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Deconstructing dense coding

N. David Mermin
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~Received 24 April 2002; published 16 September 2002; publisher error corrected 8 July 2003!

The remarkable transmission of two bits of information via a single qubit entangled with another at the
destination is presented as an expansion of the unremarkable classical circuit that transmits the bits with two
direct qubit-qubit couplings between the source and destination.
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Quantum dense coding@1# enables Alice to communicat
two bits of classical information by sending Bob a sing
physical qubit, which is maximally entangled with anoth
qubit already in his possession. She does the trick by ap
ing one of four unitary transformations to her member of
entangled pair, thereby converting the state of the pair
one of four mutually orthogonal two-qubit states. Bob c
learn which state it is after receiving the second membe
the pair.

What is surprising is that Alice appears to act on only
single qubit, thereby providing Bob withtwo bits of infor-
mation by sending him onlyoneappropriately prepared qu
bit. But this way of telling the tale downplays a second
teraction that takes place before the curtain rises on
official story. That earlier interaction is required to create
entanglement between the qubits that Alice and Bob initia
share.

The full story remains surprising even with this add
prologue, but the real surprise is that the entangling inte
tion, essential for the transmission of the two bits, can t
place beforeAlice has even chosen the bits she wishes
communicate to Bob. What the story really demonstrate
the remarkable ability of entangled states to store interac
in a highly fungible form that need not be cashed in until t
need arises.

I have made a similar point@2# about quantum teleporta
tion, showing explicitly how the missing interaction th
makes the difference between a routine classical circuit a
quantum ‘‘miracle’’ is buried in the interaction that produc
a crucial shared entangled pair before the state to be
ported need even have been formed. Because teleport
and dense coding both exploit preexisting shared entan
ment to facilitate communication with surprisingly little ad
ditional interaction, one might expect there to be a sim
circuit-theoretic deconstruction of dense coding. But beca
there is no direct mapping from one protocol to the other
teleportation involves three qubits and dense coding four
it is not obvious from the expansion in Ref.@2# of classical
state swapping into quantum teleportation, how dense co
might arise from an expansion of the classical@3# circuit that
communicates two bits of information by means of two
rect qubit-to-qubit interactions.

In this paper, I show how to do this. The construction
given in Fig. 1. The generalization from qubits tod-state
systems is given in Fig. 2 and Eqs.~1!–~3!.

If the initial state of the four qubits in Fig. 1~a! is
ux&uy&u0&u0& ~reading from top to bottom on the left! then the
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effect of the twocX ~Controlled-NOT! gates is to transform it
into ux&uy&ux&uy&. This automates a classical procedure
which Alice, who possesses the upper two qubits, can c
municate two classical bits of information to Bob, who po
sesses the lower two.

To go from this undramatic classically transparent pro
dure to quantum dense coding we first expand thecX on the
right into quantum components, beginning with the fact@Fig.
1~b!# that @4# X5HZH. This is useful because we wish t
eliminate, or at least disguise, the direct coupling on the
between Bob’s lower qubit and Alice. Because the operatoZ
is diagonal in the computational basis, it is immater
whetherZ acts on a control qubit immediately before or im
mediately after acX. So sincecX is its own inverse we can
expand Fig. 1~b! to Fig. 1~c!, and then move the pairedcX
and Hadamard gates to the extreme left and right, as sh
in Fig. 1~d!. The goal of eliminating the direct coupling be
tween Bob’s lower qubit and Alice can now be achieved
noting that the twocX gates on the left of Fig. 1~d! are
equivalent to the threecX gates on the left of Fig. 1~e!, since
both sets, acting on the computational basis, leave the co
qubits unaltered, while applyingX to the lowest qubit if and
only if the states of the two control qubits differ. But sinc
Bob’s qubits both start on the left in the stateu0&, andX acts
as the identity onHu0&51/A2(u0&1u1&), the leftmostcX in
Fig. 1~e! always acts as the identity and can be dropped fr
the circuit.

The result, Fig. 1~f!, is an automated dense-coding circu
The two gates on the left convertu0&u0& to the maximally
entangled state 1/A2(u0&u0&1u1&u1&). The upper member o
the entangled pair is then acted on byX,Z,ZX or no trans-
formation at all, depending on whether the state of the up
two qubits is u0&u1&, u1&u0&, u1&u1&, or u0&u0&. The two
gates on the extreme right then transform the resulting
tangled state of the two lower qubits~one of the four states o
the ‘‘Bell basis’’! back to whichever computational bas
state of the upper two qubits gave rise to it.

A generalization of the dense-coding protocol from qub
to d-state systems has recently been given by Liuet al. @5#.
In the corresponding generalization of the circuit-theore
derivation, thecX operator becomes the controlled shift

cX:ux&uy&→ux&uy% x&, 0<x,y,d, ~1!

where% denotes addition modulod, the Hadamard transfor
mationH becomes the quantum Fourier transform
©2002 The American Physical Society08-1
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0<z,d
e2p izy/duz&, ~2!

and the controlled-Z operation becomes

cZ:ux&uy&→e22p ixy/dux&uy&. ~3!

One easily verifies that

~H!2~cX!125~cZ!12
† ~H!2 ~4!

and therefore

cX125~H!2
†~cZ!12

† ~H!2 . ~5!

FIG. 1. How to transform the classical circuit~a! that takes
uxy00& to uxyxy& by direct couplings within two pairs of qubits
into the quantum dense-coding circuit~f! that begins with prepara
tion of an entangled state and ends with a transformation of the
basis into the computational basis.
03230
Figure 2 extends the identities of Fig. 1 tod-state systems
The only difference in the diagrams is that the unitary ga
are no longer self-inverse, and must be distinguished fr
their adjoints. Figure 2~a! shows two direct couplings by
controlled shifts~1! that takeux&uy&u0&u0& into ux&uy&ux&uy&,
0<x,y,d. Figure 2~b! introduces@6# the identity ~5!. A
controlled shift and its compensating inverse are introdu
in Fig. 2~c!. The replacement of the twocX gates on the left
of Fig. 2~d! by the twocX and onecX† gates on the left of
Fig. 2~e! is clearly valid for controlled shifts, and thecX gate
on the left of Fig. 2~e! can be dropped sinceHu0& is invariant
under arbitrary shifts.

Figure 2~f! is thed-state version of dense coding. The tw
gates on the left produce the entangled state

ll

FIG. 2. The generalizations ofcX, cZ, andH to d-state systems
are no longer their own inverses, but otherwise the extraction
d-state dense coding from the trivial classical circuit is exactly as
Fig. 1.
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0<z,d
uz&uz&. ~6!

The two gates in the middle transform~6! by the action~or
inaction! of the cX† and cZ† gates on the member of th
entangled pair in Alice’s possession. The two gates on
right act on the pair after both members are in Bob’s poss
sion, transforming its state into that product of Alice’s tw
computational-basis states that governed the two contro
operations in the middle.

These circuit-theoretic deconstructions of dense cod
Le

te
u

:
e

03230
e
s-

d

g

~and the corresponding deconstructions of teleportation
Ref. @2#! back into elementary classical circuits, illustrate t
role of entanglement as interaction-in-advance-of-need,
explicitly tracing its origin back to a direct classical intera
tion. They have the pedagogical virtue of requiring no alg
braic scratchwork whatever@except for the confirmation o
Eq. ~5! for d-state systems# to verify that the quantum cir-
cuits act as advertized.
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@3# I call a circuit classical if every gate transforms classical sta
into other classical states, i.e., if every gate acts as a perm
tion on states of the computational basis.

@4# I use the standard quantum computational nomenclatureX
5sx , Z5sz , andH51/A2(X1Z) is the Hadamard gate. Th
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two-qubit controlled gatescX andcZ act withX or Z on their
target qubits if their control qubits~black dot! are in the state
u1& and as the identity if their control qubits are in the sta
u0&.

@5# Bei Zeng, Xiao-Shu Liu, Yan-Song Li, and Gui Lu Long
e-print quant-ph/0104102,~unpublished!.

@6# Note the deplorable but pervasive convention that the oper
on the left acts first in a circuit diagram even though the o
erator on the right acts first in an equation.
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