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Describing mixed spin-space entanglement of pure states of indistinguishable particles
using an occupation-number basis
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Quantum-mechanical entanglement is essential for certain forms of quantum communication, and occurs as
a consequence of some operations in quantum computation. The ability to quantify this resource correctly has
thus become of great interest to those working in the field of quantum information theory. In this paper, we
show that all existing entanglement measures but one fail important tests of fitness when appidedtice
m-site states of indistinguishable particles, wheren=2. The accepted method of measuring the entangle-
ment of a bipartite system of distinguishable particles is to use the von Neumann entropy of the reduced
density matrix of one half of the system. We show that expressing the full density matrix using a site-spin
occupation number basis, and reducing with respect to that basis, gives an entanglement that meets all currently
known fitness criteria for systems composed of either distinguishable or indistinguishable particles. We con-
sider an output state from a previously published thought experiment, a state that is entangled in both spin and
spatial degrees of freedom, and show that the site entropy measure gives the correct total entanglement. We
also show how the spin-space entanglement transfer occurring within the apparatus can be understood in terms
of the transfer of probability from single-occupancy to double-occupancy sectors of the density matrix.
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[. INTRODUCTION trix for the subsystem whose entanglement with the rest of
the system we wish to find, expressed in an occupation num-
The peculiarly nonlocal correlations exhibited by the ber basis[2]. This also allows us to understand better the
states of quantum systems are key to the implementation @fivision between spin and spatial entanglement in systems
quantum information processing technologies, such as quafithere both may exist, and the manner in which entangle-
tum computation and quantum teleportation. However, it ignent may be transferred between spin and space. It is impor-
easily shown that the correlations due to that)symmetri-  tant to emphasize that we consider in this paper only pure
zation of the states of indistinguishable bosdfesmiong ~ States of the full system. It is already known that for such

are not themselves a physically useful resource for quanturiétes the von Neumann entropy provides the correct mea-

information technologies: for example, there is no measurez""® of entanglement between two distinguishable sub-

ment we can make locally on a fermion in a localized stateSyStems[a]' We do not address the case of an overall mixed

which is affected by the existence of identical fermions ir]state, for which the definition of an entanglement measure is
other parts of the universgl]. However, it is possible to more subtle4]. . I :

q tandl t that - ' ¢ Tant In Sec. Il we discuss the partitioning of the Hilbert space
produce entangiement that 1S a resource for. Q@santum that is implicit to any meaningful definition of entanglement.
information technology by suitable preparation: for ex-

. a . In Sec. Ill we review some requirements for a successful
ample, by producing &)~ Bell state of the spins of two entanglement measure, and consider the extent to which

fermions. Indeed, in practice, many potential implementaynee potential definitions meet these requirements. In Sec.
tions of QIT involve identical particlegsuch as photons, |v we show that Zanardi’s site entropy measure passes all
electrons, or protonsas “carriers” of entanglement. It is the tests, and can be related to the conventional definition of
therefore important to be able to quantify the degree of “useentanglement in the limit where the exchange symmetry of
ful” entanglement in a system of identical particles. the particles is irrelevant. Finally, in Sec. V we use Zanardi's
Discussion of the entanglement between pure states ofieasure to discuss spin-space entanglement transfer.
indistinguishable particles has previously been dealt with al-
most as a separate topic from that of distinguishable par-
ticles. It is the aim of this paper to show that the entangle-
ment of pure states of either type of particle can be described
within the same theoretical framework. This framework in-  Implicit to any measure that attempts to describe the en-
volves the von Neumann entropy of the reduced density maanglement of two subsystems is an assumption about the
correct manner in which to partition the total Hilbert space.
In this section we consider the requirements for a correct

Il. METHODS OF PARTITIONING HILBERT SPACE
OF TWO ENTANGLED SPINFUL PARTICLES

*Electronic address: joe.gittings@ucl.ac.uk; partitioning, and look at how this is actually performed by
URL: http://mww.cmmp.ucl.ac.uKjrg/ existing entanglement measures. We will frequently need to

"Electronic address: andrew.fisher@ucl.ac.uk; talk about the states of internal degrees of freedom of par-
URL: http://www.cmmp.ucl.ac.uKAjf/ ticles. Therefore, for brevity we will henceforth refer to any
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states of such internal degrees of freedom simply as “spin Indistinguishability When the entangled particles are in-
states.” distinguishable, we can no longer be sure which particle Al-
ice has in her possession. The distinction between one-
1. Requirements for partitioning particle unitary transformations and one-site unitary
transformations becomes relevant. Entanglement should be
rH%variant under one-site unitary transformations, but not nec-
essarily under one-particle unitary transformations, which
may generate entanglement if they involve both subsystems.
An entanglement measure which works successfully for in-
eg’istinguishable particles must respect this distinction.
The natural way to achieve this distinction is to use a
sis that assigns spin statesstiesrather than tgarticles

Tensor product structureln order to express entangle-
ment between two components of an entangled system, so
kind of partitioning of their Hilbert space is necessary in
order to identify the “components.” Our aim is to quantify
the entanglement resource shared between paatslB of a
composite quantum system. These parts may be identifi
with particles(in the case of a state of the system where theb
particles are localizegwith sites(in the case of a state of the a
system where the particles are delocalized over)sitesvith
some arbitrary subdivision of an experimental apparétss 2. Partitioning used by existing entanglement measures

we will examine in Sec. V A For the purposes of the greater  \when partitioning the total Hilbert space of two entangled

part of this paper, we will consider the subsystems of a sysquantum systems, we need to ask ourselves the following.
tem as being synonymous with sites. But it is important to

emphasize that our conclusions are more general: they appf) ~ For indistinguishable subsystems: To what extent can

to any division of a system into subsystems. my system be regarded as a symmetric/antisymmetric
For entangled states of distinguishable partidiespar- product of the single-subsystem states?

ticles that are effectively distinguishable because of their lo{b) For distinguishable subsystems: To what extent can my

calization we would normally use a tensor product structure system be regarded as a direct product of the single-

H=H,®Hg, Where H, and Hg are Hilbert spaces for subsystem states?

states of particles andB. It is important that we correctly

partition the Hilbert space because this ensures that basic .
In most descriptions of entanglement, the tensor product

operations such as the partial trgag=tr,p are valid. The ructure | 4t e in th tandl ‘
partial trace is the correct and only way to describe the prop_§ [ucdure (Ijsbus\/ev ' tf{)r exaw?_ €, In the en angtetr)rre? measure
erties of one part of a composite quantum system when notfl'iroduced by Yoo ergs]. This measure is suitable for spin-

ing is known about the other parts, as it gives the correc&nly entanglement of localized distinguishable particles.

measurement statistics for observations on that subsyste PWEVer, I dogs not descr|b.e.wh|ch site a particle occupies,
5] S0 it is not suited to describing either entangled indistin-

r]_guishable particles, or entangled states of distinguishable
rparticles where the particle and subsystem divisions do not
coincide.
One example where indistinguishable particles have been
(1) The Hilbert space of two indistinguishable particles is atreated is that by Schliemarat al.[7,8], who explicitly con-
symmetric or antisymmetric product, not a direct prod-sider the antisymmetric product space belonging to two fer-

But if we try to use the tensor product structure partitio
ing for entangled states of indistinguishable particles, we ru
into two problems.

uct. mions, each of which inhabits a four-dimensional one-
(2) There is no correspondence between the particles and thp@rticle space. They write a general state in the six-
subsystems used in the partitioning. dimensional two-particle Hilbert space as

Delocalization For spin-only entangled states of distin-
guishable particles—i.e., states where we have unambigu- W)= >, wachcl|0), (1)
ously given one particle to Alice, and the other to Bob—the abe{1234
phrase “the states of Alice’s spin” is completely equivalent
to the phrase “the states of Alice’s particle.” There is no wherea,brun over the orthonormalized single-particle states,
ambiguity about which particle Alice has in her possession aand Pauli exclusion requires that th&x4 coefficient matrix
any time, and therefore there is no logical difference betweew is antisymmetricw,,= — Wy, .
a one-site(local) unitary transformation, and a one-particle It may seem that Schliemann’s partitioning is indeed in
(possibly non local unitary transformation. Thus when de- terms of sites rather than particles, since the single-particle
ciding on a basis in which to describe the spin-only entanglestates are labeled by sites. But, as we shall see later, Schli-
ment of a system of distinguishable particles it may seem @mann’s measure is derived by considering the number of
matter of taste whether spin states should be assigned temental Slater determinants needed to expand the en-
particles or to sites. tangled state. It is therefore actually a particle-based, rather
However, it is perfectly possible to write down states inthan a site-based, description of entanglement. As a conse-
which each particle is shared between Alice and Bob. Amuence, as will be shown later in this paper, it suffers from a
example of such a spin-space entangled state is obtainedriimber of serious flaws; in particular, it is possible to devise
we put particle 1 into (42)(AT+BT) and particle 2 into  one-site(i.e., loca) transformations which generate entangle-
(1nV2)(Al +B|), whereA, B are site labels. ment according to the Schliemann measure.
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. REVIEW OF E)&ISZISNUGREQTANGLEMENT | >i¢A:¢BL H(1)h(2) ( (1) (1)
V2 V2 1(2) 1(2)
A. Desirable properties of any entanglement measure (1) 1(1)
What are the desirable properties of an entanglement mea- = 1(2) 1(2) )
sure?
Invariance under local unitary transformation a mea- =30(1)(2)(1(1)1L(2)- L (1)1(2)
sure is correct, it should not be possible to generate entangle- +[L(D)T(2)=1(1)1(2)]) (5)
ment using only unitary transformations local to a particular
site. and hence
Non invariance under nonlocal unitary transformations 1 1
Conversely, it should be possible to find nonloGad., mul- W)~ — (1) $(2) 11 1@) 6)
tisite) unitary transformations which change the entangle- 7(2) 1(2)
ment.

Correct behavior as distinguishability of subsystems AUP to a normalization factor, whereg¥) " —0 because of
and B is lost A correct measure should reflect the fact thatPauli exclusion.
entanglement is affected when the distinguishability of the Thus the one ebit of entanglement present jiFa™ state
subsystems involved is lost. A simple example of this is aghould be destroyed as the spatial overlap of the two fermi-
follows. For two fermions whose spin degrees of freedom ar@ns’ wave functions asymptotically approaches unity—in the
maximally entangled, we require that as the overlap of th&ase off )" because the state itself is destroyed, and in the
single-particle spatial wave functions approaches unity théase of|¥)~ because the entangled Bell state becomes a
entanglement should asymptotically approach zero. This igonentangled product statéit least, this is the case if nei-
easily seen by considering the full expression for the Belther Alice nor Bob can measure with a spatial resolution

basis states in terms of Slater determinants. sufficient enough to determine the substructure of the spatial
If the two fermions are localized, one in sideand one in  State¢.) A correct entanglement measure should reflect this
site B, then the| W)~ Bell state can be written as fact.

For a pair of bosons in thgl')* state, exactly the same
loss of entanglement would occur, although the behaviors of

L1 |W)* and|W¥)~ are exchanged, due to the change of sign
V) :E(Hl)ﬂ“»' 2) introduced by the use of permanents rather than determi-
nants.
where the full expression fdf|) is B. Wootters measure for distinguishable particles(tangle)

Wootters and co-workef6,9,10 consider a particular
state of two distinguishable particles:

) |g)=alt1)+b|11)+cllT)+dl] 1),

|a|?+]|b|%+]|c|?+]|d|?>=1, 7)

|m>—i daA(LT(1)  ¢p(1)](1)
VA 9a(2)1(2) pe(2)1(2)]

When the two fermions are brought together to occupywhere it is implicit that each particle occupies a definite spa-
the same site, the spatial parts of the two single-particlgial state. Since the tensor product decompositiorHal-
states coincide, i.e¢x— ¢, and we have lows us to define a reduced density mafiixdescribing the

mixed state of systerB, the von Neumann entropy @f; is
a natural measure of entanglement. The Wootters entangle-

D11 111 ment is simply a reexpression of the von Neumann entropy
|Tl>—>i DT HD)1D) of pg, and is defined as
v219(2)1(2) $(2)1(2)
E=h[3(1+1-7)], ®)
¢>(1)¢(2)‘T(1) 1(1)
= ; 4 where
V2 1(2) 1(2) @
h(x)=—[xlog, x+(1=x)logx(1-x)], C)
where ¢ is the samespatial state for site4 andB. and the quantity-is known as the “tangle” and is defined by
A similar result is obtained fol 1), but with an exchange
of columns, and therefore the same result applies for it as for r=4|ad— bc|2. (10)

[T]) but with an overall minus sign. Hendg|) and|| 1) are
now linearly dependent, and the behavior of the entangle®inceE,.ers€XPresses the entropy of a single site, there is
Bell state is no single-site operation which can affect it.
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The Wootters measure applies only when the particles are n
totally distinguishable by virtue of occupying distinct sites. 1
But our aim is to describe more general states in which each
particle occupies a superposition of sites—what happens if
we simply go ahead and use the Wootters measure regard- .
less? Since the Wootters measure does not depend on the
nature of the spatial states, there is no way its value can 0.4
change. So, for example, there is no way that the Wootters

entanglement of &¥)* Bell state will ever be affected by 0.2
the spatial overlap of the single-particle wave functions of 5
the constituent particles. 0.2 0.4 0.6 0.8 1

FIG. 1. Schliemann entanglementf all Bell states vs overlap
S=|{¢.|dp)| of single-particle stategboth quantities are dimen-
Schliemannet al. [8] define the entanglement of spin sionless.
states of a pair of fermions by

C. Schliemann measure for fermions

[¢y=al11)+b|11)+cll1)+d[L]),

(W) =(W|w)|, (1D
. : 2+ |b|?+|c|?+|d|?>=1. 1
where the dualv of w is defined by [al+1["+[c|*+|d| (19
1 In the representation used by Schliemann, we can writevthe
Wop=1= €2P°W,4 (12) matrices for the two-particle basis states in &g A|, BT,
2 B| basis as
and the inner product is expressed as 010 0 0 0
o o 000 0 0 3
(Ww) = 2 Wachd<O|CbCaCIC$|O> W= ,W = ’ :
abcd _% 0 0 O 0 0 O
= 2 € Wapweq 0 00 0 0 -3 00
abcd
= 8(W1 W34+ W13Waot Wi Wp3). (13 0 0} 0 0 0O
A similar definition was introduced for a pair of bosons by | 0 000 |0 0 30
Paskauskas and Ydu1]. W= o o0 ol Wir= 0 -1 0 0
Slater decomposition formlt is possible to relate the . 2
Schliemann measure to the number of elementary Slater -2 000 0 0 0O
determinants that are required to construct the entangled (16)
state. The Hilbert space for a two-fermidgssite system is .
the antisymmetric spacel(C2K®C?€). Any vector in this _Therefor_e the state considered by Wootters has the coef-
space can be represented in terms of single-particle functiorfiSi€nt matrix
fI ., which are members of the single-particle spate by
a(i) 0 0 0 a b
the Slater decomposition
1( O 0 c¢c d an
1 « Y2l -a —c o o !
Wy=— > zfl 100, (14)
| > m% 1hal(i) a2(|)| > b -d 0 O

The number of nonzero coefficieres required to construct and thus we obtain the relation

|W), i.e., the number of elementary Slater determinants, is

known as the Slater rank of the entangled state. Then for #W|W)|=|€®** W

two-fermion two-site systen{¥’) has a Slater rank fcon-

sists of a single Slater determinaift 7(|¥))=0.
Behavior as overlap of single-particle wave functions is (18

increased This entanglement measure behaves correctly as

the overlap is increased between the single-particle wave Hence for the state of two distinguishable particles con-

functions of the particles, as is shown in Fig. 1. sidered by Wootters, the Schliemann measgis related to
Relation to Wootters measureet us consider how the the Wootters tangle by

Schliemann measure works for the class of states considered

by Wootters: n=Ar. (19)

= |8(WaWagF W1aW ot Wy Waa)| = 2|ad—bc| = /7.
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Non invariance under local unitary transformationd/e = Hence applying the infinitesimal unitary transformation

can, however, easily show that there are Idcale-sit¢ uni-  (1—ieH) with this operator to our example state))
tary transformations that generate entanglement by the SCh|§=(1/1/2)(CLT+CTBT)(1/\/?)(CZl+Cél)|0>, we obtain aw
emann measure. Consider this two-particle state: matrix with extra terms=iet in the AT BT andB| A| lo-
cations:
_ 1o Py Lt t

|¢>_5(CAT+CBT)$(CA1+CBL)|O>' (20) 0 1 —iet 1

o _ . . . _ 1| -1 0 -1 —iet )
The physical interpretation of this state is that it describes a W—>Z Liet 1 0 1| (26)

doubly filled “molecular orbital”
-1 +iet -1 0

|A)+[B) _ .

s (21)  which has a Schliemann entanglement
where |A> and |B) are the spatial states for sitésand B, n= EethZO(ez). 27)
respectively. 2

Its antisymmetric coefficient matrix is
Thus, to first order ire, the Schliemann entanglement of

0 1 0 1 our example state is unaffected: even though the transforma-
11 1/-1 0 -1 0 tion intrpduces new correlations between the spin states of
W=_— — — , (22)  the particles on siteé andB.
2vzv2| 0 1 0 1 Understanding the anomalous behavior of the Schliemann
-1 0 -1 0 measure in terms of the Slater decompositidhe Slater

decomposition representation of an entangled two-fermion

giving a Schliemann entanglement gf=0 (no entangle- two-site state described earlier provides a particularly simple
ment, since it is a single Slater determinant way of understanding why the Schliemann measure does not
Now consider applying the infinitesimal one-site two- behave correctly under either two-site one-particle or one-

particle unitary transformation (ZieH) with H  Site two-particle unitary transformations.

=Unana, . This purely local operation transforms the Ac<_:ording to Sf:h_liemannet al, a two-fermion two-site _
matrix to state is entangled iff it has a Slater rank greater than one. It is

well known that a one-particle unitary transformation applied

0 1-ieU 0 1 to a Slater determinant will produce another Slater determi-

1| —1+ieU 0 1 0 nant, whgr_eas a two-particle tra_msformation will produce a

Wes = , (23) sup_erposmon_of Sl_ater determman'_[s. Therefore any one-
4 0 1 0 1 particle two-site unitary transformation will not affect the

-1 0 ~1 0 Slater rank of a state and so it will not change the Schli-

emann entanglement, despite being a nonlocal transforma-
which gives a Schliemann entanglement »pf 8| —ieU/4| tion. Similarly, all two-particle one-site unitary transforma-
—2¢U. which is non zero to first order ia. We have suc- tions will modify the Slater rank of a two-fermion two-site
ceeded in generating Schliemann entanglement via a pureﬁ;ate’ and therefore will change the Schliemann entangle-

local unitary operation, something that should not be posMent, even though they are local. Schliemann’s measure
sible to achieve. therefore fails to behave as we expect it to. The entanglement

Invariance under nonlocal unitary transformatioridow ~ Measures introduced {11,13 suffer from analogous prob-

consider an infinitesimal two-site one-particle unitary trans/8MS, since both are based on the rank of the state.
formation. We would expect such a transformation to lead to

a change of entanglement, yet we can construct an example D. Zanardi measure

under which the Schliemann measure is invariant. Our ex-
ample is generated by a Hamiltonian describing intersit%n
hopping accompanied by a spin flip:

Zanardi[ 2] considers the Fock space Nfspinless fermi-
s in a lattice withL sites. The state spad¢¢ (N) for this
system is given by

H=t(Ch;Ca+Ch Cay). (24 HL(N):=sparf|A)/Ac P}, (28)

(The spin flip is introduced so that our state is not an eigen
vector ofH). The Hamiltonian’s action on our example state
is

where the antisymmetrized state vecldy is given by the
Slater determinant

1
H|¢/>=—%cLTch|o>+%cgch\l|o>. (25) |A>:W PEZSN (—DPlL ]y, ), (29
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and whereP)' denotes the family oi-site subsets of the site in the {ng;,ng }={0,0},{1,0},{0,1},{1,1} basis. The von
labels, and wjp(|)> is the single-particle state for thj¢h site,  Neumann entropy of this is

wherej is a member of the subs@&t' .
For some|¥) e H (N), the local density matrix for the S(pg)=—tr(pglog, pg) = —4(3log3)=2.  (35)
jth site is given by
Therefore, according to Zanardi's site entropy entangle-
pj =t | WP, (300 ment measure our example state contains two ebits of en-
. _ tanglement: one in the spin degree of freedom, the other in
where ty denotes the trace over all but théh site, and  he spatial degree of freedom. This will be discussed at
therefore the von Neumann entropygfis a measure of the angth later in this paper. By contrast, as we have seen above,
entanglement of thgth site with the remainindN—1 sites.  {he " Schliemann measure gives zero entanglement for this
We will now show that, unlike the other candidates, Zanar-state. We give in Appendix A an explicit construction show-
di's measure possesses all the desirable features of an efy that two qubits may be teleported using this state, further
tanglement measure that we have listed above. supporting the entanglement value given by the Zanardi

measure.
IV. SITE ENTROPY ENTANGLEMENT MEASURE

A. Application to an example state B. Behavior under unitary transformations

Let us now investigate further the properties of Zanardi's One-site two-particle (local) unitary transformatian&s
site entropy entanglement measure. Our conclusions are thaefore, we apply the infinitesimal one-site, two-particle uni-
using a binary site-spin occupation number basis for the fultary transformation (+ieH) with H=Unu;n,, and we ob-
density operator for an entangled system, and then reducirigin
the density operator with respect to this basis, gives a re-

duced density matrix whose von Neumann entropy appears 1+€U? 0 0 0

to be a correct measure of entanglement under all circum- 1 0 1 0 O

stances, and for all spin statistics. This is due to the fact that ﬁBZZ 0 01 0 (36)
Fock space(to which this representation maps the Hilbert

space of a set of indistinguishable partigléms a natural 0 0 01

product structure.

For example, for théfermionic or bosonig state consid- Hence, unlike the Schliemann measure, to first ordertime
ered in a preceding section, site entropy measure is invariant under one-site two-particle

unitary transformations. This is the correct behavior for an
1 . o1 N entanglement measure: we cannot generate entanglement
)= E(CAI+CBT) %(CA1+CBL)|O>! (3D through a purely local unitary transformation.

Two-site one-particle (nonlocal) unitary transformations

Let us apply the transformation generated by &4) to our

the density operator for the full system is
yop y example statdy)=(1~2)(ck; +ct,)(IV2)(ch +ck))[0).

p= %(CLT+CET)(CZ@+Céi)|0><o|(CAl+CBL)(CAT+CBT)- T_racing out siteA, we obtain the reduced density matrix for
(32 site B,
We now express this density operator as a density matrix 1 0 0 0
in the binary{na; ,na, ,Ng; ,Ng,} Occupation number basis, 1l o 1 _oiet 0
and reduce it for sid® by tracing out states of sid& using Pe=— _ (37)
combinations ofiy; =0, 1 andna, =0, 1 since the number of 410 +2iet 1 O
particles on siteAis 0, 17, 1 |, or 2. Thus we perform 0 0 0 1
pp= > in the {ng; ,ng;}={0,0},{1,0},{0,1},{1,1} basis. To first or-
nap=0,1na =01 der ing, this is not equal to the untransformgg. Therefore,

two-site unitary transformations can generate entanglement
in the site entropy picture, even if they only operate on one
(33 (delocalized particle. This conclusion is as we would expect.

X{(nap,Na [(Ngy.Nglp[Ng: N ) Nat.NAY),

giving C. Site entropy measure applied to a completely general state
Bosonic particlesLet us now apply the site entropy de-
scription of entanglement to completely general two-patrticle,
(34  two-site states. Since the case of bosonic particles is the most
general case, we consider it first. The state can now be writ-
ten in terms of thev matrix as

he})
vs)

Il
N
o O O
o O +r O
o r O O
» O O O
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D. Relationship to Wootters tangle

_ Tt
[w) a,b6%2,3,4 WabDgbp|0), (38) The origin of the Wootters entanglement measure is now

readily understood. It is simply the von Neumann entropy of
where 1,2,3,4AT1,A|,BT,B] andw is now a symmetric the one-particle papg ; of the reduced density matrix in the
coefficient matrix. occupation number representation for siBe Wootters's
Transforming this to the site-spin occupation number ba“general state” equation(7), where the kets represent
sis{na;.Na; .Ng;.Ng} and tracing out the states of sike¢  |oa0g), can be rewritten in the occupation number basis

we obtain a reduced density matrix for siB of block-  |npTnalngTngl) as
diagonal form, where each block corresponds to a particular
occupancy(zero, one, or two bosonsf that site. a|1010 +b[1003) +¢[0110 +d|0103). (46)
po O 0 Trac_ing out site_A yield; the fqlloyving reduced, correctly
 bosonic._ T normalized, density matrix for sitB in the B, B basis:
pp"=l 0 ps1 O |. (39 _
0 0 pos . laj*+|c|* ab*+cd* “
P\ a*b+c*d  |b|2+]d|?
This is a 6x 6 matrix, rather than theX4 pg we previously
obtained for the two-fermion state, because Bose-EinsteiWith eigenvalues
spin statistics permit the extra siBedouble-occupancy states
B1B1 andB|B|. 3(1—\1-4Jad—bc?), 3(1+1-4Jad—bc]?).
The component for zero particles on sids (48)
Poo= |Warl2+ [ Wagl 2+ 4|yl (40) Applying the simplifications 7=4|ad—bc|?> and x=

(1/2)(1+ J1— 7) these reduce to-1x, x. Thus the entropy
The component for one particle on sBein the B, B]  Of ps is

basis s S(pe)=—[xlogy x+ (1-X)log(1-x)],  (49)
2 2
_ Alwag "+ A|Wog " AW Wi+ AW,aw3, which is identical to the Wootters result for entanglement
Pel AWT W14+ AW5aWo4 4wy 2 +4lwy? | @D given in Eq.(8).
41

V. SPIN-SPACE ENTANGLEMENT TRANSFER
Finally, the component for two particles on sBein the

(B1B|,B1B1,B|B|} basis is A. Omar et al. thought experiment
Since we have argued that Zanardi's approach gives a
4|W3,4|2 2W3 W35 2W3Wi, correct view of entanglement in all circumstances, we can

~ * 2 * use it to analyze situations in which there is spatial, as well
Peo=| 2W3Wsz  |wad WadWaa . 42 s spin, entanglement. A particularly interesting system of
2WE W4, WhWa,  [Way? this type was introduced recently by Onetral. [13]. They
consider an apparatus that takes as its input two pairs of
Fermionic particles Obtaining an expression f@; fora  particles,A and B, each pair maximally entangled in some
completely general fermionic state is simply a matter of ap-internal degree of freedoe.qg., spif, and transfers some of
plying Pauli's exclusion principle t¢°°". Under Fermi- that entanglement to the spatial degrees of freedom of the
Dirac statistics, the only possible two-particle state onBite particles. This is achieved by passing one particle from each

is BTB|, meaning that the two-particle part pf is reduced pair through a beam splitter on one side of the apparatus, and

to the IX 1 submatrix, doing likewise with the remaining particles from each pair
through another beam splitter on the other side of the appa-
(PB,2)termionic= (4] W34 ), (43)  ratus(see Fig. 2 The two sides are labeled 1 and 2. Use of

the site entropy measure enables us to understand better, the
Similarly, the only possible two-particle state on skés  process of entanglement transfer.
ATA], meaning that the probability of zero particles on site  Side 1 of the apparatusFirst, let us consider the input
Bis given by 4w;,|?. Hence the zero-particle part p§s°"°  state to the apparatus, and its entanglement according to the

is site entropy measure. This state is
(PB,0)fermioni :(4|W12|2)- (44) 1 t At t .t 1 t .t t .t
ermionie 5 (ap118a2; T a1 A021) 5 (ag118p2 T ap1|3p2y)-
The one-particle part 0p2°"is by definition not af- (50)

fected by Pauli exclusion, therefore
Henceforth we will consider the case where all four particles
(PB, 1 termionic= (PB, 1) bosonic: (45  are fermions, and the above product state consists of triplets
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Cl1 : D1 —3|L)1|L)2= 2|R)1|RY2— 3 (|L)1|R) 2+ |R)4|L)2)
+3(ATIIALT) 2+ AL AT L)) = 3(JAT L) 4|AT L),

HALD AL+ (AT AL 2+ AL LIATT)2),
(53

where, for examplgL ), indicates that both fermions on side
1 of the apparatus have passed into the left arm and thus
necessarily have opposite spins, g&d | ), indicates that
each particle on side 1 of the apparatus has passed into a
different arm, with the particle occupying the left arm being
spin up and the particle occupying the right arm being spin
down.

If we rewrite this in the occupation number representation

INL11NL1 MR MR N2t N2 NR21 NR2) ) (54

trace out side 2 of the apparatus, and renormalize, we obtain
the following reduced density matrix for side 1 of the appa-

I D2 ratus:
FIG. 2. The spin-space entanglement apparatus used in the 0 0O 0 O
Omaret al. thought experimenfreproduced fronj13]).
g p ntrep n13]) L1 0 0 0
(described as the-+ case for fermions if13]). If we write 00 L& —_f 0 o0
this in the occupation number representation, and then trace P1ou= 8 8 , (55)
out side 2 of the apparatus, we obtain the following reduced ’ 00 -% ¢t 00O
density matrix for side 1 of the apparatus:
0 0 O 0 10
0 000 O0OTUO O 00 0 0 0 1
0 000 OTUO
1 which has entropyS(p; ou) =2, showing that the total en-
0 0z 0O0DO . ’ .
R tanglement is unaffected by the operation of the apparatus.
PiLin=| 0 0 0O Lo o0l (51) However, we can see from the fact that the double-
occupancy top-left sector of this matrix is now nonzero, the
0 0003 O system now contains spatial entanglement, because this state
0000 01 is now mixed in arm-occupancy number as well as spin.
4 Single-occupancy and double-occupancy entanglements
] . . are additive Since in Eq.(55) there are no nonzero off-
using the reduced basis for side 1, diagonal elements connecting the double-occupancy and
single-occupancy sectors of the matrix, we can unambig-
INL11NL1 NR1 MR ) ously assign each eigenvalue to one sector, and hence divide
-~ the total entanglement into double-occupancy and single-
={/1100.|0011),/0110,|1001),[1010,|0103}. occupancy parts. In this case, the double-occupancy sector

(52 has eigenvalueg, 0 and hence contributes 0.5 ebits to the
entanglement. The single-occupancy sector has eigenvalues
This state has two ebits of entanglement. Examining Eqof 3, 0, 7, 7 and hence contributes 1.5 ebits. It is clear from
(51), we see that this entanglement is carried entirely in thehese definitions that the single-occupancy and double-
bottom right part of the density matrix, which corresponds tooccupancy entanglements will always sum to the total en-
single-occupancy states which differ only by the spin. Theretanglement, provided that the off-diagonal elements connect-
fore, this entanglement is purely spin entanglement. ing the two sectors are zero. The single-occupancy
It is a straightforward exercise to show that the site en-entanglement is a form of spin entanglement, since the
tropy measure gives the same total entanglement betweeingle-occupancy states do not differ in the spatial distribu-
sides 1 and 2 of the apparat(te/o ebitg for the input and tion of particles between the arms. Likewise, the double-
output states. This must be so since the operation of eaatccupancy entanglement is a form of space entanglement,
beam splitter is local to its side of the apparatus. The unnorsince the double-occupancy states do not differ in thejr
malized output state for 50/50 beam splitters for our inputvalues. However it is not obvious that these are the most
state is given irf13] as general forms of spin and space entanglement, since, for ex-
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ample, the double-occupancy entanglement does not take ad/e then find that the action of the Omar interferometer in

count of the spatial states in which each arm contains ongansformingp,; i, t0 p1; o, Can be represented by the action

particle. of the depolarizing channd3] on p;_;, with probability
The distinction between spatial and double-occupancy erp= 2.

tanglement is further clarified by th§,=0 spin measure-

ments suggested by Omat al. for their output state. They B. Division of entanglement into single- and

show that the spatial state produced by such a measurement double-occupancy parts

(obtained with probability}) involves a superposition of both

double- and single-occupancy components. In this state, the ) .

show that the entanglement remaining between sides 1 and sly into single- and double-occupancy parts? As we can

is one ebit: since the spin state is now the same for all com=%€ from the above treatment c_)f the Omar apparatus, it is

ponents and hence unentangled, this could be unambiguou en the reduced densﬁy_ma’;rlx for the subsystem whos_e

described as spatial entanglement. tanglement we are considering hgs sectors gorrespondlng
to single- and double-occupancy, with no off-diagonal ele-

Left arm of side 1 of the apparatul$ is instructive now to ina th Such a division | ble wh
reduce further the input and output density matrices to thos ents connecting them. Such a division Is possible whenever
e total system contains a definite number of particles: there

for just the left arm of side 1 of the apparatus. For the inputt ; . . :
state. this is are then no off-diagonal density matrix elements connecting

states of the subsystem having different numbers of particles.
This is the reason why there are no elements connecting the
different sectors op4, in Egs.(56) and(58).
We note with emphasis that the situation for the reduced
(56) density matrix for side 1 of the Omar apparatus in &%) is
fundamentally different. All the basis states contain the same
total number of particles. Its block-diagonal form is due to a
combination of factors: the spin symmetry of the system
(which causes those elements connecting states on side 1 and
in the basis 2 with a different totalmg value to be zerpand the use of
50/50 beam splitters, which prevents any products of the

InL1inLy)=1111),/00),|01),|10)}, (57)  form|L)|A), from appearing in the output state.

When is it possible to divide entanglement unambigu-

o o
© o o

PiL,in—

o O O o
o O O o
N[

o
N

APPENDIX: TELEPORTING TWO QUBITS

which has entropy5(p;. in)=1. In the same basis, the re-
. USING AN EXAMPLE DELOCALIZED STATE

duced density matrix for the output state is

Protocol design Consider again the delocalized state in
Eqg. (20). Since the Zanardi measure says it contains two

1

: 000 ebits of entanglement, we should be able to teleport two

0 : 0O qubits of quantum information using it. Clearly, since the
PiL out= . , (58)  two ebits are spread across spin and spatial degrees of free-

00350 dom, we shall need to modify the original protocol some-

00 032 what. How could we do this?

Switching into the anthropocentric language of Alice and
Bob, a concise description of the protocol for teleporting one
which has entropy5(p; o) =1.81, showing that the action qubit described if14] is as follows. We separate the two
of the beam splitter on side 1 of the apparatus has introduceslibsystems of our entangled system which will act as the
an additional 0.81 ebits of entanglement between the left arrohannel for quantum information, giving one to Alice and
of side 1 and the rest of the system, in addition to the 1 ebibne to Bob. We then perform a controlledT operation on
of entanglement already present between those two sulthe qubit whose state we wish to telepéttie “source qu-
systems. bit”), and also on Alice’s system, using the source qubit as

Operator-sum representation for spin-space entanglemerthe control line. We then perform a Hadamard transform on
transfer It is possible to find an operator-sum representatiorthe source qubit. Alice’s qubits are now in a superposition of
for the spin-space entanglement transfer within the left arnstates, each of which corresponds to the target qubit being in
of side 1 of the apparatus that we have discussed above. Ahe same state as the original state of the source qubit up to a
easy way to do this is to make the following isomorphismunitary transform. Alice performs a measurement of the state
between the spin states of two qubitsindB, and the occu-  of her two qubits, thereby projecting the target qubit into one
pation numbers for the spin-up and spin-down single particlef these states. The protocol is completed by Alice sending

states of the left arm: Bob two bits of classical information describing which mea-
surement result she obtained, enabling him to rotate the tar-
(oo} ={|TT I I0 get qubit into the correct state.

The key to teleporting via the delocalized sté26) lies in
—{ny 1Ny }={]00),|02),|10),|]11)}. (59)  recognizing that the two ebits in the delocalized state are
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equivalent to two pairs of qubits, each of which is maximally A =110V~ (101100 & a( 10 + |10 £ (O
spin entangled“channel pairs”, and making the following s quic= [10)cc(10/(100)n(10/+10)4x(00
isomorphism: +|11) aa(01 +[02) an(11))
_1 t
{oace} ={T LTI L0 =20zt D Car+Cuy). (A6)

—{npna }={00),|11),|10),|0D)}. (A1)
(AN }={100),[11).[20)./01)} In the first expression we have used the bases
This connects the occupation numbers of the single-particle
states of Alice’s site to the states of Alice’s channel-pair qu-
bits in the spin-only representation.
Recall that acNOT performs

Incing;) and [na;na)). (A7)

In the second expression we have reexpressed the projectors
TOY=1TI0T D=1 D=L —=] LY, for the occupation number state of skén second-quantized
(A2) notation. Similarly, the Hamiltonian generating a controlled-
NOT operation on the second virtual qubit is
i.e., we flip the second qubit in a basis state iff the state of
the first(contro) qubit in that basis state is up. What does a
controlledNOT operation on one of Alice’s two channel-pair H cecond qubiT %(azyc+ 1)(CLTCLl+CALCAT). (A8)
qubits look like after applying the above isomorphism? Us-

ing this basis for the states of one of the source qui@s ) o )
and Alice’s site(A): Neither of these Hamiltonians conserves particle number,

thus we need to introduce a coherent source/sink of particles
{Incinc najnap)}=1{|1000,/1010,/1001),/101D), to the system. We shall see below that we can easily do this
for bosons. Introducing a systebhwhich acts as a particle

|0100,/0110,/0101),|0111)}, (A3)  source/sinkH; quoi becomes

we obtain the following unitary transformation for the first

“virtual” qubit: Hiirst quoi= | 10)cc(10[(CA;Co +Chear).- (A9)

At this point we face a problem. By changing the number
of particles in systenD as a consequence of oarOT, we
are introducing new correlations between the states of sub-
systemdA andD. This is thus a type of decoherence affecting
the entanglement of the carrier p@B. This is clearly un-
(A4) avoidable in a real-world system, but we can show that for
bosons and by choosing a suitable initial state for subsystem
D, we can minimize this decoherence to a negligible level.
We seek to put systei in an approximate eigenstate of the
creation and annihilation operators, so that they leave it un-
changed and no decoherence of the entanglement iABhe
carrier pair occurs. A suitable choice is the coherent state

Ufirst qubit=

O O O O O O +»r O
O O O O O O O B
O O O O B O O O
O O O O O O O
O O O O O o o o
o O O O O O o o
O O O O O O o o
o O O O O o

The action of this is thus:

|1000+(1010,/1001)«+{1011),|0InanA|) unchanged. a”
(A5) |a>D=exrx—%Ial2>znﬁn,)12|n>o- (A10)
Referring to the isomorphism in EGA1) we see that thig)
flips the first virtual qubit in Alice’s half of the delocalized It is well known that this state is an eigenstate of the anni-
state iff the control qubi€ is spin-up. Similar considerations hilation operator, a fact that suits our requirements perfectly,
lead to a similar unitary transformation for the second virtualbut it is not an eigenstate of the creation operator. However,
qubit. We also note that since we are teleporting two qubitsas the mean number of particlés|? in the coherent state
we need to send four classical bits to complete the protocobsymptotically approaches®, the state asymptotically ap-
Protocol implementatianThe twocNOTs described above proaches an eigenstate of the creation operator. It is impor-
will clearly allow us to exploit the two ebits of entanglement tant to note that this method for coherently producing a non-
present in the delocalized state. However some consideratiorumber-conserving interaction applies to bosons only. For
needs to be paid to how we can implement thes®Ts. fermions, Pauli exclusion prevents us from using such a
Considering again the first virtual qubit, the Hamiltonian we simple approach and there is no analog of the coherent state
can use to generate EQGA4) is available within the Hilbert space.
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