to establish the cond
tions leading to the most efficient robust transfer into
entangled stateu↓↑1&.
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We consider the case when the spin system interacts
a constant magnetic field in thez direction and two radio-
frequency fields of respective frequenciesv1 andv2 in thex
direction,

bz5const, ~6a!

bx5V1~ t !cos~v1t1u1!1V2~ t !cos~v2t1u2!, ~6b!

by50, ~6c!

where we assume positiveV1 andV2. The state vectorf(t)
is solution of the Schro¨dinger equation i (d/dt)f(t)
5Hc(t)f(t) with the HamiltonianHc(t) ~5! written in the
basis $u↓↓&,u↓↑1&,u↑↑&%. When the radio-frequency field
are off (bx50)), we have thus the following energiesE↓↓
[j2bz , E↓↑1[22j, and E↑↑[j1bz . Without loss of
generality we assumej,0 andbz.0, leading for a strong
enough static magnetic fieldBz such thatbz5mBz.3uju to
a ladder configurationE↓↓,E↓↑1,E↑↑ , whose anharmonic-
ity is given by

a[@~E↑↑2E↓↑1!2~E↓↑12E↓↓!#/253j. ~7!

We apply near resonant fieldsv1'E↓↑12E↓↓ , v2'E↑↑
2E↓↑1, i.e., with the detuningsD1 andD2,

v1[23j1bz2D1 , ~8a!

v2[3j1bz2D2 . ~8b!

B. The bichromatic rotating wave approximation

According to the RWA, one can neglect nonresona
counter-rotating terms under the conditionsv1,2@V1,2. The
rotating wave transformation

R5F e2 iE↓↓t 0 0

0 e2 i (E↓↓1v1)t 0

0 0 e2 i (E↓↓1v11v2)t
G ~9!

leads to the state vectorf̃(t)5R†f(t) ~whose coefficients
have the same absolute values as the ones off) that satisfies
the Schro¨dinger equation

i
d

dt
f̃~ t !5H̃c~ t !f̃~ t !, ~10!

with the HamiltonianH̃c5R†HcR2 i (]R†/]t)R, where only
the quasiresonant terms have been kept,

H̃c5
1

2 F 0 V1 0

V1 2D1 V2

0 V2 2~D11D2!
G

1
1

2 F 0 e2 idtV2 0

eidtV2 0 eidtV1

0 e2 idtV1 0
G . ~11!
1-2
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The frequency

d[v12v2526j1D22D1 ~12!

characterizes thecoupling ambiguity@8#. Note that the stan-
dard RWA, for whichV1 ,V2!udu, corresponds to keepin
only the first term in the Hamiltonian~11! if the field 1 ~field
2! is resonant with the 1-2 transition~2-3 transition!. The full
HamiltonianH̃c allows both fields to couple the two trans
tions when the field amplitudesV1 and V2 are not small
compared toudu. The competing coupling schemes are d
picted in Fig. 1 . Two limit channels can thus be exhibite
each of which can be given by a standard RWA: the chan
A shown in the left part of Fig. 1~channel B shown in right
part of Fig. 1! corresponds to the situation when the field
~field 2! couplesonly the 1-2 transition and the field 2~field
1! couplesonly the 2-3 transition.

The standard RWA can be made ifVmax!uau, whereVmax
is the peak Rabi frequency forV i , i 51,2. Furthermore,
adiabatic passage will require the standard conditionVmaxt
@1, wheret represents the time of interaction. A standa
weak interactionj of the order of 100 Hz will thus require
time of interaction of the order of 1 s tosatisfy both the RWA
and the adiabatic passage condition, which is of the orde
the spin relaxation time. Thus a weak interaction require
take into account the bichromatic effects~with a larger peak
Rabi frequency to shorten the time of interaction! in order to
avoid the relaxation effects.

We will study more precisely in Secs. V and VI the va
ous regimes that occur in this system. The problem of p
paring the entangled stateu2&[u↓↑1& is thus reduced to the
study of the population transfer into the intermediate leve
the ladder system driven by the HamiltonianH̃c ~11!.

The populations given by the Schro¨dinger equation~10!
are invariant under the following transformationT:

D1→D11d, ~13a!

D2→D22d, ~13b!

d→2d, ~13c!

V1
V2 . ~13d!

FIG. 1. Diagram of linkage patterns between the three st
showing the different couplings. Note thatD1 and D2 have been
chosen negative here.
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We indeed obtainR̃†(TH̃c)R̃2 i (]R̃†/]t)R̃5H̃c , with the
unitary transformation

R̃5F 1 0 0

0 e2 idt 0

0 0 1
G . ~14!

III. NUMERICAL RESULTS

In this section, we describe the numerical results that
obtained by solving the Schro¨dinger equation~10!, for which
we will present a detailed theoretical analysis in the follo
ing sections.

Figures 2 and 3 display the population of the stateu2& at
the end of a sequence of delayed Gaussian pulses of the
lengths and the same peak amplitudes,

V1~ t !5V0exp@2~ t1t!2/T2#, ~15a!

V2~ t !5V0exp@2~ t2t!2/T2#, ~15b!

for various normalized peak amplitudesV0 /d and detunings
D/d, where we have chosen

D[D15D2 . ~16!

We have considered this restriction of the parameters
cause it gives preferentially large regions of good populat

s

FIG. 2. Contour map of population transfer efficiencyP2(`) for
varying peak Rabi frequencyV0 /d and varying detuningD/d ~with
D5D15D2) for the sequence 1. White areas correspond to h
efficiency transfer~close to 1! to the entangled state. Dark area
correspond to low efficiency transfer~close to 0! to the entangled
stateu2&. The dashed lines separate different regions labeledA, D,
and D8, associated with different effective Hamiltonians co
structed in Secs. V and VI. The regimes of good population tran
are bounded by full lines predicted from the topological analys
The crosses labeled (a1), (a18), (d1), and (d18) refer to parameters
leading to high efficiency. They also refer to the pathways sho
respectively, in Figs. 6, 7, 8, and 9. Besides regionsA and D, we
have displayed the corresponding linkage patterns, respectively
D50 andD52d.
1-3
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transfer. This will be justified in Secs. V and VI. Note th
the caseD152D2 is irrelevant since it corresponds to
two-photon resonance between the product statesu↓↓& and
u↑↑&. We could have considered equivalently the restrict
D25D112d in accordance with the symmetry~13!. The two
possible orderings of pulses have been considered: the
quence 1 of Fig. 2~the sequence 2 of Fig. 3! corresponds to
thev1 pulse~thev2 pulse! being switched on first, with the
delay t51.7T (t521.7T). Global adiabaticity is ensure
by the choice of a large pulse areaV0T550.

One can distinguish three islands of robust high trans
~white regions!. Specific parameters characterizing these
lands are labeled by (a), (a8), (d), and (d8), with the sub-
script 1 or 2, respectively, for Figs. 2 or 3@except (a2) which
is outside the regions of high transfer#. These islands of high
transfer are analyzed in the following sections by using
dressed Hamiltonian corresponding toH̃c ~11! and the adia-
batic properties of the dynamics. We will characterize diff
ent regimes and associate them with different effect
dressed Hamiltonians. We will show that the islands of go
transfer can be understood from the topological propertie
the appropriate effective dressed Hamiltonian.

We will show the following results.
~i! Regions~a! correspond to a STIRAP-like process a

sociated with the channel A~see Fig. 1! that is perturbed~in
the sense of non-resonant perturbation theory! by the channel
B. Note that the restrictionD25D112d would have given a
STIRAP-like process associated with the channel B p
turbed by the channel A.

~ii ! Regions~d! ~in the weak field regime, i.e.,V1 ,V2
,udu) correspond to an effective two-level SCRAP-lik
~Stark chirped rapid adiabatic passage! process@9,10#.

~iii ! Regions (d8) ~in the strong field regime, i.e.
V1 ,V2*udu) correspond to an effective two-level bichro
matic SCRAP process~with additional Stark shifts! as de-
scribed in Ref.@11#.

FIG. 3. Contour map of population transfer efficiencyP2(`) for
varying peak Rabi frequencyV0 /d and varying detuningD/d for
the sequence 2. The cross labeled (a2) in one region of low effi-
ciency and the ones labeled (a28), (d2), and (d28) in the regions of
high efficiency refer to the pathways shown, respectively, in Figs
7, 8, and 9.
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IV. THE FLOQUET DRESSED HAMILTONIAN

In this section we derive the Floquet Hamiltonian descr
ing the full Hamiltonian of the spin system dressed by t
strong fields. It will allow to predict and interpret the variou
processes occurring in this system by adiabatic passage

It is convenient to use the adiabatic Floquet theory
order to study the HamiltonianH̃c ~11! since its time depen-
dence contains a characteristic frequencyd. The Floquet
Hamiltonian corresponding toH̃c is @8,13#

K[V1 ,V2]52 i\d
]

]u

1
1

2F 0 V11e2 iuV2 0

V11eiuV2 2D1 V21eiuV1

0 V21e2 iuV1 2~D11D2!

G .

~17!

We have formulated this Floquet Hamiltonian in a w
which derives naturally from the theory of quantized dress
states in a cavity@12#. The Floquet Hamiltonian allows to
take into account the photon exchanges between the a
and the fields. It is formally constructed on the initial phas
u1 andu2 of the fields which are treated as dynamical va
ables acting on the photonic Hilbert spaceL5L2(du1/2p)
^ L2(du2/2p), where eachL2(du i /2p) is the Hilbert space
of 2p-periodic functions of the angleu i @11#. Since we have
applied a bichromatic rotating wave approximation, only t
frequencyd5v12v2, associated with the dynamical var
ableu[u12u2 is left in the effective Hamiltonian. The ef
fective Floquet HamiltonianK ~17! acts thus on the Hilber
space spanned by the three states$u1&,u2&,u3&% tensored by
the effective photonic Hilbert spaceL2(du/2p). This photo-
nic Hilbert space allows to take into account the exchan
of the group ofv1-v2 photons. The eigenstates ofK are
families of three states denotedu1;k,2k&, u2;k21,2k&, and
u3;k21,2k21& with k a positive or negative integer. Th
corresponding eigenvalues l1;k,2k , l2;k21,2k and
l3;k21,2k21 have the following periodicity property
ln;k1 ,k2

5ln;k121,k2111\d, for n51,2,3. The notation

un;k1 ,k2& characterizes~when the fields are off! the stateun&
dressed by the field ofk1 v1 photons and ofk2 v2 photons.
The integersk1 and k2 characterize thus relative photo
numbers of the respective fields of frequencyv1 and v2.
The initial state is denotedu1;0,0&. The problem can be for-
mulated as follows:we look for robust adiabatic connection
between the initial stateu1;0,0& and the final stateu2;k21,
2k& for some positive or negative integer k.

The Floquet Hamiltonian~17! depends parametrically o
the pulse shapes and the detunings. The possible connec
depend on thetopologyof the eigenenergy surfaces of E
~17! as functions of the field envelopesV1 andV2 for given
detuningsD1 andD2 @11,14#. The topology is characterize
by true crossings which occur generically when one of
fields is off. We will study in the following the topology ofK
using different effective dressed Hamiltonians correspond

,

1-4
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to different regimes. These regimes will depend on
ranges of the detunings and of the field amplitudes.

In the next sections we will calculate the eigenenergy s
faces for different relevant cases, using a numerical dia
nalization of Eq.~17!. This can be done either by discretiz
tion of the angleu or equivalently by using a restricted finit
basis of the complete basis$eiku,kPZ% of the photonic Hil-
bert spaceL2(du/2p). Effective Hamiltonians will be deter
mined in the appropriate regions, which give good appro
mations for these numerical surfaces, and provide an ana
explanation of the different domains where adiabatic tran
is efficient.

We classify the different regimes and construct effect
dressed Hamiltonians by determining in the HamilonianK
~17! which terms areresonant~or quasiresonant! and which
are onlyperturbative. The resonant terms are treated by
adapted unitary transformation which allows an explicit
agonalization, whereas the perturbative terms can be tre
by stationary pertubation theory. This technique has b
presented in Ref.@15#. Note that for a simple RWA two-leve
system of Rabi frequencyV and detuningD, the perturba-
tive regime is such thatV!uDu and the resonant regime suc
that V*uDu. We classify the different regimes as functio
of the ranges of the field amplitudes and of the detuning

In the following, we have normalized all the quantitie
with respect tod.

V. WEAK-FIELD REGIME

The weak-field regimeoccurs whenV1(t),V2(t),d.
Note that when one hasD15D2 additionally, this regime
coincides with astrong spin couplingsince we have then
6uju.V1(t),V2(t). In this case of weak-field regime, w
can intuitively analyze the different regimes with respect
the range of the detunings using the diagram of linkage
terns ~Fig. 1!. Six relevant regimes~bounded by dashed

FIG. 4. Schematic diagram of the regimes for a weak-field
gime as a function of the normalized detuningsD1 /d and D2/d.
The restrictionD25D1 has been used for Figs. 2 and 3.
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lines! have been collected in Fig. 4, depending on the q
siresonances.

(A) The transition 1-2 is quasiresonant withv1 and per-
turbed byv2, 2-3 is quasiresonant withv2 and perturbed by
v1.

(B) 1-2 is quasiresonant withv2 and perturbed byv1,
2-3 is quasiresonant withv1 and perturbed byv2.

(C) 1-2 and 2-3 are both quasiresonant withv2, and per-
turbed byv1.

(D) 1-2 is quasiresonant withv2 and perturbed byv1,
2-3 is perturbed byv2 andv1.

(C̃) 1-2 and 2-3 are both quasiresonant withv1, and per-
turbed byv2.

(D̃) 1-2 is quasiresonant withv1 and perturbed byv2,
2-3 is perturbed byv1 andv2.

In the exact resonant cases, we have represented th
gimesA, C, andD in Fig. 5.

As shown schematically in Fig. 4, the above regimes c
be roughly bounded by

D156d/2, D1523d/2, D256d/2, D253d/2.
~18!

By the symmetry~13!, we recover the regimeB from the
regimeA, C̃ from C, D̃ from D ~exchanging additionallyV1
andV2).

The regimesA andB are STIRAP-like regimes;D andD̃
are SCRAP-like regimes.

We do not consider other regimes where the stateu1& is
almost not depopulated by adiabatic passage.

The lineD52d/2 appears as a dashed line in Figs. 2 a
3, where the restrictionD15D2 has been considered.

A. RegimeA

When the transition 1-2 is quasiresonant with the f
quencyv1 and the transition 2-3 quasiresonant with the f
quencyv2, the process can be analyzed as the channe
perturbed~in the sense nonresonant perturbation theory! by
the channel B. We refer to it as the regime A as shown
Figs 2 and 3, where it is roughly bounded by the dashed li
D52d/2, D5d/2 ~not shown!, andV05d. This regime is
approximately characterized by the following effectiv
Hamiltonian in the basis$u1;0,0&, u2;21,0&, u3;21,21&%
@13#:

-

FIG. 5. Diagram of linkage patterns for the three regimes~in the
resonant case!: A (D15D250), C (D152d,D250), andD (D1

52d,D252d).
1-5
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H̃c
A5

1

2 3
2

~V2!2

2~d1D1!
V1 0

V1 2D11
~V2!2

2~d1D1!
1

~V1!2

2~d2D2!
V2

0 V2 2~D11D2!2
~V1!2

2~d2D2!

4 , ~19!
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which corresponds to the Hamiltonian characterizing
channel A with additional time dependent Stark shifts~on the
diagonal! induced by the channel B. Note that this effecti
Hamiltonian is less precise for biggerV1 or V2 approaching
d.

1. Topology of the channel A in the RWA limit

Before analyzing the dynamics given by this Hamiltoni
~19!, we recall the results in the limit case of a very wea
field V1(t),V2(t)!d obtained in Ref.@14#. In this case the
perturbative terms can be neglected and the Hamiltonian
comes

H̃c
A→ 1

2F 0 V1 0

V1 2D1 V2

0 V2 2~D11D2!

G . ~20!

This resulting effective Hamiltonian corresponds to the ch
nel A alone. The topology of the energy surfaces of t
Hamiltonian has been analyzed in Ref.@14#. It has been
shown that the adiabatic transfer to stateu2& is topologically
allowed for

D1D2.0. ~21!

The topological analysis shows moreover that for the
quence 1 the region of this process is bounded in the par
eter space by the curves

V052AD1~D11D2! ~22!

and for the sequence 2 by the curves~22! and

V052AD2~D11D2!. ~23!

2. Topology of the channel A perturbed by the channel B

Taking now into account the perturbation by the chan
B @Hamiltonian ~19!# leads to two kinds of topology a
shown in Figs. 6 and 7, where the surfaces of quasiener
as functions of the normalized Rabi frequenciesV1 /d and
V2 /d, respectively, forD5D15D252d/20 and D5D1
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5D252d/4 have been displayed. The eigenvalues of E
~19! ~not shown! fit these surfaces well except in Fig. 7 whe
V1;d andV2;d because of an additional dynamical res
nance~i.e., a resonance occuring beyond a threshold of
field amplitudes! @15,8# which involves the surface con
nected withu3;0,22& ~which corresponds to the surface co
nected tou3;21,21& and translated ofd) and the surface
right below.

Figure 6 shows that the two conical intersections, o
occurring forV150, the other one forV250, determine the
boundary of the adiabatic connection between the initial s
u1;0,0& and the target stateu2;21,0&. A detailed analysis of
the dynamics through the conical intersections can be fo
in Ref. @14#. We summarize here the main results using
example of a crossing occurring forV150: if the dynamics
goesexactlythrough the crossing, whereV1 is exactly zero,
then adiabatic passage through the intersection occurs a

FIG. 6. Quasienergy surfaces~in units of d) as functions of
V1 /d and V2 /d for D15D252d/20. The path denoteda1 ~se-
quence 1!, for V050.35d, connects the statesu1& and u2& with the
absorption of onev1 photon. The path denoteda2 ~sequence 2!, for
V050.35d, connects the statesu1& and u3& with the absorptions of
onev1 photon and of onev2 photon.
1-6
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a smooth line. If the dynamics slightly misses the crossi
i.e., for a specificV1Þ0, it encounters instead a thi
avoided crossing. It is expected to be passeddiabatically,
i.e., with a jump from one branch to the other, for a su
ciently smallV1 with respect to the speed of the passa
according to a local Landau-Zener analysis. Thus
Landau-Zener analysis provides the matching between
adiabatic evolution far from the conical intersection and
diabatic behavior near the intersection. Note that a too la
V1 with respect to the speed of the passage would lead e
~i! to an undesirable splitting of the population along the t
surfaces near the intersection, followed by an adiabatic e
lution of these two states, or~ii ! for a largerV1, to an adia-
batic evolution staying on the initial surface.

For the sequence 1, the conical intersection occurring
V150 is favorable for this adiabatic connectivity. The pa
denoteda1 ~also corresponding to the crossa1 of Fig. 2! is
an example for the complete transfer. However, for the
quence 2, the conical intersection occurring forV150 is
also favorable but the one occurring forV250 is detrimental
since it makesu1;0,0& connect tou3;21,21&. The path de-
noteda2 is an example for the complete transfer tou3;21,
21& ~also corresponding to the crossa2 of Fig. 3!.

For a bigger detuning~in absolute value!, the topology is
different as shown in Fig. 7. The previous conical inters
tion occurring forV250 has now disappeared and anoth
one involving the surfaces connected tou1;0,0& and u3;0,
22& has appeared. The two conical intersections, the
occurring forV150 and the other one forV250, are in-
volved for the adiabatic connection between the initial st

FIG. 7. Quasienergy surfaces as functions ofV1 /d and V2 /d
for D15D252d/4. The two different paths, denoteda18 anda28 ~for
V050.7d) depending on the sequence of the pulses connect
statesu1& and u2& with the absorption of onev1 photon.
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u1;0,0& and the target stateu2;21,0&. More precisely, for the
sequence 1, these two conical intersections determine
boundary of this adiabatic connection; the path denoteda18
~also corresponding to the crossa18 of Fig. 2! is an example
for the complete transfer. However, for the sequence 2 o
the conical intersection occurring forV150 binds now the
adiabatic connection; the path denoteda28 is an example for
the complete transfer~also corresponding to the crossa28 of
Fig. 3!.

Using the effective Hamiltonian~19!, the position of the
previous conical intersections, forV150 and V250, re-
spectively, lead to the three boundaries for the sequence

D5
V2

16d
@25V26A9~V2!2132d2#, ~24a!

V15A2~d2D!@2~d1D!2A2~d1D!#. ~24b!

The delay between the pulses has been chosen sufficie
large such that it is a good approximation to consider that
adiabatic connectivity is quite well described by the value
the peak amplitudes. Thus we have displayed these bo
aries in Fig. 2 as full lines, withV25V0 for Eq. ~24a! and
with V15V0 for Eq. ~24b!. They globally determine the
boundary of the lower and upper part of the island of go
transfer of the regime A observed in the numerical compu
tion. This island is crossed by the line of resonanceD50
around which the transfer tou2& depends on the pulse area
as shown by small oscillating islands.

For the sequence 2, the conical intersections involv
give the following boundaries:

D5
V2

16d
@25V22A9~V2!2132d2#, ~25a!

V15A~d2D!@4D1d6Ad~d18D!#, for D,0.
~25b!

These curves are displayed in Fig. 3, withV25V0 for Eq.
~25a! and with V15V0 for Eq. ~25b!. They give a good
prediction of the island of good transfer of the regime
observed numerically.

For the two sequences, the islands of good transfer to
stateu2& of the regime A occur with absorption of onev1
photon.

B. RegimeB

This regime is characterized by the transition quasire
nant 1-2 with the frequencyv2 and the quasiresonant trans
tion 2-3 with the frequencyv1. This process can be analyze
as the channel Bperturbed~in the sense of nonresonant pe
turbation theory! by the channel A and is described by th
effective HamiltonianH̃c

B5TH̃c
A ,

he
1-7
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H̃c
B5

1

2F 2
~V1!2

2D1
V2 0

V2 2~D11d!1
~V1!2

2D1
2

~V2!2

2D2
V1

0 V1 2~D11D2!1
~V2!2

2D2

G . ~26!

The regions of high transfer efficiency to the stateu2& are bounded in the same manner as in the regime A by the lines~24! and
~25! to which we apply the transformationT ~13!.

C. RegimeC

The regimeC is characterized by a mixture of regimesA andB for which the transitions 1-2 and 2-3 are both quasireson
with the same frequencyv2. As long as thev1 field is perturbative for both transitions, we have the following effect
Hamiltonian:

H̃c
C5

1

2F 2
~V1!2

2D1
V2 0

V2 2~D11d!1
~V1!2

2D1
2

~V1!2

2~D22d!
V2

0 V2 2~D11D21d!1
~V1!2

2~D22d!

G , ~27!

in the basis$u1;0,0&, u2;0,21&,u3;0,22&%. No efficient transfer is observed in this regime.

D. RegimeD

This regime is such that the only quasiresonance is between the states 1 and 2 withv2. In this case, in the basis$u1;0,0&,
u2;0,21&, u3;0,22&% we can construct an effective Hamiltonian from the previous one@Eq. ~27!# considering that thev2 field
is perturbative for the transition 2-3,

H̃c
D5

1

2F 2
~V1!2

2D1
V2 0

V2 2~D11d!1
~V1!2

2D1
2

~V1!2

2~D22d!
2

~V2!2

2D2
0

0 0 2~D11D21d!1
~V1!2

2~D22d!
1

~V2!2

2D2

G . ~28!
ld
ng

t

lues

e it

erti-

pid

not
We can remark that this Hamiltonian is valid for the fie
amplitudeV2 below the position of the resonance occurri
between the transition 2-3 and thev2 field that can be esti-
mated by

V2
r [2AD2~D11D21d! and D112D21d<0.

~29!

This limit is represented as the bent dashed line crossing
figure horizontally in Figs. 2 and 3~with V05V2

r ). Below
this limit, one is allowed to decouple the statesu2;0,21& and
u3;0,22& from the Hamiltonian~27!. A more detailed analy-
sis of this regime shows that adynamical resonancebetween
the transition 1-2 and thev1 field, induced by thev2 field
occurs approximately for

V25V2
dr[A2D1~D112d!. ~30!
03231
he

It is obtained when the difference of the dressed eigenva
connected tou1;0,0& and u2;0,21& ~calculated without the
Stark shifts! compensates the difference of the frequenciesd.
This additional resonance is described as dynamical sinc
occurs beyond a threshold of thev2 field amplitude. It is
represented as the bent dashed line crossing the figure v
cally ~which separates the regimesD andD8) in Figs. 2 and
3 with V05V2

dr . The Hamiltonian~28! is thus approxi-
mately validbeforethe dynamical resonance~30!.

Below this dynamical resonance, this Hamiltonian~28! is
very similar to the one describing the Stark chirped ra
adiabatic passage between the statesu1;0,0& and u2;0,21&
@9#. The pump of this process is hereV2 and the Stark pulse
V1. We have hereV2 acting additionally as a Stark pulse.

It is important to note that whenD152d, the fieldv2 is
exactly in resonance with the transition 1-2, and it can
induce any complete population transfer fromu1& to u2&.
1-8
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Below this boundary~plotted as a full line in Figs. 2 and 3!,
i.e., for D1,2d, the topology does not allow the transf
from u1& to u2&. Above this boundary (D1.2d), the trans-
fer is possible as shown by the surfaces of quasienergies~for
D5D15D259d/10) in Fig. 8. The eigenvalues of Eq.~28!
~not shown! fit well these surfaces below the dynamic
resonancesV2,V2

r . Figure 8 shows that the conical inte
section forV250 between the surfaces connected tou1;0,0&
and the target stateu2;0,21& determines the boundary o
the adiabatic connection between these states. This ch
terizes a transfer to the stateu2& with absorption of onev2
photon. This boundary is calculated from the effecti
Hamiltonian~28!,

V152AD
D22d2

2d2D
. ~31!

It is plotted in Figs. 2 and 3 as a full line in the regionD and
determines the boundary of the upper island of good tran
of this region.

The cases beyond the dynamical resonance are studi
the following section.

VI. STRONG-FIELD REGIMES

The strong-field regimeoccurs whenV1(t),V2(t)*d.
For D15D2, this corresponds to aweak spin couplingsince
one has then 6uju&V1(t),V2(t). More resonances occur i
this case and the previous effective Hamiltonians are
longer valid. We will study in detail the interesting regim
D8 which gives quite large areas of transfer to stateu2&.

This regime is located below the resonance~29! and be-
tic
of
e

in

ta

03231
ac-

er

in

o
yond the dynamical resonance~30!, when the transition 1-2
is quasiresonant with both thev1 andv2 fields and when the
transition 2-3 is not resonant with either thev1 field or the
v2 field. This regime is thus characterized by the effect
dressed Hamiltonian,

FIG. 8. Quasienergy surfaces as functions ofV1 /d and V2 /d
for D15D2529d/10. Two different paths~denotedd1 andd2) for
V050.8d connect the statesu1& andu2& with the absorption of one
v2 photon.
KD852 id
]

]u
1

1

2F 0 V21eiuV1 0

V21e2 iuV1 2~D11d!2
~V1!2

2~D22d!
2

~V2!2

2D2
0

0 0 2~D11D21d!1
~V1!2

2~D22d!
1

~V2!2

2D2

G . ~32!
the
f

s-

e

ro-
n
-

The
It is equivalent to a two-level system driven by a bichroma
field @11# with additional Stark shifts. The surfaces
quasienergies as functions of the normalized Rabi frequ
cies V1 /d and V2 /d ~for D5D15D2527d/5) are dis-
played in Fig. 9. This figure shows that the two conical
tersections, one forV150 and one forV250, determine the
boundary of the adiabatic connection between the initial s
u1;0,0& and the target stateu2;1,22&. We calculate the
boundaries using the effective Hamiltonian~32!, which are
plotted as full lines in Figs. 2 and 3,

V152A~D2d!@2d2D22Ad~2d2D!#, ~33a!

V252AD@d2D2Ad~d24D!#. ~33b!
n-

-

te

This process corresponds to a multiphoton transfer to
stateu2&, with absorption of twov2 photons and emission o
onev1 photon.

The analysis of the topology allows to improve the tran
fer efficiency. It shows indeed that av1 field amplitude
weaker than thev2 field amplitude is better in this regim
since the conical intersection forV150 occurs for a smaller
value than the one forV250.

This process of a two-level system driven by a bich
matic field studied in Ref.@11# shows that the transfer ca
still occur for a stronger field~i.e., for a weaker spin cou
pling!, but with absorption of more than twov2 photons and
emission of more than onev1 photon. This result is shown in
Fig. 10 where strong field white islands can be observed.
1-9
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lower white islands correspond to good population trans
to the entangled stateu2;k21,2k&, with k51,2,3,4 from left
to right.

VII. CONCLUSION

In a system of two interacting identical spins in an ext
nal bichromatic field, we have determined the choices
laser pulses which can give a maximal final population in
entangled state. The proposed strategies are robust wit
spect to the external parameters. We have found that in
parameter space it is possible to find large regions where
quantum system can be transferred to the entangled
with a high efficiency. These regions of good transfer ha
been characterized by the topology of the surfaces of dre
states as functions of the parameters.

FIG. 9. Quasienergy surfaces as functions ofV1 /d and V2 /d
for D15D2527d/5. Two different paths~denotedd18 andd28) for
V053d/2 connect the statesu1& andu2& with the absorption of two
v2 photons and the emission of onev1 photon.
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The implementation of the scheme we propose in t
paper can be realized for different physical systems. An
ample could be of the type similar to the one used in R
@16# for the realization of two-qubit phase gates. The sim
larity of our model with the nuclear magnetic resonan
scheme of Ref.@16# is the adiabatic evolution. The Berr
adiabatic phase gate operation was, however, realized
different nuclei i.e. with different gyromagnetic constants.
this case the two-particle states are represented throu
four-level quantum system~see, e.g., Ref.@17#!. In the
present paper we propose instead to use identical spin
generate an entangled state through a simpler effective th
level system.

The methods employed here are quite general and ca
applied for a large variety of systems. We anticipate intere
ing applications of this method in quantum computing a
quantum communication.
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FIG. 10. Contour map of population transfer efficiencyP2(`)
as in Fig. 2, but for stronger field amplitudes.
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