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Describing mixed spin-space entanglement of pure states of indistinguishable particles
using an occupation-number basis

J. R. Gittings* and A. J. Fisher†

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
~Received 24 April 2002; published 16 September 2002!

Quantum-mechanical entanglement is essential for certain forms of quantum communication, and occurs as
a consequence of some operations in quantum computation. The ability to quantify this resource correctly has
thus become of great interest to those working in the field of quantum information theory. In this paper, we
show that all existing entanglement measures but one fail important tests of fitness when applied ton-particle
m-site states of indistinguishable particles, wheren, m>2. The accepted method of measuring the entangle-
ment of a bipartite system of distinguishable particles is to use the von Neumann entropy of the reduced
density matrix of one half of the system. We show that expressing the full density matrix using a site-spin
occupation number basis, and reducing with respect to that basis, gives an entanglement that meets all currently
known fitness criteria for systems composed of either distinguishable or indistinguishable particles. We con-
sider an output state from a previously published thought experiment, a state that is entangled in both spin and
spatial degrees of freedom, and show that the site entropy measure gives the correct total entanglement. We
also show how the spin-space entanglement transfer occurring within the apparatus can be understood in terms
of the transfer of probability from single-occupancy to double-occupancy sectors of the density matrix.

DOI: 10.1103/PhysRevA.66.032305 PACS number~s!: 03.67.2a, 03.65.Ud, 05.30.2d
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I. INTRODUCTION

The peculiarly nonlocal correlations exhibited by t
states of quantum systems are key to the implementatio
quantum information processing technologies, such as q
tum computation and quantum teleportation. However, i
easily shown that the correlations due to the~anti!symmetri-
zation of the states of indistinguishable bosons~fermions!
are not themselves a physically useful resource for quan
information technologies: for example, there is no measu
ment we can make locally on a fermion in a localized st
which is affected by the existence of identical fermions
other parts of the universe@1#. However, it is possible to
produce entanglement that is a resource for QIT~quantum
information technology! by suitable preparation: for ex
ample, by producing auC&2 Bell state of the spins of two
fermions. Indeed, in practice, many potential implemen
tions of QIT involve identical particles~such as photons
electrons, or protons! as ‘‘carriers’’ of entanglement. It is
therefore important to be able to quantify the degree of ‘‘u
ful’’ entanglement in a system of identical particles.

Discussion of the entanglement between pure state
indistinguishable particles has previously been dealt with
most as a separate topic from that of distinguishable p
ticles. It is the aim of this paper to show that the entang
ment of pure states of either type of particle can be descr
within the same theoretical framework. This framework
volves the von Neumann entropy of the reduced density
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trix for the subsystem whose entanglement with the res
the system we wish to find, expressed in an occupation n
ber basis@2#. This also allows us to understand better t
division between spin and spatial entanglement in syste
where both may exist, and the manner in which entang
ment may be transferred between spin and space. It is im
tant to emphasize that we consider in this paper only p
states of the full system. It is already known that for su
states the von Neumann entropy provides the correct m
sure of entanglement between two distinguishable s
systems@3#. We do not address the case of an overall mix
state, for which the definition of an entanglement measur
more subtle@4#.

In Sec. II we discuss the partitioning of the Hilbert spa
that is implicit to any meaningful definition of entanglemen
In Sec. III we review some requirements for a success
entanglement measure, and consider the extent to w
three potential definitions meet these requirements. In S
IV we show that Zanardi’s site entropy measure passes
the tests, and can be related to the conventional definitio
entanglement in the limit where the exchange symmetry
the particles is irrelevant. Finally, in Sec. V we use Zanard
measure to discuss spin-space entanglement transfer.

II. METHODS OF PARTITIONING HILBERT SPACE
OF TWO ENTANGLED SPINFUL PARTICLES

Implicit to any measure that attempts to describe the
tanglement of two subsystems is an assumption about
correct manner in which to partition the total Hilbert spac
In this section we consider the requirements for a corr
partitioning, and look at how this is actually performed b
existing entanglement measures. We will frequently need
talk about the states of internal degrees of freedom of p
ticles. Therefore, for brevity we will henceforth refer to an
©2002 The American Physical Society05-1
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states of such internal degrees of freedom simply as ‘‘s
states.’’

1. Requirements for partitioning

Tensor product structure. In order to express entangle
ment between two components of an entangled system, s
kind of partitioning of their Hilbert space is necessary
order to identify the ‘‘components.’’ Our aim is to quantif
the entanglement resource shared between partsA andB of a
composite quantum system. These parts may be ident
with particles~in the case of a state of the system where
particles are localized!, with sites~in the case of a state of th
system where the particles are delocalized over sites!, or with
some arbitrary subdivision of an experimental apparatus~as
we will examine in Sec. V A!. For the purposes of the great
part of this paper, we will consider the subsystems of a s
tem as being synonymous with sites. But it is important
emphasize that our conclusions are more general: they a
to any division of a system into subsystems.

For entangled states of distinguishable particles~or par-
ticles that are effectively distinguishable because of their
calization! we would normally use a tensor product structu
H5HA^ HB , where HA and HB are Hilbert spaces fo
states of particlesA andB. It is important that we correctly
partition the Hilbert space because this ensures that b
operations such as the partial tracer̂B5trAr̂ are valid. The
partial trace is the correct and only way to describe the pr
erties of one part of a composite quantum system when n
ing is known about the other parts, as it gives the corr
measurement statistics for observations on that subsy
@5#.

But if we try to use the tensor product structure partitio
ing for entangled states of indistinguishable particles, we
into two problems.

~1! The Hilbert space of two indistinguishable particles is
symmetric or antisymmetric product, not a direct pro
uct.

~2! There is no correspondence between the particles and
subsystems used in the partitioning.

Delocalization. For spin-only entangled states of disti
guishable particles—i.e., states where we have unamb
ously given one particle to Alice, and the other to Bob—t
phrase ‘‘the states of Alice’s spin’’ is completely equivale
to the phrase ‘‘the states of Alice’s particle.’’ There is n
ambiguity about which particle Alice has in her possession
any time, and therefore there is no logical difference betw
a one-site~local! unitary transformation, and a one-partic
~possibly non local! unitary transformation. Thus when de
ciding on a basis in which to describe the spin-only entang
ment of a system of distinguishable particles it may see
matter of taste whether spin states should be assigne
particles or to sites.

However, it is perfectly possible to write down states
which each particle is shared between Alice and Bob.
example of such a spin-space entangled state is obtain
we put particle 1 into (1/&)(A↑1B↑) and particle 2 into
(1/&)(A↓1B↓), whereA, B are site labels.
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Indistinguishability. When the entangled particles are i
distinguishable, we can no longer be sure which particle
ice has in her possession. The distinction between o
particle unitary transformations and one-site unita
transformations becomes relevant. Entanglement should
invariant under one-site unitary transformations, but not n
essarily under one-particle unitary transformations, wh
may generate entanglement if they involve both subsyste
An entanglement measure which works successfully for
distinguishable particles must respect this distinction.

The natural way to achieve this distinction is to use
basis that assigns spin states tositesrather than toparticles.

2. Partitioning used by existing entanglement measures

When partitioning the total Hilbert space of two entangl
quantum systems, we need to ask ourselves the followin

~a! For indistinguishable subsystems: To what extent c
my system be regarded as a symmetric/antisymme
product of the single-subsystem states?

~b! For distinguishable subsystems: To what extent can
system be regarded as a direct product of the sin
subsystem states?

In most descriptions of entanglement, the tensor prod
structure is used, for example, in the entanglement mea
introduced by Wootters@6#. This measure is suitable for spin
only entanglement of localized distinguishable particl
However, it does not describe which site a particle occup
so it is not suited to describing either entangled indist
guishable particles, or entangled states of distinguisha
particles where the particle and subsystem divisions do
coincide.

One example where indistinguishable particles have b
treated is that by Schliemannet al. @7,8#, who explicitly con-
sider the antisymmetric product space belonging to two
mions, each of which inhabits a four-dimensional on
particle space. They write a general state in the s
dimensional two-particle Hilbert space as

uw&5 (
a,bP$1,2,3,4%

wabca
†cb

†u0&, ~1!

wherea,b run over the orthonormalized single-particle stat
and Pauli exclusion requires that the 434 coefficient matrix
w is antisymmetric:wab52wba .

It may seem that Schliemann’s partitioning is indeed
terms of sites rather than particles, since the single-part
states are labeled by sites. But, as we shall see later, S
emann’s measure is derived by considering the numbe
elemental Slater determinants needed to expand the
tangled state. It is therefore actually a particle-based, ra
than a site-based, description of entanglement. As a co
quence, as will be shown later in this paper, it suffers from
number of serious flaws; in particular, it is possible to dev
one-site~i.e., local! transformations which generate entang
ment according to the Schliemann measure.
5-2
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III. REVIEW OF EXISTING ENTANGLEMENT
MEASURES

A. Desirable properties of any entanglement measure

What are the desirable properties of an entanglement m
sure?

Invariance under local unitary transformations. If a mea-
sure is correct, it should not be possible to generate entan
ment using only unitary transformations local to a particu
site.

Non invariance under nonlocal unitary transformation.
Conversely, it should be possible to find nonlocal~i.e., mul-
tisite! unitary transformations which change the entang
ment.

Correct behavior as distinguishability of subsystems
and B is lost. A correct measure should reflect the fact th
entanglement is affected when the distinguishability of
subsystems involved is lost. A simple example of this is
follows. For two fermions whose spin degrees of freedom
maximally entangled, we require that as the overlap of
single-particle spatial wave functions approaches unity
entanglement should asymptotically approach zero. Thi
easily seen by considering the full expression for the B
basis states in terms of Slater determinants.

If the two fermions are localized, one in siteA and one in
site B, then theuC&6 Bell state can be written as

uC&6[
1

&
~ u↑↓&6u↓↑&), ~2!

where the full expression foru↑↓& is

u↑↓&5
1

&
UfA~1!↑~1! fB~1!↓~1!

fA~2!↑~2! fB~2!↓~2!
U. ~3!

When the two fermions are brought together to occu
the same site, the spatial parts of the two single-part
states coincide, i.e.,fA→fB , and we have

u↑↓&→
1

&
Uf~1!↑~1! f~1!↓~1!

f~2!↑~2! f~2!↓~2!
U

5
f~1!f~2!

&
U↑~1! ↓~1!

↑~2! ↓~2!
U, ~4!

wheref is thesamespatial state for sitesA andB.
A similar result is obtained foru↓↑&, but with an exchange

of columns, and therefore the same result applies for it as
u↑↓& but with an overall minus sign. Henceu↑↓& and u↓↑& are
now linearly dependent, and the behavior of the entang
Bell state is
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uC&6 →
fA→fB 1

&

f~1!f~2!

&
S U↑~1! ↓~1!

↑~2! ↓~2!
U

6U↓~1! ↑~1!

↓~2! ↑~2!
U D

5 1
2 f~1!f~2!„↑~1!↓~2!2↓~1!↑~2!

6@↓~1!↑~2!2↑~1!↓~2!#… ~5!

and hence

uC&2→f~1!f~2!U↑~1! ↓~1!

↑~2! ↓~2!
U ~6!

up to a normalization factor, whereasuC&1→0 because of
Pauli exclusion.

Thus the one ebit of entanglement present in auC&6 state
should be destroyed as the spatial overlap of the two fer
ons’ wave functions asymptotically approaches unity—in
case ofuC&1 because the state itself is destroyed, and in
case ofuC&2 because the entangled Bell state become
nonentangled product state.~At least, this is the case if nei
ther Alice nor Bob can measure with a spatial resolut
sufficient enough to determine the substructure of the spa
statef.! A correct entanglement measure should reflect t
fact.

For a pair of bosons in theuC&6 state, exactly the sam
loss of entanglement would occur, although the behavior
uC&1 and uC&2 are exchanged, due to the change of s
introduced by the use of permanents rather than dete
nants.

B. Wootters measure for distinguishable particles„tangle…

Wootters and co-worker@6,9,10# consider a particular
state of two distinguishable particles:

uf&5au↑↑&1bu↑↓&1cu↓↑&1du↓↓&,

uau21ubu21ucu21udu251, ~7!

where it is implicit that each particle occupies a definite s
tial state. Since the tensor product decomposition ofH al-
lows us to define a reduced density matrixr̂B describing the
mixed state of systemB, the von Neumann entropy ofr̂B is
a natural measure of entanglement. The Wootters entan
ment is simply a reexpression of the von Neumann entr
of r̂B , and is defined as

E5h@ 1
2 ~11A12t!#, ~8!

where

h~x!52@x log2 x1~12x!log2~12x!#, ~9!

and the quantityt is known as the ‘‘tangle’’ and is defined b

t54uad2bcu2. ~10!

SinceEWoottersexpresses the entropy of a single site, there
no single-site operation which can affect it.
5-3
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The Wootters measure applies only when the particles
totally distinguishable by virtue of occupying distinct site
But our aim is to describe more general states in which e
particle occupies a superposition of sites—what happen
we simply go ahead and use the Wootters measure reg
less? Since the Wootters measure does not depend o
nature of the spatial states, there is no way its value
change. So, for example, there is no way that the Woot
entanglement of auC&6 Bell state will ever be affected by
the spatial overlap of the single-particle wave functions
the constituent particles.

C. Schliemann measure for fermions

Schliemannet al. @8# define the entanglement of sp
states of a pair of fermions by

h~w!ªu^w̃uw&u, ~11!

where the dualw̃ of w is defined by

w̃ab5
1

2
eabcdw̄cd ~12!

and the inner product is expressed as

^w̃uw&5 (
abcd

w̃ab* wcd^0ucbcacc
†cd

†u0&

5 (
abcd

eabcdwabwcd

58~w12w341w13w421w14w23!. ~13!

A similar definition was introduced for a pair of bosons
Paskauskas and You@11#.

Slater decomposition form. It is possible to relate the
Schliemann measureh to the number of elementary Slate
determinants that are required to construct the entan
state. The Hilbert space for a two-fermion,K-site system is
the antisymmetric spaceA(C2K

^ C2K). Any vector in this
space can be represented in terms of single-particle funct
f a( i )

† , which are members of the single-particle spaceC2K, by
the Slater decomposition

uC&5
1

A( i 51
K uzi u2

(
i 51

K

zi f a1~ i !
† f a2~ i !

† u0&. ~14!

The number of nonzero coefficientszi required to construc
uC&, i.e., the number of elementary Slater determinants
known as the Slater rank of the entangled state. Then f
two-fermion two-site system,uC& has a Slater rank 1~con-
sists of a single Slater determinant! iff h(uC&)50.

Behavior as overlap of single-particle wave functions
increased. This entanglement measure behaves correctly
the overlap is increased between the single-particle w
functions of the particles, as is shown in Fig. 1.

Relation to Wootters measure. Let us consider how the
Schliemann measure works for the class of states consid
by Wootters:
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uf&5au↑↑&1bu↑↓&1cu↓↑&1du↓↓&,

uau21ubu21ucu21udu251. ~15!

In the representation used by Schliemann, we can write thw
matrices for the two-particle basis states in theA↑, A↓, B↑,
B↓ basis as

w↑↑5S 0 0 1
2 0

0 0 0 0

2 1
2 0 0 0

0 0 0 0

D , w↓↓5S 0 0 0 0

0 0 0 1
2

0 0 0 0

0 2 1
2 0 0

D ,

w↑↓5S 0 0 0 1
2

0 0 0 0

0 0 0 0

2 1
2 0 0 0

D , w↓↑5S 0 0 0 0

0 0 1
2 0

0 2 1
2 0 0

0 0 0 0

D .

~16!

Therefore the state considered by Wootters has the c
ficient matrix

w5
1

2 S 0 0 a b

0 0 c d

2a 2c 0 0

2b 2d 0 0

D , ~17!

and thus we obtain the relation

u^w̃uw&u5ueabcdwabwcdu

5u8~w12w341w13w421w14w23!u52uad2bcu5At.

~18!

Hence for the state of two distinguishable particles co
sidered by Wootters, the Schliemann measureh is related to
the Wootters tanglet by

h5At. ~19!

FIG. 1. Schliemann entanglementh of all Bell states vs overlap
S5u^faufb&u of single-particle states~both quantities are dimen
sionless!.
5-4
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Non invariance under local unitary transformations. We
can, however, easily show that there are local~one-site! uni-
tary transformations that generate entanglement by the S
emann measure. Consider this two-particle state:

uc&5
1

&
~cA↑

† 1cB↑
† !

1

&
~cA↓

† 1cB↓
† !u0&. ~20!

The physical interpretation of this state is that it describe
doubly filled ‘‘molecular orbital’’

uA&1uB&

&
, ~21!

where uA& and uB& are the spatial states for sitesA and B,
respectively.

Its antisymmetric coefficient matrix is

w5
1

2

1

&

1

& S 0 1 0 1

21 0 21 0

0 1 0 1

21 0 21 0

D , ~22!

giving a Schliemann entanglement ofh50 ~no entangle-
ment, since it is a single Slater determinant!.

Now consider applying the infinitesimal one-site tw
particle unitary transformation (12 i eH) with H
5UnA↑nA↓ . This purely local operation transforms thew
matrix to

w→ 1

4 S 0 12 i eU 0 1

211 i eU 0 21 0

0 1 0 1

21 0 21 0

D , ~23!

which gives a Schliemann entanglement ofh58u2 i eU/4u
52eU, which is non zero to first order ine. We have suc-
ceeded in generating Schliemann entanglement via a pu
local unitary operation, something that should not be p
sible to achieve.

Invariance under nonlocal unitary transformations. Now
consider an infinitesimal two-site one-particle unitary tra
formation. We would expect such a transformation to lead
a change of entanglement, yet we can construct an exam
under which the Schliemann measure is invariant. Our
ample is generated by a Hamiltonian describing inter
hopping accompanied by a spin flip:

H5t~cA↑
† cB↓1cB↓

† cA↑!. ~24!

~The spin flip is introduced so that our state is not an eig
vector ofH!. The Hamiltonian’s action on our example sta
is

Huc&52
t

2
cA↑

† cB↑
† u0&1

t

2
cB↓

† cA↓
† u0&. ~25!
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Hence applying the infinitesimal unitary transformatio
(12 i eH) with this operator to our example stateuc&
5(1/&)(cA↑

† 1cB↑
† )(1/&)(cA↓

† 1cB↓
† )u0&, we obtain a w

matrix with extra terms6 i et in the A↑ B↑ andB↓ A↓ lo-
cations:

w→ 1

4 S 0 1 2 i et 1

21 0 21 2 i et

1 i et 1 0 1

21 1 i et 21 0

D , ~26!

which has a Schliemann entanglement

h5
1

2
e2t25O~e2!. ~27!

Thus, to first order ine, the Schliemann entanglement o
our example state is unaffected: even though the transfor
tion introduces new correlations between the spin state
the particles on sitesA andB.

Understanding the anomalous behavior of the Schliem
measure in terms of the Slater decomposition. The Slater
decomposition representation of an entangled two-ferm
two-site state described earlier provides a particularly sim
way of understanding why the Schliemann measure does
behave correctly under either two-site one-particle or o
site two-particle unitary transformations.

According to Schliemannet al., a two-fermion two-site
state is entangled iff it has a Slater rank greater than one.
well known that a one-particle unitary transformation appli
to a Slater determinant will produce another Slater deter
nant, whereas a two-particle transformation will produce
superposition of Slater determinants. Therefore any o
particle two-site unitary transformation will not affect th
Slater rank of a state and so it will not change the Sc
emann entanglement, despite being a nonlocal transfor
tion. Similarly, all two-particle one-site unitary transform
tions will modify the Slater rank of a two-fermion two-sit
state, and therefore will change the Schliemann entan
ment, even though they are local. Schliemann’s meas
therefore fails to behave as we expect it to. The entanglem
measures introduced in@11,12# suffer from analogous prob
lems, since both are based on the rank of the state.

D. Zanardi measure

Zanardi@2# considers the Fock space ofN spinless fermi-
ons in a lattice withL sites. The state spaceHL(N) for this
system is given by

HL~N!ªspan$uA&/APPL
N%, ~28!

where the antisymmetrized state vectoruA& is given by the
Slater determinant

uA&ª
1

AN!
(

PPSN

~21! uPu
^ l 51

N uc j P~ l !
&, ~29!
5-5
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and wherePL
N denotes the family ofN-site subsets of the sit

labels, anduc j P( l )
& is the single-particle state for thej th site,

wherej is a member of the subsetPL
N .

For someuC&PHL(N), the local density matrix for the
j th site is given by

r jªtrj uC&^Cu, ~30!

where trj denotes the trace over all but thej th site, and
therefore the von Neumann entropy ofr j is a measure of the
entanglement of thej th site with the remainingN21 sites.
We will now show that, unlike the other candidates, Zan
di’s measure possesses all the desirable features of an
tanglement measure that we have listed above.

IV. SITE ENTROPY ENTANGLEMENT MEASURE

A. Application to an example state

Let us now investigate further the properties of Zanard
site entropy entanglement measure. Our conclusions are
using a binary site-spin occupation number basis for the
density operator for an entangled system, and then redu
the density operator with respect to this basis, gives a
duced density matrix whose von Neumann entropy app
to be a correct measure of entanglement under all circ
stances, and for all spin statistics. This is due to the fact
Fock space~to which this representation maps the Hilbe
space of a set of indistinguishable particles! has a natural
product structure.

For example, for the~fermionic or bosonic! state consid-
ered in a preceding section,

uc&5
1

&
~cA↑

† 1cB↑
† !

1

&
~cA↓

† 1cB↓
† !u0&, ~31!

the density operator for the full system is

r5 1
4 ~cA↑

† 1cB↑
† !~cA↓

† 1cB↓
† !u0&^0u~cA↓1cB↓!~cA↑1cB↑!.

~32!

We now express this density operator as a density ma
in the binary$nA↑ ,nA↓ ,nB↑ ,nB↓% occupation number basis
and reduce it for sideB by tracing out states of sideA using
combinations ofnA↑50, 1 andnA↓50, 1 since the number o
particles on siteA is 0, 1↑, 1 ↓, or 2. Thus we perform

r̂B5 (
nA↑50,1,nA↓50,1

3^nA↑ ,nA↓u^nB↑ ,nB↓urunB↑8 ,nB↓8 &unA↑ ,nA↓&,

~33!

giving

r̂B5
1

4 S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D ~34!
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in the $nB↑ ,nB↓%5$0,0%,$1,0%,$0,1%,$1,1% basis. The von
Neumann entropy of this is

S~ r̂B!52tr~ r̂B log2 r̂B!524~ 1
4 log2

1
4 !52. ~35!

Therefore, according to Zanardi’s site entropy entang
ment measure our example state contains two ebits of
tanglement: one in the spin degree of freedom, the othe
the spatial degree of freedom. This will be discussed
length later in this paper. By contrast, as we have seen ab
the Schliemann measure gives zero entanglement for
state. We give in Appendix A an explicit construction sho
ing that two qubits may be teleported using this state, furt
supporting the entanglement value given by the Zana
measure.

B. Behavior under unitary transformations

One-site two-particle (local) unitary transformations. As
before, we apply the infinitesimal one-site, two-particle u
tary transformation (12 i eH) with H5UnA↑nA↓ and we ob-
tain

r̂B5
1

4 S 11e2U2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D . ~36!

Hence, unlike the Schliemann measure, to first order ine the
site entropy measure is invariant under one-site two-part
unitary transformations. This is the correct behavior for
entanglement measure: we cannot generate entangle
through a purely local unitary transformation.

Two-site one-particle (nonlocal) unitary transformation.
Let us apply the transformation generated by Eq.~24! to our
example stateuc&5(1/&)(cA↑

† 1cB↑
† )(1/&)(cA↓

† 1cB↓
† )u0&.

Tracing out siteA, we obtain the reduced density matrix fo
site B,

r̂B5
1

4 S 1 0 0 0

0 1 22i et 0

0 12i et 1 0

0 0 0 1

D ~37!

in the $nB↑ ,nB↓%5$0,0%,$1,0%,$0,1%,$1,1% basis. To first or-
der ine, this is not equal to the untransformedr̂B . Therefore,
two-site unitary transformations can generate entanglem
in the site entropy picture, even if they only operate on o
~delocalized! particle. This conclusion is as we would expe

C. Site entropy measure applied to a completely general state

Bosonic particles. Let us now apply the site entropy de
scription of entanglement to completely general two-partic
two-site states. Since the case of bosonic particles is the m
general case, we consider it first. The state can now be w
ten in terms of thew matrix as
5-6
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uw&5 (
a,bP$1,2,3,4%

wabba
†bb

†u0&, ~38!

where 1,2,3,45A↑,A↓,B↑,B↓ and w is now a symmetric
coefficient matrix.

Transforming this to the site-spin occupation number
sis $nA↑ ,nA↓ ,nB↑ ,nB↓% and tracing out the states of siteA,
we obtain a reduced density matrix for siteB of block-
diagonal form, where each block corresponds to a partic
occupancy~zero, one, or two bosons! of that site.

r̂B
bosonic5S r̂B,0 0 0

0 r̂B,1 0

0 0 r̂B,2

D . ~39!

This is a 636 matrix, rather than the 434 r̂B we previously
obtained for the two-fermion state, because Bose-Eins
spin statistics permit the extra site-B double-occupancy state
B↑B↑ andB↓B↓.

The component for zero particles on siteB is

r̂B,05uw11u21uw22u214uw12u2. ~40!

The component for one particle on siteB in the B↑, B↓
basis is

r̂B,15S 4uw13u214uw23u2 4w13w14* 14w23w24*

4w13* w1414w23* w24 4uw14u214uw24u2
D .

~41!

Finally, the component for two particles on siteB in the
$B↑B↓,B↑B↑,B↓B↓% basis is

r̂B,25S 4uw34u2 2w34w33* 2w34w44*

2w34* w33 uw33u2 w33w44*

2w34* w44 w33* w44 uw44u2
D . ~42!

Fermionic particles. Obtaining an expression forr̂B for a
completely general fermionic state is simply a matter of
plying Pauli’s exclusion principle tor̂B

bosonic. Under Fermi-
Dirac statistics, the only possible two-particle state on sitB
is B↑B↓, meaning that the two-particle part ofr̂B is reduced
to the 131 submatrix,

~ r̂B,2! fermionic5~4uw34u2!, ~43!

Similarly, the only possible two-particle state on siteA is
A↑A↓, meaning that the probability of zero particles on s
B is given by 4uw12u2. Hence the zero-particle part ofr̂B

bosonic

is

~ r̂B,0! fermionic5~4uw12u2!. ~44!

The one-particle part ofr̂B
bosonic is by definition not af-

fected by Pauli exclusion, therefore

~ r̂B,1! fermionic5~ r̂B,1!bosonic. ~45!
03230
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D. Relationship to Wootters tangle

The origin of the Wootters entanglement measure is n
readily understood. It is simply the von Neumann entropy
the one-particle partrB,1 of the reduced density matrix in th
occupation number representation for siteB. Wootters’s
‘‘general state’’ equation~7!, where the kets represen
usAsB&, can be rewritten in the occupation number ba
unA↑nA↓nB↑nB↓& as

au1010&1bu1001&1cu0110&1du0101&. ~46!

Tracing out siteA yields the following reduced, correctly
normalized, density matrix for siteB in the B↑, B↓ basis:

r̂B5S uau21ucu2 ab* 1cd*

a* b1c* d ubu21udu2 D ~47!

with eigenvalues

1
2 ~12A124uad2bcu2!, 1

2 ~11A124uad2bcu2!.
~48!

Applying the simplifications t54uad2bcu2 and x5
(1/2)(11A12t) these reduce to 12x, x. Thus the entropy
of r̂B is

S~ r̂B!52@x log2 x1~12x!log2~12x!#, ~49!

which is identical to the Wootters result for entangleme
given in Eq.~8!.

V. SPIN-SPACE ENTANGLEMENT TRANSFER

A. Omar et al. thought experiment

Since we have argued that Zanardi’s approach give
correct view of entanglement in all circumstances, we c
use it to analyze situations in which there is spatial, as w
as spin, entanglement. A particularly interesting system
this type was introduced recently by Omaret al. @13#. They
consider an apparatus that takes as its input two pairs
particles,A and B, each pair maximally entangled in som
internal degree of freedom~e.g., spin!, and transfers some o
that entanglement to the spatial degrees of freedom of
particles. This is achieved by passing one particle from e
pair through a beam splitter on one side of the apparatus,
doing likewise with the remaining particles from each p
through another beam splitter on the other side of the ap
ratus~see Fig. 2!. The two sides are labeled 1 and 2. Use
the site entropy measure enables us to understand bette
process of entanglement transfer.

Side 1 of the apparatus. First, let us consider the inpu
state to the apparatus, and its entanglement according to
site entropy measure. This state is

1

&
~aA1↑

† aA2↓
† 6aA1↓

† aA2↑
† !

1

&
~aB1↑

† aB2↓
† 6aB1↓

† aB2↑
† !.

~50!

Henceforth we will consider the case where all four partic
are fermions, and the above product state consists of trip
5-7
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~described as the11 case for fermions in@13#!. If we write
this in the occupation number representation, and then t
out side 2 of the apparatus, we obtain the following redu
density matrix for side 1 of the apparatus:

r̂1,in5S 0 0 0 0 0 0

0 0 0 0 0 0

0 0 1
4 0 0 0

0 0 0 1
4 0 0

0 0 0 0 1
4 0

0 0 0 0 0 1
4

D , ~51!

using the reduced basis for side 1,

unL1↑nL1↓nR1↑nR1↓&

5$u1100&,u0011&,u0110&,u1001&,u1010&,u0101&%.

~52!

This state has two ebits of entanglement. Examining
~51!, we see that this entanglement is carried entirely in
bottom right part of the density matrix, which corresponds
single-occupancy states which differ only by the spin. The
fore, this entanglement is purely spin entanglement.

It is a straightforward exercise to show that the site
tropy measure gives the same total entanglement betw
sides 1 and 2 of the apparatus~two ebits! for the input and
output states. This must be so since the operation of e
beam splitter is local to its side of the apparatus. The unn
malized output state for 50/50 beam splitters for our in
state is given in@13# as

FIG. 2. The spin-space entanglement apparatus used in
Omaret al. thought experiment~reproduced from@13#!.
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2 1
2 uL&1uL&22 1

2 uR&1uR&22 1
2 ~ uL&1uR&21uR&1uL&2)

1 1
2 ~ uA↑↓&1uA↓↑&21uA↓↑&1uA↑↓&2)2 1

2 ~ uA↑↓&1uA↑↓&2

1uA↓↑&1uA↓↑&2)1~ uA↑↑&1uA↓↓&21uA↓↓&1uA↑↑&2),

~53!

where, for example,uL&1 indicates that both fermions on sid
1 of the apparatus have passed into the left arm and
necessarily have opposite spins, anduA↑↓&1 indicates that
each particle on side 1 of the apparatus has passed in
different arm, with the particle occupying the left arm bein
spin up and the particle occupying the right arm being s
down.

If we rewrite this in the occupation number representat

unL1↑nL1↓nR1↑nR1↓nL2↑nL2↓nR2↑nR2↓&, ~54!

trace out side 2 of the apparatus, and renormalize, we ob
the following reduced density matrix for side 1 of the app
ratus:

r̂1,out5S 1
8

1
8 0 0 0 0

1
8

1
8 0 0 0 0

0 0 1
8 2 1

8 0 0

0 0 2 1
8

1
8 0 0

0 0 0 0 1
4 0

0 0 0 0 0 1
4

D , ~55!

which has entropyS( r̂1,out)52, showing that the total en
tanglement is unaffected by the operation of the appara
However, we can see from the fact that the doub
occupancy top-left sector of this matrix is now nonzero, t
system now contains spatial entanglement, because this
is now mixed in arm-occupancy number as well as spin.

Single-occupancy and double-occupancy entanglem
are additive. Since in Eq.~55! there are no nonzero off
diagonal elements connecting the double-occupancy
single-occupancy sectors of the matrix, we can unamb
ously assign each eigenvalue to one sector, and hence d
the total entanglement into double-occupancy and sin
occupancy parts. In this case, the double-occupancy se
has eigenvalues14, 0 and hence contributes 0.5 ebits to t
entanglement. The single-occupancy sector has eigenva
of 1

4, 0, 1
4,

1
4 and hence contributes 1.5 ebits. It is clear fro

these definitions that the single-occupancy and dou
occupancy entanglements will always sum to the total
tanglement, provided that the off-diagonal elements conn
ing the two sectors are zero. The single-occupan
entanglement is a form of spin entanglement, since
single-occupancy states do not differ in the spatial distri
tion of particles between the arms. Likewise, the doub
occupancy entanglement is a form of space entanglem
since the double-occupancy states do not differ in theirms
values. However it is not obvious that these are the m
general forms of spin and space entanglement, since, for

he
5-8
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ample, the double-occupancy entanglement does not tak
count of the spatial states in which each arm contains
particle.

The distinction between spatial and double-occupancy
tanglement is further clarified by theSx50 spin measure-
ments suggested by Omaret al. for their output state. They
show that the spatial state produced by such a measure
~obtained with probability1

2! involves a superposition of bot
double- and single-occupancy components. In this state,
show that the entanglement remaining between sides 1 a
is one ebit: since the spin state is now the same for all c
ponents and hence unentangled, this could be unambiguo
described as spatial entanglement.

Left arm of side 1 of the apparatus. It is instructive now to
reduce further the input and output density matrices to th
for just the left arm of side 1 of the apparatus. For the in
state, this is

r̂1L, in5S 0 0 0 0

0 0 0 0

0 0 1
2 0

0 0 0 1
2

D ~56!

in the basis

unL1↑nL1↓&5$u11&,u00&,u01&,u10&%, ~57!

which has entropyS( r̂1L, in)51. In the same basis, the re
duced density matrix for the output state is

r̂1L,out5S 1
8 0 0 0

0 1
8 0 0

0 0 3
8 0

0 0 0 3
8

D , ~58!

which has entropyS( r̂1L,out)51.81, showing that the actio
of the beam splitter on side 1 of the apparatus has introdu
an additional 0.81 ebits of entanglement between the left
of side 1 and the rest of the system, in addition to the 1 e
of entanglement already present between those two
systems.

Operator-sum representation for spin-space entanglem
transfer. It is possible to find an operator-sum representat
for the spin-space entanglement transfer within the left a
of side 1 of the apparatus that we have discussed above
easy way to do this is to make the following isomorphis
between the spin states of two qubitsA andB, and the occu-
pation numbers for the spin-up and spin-down single part
states of the left arm:

$sAsB%5$u↑↑&,u↑↓&,u↓↑&,u↓↓&%

→$n1L↑n1L↓%5$u00&,u01&,u10&,u11&%. ~59!
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We then find that the action of the Omar interferometer
transformingr̂1L, in to r̂1L,out can be represented by the actio
of the depolarizing channel@3# on r̂1L, in with probability
p5 3

8 .

B. Division of entanglement into single- and
double-occupancy parts

When is it possible to divide entanglement unambig
ously into single- and double-occupancy parts? As we
see from the above treatment of the Omar apparatus,
when the reduced density matrix for the subsystem wh
entanglement we are considering has sectors correspon
to single- and double-occupancy, with no off-diagonal e
ments connecting them. Such a division is possible whene
the total system contains a definite number of particles: th
are then no off-diagonal density matrix elements connec
states of the subsystem having different numbers of partic
This is the reason why there are no elements connecting
different sectors ofr̂1L in Eqs.~56! and ~58!.

We note with emphasis that the situation for the reduc
density matrix for side 1 of the Omar apparatus in Eq.~55! is
fundamentally different. All the basis states contain the sa
total number of particles. Its block-diagonal form is due to
combination of factors: the spin symmetry of the syste
~which causes those elements connecting states on side 1
2 with a different totalms value to be zero! and the use of
50/50 beam splitters, which prevents any products of
form uL&1uA&2 from appearing in the output state.

APPENDIX: TELEPORTING TWO QUBITS
USING AN EXAMPLE DELOCALIZED STATE

Protocol design. Consider again the delocalized state
Eq. ~20!. Since the Zanardi measure says it contains t
ebits of entanglement, we should be able to teleport t
qubits of quantum information using it. Clearly, since t
two ebits are spread across spin and spatial degrees of
dom, we shall need to modify the original protocol som
what. How could we do this?

Switching into the anthropocentric language of Alice a
Bob, a concise description of the protocol for teleporting o
qubit described in@14# is as follows. We separate the tw
subsystems of our entangled system which will act as
channel for quantum information, giving one to Alice an
one to Bob. We then perform a controlled-NOT operation on
the qubit whose state we wish to teleport~the ‘‘source qu-
bit’’ !, and also on Alice’s system, using the source qubit
the control line. We then perform a Hadamard transform
the source qubit. Alice’s qubits are now in a superposition
states, each of which corresponds to the target qubit bein
the same state as the original state of the source qubit up
unitary transform. Alice performs a measurement of the s
of her two qubits, thereby projecting the target qubit into o
of these states. The protocol is completed by Alice send
Bob two bits of classical information describing which me
surement result she obtained, enabling him to rotate the
get qubit into the correct state.

The key to teleporting via the delocalized state~20! lies in
recognizing that the two ebits in the delocalized state
5-9
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equivalent to two pairs of qubits, each of which is maxima
spin entangled~‘‘channel pairs’’!, and making the following
isomorphism:

$sAsB%5$u↑↑&,u↑↓&,u↓↑&,u↓↓&%

→$nA↑nA↓%5$u00&,u11&,u10&,u01&%. ~A1!

This connects the occupation numbers of the single-par
states of Alice’s site to the states of Alice’s channel-pair q
bits in the spin-only representation.

Recall that aCNOT performs

u↑↑&→u↑↓&,u↑↓&→u↑↑&,u↓↑&→u↓↑&,u↓↓&→u↓↓&,
~A2!

i.e., we flip the second qubit in a basis state iff the state
the first~control! qubit in that basis state is up. What does
controlled-NOT operation on one of Alice’s two channel-pa
qubits look like after applying the above isomorphism? U
ing this basis for the states of one of the source qubits~C!
and Alice’s site~A!:

$unC↑nC↓nA↑nA↓&%5$u1000&,u1010&,u1001&,u1011&,

u0100&,u0110&,u0101&,u0111&%, ~A3!

we obtain the following unitary transformation for the fir
‘‘virtual’’ qubit:

Ûfirst qubit51
0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2 . ~A4!

The action of this is thus:

u1000&↔u1010&,u1001&↔u1011&,u01nA↑nA↓& unchanged.
~A5!

Referring to the isomorphism in Eq.~A1! we see that thisÛ
flips the first virtual qubit in Alice’s half of the delocalize
state iff the control qubitC is spin-up. Similar consideration
lead to a similar unitary transformation for the second virt
qubit. We also note that since we are teleporting two qub
we need to send four classical bits to complete the proto

Protocol implementation. The twoCNOTs described above
will clearly allow us to exploit the two ebits of entangleme
present in the delocalized state. However some considera
needs to be paid to how we can implement theseCNOTs.
Considering again the first virtual qubit, the Hamiltonian w
can use to generate Eq.~A4! is
03230
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Ĥfirst qubit5u10&CC^10u~ u00&AA^10u1u10&AA^00u

1u11&AA^01u1u01&AA^11u!

5 1
2 ~sz,C11!~cA↑

† 1cA↑!. ~A6!

In the first expression we have used the bases

unC↑nC↓& and unA↑nA↓&. ~A7!

In the second expression we have reexpressed the proje
for the occupation number state of siteA in second-quantized
notation. Similarly, the Hamiltonian generating a controlle
NOT operation on the second virtual qubit is

Ĥsecond qubit5
1
2 ~sz,C11!~cA↑

† cA↓
† 1cA↓cA↑!. ~A8!

Neither of these Hamiltonians conserves particle numb
thus we need to introduce a coherent source/sink of parti
to the system. We shall see below that we can easily do
for bosons. Introducing a systemD which acts as a particle
source/sink,Ĥfirst qubit becomes

Ĥfirst qubit5u10&CC^10u~cA↑
† cD1cD

† cA↑!. ~A9!

At this point we face a problem. By changing the numb
of particles in systemD as a consequence of ourCNOT, we
are introducing new correlations between the states of s
systemsA andD. This is thus a type of decoherence affecti
the entanglement of the carrier pairAB. This is clearly un-
avoidable in a real-world system, but we can show that
bosons and by choosing a suitable initial state for subsys
D, we can minimize this decoherence to a negligible lev
We seek to put systemD in an approximate eigenstate of th
creation and annihilation operators, so that they leave it
changed and no decoherence of the entanglement in theAB
carrier pair occurs. A suitable choice is the coherent stat

ua&D5exp~2 1
2 uau2!(n

an

~n! !1/2 un&D . ~A10!

It is well known that this state is an eigenstate of the an
hilation operator, a fact that suits our requirements perfec
but it is not an eigenstate of the creation operator. Howe
as the mean number of particlesuau2 in the coherent state
asymptotically approaches̀, the state asymptotically ap
proaches an eigenstate of the creation operator. It is im
tant to note that this method for coherently producing a n
number-conserving interaction applies to bosons only.
fermions, Pauli exclusion prevents us from using such
simple approach and there is no analog of the coherent s
available within the Hilbert space.
5-10
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