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Deconstructing dense coding
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The remarkable transmission of two bits of information via a single qubit entangled with another at the
destination is presented as an expansion of the unremarkable classical circuit that transmits the bits with two
direct qubit-qubit couplings between the source and destination.
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Quantum dense codir|d] enables Alice to communicate effect of the twocX (ControlledNoT) gates is to transform it
two bits of classical information by sending Bob a singleinto |x)|y)|x)|y). This automates a classical procedure by
physical qubit, which is maximally entangled with anotherwhich Alice, who possesses the upper two qubits, can com-
qubit already in his possession. She does the trick by applymunicate two classical bits of information to Bob, who pos-
ing one of four unitary transformations to her member of thesesses the lower two.
entangled pair, thereby converting the state of the pair into To go from this undramatic classically transparent proce-
one of four mutually orthogonal two-qubit states. Bob candure to quantum dense coding we first expanddXeon the
learn which state it is after receiving the second member ofight into quantum components, beginning with the f&ay.
the pair. 1(b)] that[4] X=HZH. This is useful because we wish to

What is surprising is that Alice appears to act on only aeliminate, or at least disguise, the direct coupling on the left
single qubit, thereby providing Bob wittwo bits of infor-  between Bob’s lower qubit and Alice. Because the opelator
mation by sending him onlpne appropriately prepared qu- is diagonal in the computational basis, it is immaterial
bit. But this way of telling the tale downplays a second in-whetherZ acts on a control qubit immediately before or im-
teraction that takes place before the curtain rises on thmediately after &X. So sincecX is its own inverse we can
official story. That earlier interaction is required to create theexpand Fig. {b) to Fig. 1(c), and then move the pairezX
entanglement between the qubits that Alice and Bob initiallyand Hadamard gates to the extreme left and right, as shown
share. in Fig. 1(d). The goal of eliminating the direct coupling be-

The full story remains surprising even with this addedtween Bob’s lower qubit and Alice can now be achieved by
prologue, but the real surprise is that the entangling interacaoting that the twocX gates on the left of Fig. (df) are
tion, essential for the transmission of the two bits, can takequivalent to the threeX gates on the left of Fig.(#), since
place before Alice has even chosen the bits she wishes tdoth sets, acting on the computational basis, leave the control
communicate to Bob. What the story really demonstrates igubits unaltered, while applying to the lowest qubit if and
the remarkable ability of entangled states to store interactionnly if the states of the two control qubits differ. But since
in a highly fungible form that need not be cashed in until theBob’s qubits both start on the left in the sta®s, andX acts
need arises. as the identity orH|0)=1/,/2(|0)+|1)), the leftmostcX in

~ I 'have made a similar poiri2] about quantum teleporta- Fig, 1(e) always acts as the identity and can be dropped from
tion, showing explicitly how the missing interaction that the circuit.

makes the difference between a routine classical circuitand a The result, Fig. ¢f), is an automated dense-coding circuit.
quantum “miracle” is buried in the interaction that produces The two gates on the left convel®)|0) to the maximally

a crucial shared entangled pair before the state to be telgntangled state $2(/0)|0)+|1)|1)). The upper member of
ported need even have been formed. Because teleportatigRe entangled pair is then acted on ¥yZ,ZX or no trans-
and dense coding both exploit preexisting shared entanglggrmation at all, depending on whether the state of the upper
ment to facilitate communication with surprisingly little ad- qubits is|0)|1), [1)[0), |1)|1), or |0)|0). The two
ditional interaction, one might expect there to be a similargates on the extreme right then transform the resulting en-
circuit-theoretic deconstruction of dense coding. But becausgangbd state of the two lower qubiisne of the four states of
there is no direct mapping from one protocol to the other —e "«ge|| pasis”) back to whichever computational basis
teleportation involves three qubits and dense coding four —i5te of the upper two qubits gave rise to it.

it is not obvious from the expansion in R¢2] of classical A generalization of the dense-coding protocol from qubits

stgte sw_apping into quantur_n teleportation, how_derjse coding) 4.state systems has recently been given by dfial. [5].
might arise from an expansion of the classi@lcircuit that |5 the corresponding generalization of the circuit-theoretic

communicates two bits of information by means of two di- yeriyation, thecX operator becomes the controlled shift
rect qubit-to-qubit interactions.

In this paper, | show how to do this. The construction is
given in Fig. 1. The generalization from qubits destate eX:)ly)=Polyex),  0=xy<d, @)
systems is given in Fig. 2 and Eq4)—(3).

If the initial state of the four qubits in Fig. (& is  where® denotes addition moduld, the Hadamard transfor-
[x)]y)|0)|0) (reading from top to bottom on the Igthenthe  mationH becomes the quantum Fourier transform
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FIG. 1. How to transform the classical circui) that takes
|xy00) to |xyxy) by direct couplings within two pairs of qubits, are no longer their own inverses, but otherwise the extraction of

into the quantum dense-coding circ(fij that begins with prepara-
tion of an entangled state and ends with a transformation of the BelFig. 1.

basis into the computational basis.
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and the controlled operation becomes
cZ:[x)ly)—e 2™V x) y).
One easily verifies that
(H)a(eX)15=(cZ)1{H);
and therefore

cX12=(H)3(cZ)15(H),.
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FIG. 2. The generalizations o, cZ, andH to d-state systems

d-state dense coding from the trivial classical circuit is exactly as in

Figure 2 extends the identities of Fig. 1destate systems.
The only difference in the diagrams is that the unitary gates
are no longer self-inverse, and must be distinguished from

their adjoints. Figure @ shows two direct couplings by
controlled shifts(1) that take|x)|y)|0)|0) into [x)|y)|x)|y),

0=<x,y<d. Figure 2b) introduces[6] the identity (5). A
controlled shift and its compensating inverse are introduced

in Fig. 2(c). The replacement of the twaX gates on the left
of Fig. 2(d) by the twocX and onecX' gates on the left of

Fig. 2(e) is clearly valid for controlled shifts, and tleX gate

on the left of Fig. 2e) can be dropped sindd|0) is invariant
under arbitrary shifts.
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Figure Zf) is thed-state version of dense coding. The two
gates on the left produce the entangled state
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1 (and the corresponding deconstructions of teleportation in
— > 2. (6)  Ref.[2]) back into elementary classical circuits, illustrate the
Jd 0<7<d role of entanglement as interaction-in-advance-of-need, by
explicitly tracing its origin back to a direct classical interac-
tion. They have the pedagogical virtue of requiring no alge-
braic scratchwork whatevéexcept for the confirmation of
%q. (5) for d-state systenisto verify that the quantum cir-
Xuits act as advertized.

The two gates in the middle transfort@) by the action(or
inaction of the cX™ andcz' gates on the member of the
entangled pair in Alice’s possession. The two gates on th
right act on the pair after both members are in Bob’s posse
sion, transforming its state into that product of Alice’s two
computational-basis states that governed the two controlled
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